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Abstract

This thesis consists of two independent parts. In the first part, we introduce the immersion
poset (P(n),<r) on partitions, defined by A <; p if and only if s,(z1,...,25) = sa(@1,...,2N) is
monomial-positive. Relations in the immersion poset determine when irreducible polynomial rep-
resentations of GLy(C) form an immersion pair, as defined by Prasad and Raghunathan [PR22].
We develop injections SSYT (A, v) < SSYT (i, v) on semistandard Young tableaux given constraints
on the shape of A\, and present results on immersion relations among hook and two column parti-
tions. The standard immersion poset (P(n),<sq) is a refinement of the immersion poset, defined
by A <4q i if and only if A <p p in dominance order and f* < f#, where f* is the number of
standard Young tableaux of shape v. We classify maximal elements of certain shapes in the stan-
dard immersion poset using the hook length formula. Finally, we prove Schur-positivity of power
sum symmetric functions p, on conjectured lower intervals in the immersion poset, addressing
questions posed by Sundaram [Sun19].

In the second part, we use crystals to explore Schur positivity results of claw-free graphs.
Crystals were introduced by Kashiwara [Kas90] and have often been used to prove Schur positivity.
Using Kashiwara crystals, we give a type A crystal structure on the set of colorings of claw-free
graphs. Previously, Ehrhard [Ehr22] had given a type A crystal structure on P-arrays, where P
is a (3+1)-free poset, which is equivalent to having a crystal structure on the colorings of claw-free
incomparability graphs. We show that our operators are isomorphic to Ehrhard’s when confined
to claw-free incomparability graphs. Stembridge showed that when a crystal satisfies certain local
axioms, then the character of the crystal corresponds to the character of some representation
[Ste03]. We show that the crystal structure satisfies these Stembridge axioms for the set of
graphs which are unit interval graphs, but do not contain an induced sub graph isomorphic to the
path graph of length 4. Finally, we end with a discussion of ways to prove Schur positivity on

claw-free graphs which are not incomparability graphs using this crystal structure.
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CHAPTER 1

Introduction

1.1. Overview

Representation theory has been used as a powerful mathematical tool to study various ap-
plications, such as particle physics and quantum mechanics. Often, the study of certain aspects
of representation theory can be rephrased in terms of symmetric functions. This is because the
Frobenius characteristic map establishes an isometry between the ring of symmetric functions and
the ring of characters of the symmetric group. Meaning we have a direct bridge between the
orthonormal bases of each, which are the irreducible representations and the Schur functions; and
both can be indexed by integer partitions. In the study of immersion pairs for finite-dimensional
irreducible polynomial representations of the general linear group GLy(C), we can rephrase the
language of representations into the language of symmetric functions and reduce this relationship
to a combinatorial one. In the symmetric function perspective, the integer partitions now index
Schur functions, and we say a partition A is immersed in a partition p if the difference in the Schur
functions is monomial positive. This sets up a partial order on integer partitions which is called
the immersion poset.

In Chapter 2, we analyze various properties of the immersion poset. We begin in Section 2.2 by
defining the standard immersion poset. The relation A <; u in the immersion poset for A, i € P(n)
holds if the Kostka numbers K, < K, , for all a € P(n). In the standard immersion poset,
one only compares the number of standard tableaux of shape A and u (instead of semistandard
tableaux of all content). Relations in the immersion poset imply relations for the standard immer-
sion poset, but not vice versa. In Section 2.2, we study properties and maximal elements of the
standard immersion poset. In particular, maximal elements in the standard immersion poset are
also maximal elements in the immersion poset. In Section 2.3, we study properties of the immer-
sion poset. In particular, in Section 2.3.2 we study relations and covers in the immersion poset

using explicit injections between sets of semistandard tableaux. In Section 2.3.3, we analyze the



immersion poset restricted to partitions of hook shape. In Section 2.3.4, we analyze the immersion
relations on partitions with at most two columns. In Section 2.3.5 we conjecture the structure
of certain lower intervals in the immersion poset and prove that ppiny m-2,1,1)] and ppiny,m-2,2)]
(n # 7) are Schur-positive. In Section 2.5, we prove the case when k = 3 of Conjecture 2.2.14,
which guarantees the maximality of a partition in the immersion poset if certain inequalities are
satisfied. We conclude in Section 2.4 with a discussion of open problems.

In Chapter 3, we introduce crystal operators on colorings of claw-free graphs. P-arrays, which
were introduced by Gessel and Viennot in [GV89] and later used by Gasharov in [Gas96], are
combinatorial objects which correspond to proper colorings of incomparability graphs. Crystal
operators on P-arrays, where P is a finite (3 + 1)-free poset, were introduced by Ehrhard [Ehr22]
and in Section 3.2.2, we show that our crystal operators are isomorphic to Ehrhard’s crystal
operators when restricted to claw-free incomparability graphs.

In [Kas90], Kashiwara introduced crystals, which have often been used as a means to achieve
Schur positivity results that also have a strong connection to the representation theory of Lie
groups. Later, in [Ste03], Stembridge showed that when a crystal satisfies certain local axioms,
one can be sure that the character of the crystal corresponds to the character of a representation,
thereby immediately proving Schur positivity. In Section 3.3, we show that in general, our opera-
tors do not satisfy the Stembridge axioms. However, in Section 3.4, we show that for unit interval
graphs which do not contain an induced subgraph isomorphic to the path graph of length 4, these
Stembridge axioms are satisfied. We end with Section 3.5, where we discuss our current research

in how to prove Schur positivity of claw-free graphs which are not incomparability graphs.

1.2. Preliminaries

1.2.1. Schur functions. Let x = (1,22,...) be a set of indeterminates. Suppose the formal
power series f(z) with coefficients in C satisfies the condition that for every permutation o of the
natural numbers N we have f(z1,22,...) = f(Zs(1), Zo(2),--- ), then we say f(x) is a symmetric
function. Let o = (o, aa, ... ) be a weak composition of n € N and let 2 = 27" 25?---. Consider the
symmetric function

f(x) = Z Caxa,
[0
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where « varies over all weak compositions of n and ¢, € C. Here we call f(z) a homogeneous
symmetric function of degree n.

Suppose f and g are homogeneous symmetric functions of degree n. Then assuming we don’t
get 0, f £ g is also a homogeneous symmetric function of degree n. Similarly, any non-zero scalar
multiple of a homogeneous symmetric function of degree n, remains so. Hence, we can form a

vector space.

DEFINITION 1.2.1. We let A™ be the vector space over C consisting of all homogeneous sym-
metric functions of degree n plus the zero symmetric function. Let f € A” and g € A™. Then

fg e A"*™. Hence we can form

A= @ A~

neZs0

We refer to A as the algebra of symmetric functions.

DEFINITION 1.2.2. Let A = (Ag, Aa,...,\;) be a partition. Then the monomial symmetric

function that corresponds to X is

my = Zx"‘

a(N)

where the sum ranges over all distinct permutations « of the entries of .

ExaMPLE 1.2.3.

may = Z:Jﬁ
m(g) = Z [L'Zg
TH(QJJ = }:lti$?
2¥)

THEOREM 1.2.4. Let n be a fixzed non-negative integer. Let Par(n) = {\X + n} and let
Par = U,sgPar(n). Then the set {my|\ € Par(n)} is a basis for A*, and the set {my|\ € Par} is

a basis for A.

DEFINITION 1.2.5. Let A = (Ay, A2, ..., A\;) be a partition. Then the Young (or Ferrers) diagram
of shape X is the finite collection of left justified boxes whose ith row contains \; boxes. T is a

semistandard Young tableau of shape X if T is a filling of the Young diagram of shape A with
3



entries from N where the entries are weakly increasing within a row and strictly increasing down
a column. The content v of T is the vector whose ith position contains the number of boxes in T’

containing the number i. We can define the weight of T', denoted z” as follows

' =x!

EXAMPLE 1.2.6. The following is a semistandard Young tableau of shape A = (5,3,1,1), whose
content is p = (2,4,1,1,1,1,0,...)

112]2]4]

‘O‘l‘wl\:} —

DEFINITION 1.2.7. The Schur function corresponding to \ is

S\ = ZZ'T
T

where the sum ranges over all possible semistandard Young tableaux of shape A. The set of all

Schur functions is also a basis for A.

For a more extensive treatment of Schur functions, or symmetric functions in general, see
chapter 7 of [Sta99]. For those wishing to understand the intimate connection between Schur

functions and irreducible representations of the symmetric group see [Sag91].

1.2.2. Graphs. Here we introduce the terminology used for graphs in Chapter 3.

DEFINITION 1.2.8. A simple graph is an undirected graph containing no multiple edges or
loops. All graphs in Chapter 3 will be simple graphs, so from now on, we will simply say graphs,
though we really mean simple graphs. If G is a graph with edge set £ and vertex set V =
{1,2,...,n} and G has the property that for i < j, if ij € F' (ij is the edge between vertices i and
J), then for any k where i < k < j, we must have ik € E and kj € F, then we say G is a unit interval
graph. An induced subgraph of G is the graph obtained by deleting some subset of vertices of G
and any edges shared by a deleted vertex. We say a graph is claw-free if it does not contained an

induced subgraph isomorphic to the claw graph, shown below.
4



DEFINITION 1.2.9. Define P, to be the path graph of length n with vertex set V' ={1,2,...,n}
and whose edge set is £ ={12,23,...,n - 1n}. For example, P; is the following graph:

1 2 3 4
O O O O

For much of Chapter 3 we will focus on unit interval graphs which do not contain an induced
subgraph isomorphic to Py, we refer to this set as Gj.
Let n > 3. Define C,, to be the cycle graph of length n with vertex set V ={1,2,...,n} and
whose edge set is F = {12,23,...,n—1n,1n}. For example, Cj is the following graph:
1 2 3 4

O\/O

DEFINITION 1.2.10. Let (P,<p) be a finite poset. The incomparability graph of P, denoted
inc(P) is the graph whose vertex set is P and vertices a,b € P share an edge when a and b are
incomparable in P. We say a poset is (a + b)-free if it does not contain an induced subposet

isomorphic to a disjoint union of chains with lengths a and b.

ExaMPLE 1.2.11. Consider the Hasse diagram of a poset P pictured on the left, with its

corresponding incomparability graph on the right.

a
pb—d—c—e
b d |
\ a
C (&

Notice that P is not (3 + 1)-free because if we delete the element e, what we obtain is a
poset containing a chain of length 3 and a chain of length 1 that is disjoint. Notice that the

corresponding incomparability graph of this induced poset is the claw graph, as shown below.
5
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Example 1.2.11 illustrates the fact that saying G is the incomparability graph of a (3 +1)-free
poset is the same as saying G is a claw-free incomparability graph, so we may use these descriptors
interchangeably, depending upon the context.

Let G be the incomparability graph of a (3 + 1)-free and (2 + 2)-free poset P, then G is a unit
interval graph. The converse of this statement is also true. So once again, we can either character-

ize unit interval graphs from the incomparability graph perspective, or from the characterization

given by Definition 1.2.8.



CHAPTER 2

The immersion poset on partitions

This chapter is based on work in collaboration with Lisa Johnston, Evuilynn Nguyen, Digjoy
Paul, Anne Schilling, Mary Claire Simone, and Regina Zhou, published in [JKIN*25]. Section 2.5

was based on work performed after the paper was published.

2.1. Background and Definitions

2.1.1. Immersion of representations. Given two finite-dimensional representations m1: G' —
GL(W1) and m9: G — GL(W>) of a group G, we say that the representation 7 is immersed in the
representation 7y if the eigenvalues of 7 (¢), counting multiplicities, are contained in the eigenval-
ues of my(g) for all g € G. In this case, we call (W, Ws) an immersion pair denoted by Wy <; Wh.

Note that, if 71 is a subrepresentation of 7y, then W; <; Ws, but the converse is not true.

QUESTION 2.1.1 (Prasad and Raghunathan [PR22]). Classify immersion of representations

W1 <; Wy for a given group.

Recently, some progress was made on the above problem for symmetric groups [PPS24Db]
and alternating groups [PPS24a]. In this thesis, we study immersion pairs for finite-dimensional

irreducible polynomial representations of the general linear group GLy(C).

2.1.2. Polynomial representation theory of GLy(C) and symmetric polynomials.
The polynomial representation theory of GLN(C) was developed by Schur [Sch07] and later
popularized by Weyl [Wey39| in his expository book on the representation theory of the classical
groups. Briefly, the homogeneous irreducible polynomial representations (of degree n) of GLy(C),
also known as Weyl modules W,(C¥), are indexed by integer partitions A (of size n) with at
most N non-zero parts. The corresponding irreducible characters, known as Schur polynomials

sx(x1,...,on), are homogeneous symmetric polynomials (of degree n) in N variables xq,...,zx.
7



2.1.3. Monomial positivity. Given a partition A of n with at most N parts, the monomaial
symmetric polynomials are my(z1,...,Tn) = Yo7 -xy", where the sum is over all distinct
permutations a of the parts of \. For example, ms,1)(x1, T2, ¥3) = 2102+ 2iT3+x301 + 2303+ 2501 +
32,

The Schur polynomials {sx | A\ = n} as well as the monomial symmetric polynomials {m, |
A+ n} form a basis for the vector space of symmetric polynomials of degree n. A symmetric
polynomial f(z1,...,xy) is called monomial-positive if

flxy,...,xN) = ZcAm,\(xl, Ce TN,
)

where the coefficients ¢, are non-negative numbers.

2.1.4. Immersion of Weyl modules: the immersion poset. For a partition \ of n with
length ¢(\) < N, let
pr:GLy(C) — GL (W, (CY))

be the irreducible polynomial representation of degree n of highest weight A\. It is a known fact
that (for example, see [Sta99, Chapter 7)) if g € GLN(C) has the eigenvalues x4, ..., xy, then the
eigenvalues of py(g) are the monomials appearing in the Schur polynomial sy(x1,...,zy).

Thus, given two partitions A, o of n with £(\), £(u) < N, the Weyl module Wy (CV) is immersed
in W,(C¥) if and only if s,(z1,...,25) = sx(z1,...,2x) is monomial-positive. Hence studying
the immersion of Weyl modules is equivalent to studying monomial positivity of the difference of
Schur polynomials.

Let P(n) denote the set of integer partitions of n.

DEFINITION 2.1.2. We define a partial order on P(n) as follows. For A\, u € P(n), we define
A<p pif s (@y,. .., xn) = sa(21, ..., xx) is monomial-positive. We call the poset (P(n),<;) the

mmersion poset.

2.1.5. Representation theory of symmetric groups. The irreducible representations as
well as the conjugacy classes of the symmetric group S, are indexed by partitions of n. Let x*(u)
denote the character value of the irreducible character x* evaluated at an element of cycle type p.

The character table of .S, is a square matrix encoding character values, whose rows are indexed by
8



irreducible characters x* and whose columns are indexed by conjugacy classes C),. The character
values of S,, are all integers. Solomon [Sol61] proved that all row sums of the character table of
S, are non-negative integers. Finding a combinatorial interpretation of the row sums is still an

open problem (see [Sta99, Exercise 7.71]).

2.1.6. Schur-positivity. A symmetric polynomial f(x1,...,xy) of degree n is called Schur-
positive if

fxy,...,zN) = Z exsa(zy, -, o),

Arn
where the coefficients c) are non-negative numbers. Schur-positivity is intimately tied to represen-
tation theory. Namely, the symmetric function f is Schur-positive if it is the character of a repre-
sentation W of GLy(C) which admits the decomposition into irreducibles W l ;‘2 NW,\(CN )@,

The Frobenius characteristic map is a bridge between characters of the syml(né%ric group and
symmetric polynomials. The irreducible character x* maps to s, under the Frobenius characteristic

map. Via the Frobenius map, Schur-positivity of f implies that there exists a representation V' of

S, such that V = @ V,**, where Vj is the irreducible representation of S, indexed by .

A1

2.1.7. Power sum symmetric polynomials and restricted row sums of character

table. Define the r-th power sum symmetric polynomial as

N
pr(xl, R ,LCN) = ZZ’:
i=1
For a partition p = (p11, ft2, . ..) = n, define the power sum symmetric polynomial as p, = Py, Py,
Given a subset A,, of partitions of n, consider the sum of power sum symmetric polynomials

(2.1.1) Pa, = ) D
peAn

By the Murnaghan-Nakayama rule [Sta99, Corollary 7.17.4], p,, can be expressed in the basis

of Schur polynomials as

Pu = Z X)\(M)SX

AN

Observe that the coefficient of s, in the expansion of pa, is ¥ ,c4, X*(©). This is precisely the
restricted row sum (ignoring the columns not in A,) of the character table of S,,. These values

need not always be non-negative integers, that is, p4, need not be Schur-positive. For example,
9



if Ay=1{(1),(2,1,1),(4)}, then one can deduce from the character table of Sy that pa, = 3s(4) +

35(3,1) +28(2,2) + 35(2,1,1) — S(14) is not Schur-positive.

QUESTION 2.1.3 (Sundaram [Sun18]). For which choices of A, is the symmetric polynomial
pa, Schur-positive? In other words, which subsets A,, of columns in the character table of S,

result in non-negative row sums?

In pursuit of Sundaram’s question, we explore the immersion poset in detail, hence under-
standing the immersion of polynomial representations for GLy(C). Given a partition u of n,
consider the interval in the immersion poset [(17),u] :== {\ ] (1") <; A <7 p}. One may ask for
what choices of y, the symmetric polynomial pp(in) ) defined in Equation (2.1.1) is Schur-positive.
Assuming Conjectures 2.3.40 and 2.3.43, we prove that:

(1) prany,(n-2,1,1)] is Schur-positive;
(2) Prany,(n-2,2)] is Schur-positive for n # 7.

One natural question which arises from the Schur-positivity of the above symmetric functions
is to explore the representation theory behind it. It would be interesting to construct a natural
representation V' of the symmetric group such that its character maps to the symmetric polynomial

P[(1n),,] under the Frobenius map, when p = (n-2,1,1) or (n-2,2).

2.2. Standard immersion poset

In this section, we introduce the standard immersion poset, which is a refinement of the
immersion poset. The definition is given in Section 2.2.1. Basic properties of the standard im-
mersion poset are proved in Section 2.2.2. In Section 2.2.3, the maximal elements of the standard

immersion poset are studied. We follow the notational conventions in [Sta99, Chapter 6,7].

2.2.1. Definition of the standard immersion poset. The Schur polynomial s, for A+n
is defined as

(2.2.1) sa(z1,...,on) = > Kyumu(z,... zy),

uen

where K, are the Kostka numbers which count the number of semistandard Young tableaux

of shape A\ and content u. Note that with this definition the Schur polynomials are zero unless
10



N > ¢()\), that is, the number of variables needs to be at least as large as the number of parts in

A
LEMMA 2.2.1. For \,ue P(n), A< p if Ky o <K, o for all a € P(n).

PROOF. By Definition 2.1.2, two partitions A, u € P(n) are comparable in the immersion poset
A< pif

Sﬂ(xh"'ax]\f)_8)\(‘7;17"'756]\7)

is monomial-positive. Using (2.2.1), this can be restated as saying A <; p if K o < K, for all

aeP(n). O

In particular, Lemma 2.2.1 implies that a necessary condition for A <; p is that K (n) <
K, 1y, which count the standard Young tableaux of shape A and p, respectively. Note that
f*:= K (1n) is also the dimension of the Specht module V) (the irreducible representation of S,,)

indexed by A.

Let \, € P(n). Define A <p p in dominance order on partitions by requiring that
k k
Z)\isz,ui for all k> 1.

The Kostka matrix (K a)xaep(n) is unit upper-triangular with respect to dominance order, that
is, Ky =1 and K, = 0 unless o <p A. This implies another necessary condition for A <; p,

namely A <p p. This motivates the definition of the standard immersion poset.

DEFINITION 2.2.2. On P(n), define X\ <44 p if A <p p in dominance order and f* < f*. We

call this poset the standard immersion poset.

As argued above, the standard immersion poset is a refinement of the immersion poset, that
is, A <; p implies that A <yq . The converse is not always true. For n > 12, there are examples
of X\ <4q p, which do not satisfy A <; u. For example (5,3,1,1,1,1) covers (4,2,2,2,1,1) in the

standard immersion poset for n = 12, but not in the immersion poset.

ExaMPLE 2.2.3. The immersion poset for n = 8 is given in Figure 2.1. It is equal to the

standard immersion poset.

11
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FIGURE 2.1. The (standard) immersion poset for n = 8.

2.2.2. Properties of the standard immersion poset. We now state and prove properties

of the standard immersion poset. Our main tool is the hook length formula for A € P(n)

a n!
(2:2.2) P = Mo k()

where h(u) is the hook length of the cell w in A which counts the cells weakly to the right of u

and strictly below u (in English notation for partitions).
12



We write A <44 p if g covers X in the standard immersion poset. More precisely, A <gq p if

A <gq i and there does not exist any v such that \ <gq v <gq -

LEMMA 2.2.4. The partition (17) is the unique minimal element in the standard immersion

poset.

PROOF. The partition (17) is the unique minimal element in dominance order. Furthermore,

fO") =1« f for all A € P(n). This proves the claim. O

LEMMA 2.2.5. We have

(1) (1) <44 (n) for all n and
(2) (2,1"72) <44 (n—1,1) for alln > 3.

PROOF. We have (1) <p (n) and f(1") = f(») = 1. There is no other partition A\ with f* = 1.
This implies (1) <gq (n). Similarly, (2,172) <p (n—1,1) and fZ1") = f(-L1) = _ 1. There is

no other partition A with f* =n —1. This implies (2,1"72) <yq (n-1,1). O

REMARK 2.2.6.

(1) Let A <gq p. If pu covers A in dominance order, then p covers A with respect to <gq. The
converse is not true. Take A = (17) and p = (n).
(2) For a given partition A with transpose !, if A <p Af, then A <4 A? as both representations

have the same dimension, that is, fA = fA". In general, A\ does not cover \.

Given a partition A such that A <p A!, it would be interesting to find all partitions A <p v <p A?
satisfying f* = f¥. This would help to understand when the transpose of A covers X in the

immersion poset.
LEMMA 2.2.7. Let A =(2%,1%) and p = (29+1,1°°2). Then \ <g4q i if and only if —b(b;) > a.

PROOF. We have A <p u. Hence by Remark 2.2.6(1), it suffices to show that A <44 . By

the hook length formula, this is true if ;—: = % < 1, which is equivalent to the condition

@>a. [l
13



2.2.3. Classifying maximal elements. In this section, we study the maximal elements of
the standard immersion poset. Recall that the standard immersion poset is a refinement of the
immersion poset. This implies that if a partition is maximal in the standard immersion poset,

then it is also maximal in the immersion poset.

PROPOSITION 2.2.8. The partition (a+b,a) is a mazimal element in the standard immersion

b(b+3)

poset if and only if = > a.

PROOF. Let A = (a+b,a). Any partition v which dominates A, that is, v >p A, must have the

form v =v® = (a+b+1i,a—1) for some i > 1. Note that f (b+‘11)(?;fg+2) Hence f* < fX if and

b(b+3)

only if % > 2 (which is equivalent to > a). Thus, the condition is necessary.

b(b+3)

To prove that the condition > 2 is sufficient, note that

D  (a-i)(b+3+20) a(b+3) . o
O (b+1+2i)(a+b+i+2)  (b+1)(a+b+2)  fr°

(i+1)
. 1 v . . . .
Since fV( ' < f* when % > 2, we must have % < 1. This is true for each 7. Hence A is a

maximal element. O

PROPOSITION 2.2.9. Let A = (a +b,a,1) where a > 2. Then X\ is maximal in the standard

immerston poset if and only if a < w

PrROOF. We first prove the reverse direction by inducting on a. For our base case, let a = 2
and 2 < %2([”2) To prove that A = (2+5,2,1) is maximal, we show that there exists no partition
v such that A <p v and f* < f¥. We start by classifying all partitions v such that A <p v. It is
known that A <p v if and only if the Young diagram of v can be obtained from the Young diagram
of A by moving a single box in row k to row k-1 or by moving a single box in column k& to column
k + 1. This means that the partition (2 +b,2,1) has exactly two covers: (2+0b,3) and (3 +b,1?).
The former is obtained by moving the box in row 3 to row 2, and the latter is obtained by moving
the box at the end of row 2 to row 1. Furthermore, (2 +0,3) and (3 + b,12) are only covered
by (3 +b,2). Below is the Hasse diagram in dominance order summarizing the specific covering

relations:

14



(3+0,2)

— ™~

(2+0,3) (3+b,12)

\ /

(2+0,2,1)

Let v be any partition such that A <p v. By our covering relations, we have that either v = (2+b, 3)
or v is contained in some chain A <p (3+b,12) <p ---<p V.

Now, we will show that for A = (2+5,2,1), f* > f¥ for all v such that A <p v.

By Proposition 2.2.12, we know that (3 + b,1?) is maximal in the standard immersion poset.
That is, if (3+b,12) <p v then f3+1*) > f¥_ Note that our assumption that 2 < w implies
b> 1. By this fact and the hook length formula,

3 b(b+4) 1 and fER1 3(b+4)

A2+ 1)(b+3) AT ar)(ben)

Since fA> f2+:3) and f* > fG+.1%) 5 v we have shown that fA > f¥ for all v such that A <p v.

Now for the remainder of the proof, let A = (a + b,a,1) where a <

w and suppose that

for some a > 2, the partition (¢ + b, ¢, 1) is maximal when ¢ < a < w We follow a similar

argument as the base case and show that f* > f¥ for A\ <p v. Observe that the Hasse diagram in

dominance order around \ looks as follows:

(a+b+1,a)

/ \ |

(a+b,a+1) (a+b+1,a-1,1)

\ /

(a+0b,a,1)

We first consider the partition (a + b,a + 1). Then by the hook length formula,

flaxbar) (g +b+2)(b) (a+b+2)

P T b )@ br1) (axbr)a) <

where the last inequality follows since a > 2.
15



Next, consider the partition (a+b+1,a-1,1). By our inductive hypothesis, (a+b+1,a-1,1) =

(r)®r2) o E8)EH) - Suppose that a is

((a-1)+(b+2),a-1,1) is maximal since a - 1 < a <
the upper bound of our inequality a < w, that is, a = w Then by the hook length

formula,

flarbrba b (g +b+2)(a+1)(a-1)(b+3)
A “(a+b+3)(a+b+1)(a)(b+1)
b+ 1)(b+2) +2b+4) (b+1)(b+2) +2) ((b+1)(b+1-2)) (2b+6)
C((b+D)(b+2)+26+6) (b+1)(b+2) +2b+2) ((b+1)(b+2)) (20 +2)
B b7 + 1465 + 82b° + 260b* + 477b% + 4862 + 216b <
b7 + 14b% + 8265 + 260b* + 47763 + 502b% + 280D + 64

(2.2.3)

It follows that if a < &2@”2) then flatb+la-Ll) < fA hecause for fixed b, Equation (2.2.3)

decreases as a decreases. To see this, we examine the effect of decreasing a on Zigig, ai’gil, and
2L individually. Each of these factors is of the form —£- for fixed d > 0. Notice that g(z) = %5 is a

strictly increasing function for x > 0. Therefore, each of the above factors decreases as a decreases.
Thus, we have shown that for all v such that X <p v, f* > flatbatl) gand fA > flatbrla-11) 5 fv
Hence, (a +b,a,1) is maximal whenever a < Wléﬂ

Now in the reverse direction, if a > w, then f(atb+la-11) 5 A To see this it suffices to

consider a = w + 1 since Equation (2.2.3) increases as a increases for the same reason as
above. If a = w + 1, then
f(‘“b“’a‘l’l) b7 + 1455 + 88b° + 322b* + 739h + 105602 + 852b + 288
A T b7 + 1485 + 88b° + 318b% + T0TH3 + 964b2 + 740D + 240
Therefore, A is maximal if only if a < Wléﬂ. 0

PROPOSITION 2.2.10. Let A = (a+b,a,2) where a > 3. Then X\ is maximal in the standard

. . . . (b+1)(b+2)
immersion poset if and only if a < —5—=.

ProoOF. We first prove the reverse direction by inducting on a. For our base case, let a = 3

(b+1)(b+2)
-

and 3 < To prove that A\ = (3 +0,3,2) is maximal, we follow a similar argument to

Proposition 2.2.9. We first classify all partitions v such that A <p v and then show that f* > f¥

for all such v by finding chains in the dominance order that contain maximal elements from the

standard immersion poset. Our assumption that 3 < w

16
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to show that A = (3+b,3,2) is maximal for all b > 1. We consider the cases b =1,b=2, and b >
3 separately. It can be checked explicitly (for example using SAGEMATH [The24]) that (4,3,2)
and (5,3,2) are maximal in the standard immersion poset.

For b > 3, the Hasse diagram in dominance order around A = (3 +b,3,2) looks as follows:

(4+0,3,1)

| / \

(3+b,4,1) (4+0,2,2)

\ /

(3+0,3,2)

If A<pvthenv=(3+b,4,1),(4+0,2,2), or v is contained in some chain A <p (3 +b,4,1) <p v.
By Proposition 2.2.9, (3+b,4,1) is maximal in the standard immersion poset so it suffices to show

that fA> fv for v=(3+b,4,1) and (4 +b,2,2). By the hook length formula,

FERAD4B)(b+4)  4(b%+4D) PR A U k)
A 5 1)(be3) 5(2<abr3) 0 A2+ (b6

Hence, for b > 3, (3+0,3,1) is maximal in the standard immersion poset, so we have shown that
(3+b,3,1) is maximal for all b> 1.

Now, let A = (a + b,a,2) where a < _(b+1)2(b+2)

and suppose that for some a > 3, the partition

(b+1)(b+2)
2

(c+0b,¢,2) is maximal when ¢ < a < . Again, we show that f* > f¥ for X\ <p v. Observe

that the Hasse diagram in dominance order around A looks as follows:

(a+b+1,a+1)

/ \ |

(a+b,a+2) (a+b+1,a,1)
(a+b,a+1,1) (a+b+1,a-1,2)
\ /
(a+b,a,2)

17



By the Hasse diagram, if v is a partition such that A <p v, then v = (a +b,a+1,1),(a + b,a +
2),(a+b+1,a-1,2), or v is contained in some chain A <p (a+b+1,a—-1,2) <p v. Observe
that (a+b+1,a-1,2) =((a-1)+ (b+2),a-1,2) is maximal by our inductive hypothesis since

a-1<a < (b+1)2(b+2) < (b+3)2(b+4). Therefore, it suffices to check that f* > f¥ for v = (a + b,a +

1,1),(a+b,a+2), and (a+b+1,a—-1,2).
For v =(a+b,a+1,1), we have that

flavbarLl) 2b(a+b+1)(a+1)

(2.2.4) A (a+b)(a-1D(a+2)(b+1)

Since

d flerbart)  (2b(a* +2a°b + 4a® + a?b® + 5a%b + Ta® + 2ab® + 8ab + 2a + 36> + 3b - 2))
da  fA ((a-1)2(a+2)%2(b+1)(a+b)?)

we have that Equation (2.2.4) decreases as a increases. Therefore, it suffices to consider a = 3
which we have done in our base case. Hence, f(atbatll) < fA,

For v = (a+b,a +2), we have that

flarbar2) 2(b-1)(a+b+2) L _atb+2
A (a-D(b+1)(a+b)(a+2)  (a+bd)(a+2)

since a > 3. As (a+b)(a+2)=a?+2a+ab+2b>a+b+2, we have that f(a+ba+2) < fA

(b+1)(b+2)
2

Lastly, for v = (a + b+ 1,a - 1,2), we first consider when a = . By the hook length

formula, we have

flarbrtal2) (h43)(a+b+1)(a-2)(a+1)
IR C(b+1)(a+b+3)(a-1)(a+b)
C(20+6)((b+1)(b+2) +26+2)((b+1)(b+2) - 4)((b+1)(b+2) +2)
C((b+1)(b+2) +2b) (20 +2)((b+1)(b+2) +2b+6)((b+1)(b+2) - 2)
B b7 + 1406 + 78b° + 220b* + 32163 + 182b2 — 80b — 96
b7+ 1466 + 785 + 2200% + 32103 + 214b2 + 48D

(2.2.5)

<1.

Following a similar argument as in Proposition 2.2.9 for Equation (2.2.3), we can see that for

a+b+l a-2 and a+l

fixed b, Equation (2.2.5) decreases as a decreases by considering &7, 4=, o

18



Value for o A= (o, ) A = A=(a,5,2)
(o, 5,1)

>2 (a, 1)
az3 (a,2) (a,2,1)
a>4 (a,3,1) (o, 3,2)
a2bd (a,3)
a6 (a,4) (a,4,1) (a,4,2)
a7 (a,5) (a,5,1) (a,5,2)
az8 (a,6,1) (a,6,2)
az9 (a,6)
a>10 (a,7) (a,7,1) (a,7,2)
a>11 (a,8) (a,8,1) (a,8,2)
a>12 (a,9) (a,9,1) (a,9,2)
a>13 (a,10,1) (a,10,2)
a>14 (o, 10)
a>15 (a, 11) (a,11,1) (a,11,2)
a> 16 (a,12) (a,12,1) (,12,2)
a>17 (a, 13) (a,13,1) (o, 13,2)
a> 18 (a, 14) (a,14,1) (a,14,2)
a>19 (a,15,1) (a,15,2)
a>20 (o, 15)

TABLE 2.1. Necessary and sufficient conditions for maximality of a partition .

We have thus shown that when a > 3, A = (a+b, a,2) is maximal if a < &2(1”2) For the reverse

(b+1)(b+2)
2

direction, consider Equation (2.2.5) when a = + 1. We have that

flosbla-12) 564 12h5 1+ GObY + 16263 + 243b% + 162b

= >
A b5 + 1265 + 60b* + 15863 + 219562 + 1500 + 40
Since Equation (2.2.5) increases as a increases, A <gq (a+b+1,a-1,2) when a > U’“éﬂ.
Therefore, A is maximal if and only if a < w O

REMARK 2.2.11. We may translate the results of Propositions 2.2.8, 2.2.9, and 2.2.10 into
statements about partitions of the form (a, ), («, 3,1), and («, 3,2). Table 2.1 summarizes our

maximality conditions.
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We next classify all maximal hook shape partitions. As noted in Lemma 2.2.5, (17) <4 q (n)
and so the single column shape is only maximal when n = 1. By Lemma 2.2.7, (2, 1%) <44 (22,172)
whenever b > 3. Since (2,1,1) <4 (3,1), the only maximal hook shape with arm length 2 is (2,1).
In the following proposition, we investigate all hook shape partitions with arm length greater than

2.

PROPOSITION 2.2.12. Let A = (a,1%) be a hook shape partition such that a > 2. Then X is a

maximal element in the standard immersion poset if and only if b < 2.

PROOF. When b = 1, the only partition that dominates (a,1) is (a+1) and f(@D = (a+1)-1>
1 = fle+1)| Thus, (a,1) is maximal. When b = 2, the only partitions that dominate (a,1?) are
(a+2), (a+1,1), and (a,2). By the hook length formula,

fla+tl) 9 <1 4 f@2  (a+2)(a-1) a*+a-2
—_— = = an = =
fla1?) " g fla1?) (a+1)a a’>+a

< 1.

Therefore, no partition dominates (a,1?) and has more standard Young tableaux, so (a,1?) is
maximal.
When b > 3, (a,1%) <44 (a,2,1°72), by the hook length formula:

fla1” _ a(a+b-1) <1
f@212) (g +b)(a-1)(b-1)

since

(a+b)(a-1)(b-1)22(a-1)(a+b)>ala+b-1).

Therefore f(@1) < f(@21") and (a,1%) <p (a,2,15-2), so we have (a,1%) <yuq (a,2,15-2) whenever

b>3. U

PROPOSITION 2.2.13. If X is a mazximal element in the standard immersion poset, then \y > Xs.

PROOF. Suppose by contradiction that A\ = (a® \py1,...) with a > Ay, and b > 2. Let u =
(a+1,a2,a=1,\p41,...) and denote by SYT(A) the set of all standard Young tableaux of shape
A. The map

@:SYT(N) = SYT(p),
20



where ¢(T') is the standard Young tableau obtained from 7" by moving the box in position (b, a)
to position (1,a + 1), is an injection. Note that since the entry in position (b,a) is greater than
the entry in (1, a) from strictly increasing columns, then it follows that the newly obtained Young
tableau is standard. Therefore, A <p p and f* < f#, which implies A <; ¢ and thus demonstrates

that A is not a maximal element in the standard immersion poset. U

In fact, the injection ¢ used in the proof of Proposition 2.2.13 remains an injection when
the domain and codomain are extended to semistandard Young tableaux of content v, for any
v + |A|. Injection arguments between sets of semistandard Young tableaux are expanded on in
Section 2.3.2. In particular, this result is extended to the immersion poset in Corollary 2.3.7.

We conclude this section with a conjecture about more general maximal elements in the

standard immersion poset.

CONJECTURE 2.2.14. Suppose A= (X! a;, Y50t as, ... az +ay,a1) for £>2. If

.+ 9 j-1
(aj+ )>Zai+j—2
2 i=1
15 satisfied for all 2 < 5 <L, then X is maximal in the standard immersion poset.
This conjecture has been verified with SAGEMATH [The24] for |A| < 30.

REMARK 2.2.15. Proposition 2.2.8 addresses the case ¢ = 2 associated to Conjecture 2.2.14.

Note that for ¢ = 2 the condition stated in Conjecture 2.2.14 reads

(CL2+2
2

as + 2
) >a,, whereas the condition from Proposition 2.2.8 is ( 22 ) > ay.

This discrepancy comes from the fact that for ¢ > 2, there are more factors contributing to the

inequality in ;—i <1.

2.3. Immersion poset

In this section we turn to the immersion poset. In Section 2.3.1, we study basic properties
of the immersion poset. In Section 2.3.2, we provide explicit injections between certain sets of
semistandard Young tableaux, which are used to determine statements about maximal elements

and cover relations in the immersion poset. In Sections 2.3.3 and 2.3.4, we study the immersion
21



poset restricted to hook partitions and two column partitions, respectively. We conclude in Sec-
tion 2.3.5 with conjectures about certain lower intervals in the immersion poset and prove that

the conjectured intervals give Schur-positive sums of power sum symmetric functions.

2.3.1. Properties of the immersion poset. We begin by specifying the minimal element.

LEMMA 2.3.1. The partition (1") is the unique minimal element in the immersion poset

(P(n), <)

PRrROOF. We have f(1") =1 < f* for all A € P(n). Furthermore K(1n), = 0< Ky, for all o # (1)

and A € P(n). By Lemma 2.2.1 this proves the claim. O

Analogously to Lemma 2.2.5, we prove the following result.

LEMMA 2.3.2. We have
(1) (17) <; (n) for all n and
(2) (2,1"2) <; (n—-1,1) for all n > 3.

PROOF. By Lemma 2.3.1, we have (17) <; (n). By Lemma 2.2.5, (1") <44 (n). Since in the
immersion poset there are fewer order relations than in the standard immersion poset, the first
part of the lemma follows.

We have (2,1772) <; (n-1,1) since
S2an-2y = (n=1)m(ny+mgn-2y and sg,-1,1) = (R=1)mny+(n-2)Mg 1n-2)+ > K(po11),my.

pE(1m),(2,1772)

Again, since by Lemma 2.2.5 we have (2,1"2) <44 (n - 1,1), the second part of the lemma

follows. O

Unlike in the standard immersion poset, where A and A* are always comparable as long as they
are comparable in dominance order (see Remark 2.2.6), this is not always true in the immersion
poset. For example A = (4,4,2,1,1) and A! are not comparable in the immersion poset since
K42.1,1),441,1,1,1) > K(5322),44,1,1,1,1). For hook partitions, it is however true that A <; A" if
A <p At (see Corollary 2.3.30).

We prove the analog of Lemma 2.2.7 in the next section using injections on semistandard

Young tableaux. See Corollaries 2.3.6, 2.3.13, and 2.3.21.
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2.3.2. Explicit injections. Recall from Lemma 2.2.1 that A <; p if and only if K, < K,
for all v € P(n). The Kostka number K, is the cardinality of the set of semistandard Young
tableaux SSYT(A,v) of shape A and content v. Hence we can analyze the order relations A <; u

by constructing explicit injections
(2.3.1) ©:SSYT (A, v) - SSYT (u,v)

for all v e P(n).

To this end, we present one such injection, where p differs from A by moving a single cell
from the c-th column to the (¢ + 1)-th column, and A has a bound on the relative size of the two
columns. Upon establishing this first injection, we refine it to obtain more precise bounds on the
relative size of the columns. We partially characterize what elements cannot be maximal in the

immersion poset, similar to those given in Section 2.2.3 for the standard immersion poset.

Let

A= (Ala SRR AQ,C’B, )‘a+ﬁ+1a s )7
(2.3.2)
M= ()\17"'7>\omc+ 1,05_2,0— 17)\a+ﬂ+1a---)7
such that either a >0 and Agiq+1 <c< Ay, or @ =0 and Ag 441 < c. In particular, Ag,q41 can be 0.

We define a map
0o:SSYT(\,v) > YT (1, v),

where YT (u,v) is the set of all tableaux of shape p and content v, not necessarily semistandard.
We will show in Proposition 2.3.5 that when 8 > « + 2, the image of ¢y will be contained in
SSYT(p,v), so ¢ will be as in (2.3.1).

For T'e SSYT (), v), we define ¢o(T") as follows. Suppose the entries in the c¢-th column of 7" in
increasing order are Tgia, Tgia-1,---, 21 and the entries in the (¢ +1)-th column of 7" in increasing
order are ¥,,Ya_1,---,Yy1- Let i be the smallest index such that x; > ;. If no such index exists, let

i=a+1. Then @o(T) is the tableau such that the entries in the c-th column of o(7") are

xﬁ+a7$ﬁ+a—17 e 7$i+17yi—17 y’i—27 e 7917
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the entries in the (¢ + 1)-th column of ¢o(7T) are

Yo, Ya-15-+ 3 Yiy iy Ti=14 - - -, L1,

and all other entries are the same as those in 7. In other words, ¢y moves the cell containing x
to the (a +1)-th row of the (¢ + 1)-th column, and swaps each z; with y;_; for all 2 < j <.

More concretely, the c-th and (¢ + 1)-th column in 7" and ¢o(7T") look as follows:

(2.3.3) T : TB+a Ya SOO(T) : 2B+a Yo
LB+ Yi i Yi
LB+i-1 Yi-1
L1 1
xg
Ti+l Lit1
Yi-1
A

The cells marked in green contain the entries that move from the c-th column to the (¢ + 1)-th
column, and the cells marked in yellow are the entries that move from (¢ + 1)-th column to the

c-th column. We continue to use this convention for all subsequent examples of .

REMARK 2.3.3. Observe that by our choice of ¢, both x;,; < ;.1 < ;-1 and y; < z;, so the

columns of ¢y (7") are strictly increasing by construction.

EXAMPLE 2.3.4. For A = (3,2,1%) and p = (3,2,2,12,0), we have c=1, a =2 and 3 = 4. Here

are some examples of the injection (o on various tableaux of shape A:

1 3] _[1 3 tft]2] [1]1]2 1le]o] [1 9
212 212 2|7 2 8 2

3 g 3 3 3

4 4 4 4 6

5 5 7 8
o o
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PROPOSITION 2.3.5. Let A and p be as in (2.3.2) with > a+2. Then o as defined above is
an injection

©0:SSYT(A\, v) - SSYT (i, v).

PROOF. Let T € SSYT(A,v). Note that the content does not change under ¢,. We need to
check that the c-th and (¢+1)-th columns of po(T') are strictly increasing, and that the («—i+2)-th
through (a + - 1)-th rows of ¢o(7") are weakly increasing, since all other entries are identical to
those in 7". (It may be helpful to consult (2.3.3).) The columns are strictly increasing by Remark
2.3.3.

For rows, we first consider the (a—i+2)-th through (a+1)-th rows. Due to the bound 5 > a+2,
in the c-th column, these rows contain zg;1,...,25. In the (¢ + 1)-th column, irrespective of the
bound on « and (3, these rows contain x;,...,x;. In particular, the bound £ > a + 2 makes it so
that there is no y; entry in these rows, so there is no “overlap” of y; and zj, for 1 <k < 7. The rows
are thus strictly increasing because x; >z, for all j <k, so the x; entries in the (¢ +1)-th column
are greater than the entries to their left in the c-th column; and z; < z;_1 <y, for 2 < j <4, so the
x; entries in the (c+1)-th column are less than any entries to their right, originally from 7". (Such
entries on the right do not necessarily exist. In particular, z; never has any cell to its right.)

Now consider the (a+2)-th through (a+3-1)-th rows. In the ¢-th column, these rows contain

L1y Tix1,Yi-15-- -, Y1,

and in the (¢ + 1)-th column, these rows contain no cells. They are weakly increasing because
Yj-1 2 xj-1 > x; for 2 < j <1, so the y;_; entries in the c-th column are greater than the entries to
their left, originally from 7', and they have no cells to their right.

To show injectivity, we define an explicit inverse 1y. Let T" € po(SSYT(A,v)). Suppose the
entries in the c-th column of 7" in increasing order are x’ﬁm_l, 9‘3’5+a_2> ..., 2}, and the entries in the
(¢ +1)-th column of 7" in increasing order are y/,,,v.,...,y;. Let i’ be the smallest index such

that y!, > z,. This i’ will be equal to the 7 from the definition of ¢y, because x; > x;,1 and z; < y;

for1<j<i-1inT.
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Then y(T") is the tableau of shape A such that the entries in the c-th column of 1(7") are

l / l / / oo /
xﬂ+a—17xﬂ+a—27 te 7xﬂ—17 xﬁ—2axﬂ—3a sy Ly Yirs Yir15 - - -5 Y1

the entries in the (¢ + 1)-th column of ¢(7") are
y(,,w-la y(,,w ce >y7€’+17$;’—17 x;’—27 te 71:,17

and all other entries are the same as those in 7. In other words, ¥y moves the cell containing

y] to the (a + )-th position in the c-th column, and swaps each yj with 2%, for all 2 < j/ <",

Concretely:
/ x/ ! ’ m/ !
(2.3.4) T Bia-1 Yas1 Po(T") : Bia-1 Yos1
/ / ,
Yiryy T Yir+1
! !
) Tiq
! !/
T 4
!
L3-1
!
- )
T,
!
Lirg
7

Since i’ =1, ¥y moves back exactly the entries in 7" that were originally moved by ¢q in T, so

1o is the inverse of . O

As a corollary, the injection describes a class of cover relations in the immersion poset. As a
specific example, it can partially address the two column case, which was completely addressed

by Lemma 2.2.7 for the standard immersion poset.

COROLLARY 2.3.6. The partitions \ and p as in (2.3.2) with § > a+2 form a cover in the

immersion poset. In particular, X = (2*,18) and p = (2°*1,15-2) form a cover.

PRroOF. The partition i covers A in dominance order, and the injection shows that p is greater

than A in the immersion poset, so ; must also cover A in the immersion poset. OJ
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The injection also gives a few conditions on which partitions cannot be maximal.

COROLLARY 2.3.7. If A= (aP,b,...), where a>0b, and 3 > 2, then X is not mazimal.

PrROOF. We have > 2 with o =0, so we can apply the injection. 0

COROLLARY 2.3.8. If A= (a,b%,¢c,...), where a>b>c, and B > 3, then X is not maximal. In

particular, \ = (a,1?) is not mazimal for a>2, > 3.

PROOF. We have (>3 with o =1, so we can apply the injection. [l

Note that Corollary 2.3.7 and Corollary 2.3.8 repeat the results from Proposition 2.2.13 and the
forward direction of Proposition 2.2.12 concerning nonmaximal elements in the standard immersion

poset.

COROLLARY 2.3.9. If A = (a,b,c,d) is mazimal in the immersion poset, then it has no more

than two identical non-zero parts.

PROOF. If A has three or more identical parts, then A is one of (a*), (a3,d), or (a,b3), so we

can apply the injection. O

As stated in the proof of Proposition 2.3.5, the bound > « + 2 is necessary for ¢o(7") to be
semistandard for T' semistandard. When [ < a+ 2, ¢y can cause an “overlapping” row, where for

certain 1 < j <a— B +2, ys_o,; is to the left of z;, yet yg_os; > z;.

ExAMPLE 2.3.10. For A=(22,13), so =2 and f=3=a+ 1, ¢y can give:

6
7

3

N || N =
ot

Ot = | WO | DN —

One natural modification to restore weakly increasing rows is to swap yg-2+; and x; whenever
the problem occurs. Unfortunately, doing so on its own would not maintain injectivity. If we try

to swap the 5 and 6 in the previous example, our final tableau is the same as the following tableau
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obtained from ¢y with no switches:

| Ot DN

However, if we are able to implement subsequent modifications in a way such that the resulting
tableau is semistandard, yet cannot be obtained from ¢, alone, then we can restore injectivity.
We now define the modification of our original g injection for the case when g = a + 1, and

a > 2, which we call

©1:SSYT(A) - SSYT (p).

From now on, we drop the content v as all maps in this subsection preserve the content.

Let T € SSYT(A). As before, suppose that the entries in the ¢-th column of T in increasing
order are Tgiq, Tgsa-1,-- -, &1, and the entries in the (¢+ 1)-th column of T in increasing order are
Yo Yats - - -, Y1. We define ¢1(T') to be the same as po(T') if po(T) € SSYT(1).

If po(T) ¢ SSYT (1), then necessarily i = o + 1 as defined for ¢y and z; is to the right of
Yg-1 = Ya, With y, > 1. Then ¢ (T) is the same as ¢o(7'), except we swap y, with z1, as well as
Ty With xg.

Concretely, when o1 (T') # @o(T), the c-th and (¢+1)-th columns of T', ¢o(T'), and ¢;(7T") look

as follows:
(2.35)  T:| %8 Yo @o(T') : e1(T) :
TB+a-1 Ya-1
Tp+2 Y2
Y1
Y Y1

We indicate the additional swaps ¢; adds to ¢ using boldface on the relevant entries, x5,1 and

x3. We will continue to use this convention for any subsequent modifications to ¢y.
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Observe that for the x,; with 23 swap to be between cells in different rows, we must have
a > 2. This property is necessary for the tableau to remain semistandard after the swap.
The intuition behind the swaps is that the swap of y, with x; makes the tableau semistandard,

and the swap of xg,1 with zg prevents the new tableau from being in the image of ¢y.

ExAMPLE 2.3.11. For T in Example 2.3.10, ¢; maps:

(2.3.6) 2

~| o —
o

Ot = || DN —

PROPOSITION 2.3.12. Let A and p be as in (2.3.2) with B = a+1> 3. Then ¢, as defined
above is an injection

£1:SSYT(N) = SSYT(u).

PROOF. Let T' € SSYT(A). We need to check that ¢;(7") is semistandard. It suffices to do
so for the case when p1(T) # ¢o(T'), where there is an overlap in @o(7T") consisting of a single
decreasing pair of cells in a row, y, > x1. In particular, ¢o(7") would be semistandard if it were
not for this single pair by the proof of Proposition 2.3.5, so it suffices to check that swapping the
x1 with y, makes the tableau semistandard, and swapping the zg,; with x5 keeps it semistandard,
by examining the changed entries.

Swapping the entries x; with gy, makes the (« + 1)-th row weakly increasing since 1 < y,
by assumption. The c-th column remains strictly increasing since g1 < 1 < Yo < Ya-1, and the
(¢ + 1)-th column remains strictly increasing since s < 1 < Yq.

Swapping the entries xg with x,; keeps the relevant rows, namely the 1st row and a-th row,
weakly increasing and their columns strictly increasing since z; > xy, for all j < k.

Specifically, the c-th column remains strictly increasing since xg.o < x5 < 1, and (¢ + 1)-
th column remains strictly increasing since xg,; < xg_;. The 1st row remains weakly increasing
because xg,1 < 7, SO Tg41 is also less than all entries to its right, which are originally right of x3.
The a-th row remains weakly increasing because 3,1 < g, so xg is greater than all entries to its

left, which are originally left of x4,;.
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To show injectivity, it suffices to check that the modified tableau cannot be in the image of
©o, allowing us to define an explicit inverse i, by likewise modifying 1)9. Namely, we must verify
that 1 (T) is not equal to po(S) for any S € SSYT(N).

Indeed, consider ¢q(.S) for any S € SSYT(A). Let i be as in the definition of ¢g. Then the
i-th entry from the bottom of the (c+1)-th column in y(.S) must have originally been below and
hence greater than the i-th entry from the bottom of the c-th column in ¢y(S), which stays in
the same place in ¢y(S). That is, if the j-th entry from the bottom of the (¢ +1)-th column in
©1(T) is less than or equal to the j-th entry from the bottom of the c-th column in ¢;(7) for all
1<j<a+1, then ¢1(T) # ¢o(S) for all S e SSYT(N). If we check these corresponding pairs of
entries in ¢1(7"), we have y, <y1, z; <y; for 2<j<a -1, 2y <z, and 241 < 2g. Thus, we do
not have a requisite pair of entries, and no S satisfies p1(7") = ©o(S).

We can now define our explicit inverse ¢;. Let 77 € p1(SSYT(N)). As before, the entries in

!/

the c-th column of 7" in increasing order are x Bra-1t

T, 90+ 1, and the entries in the (c+1)-th
column of 7" in increasing order are v/, .1,Yb, .-, Y;-

Let ¢ (T") = 1o(T") when T" € po(SSYT (X)), the domain of 1)5. This occurs when there exists
an i’ such that y/, > z/,, so we can take the smallest such ¢’ as in the definition of 1.

If such an ¢' does not exist, then ¢y first swaps zj; with y/,,,, and 2}, with y;, undoing the
modifications. Relabelling the new tableau obtained after these swaps 7", we now let ¢ (71") =
¢0(TII)‘

Concretely, when ¢ differs from g, the c-th and (¢ + 1)-th columns look as follows:

(2.3.7)

A INCE Tg1a-1 Y

Tgra-2 Tg o
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It is straightforward to check that for 7" = p1(T"), 11 exactly reverses all the swaps done by

©1- O

We now obtain stronger versions of the corollaries obtained from the previous injection, in

particular Corollary 2.3.6.

COROLLARY 2.3.13. The partitions X\ and p as in (2.3.2) with 8> a+1 > 3 form a cover in

the immersion poset.
COROLLARY 2.3.14. If A= (a%,b%,¢,...), where a>b>c, and B > 3, then \ is not mazimal.

COROLLARY 2.3.15. If A = (a,b, ¢, d, e) is mazimal in the immersion poset, then it has no more

than two identical non-zero parts.

In order to further improve the bound for the injection, we must continue to apply modifica-
tions to resolve decreasing pairs in “overlapping” rows, and then apply further modifications to
establish injectivity. However, there are now multiple cases to consider.

Firstly, any combination of the overlapping rows containing both yz_,.; and x; can be decreas-

ing.

EXAMPLE 2.3.16. For A = (24,1%), so a = 8 = 4, following ¢y can give two overlapping rows.

We have each possible combination of rows with decreasing pairs as follows:

(2.3.8) L7 1 ! 91,1
10 2 2 10 2

11 3 311 3 311 3

12 7 12 8 12 9

10 9 10

11 11 11

12 12 12

While all these previous tableaux give 2 rows of overlap, it is also possible for a tableau of the
same shape to give 0 or 1 rows of overlap instead. More generally, po(7T") for T' of shape A as in

(2.3.2) can have anywhere between 0 and max{0,« — 5 + 2} rows of overlap.
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EXAMPLE 2.3.17. For the same X = (24,1%) as in Example 2.3.16, ¢y can give a single over-

lapping row, which contains a decreasing pair:

(2.3.9) ol AP R
2 [10] |2
(| [3
12| [4
10
1
12

Hence, in our next modifications of ¢y, we must encode the information of every possible case
in a way that both distinguishes the cases from ¢, with no modifications, and distinguishes the
cases from each other. To achieve this, our modifications will involve cyclically rotating certain
entries in the c-th and (¢ + 1)-th columns. These rotations will be analogous to the xg with x4,
swap in (7, which can be thought of as a rotation of 2 elements.

We now define a second set of modifications of our original ¢, injection for the case when

B =a, and « > 4, which we call

©2:SSYT(N) = SSYT ().

Let T e SSYT(A). As before, suppose that the entries in the ¢-th column of 7" in increasing
order are g, Tgra-1,---, &1, and the entries in the (c+ 1)-th column of 7" in increasing order are

Yo Ya1s - - -, Y1. We define po(T") to be the same as po(T') if po(T") € SSYT ().
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If o(T") ¢ SSYT (1), then we have several cases. If there are two rows of overlap, then i as

defined for ¢¢ is o + 1, x1 is to the right of y,_1, and x5 is to the right of y, = ys:

(2.3.10) T: LB+a Yo wo(T): |_TB+a
TBra-1 Ya-1 | TBta-1
LB+a-2 Ya-2 | TB+a-2
Tp+3 Ys | Tp+3
Tp+2 | ‘ Tp+2
hn ‘ Yo
Ya-1
Ya-2
Y1

If yoo1 > z1 and y, < 22, then we swap y,_1 with z;. We also “clockwise rotate” the entries
Tgs2 and T g3 in the c-th column, and 4,1 in the (¢+1)-th column, as shown in our next diagram.

In our definition of ¢y, a clockwise rotation of a set of entries in the c-th and (c+1)-th columns
moves all entries in the c-th column up one cell except the topmost entry, which moves to the
topmost cell in the (¢ + 1)-th column containing an entry being rotated. The rotation moves all
entries in the (¢ + 1)-th column down one cell except the bottommost entry, which moves to the
bottommost cell in the c-th column containing an entry being rotated. As another example, a
rotation of a single entry in the c-th column and a single entry in the (¢ + 1)-th column is a swap
of those entries. We will continue to describe all cases of ¢y with rotations of different sets of
entries.

If yo-1 < 21 and y, > 22, then we swap y, with xo. We also clockwise rotate zg,o in the c-th
column, and x4, and 2 in the (c+ 1)-th column.

If yo_1 > 1 and y, > w9, then we swap both y,_; with z; and y, with z5. We also clockwise

rotate 23,9 and zg.3 in the c-th column, and xg.; and x5 in the (¢ + 1)-th column.
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Concretely, the two row overlap cases are as follows:

(2.3.11) @o(T) |

Yo

Ya-2 Ya-2 Ya-2

% % Y1

Ya-1> 21, Ya S T2 Ya-1 £ 21, Yo > T2 Ya-1>T1, Yo > T2

Consider the entries involved in the clockwise rotation in each case. For the topmost entry in
the c-th column to move strictly up to the (¢ + 1)-th column, and the bottommost entry in the
(¢ + 1)-th column move strictly down to the c-th column, we must have « > 3. This property is
necessary for the tableau to remain semistandard after the rotation, which partially necessitates
the a > 4 assumption, which is analogous to the « > 2 assumption for ;.

If there is one row of overlap, then ¢ as defined for ¢q is o, and x; is to the right of y,_; with

T1 < Ya-1:
(2.3.12) T: Lh+a Ya goO(T) :
TB+a-1 Ya-1
T B+a-2 Ya-2
2343 Y3
2B+2 Y2
Y1

Ya-2

Y
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In this case, we only have the single pair of decreasing entries, y,_1 < 1, SO we swap y,_1 with
x1. However, for the additional modifications after and in addition to this swap, we have different
subcases.

If yo < g2, We clockwise rotate xg.1 and zg.s in the c-th column, and x4 in the (¢ + 1)-th
column.

If 2510 < Yo < ps1, We sWap xg.o With y,, and xg,; with 2. Observe in particular that this
subcase is two separate swaps, and not a rotation.

If 2.1 < Yo, we clockwise rotate xg,; and xg,9 in the c-th column, and y,, x4, and xz_; in the

(¢ + 1)-th column. Concretely, the one row overlap cases are as follows:

(2.3.13) (T : Tg+a Y Tgta T3+2 Tgiq Tgs2
TBra-1

TBta-1 Tg+1

Ya-2 Yo-2
h h h
Yo < Tp12 Tp+2 € Yo < Tp11 T8+1 € Yo

Again, consider the entries involved in the modifications in each case, either the rotations
when y, < 212 OF Tg41 < Yo, OF the swaps when zg.9 < Yo < £541. For the topmost entry in the c-th
column to move strictly up to the (¢ + 1)-th column, and the bottommost entry in the (¢ + 1)-th
column to move strictly down to the c-th column, we must have a > 4. This property is necessary
for the tableau to remain semistandard after the rotation, as we will see in Lemma 2.3.19, which

fully necessitates the o > 4 assumption.
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EXAMPLE 2.3.18. For A = (24,1%) and T from Example 2.3.16, we get all the two row overlap

cases of s:
(2.3.14) S1-11]3 91-11]2
9 2 10 3
11 3 |11
12 B 12 9
9 10
11 11
12 12

For the same A\, we have all the one row overlap cases of ¢, as follows, including the 7" from

Example 2.3.17:

(2.3.15) 13 . 3 114 . 113 1
2110 2 2110 215 2
4111 3|11 4 3
5 (12 5 (12 4
11 11
12 12

The proof that ¢, is an injection of semistandard tableaux relies on the following lemma

regarding the clockwise rotation.

LEMMA 2.3.19. Suppose S is a semistandard tableau. Suppose that we perform a clockwise
rotation on elements in the c-th and (c+ 1)-th columns of S to obtain S’, such that the following

are true:

(1) The bottommost rotated entry in the c-th column in S is less than or equal to the topmost
rotated entry in the (¢ +1)-th column in S.

(2) The entry moving from the c-th column in S to the (c¢+1)-th column in S’ moves strictly
upwards.

(8) The entry moving from the (c+ 1)-th column in S to the c-th column in S’ moves strictly

downward.
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(4) The entry moving from the c-th column in S to the (c+1)-th column in S’ is greater than
the entry above it in the (c+ 1)-th column in S’, if such an entry ezists.
(5) The entry moving from the (¢ + 1)-th column to the c-th column is less than the entry

below it in the c-th column in S'.

Then S’ is semistandard.

PROPOSITION 2.3.20. Let A and p be as in (2.3.2) with B =« > 4. Then s as defined above
18 an injection

©2:SSYT(A) = SSYT ().

The proof of Proposition 2.3.20 is technical and omitted here. It follows similar ideas to the

proof of Proposition 2.3.12. We can now further improve upon Corollary 2.3.6 and Corollary 2.3.13.

COROLLARY 2.3.21. The partitions A and p as in (2.3.2) with 5> a > 4 form a cover in the

1mmersion poset.

We summarize the bounds on v and § needed for each map to be an injection:

Map | « I}

o |[a20|B>2a+2

o1 |laz22|f=a+1

o2 |az4| B=a

2.3.3. Immersion poset on hook partitions. For this section, set A* = (7,1"7%) + n and

let S ={\|1<i<n} be the set of all hook partitions of size n. We study the immersion poset

restricted to S.

PROPOSITION 2.3.22. Let 1<i<n and a = (a,...,ax) - n such that a <p A*. Then
k-1
KAi7a=( )
n—i

PROOF. Since A" dominates a, we know that K: , > 1. To form a semistandard Young tableau
of shape \* and content «, the oy entries 1 must be placed leftmost in the first row of A?. The

remaining n — ¢ positions in the first column of \* can be filled with distinct values from the set
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{2,3,...,k}. This gives (';j) choices. Once these are placed, there is only one way to fill the

remainder of the first row so that the resulting tableau is semistandard. 0

Recall from Lemma 2.2.1 that @ <; A if and only if K, < Ky, for all a = n. Hence with
Proposition 2.3.22, we are now ready to describe all the relations between hook partitions A’ € S
in the immersion poset. To illustrate what the proposition implies, we form a matrix of values in

the following way:

e The j-th column is indexed by the content o/, where o7 is any content that has j parts.
e The i-th row is indexed by the shape .

e The (,) entry of this matrix is the value T} ; := Kyi i = (flj) for 1<i,7 <n.

EXAMPLE 2.3.23. We give the matrix for n = T7:

# of parts

1123456 |7
Partition
(17) 00000 ] 01
(2,15) 0/0j0|0[0O] 116
(3,1%) 0/010|0]1]5 |15
(4,13) 0[0|0|1]4]10]20
(5,12) 0[0[1[3[6[10|15
(6,1) 0[1]{2(3]4|5]|6
(7) Ij1j1(1)1]1]1

REMARK 2.3.24. In this context, A* >; M if and only if T;,, > T}, for all m. Equivalently,
since T},, = 0 when n —j > m and A\’ dominates A/ when i > j, we need only show T}, > T}, for

all m>n -7 when i > j.

The following lemma is used to prove the structure of the immersion poset restricted to hook

partitions.
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LEMMA 2.3.25. Suppose ("71) > (nﬁl) and i > j (note that this implies j < §). Then for all

n—i n—j

(n—l—p)>(n—1—p)
n-i )\ n-j )

The proof follows from basic properties of binomial coefficients, and is omitted here.

0<p<j—1, we have

COROLLARY 2.3.26. If T, > T}, fori>j, then \' > M.

PROOF. By Proposition 2.3.22, T, = Kxi gns = ("707"). Hence if Ty, > T}, by Lemma 2.3.25,

n—i

we also have T ,,_, > T} ,-, for 0 <p < j—-1. By Remark 2.3.24, this implies A* >; M. O

EXAMPLE 2.3.27. Take the rows corresponding to the partitions (5,1?) and (3,1%) in Exam-
ple 2.3.23. Since the last column entries give 757 = 15 > 15 = T5 7, then by Corollary 2.3.26 we also
have T5’7,p 2 T377,p fOI' 1 < P < 22 T5,6 = 10 2 5 = T3,67 T575 = 6 2 1 = T3’5.

We now describe the relations in the immersion poset on S depending upon whether n is even

or odd.

PROPOSITION 2.3.28. Let n =2k +1 be odd, then:

(1) XAl 21 X for all 1 < €< k.

(2) (NF+1=6)t = \k+ 1+l 5 AR+1=C for all 1 < £ < k.

(3) For any 1 <i<k+1, X is incomparable to N for all j >n—1i+ 1.
(4) For any k+2<i<n, X is incomparable to N for all j > i.

These describe all relations in the immersion poset restricted to hook partitions S.

PROOF. Let us first prove (1). Fix an ¢ with 1 < ¢<k. Then by Corollary 2.3.26, A“*! >, A if

and only if Ty, ,, > Ty, Note that Ty, = (nﬁxl) = (”21) and 1y, = (Zj) = (Z:ll) Since 1 < ¢ <k,

we have (”21) > (2—_11 ) and the result follows.

To prove (2), note that A¥+1*+¢ >, \e+1=C if and only if Tri1400 2 Thr1-t.0- Since Thi1ipp = (Zj) =

(,f_ké) = (kaZ) = (2;}) = Th+1-0,n, the result follows.
To prove (3) we show for any 1 < < k+ 1 that A\? is incomparable to M for all j >n -7+ 1.
Since A/ dominates A¢, we need only show there exists some « such that Ky, > Kyi,. Choose

a=(1"). Then Ky, = (Zj) = (TZL__II) > (Z:;) = Kyjq because i —1>n-jand 1 <i<k+1.
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(k+1,1%) (k+2,1%1) (k+1,1%1)
(k, 1%+1) (k,1%)
| |
: (2k,1) : (2k-1,1)
(2,12k-1) (2k+1) (2,12k-2) (2k)
= |
(12k+1) (12¢)

FIGURE 2.2. Immersion poset restricted to hook partitions for n = 2k +1 (left) and
n =2k (right).
Lastly, to prove (4) we follow the same strategy as (3). Since M dominates A, we can let

a=(1"), and since k+1<i<j we get Kyi, = (”_1) > (”_1.) = K o, and the result follows. O

n—1 n—j

PROPOSITION 2.3.29. Let n =2k be even, then:

(1) N2 X for all 1< U< k.

(2) (NE=6)t = NE+1+E 50 AR=C for all 0 < £ < k- 1.

(8) For any 1 <i<k, A is incomparable to N for all j >n—1i+ 1.
(4) For any k+1<i<n, X is incomparable to N for all j > i.

These describe all relations in the immersion poset restricted to hook partitions S.

The proof of the even case is similar to the odd case.
The Hasse diagram of the immersion poset restricted to hook partitions is given in Figure 2.2.
Notice that item (1) in Propositions 2.3.28 and 2.3.29 proves the string of covers on the left going

up each Hasse diagram, while (2) proves the covers going up the right side which are the transposes.
COROLLARY 2.3.30. Let A€ S be a hook partition such that A <p AXt. Then X <; A%.
The rank of a poset is the length of the longest chain of elements of the poset.
COROLLARY 2.3.31. The rank of the immersion poset (P(n),<;) is at least [n/2].

2.3.4. Immersion poset on two column partitions. Now let S be the set partitions

with at most two columns, that is, S = {\ | A\; < 2}. If n = 2k, then for this section we define
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N = (2k31%) for 0 < j < k. Similarly, if n = 2k + 1, then M = (2F7,12+1) for 0 < j < k. In this

section, we study the immersion poset restricted to S.

REMARK 2.3.32. Note that K,, = 0if A € S and o ¢ S. Hence there does not exist an
immersion pair 1 <; A with A € S and p ¢ S. This implies that if A’ is a cover for M in the subposet

restricted to S, then A’ is a cover for M in the immersion poset.

This remark implies that we only need to consider K , for A\, u € S when determining the
immersion relations for this subset. Recall that f* is the number of standard Young tableaux of

shape .

ProprosITION 2.3.33.

(1) Let N = (287,1%) v 2k for 0 < j < k. Then Kyiy = fU7) when i < j and Kyi i =0
when @ > 7j.
(2) Let N = (2F7,12%1) = 2k + 1 for 0 < j < k. Then Ky = fU+*4=0) when i < j and

Kyi i =0 when ¢ > j.

PROOF. For (1), if i > j, M dominates A" and hence Ky y; = 0. If i = j, clearly Ky o = f) = 1.
Suppose j > i. Then the first k — j of the k - ¢ two length rows of any tableau T € SSYT (A, M)
are fixed by the content. Hence, there is a bijection SSYT(A, M) — SSYT((27-%,12%), (1%)) by
removing the first k- j rows. Note that Kgj-i 12i) 125y = f@71%) which is also equal to the number
of standard tableaux of the transpose of (277¢,12"). The result follows.

The proof of part (2) is similar. O

Using the hook length formula with Proposition 2.3.33, we can describe K y;. We present
this in the form of a matrix. More explicitly, suppose n = 2k or n = 2k+1. Then for all 0 < 7,7 < k,
the i-th row and j-th column entry of the matrix 7" = (7; ;) is T; ; = K ,;. Note that the indexing

starts with 0.

EXAMPLE 2.3.34. Below are the matrices in tabular form for cases n = 14, 15.
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The case when n = 14:

Content

(27) | (26,12) | (25,1%) | (24,16) | (23,18) | (22,110) | (2,112) | (114)
Shape
(27) 1 1 2 5 14 42 132 429
(26,12) 0 1 3 9 28 90 297 | 1001
(25,1%) 0 0 1 5 20 75 275 | 1001
(24,16) 0 0 0 1 7 35 154 637
(23,18) 0 0 0 0 1 9 54 273
(22,110) 0 0 0 0 0 1 11 7
(2,112) 0 0 0 0 0 0 1 13
(1) 0 0 0 0 0 0 0 1

The case when n = 15:
Content

(27,1) | (26,13) | (25,15) | (24,17) | (23,19) | (22,111) | (2,1'3) | (1%%)
Shape
(27,1) 1 2 5 14 42 132 429 | 1430
(26,13) 0 1 4 14 48 165 572 | 2002
(25,15) 0 0 1 6 27 110 429 | 1638
(24,17) 0 0 0 1 8 44 208 910
(23,19) 0 0 0 0 1 10 65 350
(22,11 0 0 0 0 0 1 12 90
(2,113) 0 0 0 0 0 0 1 14
(1%9) 0 0 0 0 0 0 0 1
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Since the columns and rows are decreasing in dominance order, for any i < j we have ¢ >; \J
it T} ., 2 T}, for all 0 <m < k. In the following lemma, we prove some properties of the matrix 7'
that will show that this statement is equivalent to only comparing values in the last column of the

matrix. That is, if i < j and T}y > T}k, then A\* >; M. The reader can verify this in Example 2.3.34.

LEMMA 2.3.35. The matriz (T;;) = (Kyi i) defined above with 0 < 4,5 < k has the following

properties:

(1) The entries weakly increase within each row.

(2) The entries within each column are unimodal.

(8) The rate of change of entries within a row increases as the row number increases. In
particular, for any fived © and j with 0 <i< j <k, we have for all j <r <k:

T’i,r-f-l < irj,r-%—l
T‘i,r T}

]7r

(4) For any fized i and j with i < j, if T,k > T}k, then T 2 T for all0 <m < k.

PROOF. We begin by proving (1). Let n = 2k be even. Then for a fixed row i, given any

t < j <k, we need to show that T; ;.1 > T; ;. Using Proposition 2.3.33, we have:

Ligwy _ fUrtrss oo (2j+2)(2 +1)
Ty SO (rie2)(GH1-0) T

because j > ¢ implies
2j+227+i+2 and 2j+125+1-1.
Now let n =2k + 1 be odd. Using the same strategy as the even case we have:

Tijo _ fOPH091°0 (2 +3)(2)+2)
Ty fUrtD (rie3)(G+1-0) 7

because j > ¢ implies

2j+327+1+3 and 25+225+1-1.

Next we prove statement (2). Let n = 2k be even. Since statement (2) holds trivially if there
is only one non-zero entry in the column, we focus on columns with more than one non-zero entry.

Fix a 2 < 7 < k. To determine when the column is increasing and decreasing we consider the
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fraction: (2)1(2043)
o I(2i+ . o
Tiny _ U950 G (2i+3)(j—14)
o (+ig—i) — _@)I2i+1) T (94 g :
T; flri (JHJH—W (2i+1)(j+i+2)

7j

Analyzing the following inequalities gives:

E.

“H ] e 22+ 4i+ 1<,

Ti;

T’i+l,j .9 . .
(2.3.16) —>= =1 << 2i*+4i+1=7,

iy

T;4

T ] e 22+ 4i+ 1>

Ti

Thus, for values of 7 such that 2:2 + 47 + 1 < j the column entries are increasing, and when the
values of i satisfy 2i2 + 4i + 1 > j the column entries are decreasing. This proves (2) for the even
case.
Now let n =2k + 1 be odd. Fix a 2 <j < k. Similar to the even case we have:
(25+1)1(2i+4)

Ty _ fUr277D Gamigrr _ (2i+4) (- 1)
Ty  fU+LD T @EDICHD T (24 2)(j+i+3)

(g+i+2)1(5-1)!

Analyzing the following inequalities gives:

E.

LS e 2%46i+3< 7,

0y

T’i+1,j .9 . .
(2.3.17) —==1 <= 2i°+6i+3=7},

T;,

7”1.4

2] = 2246i+3> ]

T;

Again, we notice that for values of i such that 2i? + 6i + 3 < j the column entries are increasing,
and when the values of i satisfy 2i2 + 6 + 3 > j the column entries are decreasing. This concludes
the proof of (2).

To prove statement (3), we use Proposition 2.3.33 and the hook length formula to get the

following equivalences:

T < Tipnn Kyiyrn . Ky — (r+j+2)(r+1-j)

<l <«— 240 < 5249,
E,T 7}-77, K)\i7/\r K}\j)\r (7”+7:+2)(7"+ ]._Z) ! ’ ] j

The last inequality is always true since 0 <4 < 7, thus proving (3).
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To prove (4), fix ¢ and j with i < j where T ;, > T} ;. Then by statement (3) it directly follows
that T}, > T}, for all j < m < k. Because T},, = 0 for all 0 < m < j, it trivially follows that

T; ;2 T} 1, for these values of m, this finishes the proof of (4). O

The beauty of Lemma 2.3.35, in particular statement (4), is that we can now reduce much of
the work in determining the immersion relations between partitions in S to just comparing the

numbers of standard Young tableaux, as is done in the next proposition.

PROPOSITION 2.3.36. For n = 2k even or n = 2k + 1 odd, the last (k-th) column of T can
be used to completely determine relations in the immersion poset restricted to the subset S. In
particular:

(1) Ne2p N if and only if i <j and T; > T i,

(2) Fori<gj, X and N are incomparable if and only if T > T} .

PRrOOF. To prove (1), by definition A* >; M if and only if A\* >p M and T}, > Tj, for all 0 < £ < k.
But A? dominates A’ if and only if ¢ < j, and by (4) of Lemma 2.3.35, T}, > T}, for all 0 < £ < k if
and only if T}, > T} (when i < j).

To prove (2), let i < j. If A and M are incomparable, then there exists some ¢ such that

T;0>T; 4. By (3) of Lemma 2.3.35, we have:

ﬂ,r+1 < Tjj,r+1
— ==
E,r T;

]7T

for all £ <r < k, which guarantees that Tj; > T} . O

As a consequence we obtain the following immediate corollary.

COROLLARY 2.3.37. The cover relations for the immersion poset of the set S are the exact

same as those in the standard immersion poset.
We can now explain the cover relations of the immersion poset restricted to the set S.

PROPOSITION 2.3.38. Let n =2k be even or n =2k +1 be odd, then:

(1) N> N+ when 2i2+4i+2 > k for n even and 2i2+6i+4 > k for n odd. This also coincides

with Lemma 2.2.7, takinga=k—-i—-1 and b=2i+2 (n even) or b=2i+3 (n odd).
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(2) X and N are incomparable in the immersion poset for all 0 < i,j < ipee with i # j and
imaz being the largest i value not satisfying (1).
(3) Fiz i with 0 < @ < lpap and let m > Qe — 0 be smallest such that T;y > Tivpmp. Then

>\’L >I )\7,+m'

PRrROOF. If T} > T11k, then by Proposition 2.3.36 and Remark 2.3.32, we have that A? >y A+t
is a cover. We determine the values for ¢ such that 7} > T}, , by using the middle equation and
bottom inequality of (2.3.16) (for n even) and (2.3.17) (for n odd), where we replace j with k.
Specifically, for n even:

2%+ 4i+ 13k = 22+4i+2>k

and for n odd:

212+6i+32k =— 2i®+6i+4>k.

To prove (2), notice that since i,,q, is the number of the row containing the first maximum,
by the increasing nature of the column up to the maximum value given by (2) of Lemma 2.3.35,
then for any 0 < ¢ < j < iyq, we have T;, < Tj . Hence by Proposition 2.3.36 (2), A\* and M are
incomparable.

To prove (3) notice that by Proposition 2.3.36 statement (1), since m is the smallest value it

must be a cover. O

EXAMPLE 2.3.39. Suppose n = 14, so that k =7. By (1) of Proposition 2.3.38, the inequality

holds for 1 <7<k =7 so we obtain:
A A0 N2 A <y A%< A2 < AL
Applying (3) of Proposition 2.3.38 to A\, with ¢ = 0 we find that m = 4:
Tor=4292273="T, 7.
Notice that m = 3 does not satisfy the inequality:
To7=429%637="T;7.

So our final cover relation for the poset is A* <; AY.
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FIGURE 2.3. Subposet of the immersion poset only containing partitions in A,_2 9)
for n =8 (left), n =9 (middle), and n = 15 (right).

2.3.5. Lower intervals and Schur-positivity of interval power sums. In this section,
we make conjectures about certain lower intervals A, := {A|(1") <; A < p} in the immersion
poset. Determining intervals will

(1) enhance our understanding of the immersion of polynomial representations for GLy(C)
and

(2) allow us to investigate when p4, of Equation (2.1.1) is Schur-positive, as asked in Ques-
tion 2.1.3. We call p4, an interval power sum. It also helps towards constructing a natural

corresponding representation of the symmetric group.

In this section, we prove that p,, is Schur-positive for the conjectured intervals.

CONJECTURE 2.3.40. Forn =5 and n > 9, the interval Ap,_20y = {\[(1") <t A< (n—=2,2)} s
exactly

(1™) <7 (2,1"2) <7 (2,2,1") <1 (n - 2,2).

REMARK 2.3.41. The first two covers are consequences of Proposition 2.3.38 (1). The map

SSYT((2,2,1"%),v) — SSYT((n - 2,2),v),
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which is the transpose if 1 = 1 and which moves the boxes in positions (3,1),...,(n-2,1) to
positions (1,3),...,(1,n—2) if v; = 2 is an injection. This shows that (2,2,1"%) <; (n-2,2).
Therefore, we have

{(1"),(2,1772),(2,2,1"%),(n - 2,2)} € Agn-2.9).

However, we have not proven the cover relation (2,2,177%) <; (n—2,2). One strategy to show the
reverse containment is to argue that for all partitions A such that A and A\ are not included in the
above list, we have f* > @ = f(»=22) This would prove that A ¢; (n —2,2), hence A ¢ Ag,_09).

We have confirmed the conjecture up to n = 18. See Figure 2.3.

PRroproOsSITION 2.3.42.

(1) Forn <7 andn=8, pa,_,, is Schur-positive.

(2) For n'>9, painy + P2,1n-2) + P(2,2,1n-4) + D(n-2,2) 1S Schur-positive.

PrOOF. Part (1) can be checked explicitly by SAGEMATH. For part (2), let

(2318) p(l") +p(271n—2) +p(27271n—4) +p(n_272) = Z CA\S\-

AN

We prove that ¢y, > 0 for all A = n by proving that all partial sums pgny, pany + P2in-2),
P(im) +D(2,1m-2) FD(2,2,1n-4), P(1n) TP(2,1n-2) +P(2,2,1n-4) T P(n-2,2) are Schur-positive. We employ the com-
binatorial Murnaghan—Nakayama rule involving ribbon tableaux (see for example [Sta99, Chapter

7.17))

Pu = Z X ()5 where M) = Z (—1)bt(T)
AN TeR(A,p1)

and R(\, ) is the set of all ribbon tableaux of shape A and type p and ht(7T") is equal to the sum
of the heights of all ribbons in 7. We show that each subset of ribbon tableaux that contributes
a negative term to ¢, is in bijection with a distinct subset of ribbon tableaux that contributes a
positive number to ¢y, ensuring that ¢, > 0. We examine each partial sum of power sum symmetric

functions, and demonstrate Schur-positivity at each step through these bijections.

(1) It is well-known that p(1ny = ¥, [Asx since R(A, (1™)) is the set of all standard Young tableaux

of shape .
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(2) For T € R(\,(2,1772)), T has either a horizontal or a vertical 2-ribbon and the remaining
are single box ribbons. If 7" has a horizontal 2-ribbon, then ht(7") = 0 and 7' contributes +1 to
x*((2,1772)). There are f»() such ribbon tableaux in R(\, (2,1772)), where f** is the cardinality
of SYT(A/u), the set of standard Young tableaux of skew shape A/u. If T has a vertical 2-ribbon,
then ht(7') =1 and T contributes -1 to x*((2,172)). There are f»(:1 such ribbon tableaux in
R(X, (2,1772)). Therefore, the coefficient of sy in pen-2y is fA®) — fAYOD TIf (1,1) € A, then c,

includes — f*(-1), The natural bijection
SYT()\/(l7 1)) - {T € SYT()\) | Tl,l =1 and T271 = 2}

demonstrates that f* - fA(1D > 0. Hence p(iny + p(a,1n-2) is Schur-positive.

(3) For any T € R(\, (2,2,177%)), there are six possible ways to arrange two 2-ribbons.

1]1 112] [1]1]2]2] 112]2] 1]

—
[ o] o =

Bt(T)=0 ht(T)=2 ht(T)=0 ht(T)=2 ht(T)=1 ht(T)=1

The remaining n -4 ribbons in 7" are single boxes. Therefore, the coefficient of sy in p(g 2 1n-4y is
2f>\/(2,2) + f>\/(4) + f/\/(14) _ fA/(371) _ f/\/(2,171)_
If (3,1) € A, then ¢, includes — f¥®1 . Consider the bijection
SYT(N/(3,1)) > {T eSYT(N/(2)) | T15=1, and Tp; = 2}.
If (2,1,1) € A, then ¢, includes — f*@L1) Consider the bijection
SYT(N(2,1,1)) > {T e SYT(A/(2)) | T>1 =1 and T3, = 2}.

Hence M) from (2) and the terms — fMG:1D — fA/LD from (3) satisfy f(2)— fAGH— fA/(211) > (),

So far, we have shown that p(ny + p(2,1n-2) + P(2,2,17-4) is Schur-positive.
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(4) For T e R(\, (n—2,2)), the possible ways of arranging one (n —2)-ribbon and one 2-ribbon in

T are the following. Note that 19 appearing in A means that there are no parts of size 1 in A.

AD = (0,10 A® =(a,18) A = (a,3,10) A@D = (4,2,2,10) AG) = (2,2,171) AO) = (n—2,2)

0<bgsn-3 2<bs<n-1 0<bs<n-6 0<b<n-6
T[1[-[1]2]2] [T[1[~]1] 1[1]-1] T[1]1] 1]2 1[1]-[1]
1 1 11212 112 112 212
H H ; 12 z
1] 1] 1] : 1]
[ o1 [ - [
z [

ht(T) =b W(T)=b-2+1 ht(T)=b+1 ht(T)=b+2+1 ht(T)=n-3+1 ht(7) =0

If A = (a,1°) with 2 < b < n-3, then cases A(1) and AX(?) both apply. Since ht(A(1)) and ht(A()) have
opposite parity, x(@1)((n-2,2)) = 0. For X = (2,17°2), only A(® applies and x1"*)((n-2,2)) =
(-1)m3. For A = (1), only A®) applies and x(")((n -2,2)) = (-1)»!. Since (1*) is contained
in both A = (2,1772), (1"), ¢, also includes fM(Y) > 1. For A = (n - 1,1), only A applies and
X1 ((n-2,2)) = -1. In this case, (4) € A, and thus c, also includes fA® > 1. For X = (n), the
height of any ribbon tableaux is 0, so there are no negatives to worry about.

If X is of the form A®) A\ or X5  then it is possible that ¢« includes —1 from the unique
T e R(A®, (n-2,2)) for i = 3,4,5. In any of these disjoint cases, (2,2) € A()| which means ¢, also
includes fA”/(22) > 1. Hence fM(Y fA® and fM22) from (3) and x*((n—2,2)) from (4) satisfy
FMAY 4 M) 4 M (22) 43 A((n-2,2)) > 0. We have shown that P(ny +D(2,1m-2) + P(2,2,1n-4) T D(n-2,2)

is Schur-positive. O

CONJECTURE 2.3.43. Forn > 9, the interval A¢,—211) = {\[(1") <t A <p (n=2,1,1)} is exactly
(1n) < (27 1n72) <7 (27 27 17174) < (37 1n—3) < (n - 27 17 1)
REMARK 2.3.44. The first two covers are consequences of Corollary 2.3.6. By Proposition 2.3.5,

¥o- SSYT((27 2, 1n_4)7 V) - SSYT((37 1n_3)7 V)
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is an injection (with o = 0, 5 = 2). Since (2,2, 1%%) <p (3,1773), this implies (2,2,17*) <; (3,1773).
By Corollary 2.3.30, we know (3,1"3) <; (n—2,1,1) because (3,1"3) <p (3,1"3)t = (n-2,1,1).
This implies

(A7), 2.172), (2,214, (3,177%), (1= 2,1,1)} € A s,

However, we have not proven the cover relation (3,1"73) <; (n-2,1,1). To show that A¢,_21,1)
is contained in the above set, one could show that for all partitions A such that A and A’ are not
included in the above list, we have f* > % = f(=21D_ This would prove that A ¢ A,-211).

We have confirmed the conjecture up to n = 18.

PRrRoPOSITION 2.3.45.

1) Forn<9, pa, s Schur-positive.
(n-2,1,1)

(2) Forn 29, paany + p2in-2) + P(2,2,1n-4) + P(31n-3) + D(n-2,11) i Schur-positive.

PROOF. Part (1) can be checked explicitly using SAGEMATH. For part (2), as shown in the
proof of Proposition 2.3.42, p(iny + p(21n-2) + P(2,2,1m-4) is Schur-positive. We next show p(iny +
P(2,17-2) +D(2,2,1n-1) + P(3,1n-3) s Schur-positive. For T'e R(A, (3,1"73)), there are three possible ways

of arranging one 3-ribbon in 7.

ENEN N FEEY

ht(T)=0 ht(T)=1 ht(T)=2

Therefore, the coefficient of sy in p(z -3y is fMG) = fAMED 4 fA/ALD,

If (2,1) € A, then ¢y includes —f(%1. Consider the bijection
SYT()\/(Q, 1)) - {T € SYT()\) | Tl,l = ].,TLQ = 27 and TQ’l = 3}

Note, the above subset of standard Young tableaux of shape A in the term f* in p(1n) was not used
in the bijections in the proof of Proposition 2.3.42. This shows that p(iny + p(2,1n-2) + P(2,2,1n-4) +

P(3,1m-3) is Schur-positive.
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We now examine the Schur expansion of p(,—s,11). There are a few specific shapes A\ where
R(A, (n-2,1,1)) is nonempty. Note that for a ribbon tableau T of type (n—-2,1,1), ht(7T") = ht(Ry),
where R; is the (n —2)-ribbon of 1’s in 7. In Case 1, we examine all hook shapes A = (a, 1°).
In Case 2, we examine all shapes A = (a,2,1%). In Case 3, we examine the remaining two shapes

(a,3,1%) and (a,2,2,1°).

Case la: A= (a,1%) with 4 <a <n-3 and 3<b<n-4. These conditions on a,b require that the

(n - 2)-ribbon forms a hook with nontrivial arm and nontrivial leg.

1...|1|2|3| 1...|1| 1...|1|2| 1...|1|3|

1

] ]
3] 2]

[eefvo] =

Wt(T)=b ht(T)=b-2 ht(T)=b-1 ht(T)=b-1

Since b, b—2 have opposite parity to b—1, x*((n-2,1,1)) =0 for A = (a,1°) with 4 <a <n-3 and

3<bs<n—-4.

Case 1b: A= (3,13).

112]3] 1[1]2] 1[1[3] 11]1]

T ] ]
3] 2]

EEEE

W(T)=n-3 ht(T)=n-4 W(T)=n-4 ht(T)=n-5
Since n —3,n — 5 have opposite parity to n—4, x*((n—-2,1,1)) =0 for X\ = (3,1773).

Case 1c: A= (2,1"2).

1]2] 1]3] 1]1]

] ]
3] 2]

T
2
3

ht(T)=n-3 ht(T)=n-3 ht(T)=n-4
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Since n -3 and n —4 have opposite parity, x*((n—-2,1,1)) = (-=1)"3 for A = (2,17°2). Since n > 5,

(1*) € A and M09 > 1, the coefficient of sy in p(a . 1n-4y Will cancel this potential negative.

Case 1d: A = (1"). The unique ribbon tableau T' € R((17),(n - 2,1,1)) has height n — 3, hence
xM(n-2,1,1)) = (=1)"3 for A = (17). Since n > 5, (14) ¢ A and M1 > 1, the coefficient of sy in

P(2,2,1m-+) Will cancel this potential negative.

Case le: A\=(n-2,1,1).

|1| |1|2| |1|3| |1|2|3|

1
2
3

|CO|H —
[ro] =]~
|._\|;_| —_

W(T)=0 ht(T)=1 ht(T)=1 ht(T)=2

Thus, x*((n-2,1,1)) =0 for A= (n-2,1,1).

Case 1f: A= (n-1,1).

L1 f2) 1] f1]3] |1[-]1][2]3]

ht(7)=0 ht(T)=0 ht(T)=1
Thus, x*((n-2,1,1)) =1 for A=(n-1,1).

Case 1g: A = (n). The unique ribbon tableau T' € R((n),(n —2,1,1)) has height 0, hence
xM(n-2,1,1)) =1 for A = (n).

Case 2a: A =(a,2,1%) with3<a<n-3and 1<b<n-5.

T[1][1]3] [I[1[~[1]2] [A[1[-[1] [I]L1[--]1]
1]2 1]3 12 1]3
1 1] ] T

3] 2]

ht(T)=b+1 ht(T)=b+1 ht(T)=b ht(T)=b

Since b and b + 1 have opposite parity, x*((n—2,1,1)) =0 for A = (a,2,1°) with 3<a <n-3 and

1<bg<n-5.
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Case 2b: A= (n-2,2).

T[1[-[1] [I[1[]1]3] [1

—_

|1|2|

ht(7)=0 ht(T)=1  ht(T)=1

Thus, x*((n—-2,1,1)) = -1 for A = (n—2,2). Since (2,2) € A and fM(22) > 1, the coefficient of s

in p(a,2,1n-4y will cancel this negative.

Case 2c: A =(2,2,1n%).

1]2 11 1]1
13 1[3 ]2
] ] T
1] 2] 3

W(T)=n-3 ht(T)=n-4 ht(T)=n-4

Since n — 3 and n — 4 have opposite parity, x*((n - 2,1,1)) = (-1)"* for X = (2,2,1%*). Since

(2,2) ¢ X and fMZ2) > 1, the coefficient of s in p(g21n-4y Will cancel this potential negative.

Case 3a: A= (n-(3+0),3,1°) for 0 < b < n-6. The unique ribbon tableau T € R((n - (3 +
b),3,1%),(n—-2,1,1)) has height b+ 1, hence x*((n-2,1,1)) = (=1)’*! for A = (n - (3+),3,1°).

Since (2,2) € X and fM22) > 1, the coefficient of sy in p(92,1n-4y will cancel this potential negative.

Case 3b: A = (n-(4+0),2,2,1%) for 0 < b < n—-6. The unique ribbon tableau T € R((n -
(4+0),2,2,1%),(n—2,1,1)) has height b + 2, hence x*((n -2,1,1)) = (-1)**2 for A = (n - (4 +
b),2,2,1%). Since (2,2) ¢ X and fM22) > 1, the coefficient of sy in p(zz1n-4) will cancel this

potential negative. 0

2.4. Discussion

In this thesis, we studied various properties of the immersion and standard immersion poset,
which are tightly linked to finite-dimensional irreducible polynomial representations of G Ly (C)

through their immersion pairs.
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There are still many open questions to pursue in this line of research. It would be interesting
to characterize all maximal elements in the immersion and standard immersion poset. In partic-
ular, a proof of Conjecture 2.2.14 seems in reach with the methods developed in this thesis. In
Corollary 2.3.30, we showed that for hook shapes A and A! form an immersion pair. The same
seems true for two column partitions. It would be interesting to classify when A and its transpose
form an immersion pair. In Corollary 2.3.31, we showed that the rank of the immersion poset is
at least |n/2|. It would be desirable to find better bounds for the rank.

Furthermore, it would be interesting to classify all intervals and chains in the immersion
poset, in particular to obtain proofs of Conjectures 2.3.40 and 2.3.43. In view of the results of

Section 2.3.5, the following question is natural.

QUESTION 2.4.1. Which intervals A, := {\|(1") <; A <; g} in the immersion poset give rise

to Schur-positivity of pa,”?

Sundaram conjectured that all intervals [(17), 1] in reverse lexicographic order make (2.1.1)
Schur-positive [Sun18, Conjecture 1], and has proven the conjecture for certain intervals [Sun19].
When n > 5, it appears that the immersion poset always contains some interval(s) which do not
give rise to Schur-positivity. For example, pa,_, ,, = par) +P(2,17-2) +P(n-1,1) contains —s(n) when n
is odd. This observation shows that the analog of [Sun18, Conjecture 1] is false for the immersion
poset order. However, it does seem true that a large percentage of intervals A, in the immersion
poset yield Schur-positivity. Using SAGEMATH [The24|, we observe that when 6 <n <9 at least
91% of the intervals in the immersion poset make (2.1.1) Schur-positive. When n = 10,11 the
percentage of Schur-positive intervals drops to at least 81%, and when n = 18, the percentage is
approximately 73.5%.

We conclude with some probabilistic and asymptotic questions.
QUESTION 2.4.2. For randomly chosen partitions A <p p, what is the probability that A <; u?

For a partition \ of any size, consider the padded partition A\[N] := (N—|\|, A1, Az, ...) of size N,
where N > |\|. For any two partitions A <p p (of any size), what can we say about A\[N] <; u[N]
for N > 17 Furthermore, it would be interesting to study the asymptotical behaviors of the

(standard) immersion poset.
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2.5. Maximal Element Conjecture

For this section, let A be a partition of n with the form of A = (Zf=1 a;, Zf;ll Qjy ... Q2+ ay1,a7).
To suppress some of the notation, we will let s/ = ¥ a;, so that A\ = (s¥ s571 ... 52 sl). In

this section, we begin with (2.5.1) which relates the number of standard Young tableau of two
particular shapes. This allows us to prove a few propositions that serve as framework for the end
of the section, where in Proposition 2.5.11 we prove the maximality Conjecture 2.5.2 for the case

when k = 3.

DEFINITION 2.5.1. We say that A = (s¥,sk1 ... s? sl) satisfies the mazimality inequalities if

for all 1 <p< k-1 we have:

Vv

(ap+12+2) S (Zp:ai)+p—1,

i=1

We now restate the maximality conjecture for partitions of the immersion poset.

CONJECTURE 2.5.2. If A v n > 5 satisfies the maximality inequalities, then X is a mazimal

element in the standard immersion poset and consequently the immersion poset as well.

DEFINITION 2.5.3. A partition A can be thought of in terms of Ferrers diagrams. We let the
number of boxes in the ith row of the Ferrers diagram corresponding to A equal the number in the
1th part of the partition A. Let p,m € Z.y and recall X has k parts, or k rows in its corresponding
Ferrers diagram. Then we define the new partition A(,,,) as follows. The corresponding Ferrers
diagram for A(,,,) is the Ferrers diagram obtained by taking A’s corresponding Ferrers diagram
and moving m boxes from the (k- p+ 1)th row to the (k- p)th row. As a partition, this means
Ay = (85,881 82 P o s —m s871 L s3,s)), assuming Ay is also a partition of n,

which we require.

EXAMPLE 2.5.4. Let A = (5,3,1,1), Then A1y = (6,2,1,1). Below we have the Ferrers
diagrams of A (on the left) and A(31) (on the right), where we have highlighted the box being

moved in green.
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We refer the reader back to Equation (2.2.2) for the hook length formula. To calculate f?,
the number of standard Young tableau of shape A, we fill the Ferrers diagram boxes with values
equal to the number of boxes in the row right of it plus the number of boxes in the column below
it plus one, which we call the hook length. For example with A =(5,3,1,1) and A\31) = (6,2,1,1)

we have

8|5[4]2]1] 9[6]4]3[2]1]
50211 4]1
12 12
1] 1]

We refer to the hook length entry of the 7th row and jth column as h;;. Then by the hook
length formula from (2.2.2) we have the following equation for A = (5,3,1,1) and A3 1y = (6,2,1,1),

and the ratio %
f(5,3,1,1) _ 10!
8.5.4.2.1-5.-2.1-2-1
f(6,2,1,1) _ 10!

9-6-4-3-2-1-4-1-2-1

f(5’3’1’1) ~ 81
f6211) T 50

This formula will be incredibly

Proposition 2.5.5 will provide us with a formula for fA(];%m)

useful in proving many of the propositions that follow. One should write out the hook lengths for

_ _ p+2 p+l D p—-1
A= (sh, b oo st sty and Apny = (8K, s870 L s ST +my s —my s, s, s1) to be able to
understand (2.5.1) in Proposition 2.5.5.
PROPOSITION 2.5.5. Let A = (sk,s71 ... 82 sb) and Ay = (5, 88700 872 8 m, sb —
m, 811)—17 ...s3,51) as defined above where p and m are positive integers such that X, ) is a partition.

Then when ay,ap,apy2 21 and a; 2 0 for all other i # 1,p,p+2, we have the following:

po (e ) ()
P (T (8 ) )(stih +2m + 1)
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where

) (s§7+1+p+2—j)(s§+p+1—j) f 5 L1
9 if2<p<k—
P)\p m = ’ <5§.’+1+p+m+2—j)(s§+p+1—m—j)
1 ifp=1
and
' i
& (Sp+l+j—p)(sp+l+j—p—1)
Q = Hj:P+2 (sj +j—p+m)(sj +j—p—1—m> ts P < i
Ap,m = p+1 p+1
1 ifp=k-1

The proof of the proposition is a straightforward calculation using the hook lengths formula.

EXAMPLE 2.5.6. In Example 2.5.4, we calculated f* and f*@» for A = (5,3,1,1) and A1) =

(6,2,1,1). We can now verify (2.5.1) for these partitions.

U G Ad) G ) IEGTOYTE)
R (s§+6—j)(s§?+3—j) (8)(3) (7)(2)

Qrz1=1

P (st +))

_9)3) (MM (6)(3)
(5)(5) (8)(3) (1)(2)

81

" 50

S ( H?:AL(S% ’ j))(Si ' 1> Pr31Qx31
(s?l +3>

PROPOSITION 2.5.7. Let k >3, 1 <p<k-1and A - n with A = (sk, ¥, s2,s}). If A

satisfies the maximality inequalities, then f» > f2®1 when A(p,1) F 1.

PROOF. Let y > > 0. Then every fraction in the products of P, ,; and Q)1 is of the form:

(y+2)(x+1)
(y+3)(x)
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Thus each of these is strictly greater than 1 and since k > 3 there is at least one of these fractions

to guarantee that Py, 1Qx,1 > 1. Then, since:

(( o La))+p+ 1)((ap+1) + 1)
((22ya) +p=1)((apn) +3)

the result follows. O

9 P
>1 < (ap+12+ )>(Zai>+p_].u

PROPOSITION 2.5.8. Let k>3, m>1 and A\+n with A = (sk, sh™1, ... s2 ). If

(ap+1+2) (ia)+p 1,

1=

for all 1<p<k=1, then f>> f*em when \gm) - n.

ProoF. We proceed by induction on m. When m =1, Proposition 2.5.7 proves the base case.

Now suppose the proposition holds for m -1 and A, ) = n, we will show it holds for m. To show

fA > fAem we will show ngm) > fA(Z;_l), which is equivalent to f*@m-1 > fA@m) then by the

inductive hypothesis the result will follow.

First notice that Py, m-1 > Pxpm and Qxpm-1 > @ pm follows immediately. But,

(T (s + ) (st +1) i (i e ) (s + 1)
(T (S5 + ) (st +2m+ 1) (T2 (55 + ) (s + 2(m = 1) + 1)

which simplifies to

(s +p+m)(s§ﬂ +2m—1) > (s5 +p—m)(sgﬂ +2m+1)

and again simplifies to
(%+1 +2m

5 )+m—1>s’1’+p—1

and since m > 1 we have

(apH + 2m) -1 (ap+1 + 2)

2 2
and finally
(ap+1 +2) >l ip-1
2
is assumed to be true, completing the proof. O
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PROPOSITION 2.5.9. Let A = (s¥ %1 ... s2 sb) - n. If X satisfies the mazimality inequalities,
then X' = (sh+1,s%1, ..., s2 sl —1) also satisfies the mazimality inequalities. In particular, as long

as k> 1 (which implies s} >0), N always exists.

The proof is straightforward, as only the first and last inequalities are different. This simple

result will be the critical piece for our first major result.

PROPOSITION 2.5.10. If A = (s3,s%,s1) = n > 5 satisfies the mazimality inequalities, then

SA> N where M= (s3+1,82, sl - 1).

PROOF. The reader can verify that:

P (s13)(s3+ (3 1)(sh+ 1)
D (3 +2) (s34 2)

From this point on, we will assume a; > 1 (required for A to have three parts), as > 1 and a3 > 2.
The only A +n > 5 with three parts where these inequalities are not satisfied, but the maximality
inequalities are satisfied is (3,2,1) and (3,1,1) and the reader can verify that if A is one of these

two, then f* > f»'. Now recall the two maximality inequalities for when k = 3:

a3+2 2 2
>y a;+1 <= a}+3a3>2as+2a
i

+2 L
(a22 )226“ — a§+3a2+2>2a1
i=1
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Now with a little rewriting we have:

Ao = (S+3)(s3+2)(s2+1)(s3+1) = (sD(s3+4)(s3+2)(s3+2) >0

< a9a3 + asas + 2a2a% + a3 + 8asa? + 8atas + a3 + 6a2 + 6a2 + 18asas + 11as + 11as + 6
3 T aa3 203 + a3 3 203 + Qg 3 2

- a1a§ - alag —4aqasas — 9ara9 — 9a1a3 — 14a; > 0

1 3

<« (=a3a3 + =a3as — as — a,a3)
2 2

+ (a3as + 3asas + 2azas — 2a1aza3)

+ (agad + 3aya? - 2a2as — 2a,a2a3
3 3 2

1 3
2.2 2 2 2
+ (50,2@3 + 5(12@3 +az — alag)

+ (a3 + 3a2 - 2a0a3 — 20,14
3 3 3 3

7 21
+ (§CL%CL3 + 3@2&3 + 7(13 - 7@1@3)

+ (2a203 + 6asas — 4a3 — 4ajay)
+(3a2 +9ay + 6 — 6ay)
+ (a2 + 3az - 2a; - 2a,)
+(2a3 + 6a3 + 4ay — 4aiay)
1 3

2 2
+ (ECLQG?) + 5@2&3 —aiag — CL2)

+ (a2a2 + 2a2as + 242 + axa? + a% + as — 6ay) > 0
203 203 2 3+ az+as

There are eleven parentheses in the above inequality. We will show that for each parentheses,

the terms being added are at least as big as those being subtracted by using the maximality
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inequalities.

1 3 1
5@36@ + §a§a3 = §a§(a§ +3ay) > aya3 + a3

asas + 3asas + 2asa3 = azaz(ai + 3ay +2) > 2a,aza3

203 + 3a2a3 = azaz(a3 + 3az) > 2a3as + 2a,aza3

1 3 1
5@%@% + §a2a§ +al = 5@%(@% +3ay +2) > aya3

ajs +3a3 = asz(a3 + 3az) > 2a,a3 + 2aza3

7 21 7
§aga3 + 5 4203 +Tas = 5@3(@% +3ag +2) 2 Tajas

2a903 + 6azas = 2as(a3 + 3asz) > 4a,ay + 4a’
3a3 +9ay + 6 = 3(a3 + 3ay +2) > 6a,
az +3az > 2a; + 2ay

2a3 + 6a3 + 4ay = 2ay(a2 + 3ay +2) > 4a,as

1 3 1
§a2a§ + 50203 = Eag(ag +3a3) > ayay + a3

asa3 +2a3az + 2a3 + azai + a3 + az > 10a3 + 4ay + 6 > 3a3 + 9ay + 6 > 6a;

All but the last inequality follows directly from the maximality inequalities we are assuming. The
last inequality follows because a3 > 2, and when ay > 1 we have a2 > ay. Notice the strictness of

the last inequality guarantees the strictness of the whole sum and the result follows. 0

PROPOSITION 2.5.11. Let A = (s3,5%,s1) v n > 5. If X satisfies the mazimality inequalities,

then X is maximal in the immersion poset.

PROOF. We proceed with a proof by induction on the number of steps away from (n) that A
is in dominance order. The base case is trivial; there are no inequalities for (n) to satisfy, and it is
indeed maximal in the immersion poset. Now assume every partition less than m steps away from
(n) that satisfies the maximality inequalities is also a maximal element in the immersion poset.
Let A satisfy the maximality inequalities and be m steps away from (n) in dominance order.

If we think about the partition as a tableau, then all partitions that dominate A are obtained

by either (1) moving only boxes from the third row to the second row, (2) moving only boxes
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from the second row to the first row, or (3) some combination of both (this includes the case of
only moving boxes from the third row to the first). We need to show that if y is a partition that
dominates A, then f*> f~.

For p a partition in case (1) or (2), f* > f# by Proposition 2.5.8. Let A\’ be defined as it is in
Proposition 2.5.9, then every p in case (3) dominates A'. Since X is less than m moves away from
(n), by the induction hypothesis we have f» > f#. Finally, by Proposition 2.5.10, f* > f*" and

the result follows. O
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CHAPTER 3

A crystal analysis of claw-free graphs

This chapter is based on work in collaboration with Evuilynn Nguyen and Anne Schilling.

3.1. Background and definitions

DEFINITION 3.1.1. Let G = (V, E) be a graph with |V|=n. Given S ¢ N, a proper S-coloring
of G is a function k:V — S such that k(i) # k(j) when (i,7) € E. In [Sta95], Stanley defined the
chromatic symmetric function of G as
(3.1.1) Xg(X) = Z x,{(l)-nx,{(n),

kel(Q)

where IC(G) is the set of all proper N-colorings of G. It is easy to see that X (x) lies in the ring

of symmetric functions Az in x1,x,,... with integer coefficients.

In [Sta95], Stanley conjectured the chromatic symmetric functions of incomparability graphs
of (3 + 1)-free posets are e-positive where e refers to the elementary symmetric functions, known
as the Stanley-Stembridge conjecture. A weaker result stating that X (x) is Schur-positive when
G is as in the conjecture was proven by Gasharov [Gas96].

Motivated by this conjecture, Shareshian and Wachs define a refinement of the chromatic

symmetric functions called chromatic quasisymmetric functions [SW16].

DEFINITION 3.1.2. The chromatic quasisymmetric function of a graph G is
Xg(X,t) = Z xn(l)...xﬁ(n)tasc(ﬁ)
ke (G)

where asc(k) = [{(i,j) € E:i<j and k(i) < k(j)}|. We note that Xg(x,1) = Xg(x), so it follows

that Xg(x,1) is Schur positive when G is the incomparability graph of a (3 + 1)-free poset.

Using a proof similar to Gasharov’s [Gas96], Shareshian and Wachs prove Schur positivity of

Xa(x,t) when G is the incomparability graph of a (2+2) and (3 + 1)-free poset [SW16].
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In [SW16], Shareshian and Wachs also show that for unit interval graphs, Xq(x,t) € Az[t],
that is, Xg(x,t) is a polynomial in ¢ with coefficients in Az. Although this is a much smaller class
of posets, Guay-Paquet showed that proving e-positivity of (3 + 1)-free posets was equivalent to
proving e-positivity of unit interval graphs, thereby simplifying the Stanley-Stembridge conjecture
[GP13]. As of October 2024, the Stanley-Stembridge conjecture has been proven by Tatsuyuki
Hikita [Hik24].

Now, Stanley [Sta98] conjectured that the chromatic symmetric function of all claw-free

graphs G is Schur positive.

CONJECTURE 3.1.3 ( [Sta98]). The chromatic symmetric function of a claw-free graph G is

Schur-positive.

Special cases of this conjecture were considered in [Gas96, WW20, Ehr22, SyW24]. In
particular, Gasharov [Gas96] proved that claw-free incomparability graphs are Schur positive.
Ehrhard [Ehr22] reproved Gasharov’s results by defining a crystal structure on P-arrays.

Kashiwara crystals, introduced by Kashiwara in [Kas90], have been a common tool to prove
Schur positivity results. In [Ste03], Stembridge showed that when a crystal satisfies certain local
axioms, then the character of the crystal corresponds to the character of a certain representa-
tion, providing a connection to representation theory and providing an immediate proof of Schur
positivity.

In this chapter, we begin in Section 3.2 by defining crystal operators on claw-free graphs and
end the section by showing the crystal structure of these crystal operators is isomorphic to that
of Ehrhard’s [Ehr22]| crystal structure when restricted to claw-free incomparability graphs. In
Section 3.3 we review the definition of a Stembridge crystal and show our crystal operators don’t
satisfy the local axioms for the crystal to be Stembridge. In Section 3.4, we show that when
restricted to unit interval graphs which do not contain an induced subgraph isomorphic to P,
(the path graph of length 4), then our operators do satisfy the Stembridge axioms. The proof
is technical and long, suggesting that for claw-free graphs, a different approach to proving Schur
positivity using the crystal structure would be more suitable. So, we end with Section 3.5, where
we discuss how to extend Schur positivity results using crystals beyond claw-free incomparability

graphs.
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3.2. Crystal Operators

In Section 3.2.1, we will define the crystal operators that will act on the colorings of claw-free
graphs (see Definition 1.2.8) and we will show that these operators do satisfy the crystal axioms
defined in Definition 3.2.5. In Section 3.2.2, we will show that the crystal structure generated
by these operators is isomorphic to Ehrhard’s crystal structure in [Ehr22] when restricted to

incomparability graphs of (3 + 1)-free posets.

3.2.1. Crystal operators on claw-free graphs.

DEFINITION 3.2.1. We define the simple roots, oy (i € {1,2,...,k—1}), of a type Ax_1 (GL(r)
version) root system in R* to be «; = e; — e;,1, where e; is the ith standard basis vector. The

simple coroots, o) (i€{1,2,...,k—1}), are defined to be:

2
o; = (073
<ai,04i)

The weight lattice for the GL(r) version is ZF. Let V be the quotient space of R¥ by the subspace
spanned by the diagonal vector ¥F, e;. Then the type Ay_; (SL(k) version) root system has for
simple roots, the images of the simple roots of the GL(k) version under the quotient map. The
weight lattice A is the image of Z* in the quotient space.

Notice that since (-,-) is the usual dot product, o; = o) for a type A root system.

We note that the weight lattice for the SL(k) version is semi-simple, whereas the GL(k)
version is not. Since we want it to be semi-simple, we need to use the SL(k) version. Since the
root systems are in bijection through the quotient map, and the GL(k) version is easier to work
with, we will use this throughout the rest of the chapter, with the understanding that one can

easily use the quotient map to identify the SL(k) version.

DEFINITION 3.2.2. Let Aj_; be the root system, I ={1,...,k—1} be the index set, and Z* be

the weight lattice. A finite type crystal of type Aj_1 is a nonempty set C together with the maps:
eiafi C%CU{O}

€i,pi:C—>17Z
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wt:C - A

satisfying the following conditions:

Al: If x,y € C, then ¢;(x) =y if and only if f;(y) = . If so, then we assume:
o wit(y) = wt(z) + a;
o gi(y) =ei(x) -1
e oi(y) = pi(x) +1

A2: We must have:

pi(r) - ei(x) = (wt(2), af)

forall xeC and 1€ I. e; and f; will be referred to as our crystal operators.
More specifically, the elements of C will be the proper colorings of some claw-free graph that
uses only the colors 1,2,... k. For a more extensive treatment of crystals of various root systems

see chapter 2 of [BS17].

DEFINITION 3.2.3. Let x be a proper coloring. We define the induced i-coloring of x to be
the coloring on the induced subgraph containing only the vertices colored 7 or i + 1 and the edges
between these vertices, however we will also for brevity, sometimes refer to the induced subgraph
as the induced i-coloring of x as well, and the context should make this difference clear. Similarly,
we define the induced ©,i+1-coloring of x to be the same as before, except that we keep the vertices

colored 7, i + 1, and 7 + 2.

PROPOSITION 3.2.4. Let G be a claw-free graph, I the index set with i,i+ 1 € I and let x be
a proper coloring of G. Then each connected component of the induced i-coloring of x must be a
subgraph isomorphic to the path graph Py or the cycle graph Cy, (see Definition 1.2.9) for some k.
In addition, Cy is only possible if the component has an even number of vertices. If G is a unit

interval graph, then Cy is not possible.

PROOF. The reader can check by hand that if there are 3 or less vertices, the component must
be isomorphic to P, P, or P3. Now suppose our component consists of four or more vertices. We
can reconstruct this component by starting with any vertex in the component and then repetitively
adding vertices that share an edge with at least one of the vertices we have already added, and

add any edges this new vertex shares with any of the vertices we already have. We now prove the
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result through induction. Suppose we have already added k vertices (k > 4) and the component
is isomorphic to Py. If we add a vertex and edge to one of the end vertices and this is all that is
added, we get P,.1 and we are done. If we add an additional edge to a vertex not on one of the

ends, we have the following look.

b b a

Here a is the color 7 or i+ 1, and b is the other color that a is not. Notice that if this b colored

O

vertex in the middle (that the newly added a colored vertex on the end shares an edge with) must
share an edge with three a colored vertices. If we delete all other vertices, we get the claw; hence
this is not possible. So, the only other possibility is that it could share an edge with the other
end vertex. But this is only possible if that vertex is colored differently, and hence the number of
vertices is even, giving us Ch,q.

Now suppose the newly added vertex does not share an edge with a vertex on the end. If it
shares an edge with a vertex in the middle, we get a claw again by the same logic as before. So, if
we start with Py, the only possibilities are that we get P,,1 or Ciy1, and in the case of Cy,q1, k+1
must be even.

Now suppose that the component is isomorphic to C} and k is even. If we were to try to add
a new vertex colored a (again a is i or i + 1 and b will represent the other color) to this, this new
vertex must share an edge with some vertex colored b. But that b colored vertex already has edges
with two other a colored vertices. Deleting everything except these four vertices will again give
us the claw. Hence, the component must be C}, and the process terminates.

If G is a unit interval graph, it should be clear from Definition 1.2.8 that C}, is not possible. [J

We will now define the crystal operators f; and e; that will act upon the proper colorings of

a claw-free graph G.

DEFINITION 3.2.5. Let G be a claw-free graph with vertex set V', with |[V| = n and whose
vertices are labeled 1,...,n. Now, let # be a proper coloring of G. If we act on x with f; or e;,
then we only consider the induced i-coloring of x. At this point, by Proposition 3.2.4, the induced

subgraph can contain only connected components where the colors alternate between ¢ and 7 + 1
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within each component and are isomorphic to P, or C}, for some k. We will think of the position
of a component as the value of the vertex that is the largest in magnitude in the component. We
then order the components based upon the position of the component in increasing order. If the
component consists entirely of a path of alternating ¢« and i+ 1’s of even length, we disregard these,
but often refer to this as an even i-bracket. When the graph is a unit interval graph, we may
wish to refer to an even i-bracket more specifically based upon the color of the smallest-valued
vertex. For example, an ¢ starting even i-bracket or an i + 1 starting even i-bracket depending
upon whether it begins with an ¢ or ¢ + 1 colored vertex. If the component is of odd length, and
if the ends of the path graph are colored ¢, we label this a right i-bracket; if the ends of the path
graph are colored 7 + 1, we label this a left i-bracket. At this point, we pair any left i-bracket with
a right i-bracket that is to the right of it and contains no unpaired left and right i-brackets in
between them. Once all possible pairings have been made, the f; operator will act on the rightmost
unpaired right ¢-bracket, while the e; operator will act on the leftmost unpaired left -bracket. If
there is no such unpaired bracket for the operator, then it sends x to 0. When the operator acts
on a bracket, it simply changes i’s to 7 + 1’s and vice versa. Figure 3.1 shows an example of this
process. For all our pictures involving colorings of graphs, the colors will be located directly above
the vertices. Occasionally the vertices will be represented by their numbers, but it should still be

easy to tell what numbers represent vertices because there will be edges going between them.
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X .
1 2 1 2 1 2 1
Ck\\\\\f:__,_,fi/////i>__o 0—oO o)
Induced 1-coloring of x :
Reordering;: (2> (1) (1)—(23—(1) (23—(1) O
1 - Bracketing of z: ) ) (
Unpaired 1-brackets of x : ) (
23 2 3 1 3 1 2 3 2 1 3

fi(z):

er(x):

F1GURE 3.1. Notice that f; acts on the component whose colors are labeled in red,
while e; acts on the component whose colors are labeled in green.

REMARK 3.2.6. When we want to refer to a coloring  without drawing the coloring out, we
will simply write it in vector form, where the 7th position of the vector contains the color of vertex

i in the coloring x. For instance, in Figure 3.1, x =[1,3,2,3,1,3,2,1,3,2,1,3,2].

REMARK 3.2.7. We note that when an f; operator is applied to a coloring z, and f;x # 0, then
the rightmost unpaired right -bracket that f; acts on in x, becomes a left i-bracket. In particular,
it becomes the leftmost unpaired left i-bracket of f;z. Similarly, when we apply e; to f;x, the
leftmost unpaired left i-bracket it acts upon becomes a right i-bracket—the rightmost unpaired
right i-bracket we had in x. That is e; f;x = x when f;x # 0. Similarly f;e;xz = x when e;x # 0.
So, the e; and f; operators are partial inverses in the sense that they are inverses provided that

applying the operator does not send the coloring to 0.

DEFINITION 3.2.8. We define the string lengths to be ¢;(x) = max{k € Zy|fF # 0} and
gi(x) = max{k € Zyole¥ # 0}. Our string lengths will only take on finite non-negative integers. As
a result, we say our crystal is of finite type. Any crystal whose string lengths are defined in the

exact way that we have is said to be seminormal.
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DEFINITION 3.2.9. For a type Ajp_; crystal of a claw-free graph, we define the weight of
coloring x, wt(x), to be the vector of length & whose ith position contains the number of vertices
of x colored i. For example, in type A4, the weight of x in Example 3.1 is wt(x) = (4,4,5,0,0).

We define a highest weight to be a weight of a coloring  where e;x =0 for all 7 € I.
DEFINITION 3.2.10. Let C be a crystal. We define the character of C to be xc(z) = Ypee 2.
We will now show that our operators satisfy the crystal axioms A1 and A2.

PROPOSITION 3.2.11. The crystal operators e; and f; we defined previously satisfy the crystal

axioms A1 and A2.

PROOF. Let x be the coloring of a claw-free graph. We first note that the vertices in the
components of the induced i-coloring of x are fixed when applying e; or f; multiple times (assuming
that it does not get sent to 0). This means that the positions of the components remain fixed
when applying e; or f;, so that our crystal operators are well defined. By Remark 3.2.7, it clearly
follows that if 2,y € C, then e;(x) = y if and only if f;(y) = x.

Let y = e;(x). When we apply e; to z, we gain an i-colored vertex and lose an i + 1-colored
vertex. This is the same as saying wt(y) = wt(x) + .

From Definition 3.2.8 and Definition 3.2.5, £;(z) is equal to the number of unpaired left i-
brackets in x and ¢;(z) is equal to the number of unpaired right i-brackets in z. Since applying
fi to x decreases the number of unpaired right i-brackets by one and increases the number of
unpaired left i-brackets by one, it follows that ¢;(y) = &;(z) = 1 and ¢;(y) = @;(z) + 1.

We now prove A2 holds. Because o; = a (see Definition 3.2.1), it follows that the right
hand side of the equation is equal to the number of vertices colored ¢ minus the number of vertices
colored i+1. On the left hand side of the equation, consider the i-bracketing. Every vertex colored
1 or i+ 1 participates in an even i-bracket, left i-bracket, or a right i-bracket. Since the number
of vertices colored ¢ minus the number of vertices colored i + 1 is equal to —1 for a left -bracket,
0 for an even i-bracket, and 1 for a right i-bracket, then the number of vertices colored ¢ minus
the number of vertices colored i + 1 can be rephrased as the number of right i-brackets minus the
number of left i-brackets. Additionally, since paired left and right i-brackets will cancel each other

out, we can also rephrase it to be the number of unpaired right i-brackets minus the number of
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unpaired left i-brackets. Since @;(z) refers to the number of unpaired right i-brackets in z and

g;(x) refers to the number of unpaired left i-brackets in z, the result follows. O

As noted in Section 3.1, in [SW16], Shareshian and Wachs showed that for unit interval graphs
(G, the chromatic quasisymmetric function of G has symmetric functions in = for each coefficient
of powers of ¢, the ascent statistic. That is, it should be possible to have a crystal structure that
preserves the number of ascents in each connected component of the crystal. We now show that

our crystal operators are ascent-preserving on unit interval graphs.

PROPOSITION 3.2.12. The crystal operators e; and f; on the set of colorings of a unit interval

graph G are ascent preserving.

PrROOF. When f; or e; acts on a coloring z, it is only changing i’s to ¢ + 1’s and vice versa. If
we consider an edge between a vertex A colored i or ¢ + 1 in the i-bracket that f; or e; acts on,
and a vertex B not in the i-bracket, we first note that the vertex B must be colored something
other than ¢ or i + 1, otherwise it would be part of the i-bracket. Then it must be the case that
changing the color of vertex A to ¢ or 7+ 1 does not change whether or not the edge between A
and B is an ascent. So we need only consider whether the number of ascents within the i-bracket
that e; or f; acts on changes. But regardless of whether it is a left i-bracket or a right i-bracket,
an odd length i-bracket of length 2k + 1 for k € Z,o, has exactly k ascents within the i-bracket.

This shows that e; and f; are ascent preserving. 0

DEFINITION 3.2.13. If C is a crystal and we want to visualize it, we can do so by creating
a directed graph called a crystal graph of C. The crystal graph of C has vertices in C and edges

labeled by some i € I, where if f;z =y for some x,y € C, then we draw an edge labeled i from x to

Y.
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[3,2,4,3] [4,1,4,3]

[4,2,4,3]

FIGURE 3.2. The crystal of highest weight [1,2,3,1] using 4 colors for the graph
G in Example 3.2.14

EXAMPLE 3.2.14. Let G be the graph shown below.

1 2 3 4

-

Then the component with highest weight color [1,2,3,1] of the crystal graph of G using k = 4

colors is shown in Figure 3.2.
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3.2.2. P-array bijection. In this section, we will define the crystal structure on P-arrays
that Ehrhard [Ehr22] introduced and show that our crystal, when restricted to (341)-free incom-

parability graphs, is equivalent to that of Ehrhard’s.

DEFINITION 3.2.15. Let B and C be two crystals associated to the root system ® and index
set I. A crystal morphism is a map ¥ : B - Cu {0} such that
(1) if be B and ¥(b) € C, then
(a) wt(4(b)) = wt(b),
(b) ei(¢(b)) =¢€;(b) for all i € I, and
(c) @i(¥(b)) = @i(b) for all i € I
(2) if b,e;b € B such that ¥(b), 1 (e;b) € C, then we have ¥ (e;b) = e;1(b);
(3) if b, f;b € B such that ¢(b),¥(f;b) € C, then we have ¥(f;b) = f;1(b).
A crystal morphism ¢ : B — C u {0} is called a crystal isomorphism if the induced map
¥ :Bu{0} > Cu{0} with ¥(0) =0 is a bijection.

In this section, we will refer to three pairs of crystal operators. The first pair is the one we
have defined already and we will refer to these as f& and ef (the C' refers to the fact that these
are crystal operators on claw-free graphs). The second set of operators, which we refer to as f7
and ef, is isomorphic to the first and is only introduced because it will make the bijection with

Ehrhard’s operators easier to establish. We introduce these operators now.

DEFINITION 3.2.16. Let = be the coloring of a claw-free graph G. We define the crystal
operators [ and eff| similar to those in Definition 3.2.5. The differences are that these operators
will label brackets in the exact opposite way, i.e. left brackets will be right brackets and vice versa,
and the position of the bracket will be based upon the vertex number that is least in value in the
bracket. fI! will now act on the leftmost unpaired left i-bracket in the induced 4 coloring of z, and

el will now act on the rightmost unpaired right i-bracket in the induced ¢ coloring of .

PROPOSITION 3.2.17. The crystal operators el and fF defined on claw-free graphs satisfy the

crystal axioms.

We omit the proof as it is essentially the same as in Proposition 3.2.11.
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PROPOSITION 3.2.18. Let G be a claw-free graph G and let C¢ be the crystal defined by the
operators € and fC on the colorings of G. Let G® be the reverse graph of G (the graph that
relabels vertices so that vertex i is now relabeled vertex n—i+ 1 for each i). Now let C be the
crystal defined by the operators e® and fE on the colorings of G®. Then C¢ and C® are isomorphic

as crystals.

We omit this proof as it is straightforward to verify this map is bijective, weight preserving,
and also preserves the bracketing.

Now we will review Erhard’s crystal structure in [Ehr22]| with examples.

DEFINITION 3.2.19. Let P be a finite poset. A P-array is an indexing {4;;} of the elements
of P such that if A, ; is defined with j > 1, then A, ;_; is also defined and A, ;_; <p A, ;. Notice
that this implies that the elements of P in row ¢ must form a chain in the poset. Let Ap denote

the set of P-arrays.
Now a P-array can be thought of as a way of encoding a coloring of inc(P).

DEFINITION 3.2.20. Fix a poset P, let G = inc(P) be its incomparability graph, and let A be
any P-array. We will denote by x4 a coloring of G that corresponds to A in the following way.
If v e P is in the ith row of A, then vertex v of GG is colored i in the coloring x 4. Let X'p denote
the set of all proper colorings of the graph G using only natural numbers for colors. When P is

(3 + 1)-free, we will define the map v : Xg - Ap by ¥(x4) = A.

EXAMPLE 3.2.21. On the left is a poset P. In the middle, we have a coloring of inc(P). On

the right is a P-array A corresponding to the coloring of inc(P).

g f 1 3 1 2 4 3 1
W it
\%/

clg]

f]

\
-
BEEE

PROPOSITION 3.2.22. The map v in Definition 3.2.20 is a well defined bijection.
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PROOF. Let = be a coloring of G. If vertex v of G is colored 7, we place it in the ith row of
the P-array. Since any two vertices colored 7 in G can not share an edge, this implies all vertices
placed in row i of the corresponding P-array v (x) must be comparable, so we order all vertices
in the P-array in ascending order as determined by relations in P. This ordering is unique, hence
we get a unique P-array, so that v is well defined.

The inverse map ! : Ap - Xg is given by p"1(A) = x4. Here, if v € P is in row i of A,
then we color vertex v of G with 7. Since we have specified that the colorings are of the natural

numbers only, then the number of the row coincides, so that we have a bijection. 0

We define the weight of a P-array A, denoted wt(A), to be the weak composition whose ith

part is the number of elements in row 7. Notice that the weight of A and the weight of x4 coincide.

PROPOSITION 3.2.23. Let P be a finite (3 + 1)-free poset. Then for each x4 € Xp and each
A e Ap we have wt(p(x4)) = wt(A).

So we can think of a poset as actually just a graph, namely G = inc(P) and the P-arrays can
actually just be thought of as colorings of G. Making this association early will help the reader
understand the crystal isomorphism that we will describe later between the crystal operators
acting on colorings of (3+1)-free incomparabilty graphs and Ehrhard’s crystal operators acting on
P-arrays of (3+1)-free posets. To this end, we now describe Ehrhard’s crystal operators. To avoid

being repetitive for the rest of this section, we will always take P as a finite (3+1)-free poset.

DEFINITION 3.2.24. [Ehr22] Let A be a P-array with r > 1. Let the chains a; <p --- <p a,, and
by <p --- <p b, be the elements of rows r and r+1 of A respectively. Let C': {ay,...,am,b1,...,b,} >

Z, be the function inductively defined so that C'(by) = k for each 1 <k <n, and
Cax) =max({C(b)|b; <p ar} u{C(ar)1 <i < k})+1.
Then we define the r pre-alignment of A to be the map
{at, ... am,b1,...,0,} > {r,r+1} xZ,

such that each a; maps to (r,C(ax)), and each by to (r+1,C(by)).
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DEFINITION 3.2.25. [Ehr22] Let A be a P-array with r > 1. Let the chains a; <p --- <p a,, and
by <p --- <p b, be the elements of rows r and r + 1 of A respectively. Let ¢y be the r pre-alignment.
We construct the r alignment of A as follows.

Suppose we have some ¢y : {a,...,am,b1,...,0,} = {r,r+1}xZ,. Select the rightmost element
x mapped to some (i,c) such that column ¢+ 1 of ¢, is nonempty and contains no y >p x, if such

an x exists. Then we define

¢k+1:{ala"'aamabla"'7bn}_>{T77n+1}><z+

so that ¢p1(x) = (i,c+ 1) and ¢p,1 coincides with ¢y elsewhere. If no such z exists, then the r

alignment of A is defined to be ¢y.

DEFINITION 3.2.26. [Ehr22] The P-array crystal lowering operator fF: Ap - Apu{0} acts
on A e Ap as follows. Let a; <p - <p a,, and b; <p --- <p b,, be the entries of rows r and r +1 of A

respectively.

o If every column of the r alignment with an entry in row r also contains an entry in row
r+ 1, then define f,.(A) = 0.

e Otherwise, let p be minimal such that a, does not share a column with an element in row
r+ 1 in the r alignment. Let ¢ > 0 be minimal such that there is b; >p ap.+ one column
right of a,,; or there is no b; one column right of a,.;. Then we move a,, ..., a,. to row

r+ 1, and any b; that shares a column with one of these entries to row r.

In this section, we will refer to the set of elements a,,...,a,.; as well as any b; that shares a
column with one of these entries as the leftmost unpaired left r-bracket of A to help facilitate the
correspondence between these crystal operators and the ones defined in Definition 3.2.16. If p
is not necessarily chosen to be minimal, then we refer to this set of entries as an unpaired left
r-bracket of A.

The P-array crystal raising operator el : Ap - Ap u {0} acts on A € Ap as follows. Let

a1 <p - <p G, and by <p --- <p b, be the entries of rows r and r + 1 of A respectively.

o If every column of the r alignment with an entry in row r + 1 also contains an entry in

row r, then define e,.(A) = 0.
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e Otherwise, let p be maximal such that b, does not share a column with an element in row
r in the r alignment. Let ¢ >0 be minimal such that there is a; >p b,.+ one column right
of by, or there is no a; one column right of b,,;. Then we move b,,...,by.; to row r, and

any a; that shares a column with one of these entries to row r + 1.

We will refer to the set of elements b,,...,b,.; as well as any a, that shares a column with one of
these entries as the rightmost unpaired right r-bracket of A. Again if p is not necessarily chosen

to be maximal, then we refer to this set of entries as an unpaired right r-bracket of A.

Figure 3.3 shows an example of the 1 pre-alignment of a P-array A as well as the 1 alignment
of A, fFA, el A, and the associated coloring x 4.

Our goal now will be to show that there is a crystal isomorphism between the crystal structure
CP on P-arrays given by the crystal operators f and e’ for some finite (3 + 1)-free poset P and
the crystal C® on the colorings of the graph G = inc(P) (with a particular relabeling that we will

soon describe) given by the crystal operators f£ and el.
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FI1GURE 3.3. For a poset P, an example of a P-array A and corresponding coloring
x 4 associated through the map . Notice how the unpaired 1-brackets of x4 can be
used to exactly determine the 1 alignment of A.

REMARK 3.2.27. Let P be a (3 + 1)-free poset with n elements and let G = inc(P) be its
incomparability graph. In order for eff and f to act on the colorings of G, we need to relabel the
vertices of G 1 through n. We do so in the following way. For any a,b € P, let n,,ny, € [n] be the
number labels of a and b in the relabeling of G. We need only require that if a <p b, then we need

ng < ny. One might wonder why this is the only condition required. For the crystal structure C%,
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when we consider an induced i-coloring of GG, the components are disjoint. The only thing that a
labeling could change in the way the crystal operators act is the position of a left or right bracket
in the bracketing phase. However, if we compare two components, every vertex in one component
can not share an edge with any vertex in the other component. This implies that every vertex
in a component is comparable to every vertex in another component (recall two vertices share an
edge if and only if they are incomparable in the poset). Requiring that if a <p b, then n, < n,
is all we need for the bracketing to be well defined. This means that when we are confined to
claw-free incomparability graphs, the position of the bracket could be determined by any vertex
in the bracket, and we would still end up with the exact same bracketing. We summarize this in

Lemma 3.2.28.

LEMMA 3.2.28. In the relabeling of G = inc(P), any vertices ng,ny, with n, < n, where vertices

ng and ny appear in different components of the induced i-coloring of x 4, then we must have a <p b.

Next we show that unpaired left and right brackets of C® and C* coincide through correspon-

dence of x4 with A.

PROPOSITION 3.2.29. Let A€ Ap, r € I, and let x4 be the corresponding coloring of G = inc(P)
with relabeling. Now suppose eFxq + 0. If an unpaired right r-bracket of the induced r-coloring

of x4 is the 2k + 1 vertices Na,,Na,,y s - Magp s My Moy oy s - - - My, Where the a’s are colored r and

+k7

the b’s are colored r + 1, then el A # 0 and the elements of A corresponding to these vertices,

Ay Qi1 s - - - Qisk—1, 05,0541, ..., bjuk, are exactly the elements of an unpaired right r-bracket of A.

PRrooOF. First, suppose ¢ > 7. Then it follows from Lemma 3.2.28 that there are more r colored
vertices than r + 1 colored vertices in components left of the right r-bracket in the induced 7-
coloring of x4, so that there must be an unpaired left r-bracket left of the unpaired right r-bracket,
a contradiction. Hence i < j.

We have two scenarios. If a;_; exists, let’s first assume that a;_; is in a column left of column j

in the r prealignment. Then, the r prealignment of A for columns j through j+k has the following

look.
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a; QAi+k-1

bj o bjeke1 | Djr

This follows because by Lemma 3.2.28, if b;_; exists, we know a; >p b;_; and if a;,, exists, we
must have a;,, >p bj,r. We also have that a;.,, is incomparable to b;.,, and bj,14p, for all 0 <m <k,
due to the shared edges in the graph. This explains why a;,...,a;;x-1 appear in columns j + 1
through 7+ k of the r prealignment of A. Next, because of the incomparability we just mentioned
and the fact that @iy, <p bjims2 for all 0 <m <k -1 (not including k -1 if bj,441 doesn’t exist),

the r alignment of A for columns j through j + k has the following look.

a; Ai+k-1

b bj1 bj+k

Hence, they form an unpaired right r-bracket of A. Now suppose that a;_; is not in a column
left of column j in the r prealignment. Then if we look left of entry a;_;, there must be at least
one empty column entry in row r. Choose the first that occurs when scanning from the a;_; entry
leftward. Suppose this occurs in column [, with a;; being the entry in row 7 in column [+ 1. Then

we have the following look at that area.

Q;r

bl bl+1

Now we want to be able to say that every entry in a column left of and including column [ in
the r prealignment is in a component (of the induced r coloring of z4) left of any component that
contains an entry in a column right of column [ in the r prealignment. By Lemma 3.2.28, we need
only prove that a; >p a, and b1 >p a4 for all 1 < g <4’ and a; >p by and by >p by for all 1 <t <1
Since a;y >p by and ay >p ay-q (assuming a;_; exists), then it clearly follows that a; >p a, for all
1<qg<i and ay >p b for all 1 <t <. It is also clear that b1 >p b, for all 1 <t <[. So we need
only prove that if a;_; exists, then b1 >p ay-1 so that we will have by, >p a, for all 1 <g <. If
a1 exists, then b;_; must also exist. Now row r column [ being open in the r prealignment means

that a;y_1 #p b1, and hence a;_1 #p b1 but if ay_y £p b1, the only other possibility would be
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that it is incomparable to b;_1,b; and b;.;. Since these three form a chain, this is a contradiction
since P is (3 + 1)-free.

Now this means that in the components of the induced r coloring of x4 that are right of the
components that contain a;_; (if it exists) and b, and left of the unpaired right r-bracket that
contains Na,, Ma,ys - - Nagays by Mbjars - - -5 M, We must have ¢ — i’ vertices colored r and j-1-1
vertices colored r + 1. But by the fact that a;_; is not in a column left of column j and the choice
of a;, it follows that i — ¢ > j—-1—-1. If i =4 > j—-1-1, then there must be an unpaired left
r-bracket that is left of our unpaired right r-bracket, a contradiction. So it must be the case that

1—1"=7—1-1. Then the r alignment of A for columns j through j + k has the following look.

;-1 a; Ay k-1

bjn ik

Now it follows that a;-y >p ay and b; >p a, for all 1 <g<i-1 and a;_; >p b, and b; >p b, for all
1<t<j. So all entries in columns left of j are in components of the induced r coloring of x 4 that
are left of components that contain any of the elements shown in columns j through j+ k of the r
prealignment. But we know that a;_; <p a; and a;_; <p b; because it must be in a component left
of our unpaired left r-bracket in the induced r coloring of x 4. This implies n,, , is a left r-bracket

immediately left of our unpaired right r-bracket of x4, a contradiction. 0

PROPOSITION 3.2.30. Let A€ Ap, r € I, and let x4 be the corresponding coloring of G = inc(P)
with relabeling. Now suppose fFx, #0. If an unpaired left r-bracket of the induced r coloring of
T4 18 the 2k + 1 wertices Nags Magyys -+ Mg Ty s Mbjers -+ s Wby s where the a’s are colored i and
the b’s are colored i + 1, then fFA # 0 and the elements of A corresponding to these vertices,

@y Qi1 - - - Qiss 0, bji1, ... bjupo1, are exactly the elements of an unpaired left r-bracket of A.

PROOF. Suppose i < j and element a;_; appears in a column left of column j in the r pre-
alignment of A. Then by the same arguments made in Proposition 3.2.29, we have that the r pre

alignment of A has the following look for columns j through j + k.
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Q; Qirk-1 | Qi+k

bj o bjeke1 | Djr

Note that b;,; may not exist, but if it does, a;,x+1 must exist and we must not have a;,x41 >p
bjsr. If bj.i exists and there is no a;x41, then there are more r + 1 colored vertices in x4 after
this unpaired left r-bracket of x4, meaning that there is an unpaired right r-bracket right of it, a
contradiction. Similarly, if b;.; exists but a;ix+1 >p bj.x, then Np,,, 18 an r+1 colored vertex in a
component by itself in the induced r coloring of x4 that is immediately right of our unpaired left
r-bracket of x4, a contradiction. Hence the component that is immediately right of our unpaired
left r-bracket of x4 must be an even bracket or another left r-bracket of x4, so that in the r
alignment phase of A, we are guaranteed to have at some point b;,; move a column right so we

have the following look.

a; Qivk-1 | Qi+k
b | bk
Now because the vertices na,,Ma,, ;s -« Magys Mbys Mhjays - - My, ar€ in an unpaired left r-

bracket of x4, then it follows that b;,,, is incomparable to @;.m.1 for 0 <m < k. Hence it follows

that after the r alignment phase we have the following look.

a; Aitk-1 | Ai+k

bj | bkt

So that it is easy to verify that these elements form an unpaired left r-bracket of A.

Now suppose that a;_; is not in a column left of column j in the r prealignment. Then if we
look left of entry a;_;, there must be at least one empty column entry in row r. Choose the first
that occurs when scanning from the a;_; entry leftward. Suppose this occurs in column [, with a;

being the entry in row 7 in column [ + 1. Then we have the following look at that area.

bl bl+1
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Now we must have [ < j because this state of the r prealignment implies a; >p b; and ' < 1
and we know b;.,,, >p a4 for any ¢ <7 and 0 < m < k. Now this means that b;.,,, can move up
to the column that contains @;.m+1 in the r alignment phase as long as the b, with ¢ > j + k can
move past the column containing a,,;. Suppose this isn’t possible. We know that b, >p a;,., for
q>7+kand0<m<k, soif it is not possible it is because there is either an empty column in row
r after some element a;, 4, or there exists some elements a;x4ps1 >p bjir+q With 0 < g <p. So that
we have the following look for the a;,; column and those until the empty space or the existence

of @ p+p+1 as defined.

Atk Qivk+p | Aivk+p+1

bj+k+q bj+k+q+p

Now all elements in columns right of the a;.;:, element correspond to vertices contained
in components strictly right of the component that contains our unpaired left r-bracket of x 4.
This also means that the vertices corresponding to the elements {@; g1, - - -, Qiskaps Ojeks = Ojrkrgep |
occur in components immediately right of the component that contains our unpaired left r-bracket
of x,. But this means we have more r + 1 colored vertices than r colored vertices in this set of
components, so that there must be at least one unpaired right r-bracket following our unpaired left
r-bracket of x4, a contradiction. So it must be the case that we can slide all b;.,, with 0 <m <k
into the desired columns, so that the unpaired left r-bracket of x4 does correspond again to an
unpaired left r-bracket of A.

Now suppose i > j. If we repeat the argument noting that we may not have an empty column
left of a; in row r (but this doesn’t stop the proof from working) we again get that the unpaired

left r-brackets correspond. O

Before we can do the next proposition, we will need the following new definition.

DEFINITION 3.2.31. Define a maximal set of paired r-brackets to be all of the vertices of x4 in
any set of components where the set includes every component in the induced r-coloring of x4 in
between two consecutive unpaired r-brackets, or every component that is left of the first unpaired

r-bracket, or every component that is right of the last unpaired r-bracket.
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EXAMPLE 3.2.32. In Figure 3.3, there are four maximal sets. Vertices 1 and 2 form the first
set, then the second is vertices 4, 5, 6, and 7, the third set is vertices 9 and 10, and the fourth set

is vertices 14 and 15.

LEMMA 3.2.33. Let ng,, Ny, - - -, Nay,, b€ the vertices colored v and let ny,, ny, be

Ny

+17° " i+

the vertices colored v + 1 in a mazimal set of paired r-brackets for some coloring x4. Then the

mazimal set has the following property

Qism PP Djim for all0<m < k.

PRroOOF. By the definition of maximal set, if we have a pair of left and right r-brackets, it must
be the case that the left r-bracket must occur before the right r-bracket it is paired with. Hence if
Qjm >p bjim for some m, then we know vertex n,,,,, occurs in a component that is right of (T
But this implies that in the maximal set we have more r+ 1 colored vertices than r colored vertices
left of the n,,,,  vertex’s component (call this component Y') within the maximal set. And that

would imply we have at least one more right r-bracket then left r-bracket that is left of component

Y within the maximal set, a contradiction. U

PROPOSITION 3.2.34. The corresponding elements of A in any maximal set of paired r-brackets
for a coloring x4 must appear as a block of consecutive fully filled columns in the r alignment of
A. That is, if the elements are a;, ..., Gk, bj, ..., bjsk, then we must have the corresponding look

in the r alignment of A.

PROOF. Suppose i < j. Then because a; >p bj_1 (if b;_; exists), then it is clear that a; is
in a column whose value is at least 5 in the r prealignment. By Lemma 3.2.33, we know that
Qism Fp bjum for all 0 <m < k. Hence the corresponding look shown above is exactly the look of
columns j through j+£k in the r prealignment of A. Lastly, since bj.x <p Gj+k+1, bj+x+1 should either

exist, then it follows no b;.,, can move rightward in the r alignment phase for any 0 <m < k.
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Now suppose ¢ > j. Now since any vertex n,, with ¢ < ¢ is in a component left of every
component in the maximal set, it follows that a, <p bj.,, for all 0 < m < k. Again recall, bj,\, <p
@irk+1, Djer+1 should either exist, so in the 7 alignment phase b;,; can only move at most to the
column that contains a;,;. Lemma 3.2.33 implies that a, $p bjsp, for any 0 <m < kand 1 < ¢ <i+m.
Hence we know that b, can move to the column with a;,, and no further. And because b1
can move to the column of a;,x-1, but no further because b;,; is in the next column, the process
repeats so that we get the r alignment of A as pictured.

There is only two things that could stop this process. The first is if there was no element in row
r in a column right of a b;,,, at some point in the 7 alignment phase before it achieved its position
in a column with a;;,,. This is a contradiction though. The only way an a, can have an empty
column before it after the r prealignment, is if a, was greater in the poset than the element in row
r +1 that was in a column before it, but b;,., >p a4 for all ¢ <7 so this couldn’t have happened.
And because a;, ..., a;+; can’t move in the r alignment phase (@1 <p @isk+1,bj4k+1 should either
exist) we can’t have any empty columns before a; be created in the r alignment phase that would
prevent any of the bj,,,’s from moving.

The second case is that there is an empty column in row r or r+1 that occurs after a;, so that
we can’t move entries in the alignment phase to get the desired picture. Then after the alignment
phase, consider the new block of columns that aren’t participating in an unpaired left or right

r-bracket of A, where ¢, >1 and p> 0.

al—p—q eee az—q cen aﬂ[/ eee al+k cee a7,+k+l

by b; bisq bisgik birqrkst

Since we choose the set to be maximal, this implies there are some vertices of the set

{naifp7q7 sy My Mgy o Magpperrs Moo s Tl 15 Moy s - - 7nbj+q+k+l}

That are in unpaired left or right i-brackets in x4 and by Proposition 3.2.29 and Proposi-
tion 3.2.30, we must have also as unpaired left or right i-brackets in A, but this is not the case, a

contradiction. O
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PROPOSITION 3.2.35. Let P be a finite (3 + 1)-free poset and let G = inc(P) be its incompa-
rability graph, with relabeling according to what is specified in Remark 3.2.27. Let A € Ap be a
P-array, let x4 be the coloring of G corresponding to A and let I be the index set of C¥' and CE.

Then we have

(1) ef(xa) =P (A) foralliel,

(2) pf(xa) =l (A) foralliel,

(3) If fRxa+0, let B=fFA. Then fRxs=xp, and
(4) If efwa #0, let B=elA. Then effwy =xp.

PrROOF. By Proposition 3.2.29, for every unpaired right i-bracket of x4, we have a correspond-
ing unpaired right i-bracket of A. By Proposition 3.2.30, for every unpaired left i-bracket of x4,
we have a corresponding unpaired left ¢-bracket of A. Lastly, by Proposition 3.2.34, we know that
since every vertex of the induced i coloring of x4 is contained in an unpaired left i-bracket, an
unpaired right i-bracket, or a maximal set of paired i-brackets, then all of the elements of rows
7 and 7+ 1 of the i alignment of A are accounted for and we can definitively say the number of
unpaired left i-brackets of A and x4 are equal and the number of unpaired right i-brackets of A
and x4 are equal. So it follows that e®(z4) =P (A) and pF(z4) = ¢ (A) for all i € I.

Let ffxs #0, and let B = fI'A. Then by Proposition 3.2.30 and (2), since the unpaired left
i-brackets of A and x4 coincide, we have finA =xg5. Now let efo +0, and let B = efA. Then
by Proposition 3.2.29 and (1), since the unpaired right i-brackets of A and x4 coincide, we have

R,  _
e 'rA = TR. O

THEOREM 3.2.36. CP and CF are isomorphic as crystals.

PROOF. Let P be a finite (3 + 1)-free poset and let G = inc(P) be its incomparability graph,
with relabeling according to what is specified in Remark 3.2.27. Let A € Ap be a P-array and let
x4 be the coloring of G' corresponding to A. Let ¢ be the bijective map from Definition 3.2.19.
We need only show that 1) satisfies the criteria of Definition 3.2.15.

By Proposition 3.2.23, we know that 1) is weight preserving. By Proposition 3.2.35 (1) and

(2), we know that v preserves the string lengths.
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Suppose effx 4 # 0. Then let zp = el'z4. By Proposition 3.2.35 (4), we have
(effwa) =v(zp) = B=el A=ely(xa)
Similarly, suppose ffx4 # 0. Then let B = fA. By Proposition 3.2.35 (3), we have

¢(fiR$A) = ¢(xB) =B-= flPA = fle(l.A)

This shows that the bijective map 1) satisfies the criteria of Definition 3.2.15, hence C and

C are isomorphic as crystals. U

Since Proposition 3.2.18 shows C® and C® are isomorphic as crystals, we immediately have

the following corollary.
COROLLARY 3.2.37. CP and C® are isomorphic as crystals.

3.3. Stembridge Crystals

In this section, we will review the Stembridge axioms. We will then show that the crystal

operators defined in Section 3.2.1 do not satisfy all of the Stembridge axioms.

DEFINITION 3.3.1. A simply laced root system is a root system where all the roots have
the same length, hence a type Aj,_; root system is a simply laced root system. A finite type,
seminormal crystal C with a simply laced root system that satisfies the Stembridge axioms is a

Stembridge crystal.

Before we give the definition of the Stembridge axioms, we will provide some motivation for
why we want a crystal with a simply laced root system to satisfy these axioms. When the crystal
satisfies the Stembridge axioms we are guaranteed that each connected component in the crystal
has a unique highest weight element. Moreover, any two crystals whose highest weight elements
have the same weight are isomorphic. Furthermore, the character of a Stembridge crystal of weight
A will coincide with the character of an irreducible representation with the same highest weight

A. We state this formally in the following proposition:

THEOREM 3.3.2. The following are true:
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(1) If C is a connected Stembridge crystal, then C has a unique highest weight element.

(2) Let C and C' be connected Stembridge crystals with u € C and u' € C' being highest weight
vectors. If wt(u) = wi(u'), then C and C' are isomorphic.

(8) The character of a connected Stembridge crystal with a unique highest \ equals the char-
acter of the irreducible representation with highest weight .

(4) The character of a Stembridge crystal is Schur positive.

To read more about, or see a proof of Theorem 3.3.2 please refer to Theorems 4.12, 4.13 and

Corollary 13.9 of [BS17]. Statement (4) of Theorem 3.3.2 is a direct consequence of (3).

DEFINITION 3.3.3. The Stembridge azrioms, as mentioned in Definition 3.3.1, are the local
conditions a crystal needs to satisfy to be a Stembridge crystal. There are four conditions for the
e; crystal operators: S0, S1, S2, and S3; and four conditions for the f; crystal operators: S0’,
S1°, S2’, and S3’. We list the axioms now:

SO: If e;(z) = 0, then g;(z) = 0.

S0’: If f;(x) =0, then ¢;(x) = 0.

S1: Assumed,jel andi#j. If 2,y €C and y = e;x, then €,(y) equals either £;(z) or g;(x) +1.
The second case is only possible when «; and «; are not orthogonal.

S1’: Assume 4,7 € [ and 7 # j. If z,y € C and y = f;x, then ¢;(y) equals either ¢;(x) or
@;(x) + 1. The second case is only possible when «; and «; are not orthogonal.

S2: Assume ¢,j € [ and i+ j. If 2 € C with ¢;,(z) >0 and €;(e;x) = €;(x) > 0, then e;ejx = eje;x
and @i(e;r) = oi(a).

S2’: Assume i,j € [ and i # j. If x € C with ¢;(x) > 0 and ¢;(fix) = p;(z) > 0, then
fifjx = fifir and &,(f;z) = &i(x).

S3: Assume i,j €[ and ¢ # j. If x € C with ¢;(e;x) =¢;(z) +1> 1 and ¢;(ejx) = g;(x) +1> 1,
then e;efe;x = ejefe;x # 0 and we also have p;(e;x) = pi(efe;x) and p;(eir) = p;(efe;r).

S3: Assume i,j €l and i # j. If v € C with ¢;(fiz) = pj(z)+1>1 and ¢;(f;x) = pi(x)+1> 1,

then fif? fix = f;f7fjx #0 and we also have &;(f;x) = &:(f] fix) and &;(fix) = €;(f7 fiz).
89



REMARK 3.3.4. Recall the definiton of a seminormal crystal in Definition 3.2.8. Since our
crystal is seminormal, we are guaranteed to satisfy Stembridge axioms SO and SO’. We will show

in the next section that S1 and S1’ are also satisfied for all unit interval graphs.

Now that we are formally introduced to the Stembridge axioms, we will now show that the
Type A crystal operators defined in Section 3.2.1 do not satisfy all of the axioms. Specifically, S2,
S3, S2’, and S3’ are not satisfied. We will show now an example that is the first occurence of a

Stembridge axiom violation, more specifically a violation of S2’.

ExaMPLE 3.3.5. Consider the coloring x = [1,2,1,3] of the graph G = P;. Then fiz =
[2,1,2,3], foxr =[1,3,1,3], and we have the following string lengths: @o(z) = po(fiz) = 1. Since
wa(x) =1>0, and wo(f12) = p2(x) =1 > 0, then we should have that fifor = fofix in order to
satisfy S2°. However, fifox =[1,3,2,3] and fofiz = [3,1,2,3], hence the crystal operators don’t
satisfy all of the Stembridge axioms. Figure 3.4 shows the connected component of the crystal

graph where this takes place.
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[1,2,1,2]

2
[1,2,3,1] [1,2,1,3]
[1,2,4,1] [1,2,3,2] [1,3,1,3] [1,2,1,4] [2,1,2,3]
[1,3,4,1] [1,2,4,2] [1,3,2,3] 13,1,4/ [3,1,2,3] [2,1,2,4]
1 2 1 3 1 3 3 2

[1,3,4,2] [1,2,4,3] [2,3,2,3] [1,3,2,4] [1,4,1,4] [3,1,2,4] [2,1,3,4]

1 2 3 1 3 1 3 2
[2,3,4,2]  [1,3,4,3] [2,3,2,4] [1,4,2,4]  [4,1,2,4]  [3,1,3,4]
2 |1 3 3 /1 2 )2 2 /1 /3

(2,3,4,3] [2,4,2,4] [1,4,3,4] [3,2,3,4] [4,1,3,4]

3 |2 1 3 1

[2,4,3,4] [4,2,3,4]
2

[3, 4: 3,4]

FI1GURE 3.4. One connected component of the crystal graph associated to the graph
P, using 4 colors, which is not a Stembridge crystal
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3.4. Graphs of G, are Stembridge crystals

In this section, we focus on unit interval graphs. Recall that a graph G € G, is a unit interval
graph that does not contain an induced subgraph isomorphic to P, (Definition 1.2.9). For any
graph G € Gy, let C be the crystal structure of the colorings of G using k colors. Then we have the

following theorem.

THEOREM 3.4.1. The crystal C forms a type Ayx_1 Stembridge crystal structure using the op-
erators e; and f; withiel={1,... k-1}.

We have already shown C satisfies the crystal axioms, we need only show it satisfies the
Stembridge Axioms. Remark 3.3.4 shows SO and SO’ are already satisfied. In Section 3.4.1, we
will show C satisfies S1 and S1’. In Section 3.4.2, we will describe six cases for when adjacent
operators act on a coloring x that will help us prove the remaining axioms. In Section 3.4.3, we

will show C satisfies S2 and S2’ and in Section 3.4.4, we will show C satisfies S3 and S3’.

3.4.1. Stembridge Axiom 1. In this section we will prove that the crystal operators e; and
fi do satisfy S1 and S1’ for all unit interval graphs. To this end, we begin with the following

proposition:

PROPOSITION 3.4.2. Let x be a coloring and i,j € I with j #¢—1,1 ori+ 1. If fx #0, then

wix =@ (fjz). Also, if ejz # 0, then g;x = g;(e;jx).

PROOF. The crystal operators f; and e; can only change colors on vertices if they are colored
i or ¢+ 1, since the string lengths represent how many times the operators can be applied, and f;

and e; cannot change the i-induced coloring of x, the result follows immediately. 0

Let x be a coloring of a unit interval graph. In order to prove S1’ completely, we will need
a clear way to think about how f; acting on x can affect the ¢ + 1-bracketing and similarly, how
fir1 acting on x can affect the i-bracketing. Similarly, to prove S1, we will need to consider how
e; acting on x can affect the 7 + 1-bracketing and how e;,; acting on x can affect the i-bracketing.
In this section, we will show how f;,; applied to a coloring = can affect the i-bracketing.
Since the process is similar for the other three, we will omit it. Applying f;;1 to x will change

a sequence of alternating i + 1 and 7 + 2’s that begins and ends with an 7 + 1 into an alternating
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sequence that begins and ends with ¢ + 2. The i-coloring of f;,;x can be thought of as being
obtained by performing a sequence of steps to the induced -coloring of x. The sequence of steps
will consist of a deletion of an 7 + 1, followed by sequence of 'rightward moves” of ¢ + 1’s. The
sequence begins with the last 7 + 1 in the right ¢ + 1-bracket being deleted. Then the remaining
steps consist of moving each of the other ¢ + 1’s that remain in the right ¢ + 1-bracket rightward.
To determine the number of ¢ + 1’s that will be moved rightward, we take the length of the right

1 + 1-bracket, subtract one, and divide by two.

ExaMPLE 3.4.3. Let’s clarify what we've said so far with an example where 7 = 1.

vertex numbers: 1 2 3 4 5 6 7 8 9 10 11 12 13

1 1

2 3 1 2 fi 3 2 3 fi 2 1 3 1
xr: O0—O
1 - bracketing of z: ) ( ) )
2 1 2 1 2 1 2 1 1
induced 1-coloring of z: © O0—O0—0 O o—0—0 O
deletion and leftward moves: -———> -—> X

2 1 1 2 2 1 1 1
induced 1-coloring of foxr: © O o—oO o—oO O O
1 - bracketing of foz: ( ) ) )

1 1

2313:<>:232:<>:3131
fQZEZO—O

The alternating sequence of 2’s and 3’s begins on vertex 4 and ends on vertex 10 in the coloring
x where the 2’s in this sequence are colored red. Compare the induced 1-colorings of x and fox.
Following the procedure we discussed above we first begin with the deletion of the coloring of 2
on vertex 10 (denoted by the X). Then, since the alternating sequence of 2’s and 3’s is length 5,
we expect 2 rightward moves of 2’s in the induced 1-coloring of z. This is the rightward move of
the color 2 on vertex 7 to vertex 8 (denoted by the —— >), followed by the rightward move of the
color 2 on vertex 4 to vertex 6 (denoted by the — — ——>). Notice that applying these three moves

to the induced 1-coloring of x gives us the induced 1-coloring fox.
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DEFINITION 3.4.4. For the rest of this section, we will call the 'movement’ of an ¢ + 1 in the
induced ¢-coloring of x rightward to its new position in the induced i-coloring of f;;1x a rightward
move. It will be important to remember that this 'movement’ is from a vertex that was colored
1+ 1 in x to a vertex that is colored i + 2 in x, and these vertices share an edge because they are

part of a right i + 1-bracket of x.

DEFINITION 3.4.5. Let x be a coloring. We say that there is no net change in the i-bracketing
of f;;1x if the number of unpaired left i-brackets of x and f;,;x are equal and the number of
unpaired right i-brackets of x and f;,1x are equal. If there is a change, we will specify what left

or right i-brackets we gained or lost.

REMARK 3.4.6. It should be noted, that in the following propositions we will know that we
gained or lost brackets when applying the crystal operators to colorings. However specifying
exactly what unpaired brackets we gained or lost is left to the end of this section. For example,
if we gain a right i-bracket, it is possible that there are no unpaired left i-brackets left of it, so
that we gain an unpaired right i-bracket. However, it is also possible this bracket pairs up with a

previously unpaired left i-bracket left of it and we end up losing an unpaired left i-bracket.

We now show that the induced i-coloring obtained after each one of these steps will always
either keep the string length the same (¢;(fis1x) = @i(x)), or increase it by one (y;(fiz17) =
@i(x) +1). Since the i-bracketing of f; 1z is equivalent to a deletion and a sequence of rightward
moves in the i-bracketing of x as described previously, we will simply track what can happen to
the i-bracketing after each of these steps.

We begin by considering what happens to the i-bracketing after a deletion of an 7 + 1.

PROPOSITION 3.4.7. The net change of i-bracketing for a coloring x after the deletion of an
i+1 (as described above as the last i+ 1 in a right i + 1-bracket) is:
(1) a deletion of a left i-bracket, or

(2) the creation of an additional right i-bracket.

PROOF. The deleted 7 + 1 is either in a left i-bracket, an even i-bracket or a right i-bracket. If

it is in a right i-bracket, then its deletion results in a right i-bracket that is left of its position and
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a right i-bracket that is right of its position, the net change in the i-bracketing here is the creation
of a right i-bracket. If the ¢+ 1 is in an ¢ starting even i-bracket, then after deletion we obtain
a right ¢-bracket that is left of its position and an ¢ starting even i-bracket that is right of its
position (assuming it didn’t end with the i + 1 we deleted); if it is an 7 + 1 starting even i-bracket,
then after deletion we obtain a right i-bracket that is right of its position and an i + 1 starting
even i-bracket that is left of its position (assuming it didn’t start with the i + 1 we deleted). The
net change for a deletion within an even i-bracket is the creation of a right i-bracket. If the 7+ 1 is
in a left i-bracket, then after deletion we get an i + 1 starting even i-bracket on the left (assuming
the 7 + 1 deleted wasn’t at the beginning of the bracket) and an i starting even i-bracket on the
right (assuming the i+ 1 deleted wasn’t at the end of the bracket). The net change is the deletion

of a left i-bracket. Since these are the only possibilities, the proof is completed. OJ

Now let’s consider the possibilities of rightward moves. We first note that because we began
with the deletion of the 7 + 1 in the right ¢ + 1-bracket that the f;,; is acting upon, after each
rightward move the induced i-coloring is a proper coloring as long as we start with the rightmost
rightward move and go from right to left. The situation for rightward moves is more complicated
than just a simple deletion and we need to know what possibilities there are for the look of the
induced i-coloring of x before and after a rightward move. The following proposition will help

make this clearer.

PROPOSITION 3.4.8. Suppose we are performing a rightward move in the induced i-coloring of
x. Then the i +1 can’t move past two vertices colored i. And if the i + 1 is moved from a vertex
left of a vertex colored i, to a vertex that is right of that same vertex colored i, then the following

are true:

(1) it must share an edge with that vertex colored i before and after the rightward move;

(2) the i+ 1 must be the last i + 1 of the i-bracket it is in;

(3) the i colored vertex and the vertex colored i+ 1 after the rightward move must no longer
be connected to the i-bracket it was in before the rightward move was performed; and the

new bracket they are in begins with the i colored vertez.
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PROOF. First we prove the i + 1 can’t move past two vertices colored i. Since the movement
of the i + 1 is to and from vertices that share an edge, we know that for a unit interval graph
(Definition 1.2.8) every vertex in between these two vertices must also share an edge. If there was
more than one ¢ colored vertex in between them, then it would not have been a proper coloring.

For (1), again, this follows because it is a unit interval graph. Every vertex in between the
start and end vertex of the move must have an edge with both the start and end vertices because
the start and end vertices of a rightward move share an edge.

For (2), an i-bracket consists of only i’s and i + 1’s. The only colored vertex that could have
been right of the i colored vertex (that the 7 + 1 is moving right of) and share an edge with it, is
an i + 1 colored vertex. However, since we know the movement of the 7 + 1 must create a proper
coloring, if the ¢+1 being moved is moved right of the i colored vertex, by properties of unit interval
graphs, its new vertex must also share an edge with that ¢+ 1 colored vertex that is already on the
right. This creates a contradiction, hence the i colored vertex must be at the end of the i-bracket
and the 7 + 1 must be the last of its color in the i-bracket.

For (3), since an i-bracket consists of only i’s and i + 1’s, an i + 1 can only share an edge on
its left with an 7 in the induced i-coloring. Let’s suppose the ¢ + 1 has a vertex on its left (before
the rightward move) colored 4, then we shall call this vertex A. Then the i colored vertex that is
right of the ¢ + 1 that will be moved can’t share an edge with vertex A, and by extension of the
property of unit interval graphs no vertex right of the ¢ can share an edge with vertex A as well.

So, it is clear the new bracket they are in must begin with the ¢ colored vertex. O

DEFINITION 3.4.9. In a rightward move, if the 7 + 1 moves to a vertex that shares an edge
with an 7 colored vertex and the 7 + 1’s original vertex didn’t share an edge with, we say the i + 1

acquires an edge.

From Proposition 3.4.8, we can now say that there are four possible cases for the induced

i-coloring of x when performing a rightward move:

(1) The ¢+ 1 doesn’t move past an i and doesn’t acquire a new edge on its right.
(2) The i+ 1 doesn’t move past an i, does acquire a new edge on its right, and maintains the

edge on its left.
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(3) The i+ 1 doesn’t move past an ¢, does acquire a new edge on its right, and loses the edge
on its left.

(4) The i+ 1 does move past an i.

We now want to determine what the net change is in the i-bracketing of each of these four
cases. Case (1) is covered in Proposition 3.4.10. Case (2) is covered in Proposition 3.4.11. Case

(3) is covered in Proposition 3.4.12. Case (4) is covered in Proposition 3.4.13.

PROPOSITION 3.4.10. Suppose we are performing a rightward move. If the i + 1 is not moved
past an i colored vertex, and does not acquire an edge in the i-induced coloring of x, then we have

the following situations:

(1) If it was in a left i-bracket, there is no net change in the i-bracketing.

(2) If it was in a right i-bracket, there is no net change in the i-bracketing.

(8) If it was in an i+ 1 starting even i-bracket, there is no net change in the i-bracketing.

(4) If it was in an i starting even i-bracket, there is either no net change, or the change in the
1-bracketing is the even i-bracket gets replaced by a right i-bracket immediately followed

by a left i-bracket on its right.

PRrOOF. For all four situations, if there is no loss of edges in moving from the old vertex to
the new, clearly there is no change in the i-bracketing. So for each of the situations we will now
assume that in moving the ¢ + 1 to the right, we lose an edge with the ¢ colored vertex it had on
its left.

For (1), when we lose the edge we end up with an i + 1 starting even i-bracket, immediately
followed by a left ¢-bracket. So we have no net change in the i-bracketing.

For (2), when we lose the edge we end up with a right i-bracket, immediately followed by an
1+ 1 starting even ¢-bracket. So we have no net change in the ¢-bracketing.

For (3), when we lose the edge, we end up with two ¢ + 1 starting even i-brackets. So we have
no net change in the i-bracketing.

For (4), when we lose the edge, we end up with a right i-bracket immediately followed by a

left 7-bracket. U
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PROPOSITION 3.4.11. Suppose we are performing a rightward move. If the i +1 is not moved
past a vertex colored i, acquires an edge with another i-bracket on its right, and maintains the
edge it shared with a vertex colored i on its left (assuming there was such an i), then we have the

following situations:

(1) If it was in an i starting even i-bracket and it joined on its right an i starting even
t-bracket, then there is no net change in the i-bracketing.

(2) If it was in a left i-bracket and it joined on its right an i starting even i-bracket, then
there 1s no net change in the i-bracketing.

(8) If it was in an i starting even i-bracket and it joined on its right a right i-bracket, then
there is no net change in the i-bracketing.

(4) If it was in a left i-bracket and it joined on its right a right i-bracket, then there is no net

change in the i-bracketing.

PRrROOF. For (1), when the two i starting even i-brackets combine, we get one ¢ starting even
i-bracket. Hence, no net change in the i-bracketing.

For (2), when the left i-bracket combines with the i starting even i-bracket, we get one left
i-bracket. Hence, no net change in the ¢-bracketing.

For (3), when the ¢ starting even i-bracket combines with the right i-bracket we get one right
i-bracket. Hence, no net change in the i-bracketing.

For (4), when the left i-bracket combines with the right i-bracket we get one i+ 1 starting even
i-bracket. Since before the rightward move the right and left i-brackets must have been paired,

we have no net change in the i-bracketing. O

PROPOSITION 3.4.12. Suppose we are performing a rightward move. If the i +1 is not moved
past an v, acquires an edge on the right, and loses the edge it shared with the i colored vertex it

had on its left (assuming there was such an i), then we have the following situations:

(1) If it was in an i starting even i-bracket and it joined on its right an i starting even i-
bracket, then the i starting even i-brackets get replaced by a right i-bracket followed by a

left i-bracket.
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(2) If it was in a left i-bracket and it joined on its right an i starting even i-bracket, then
there is no net change in the i-bracketing.

(8) If it was in an i starting even i-bracket and it joined on its right a right i-bracket, then
there is no net change in the i-bracketing.

(4) If it was in a left i-bracket and it joined on its right a right i-bracket, then there is no net

change in the i-bracketing.

PROOF. For (1), removing the i+ 1 from the i starting even i-bracket on the left creates a right
i-bracket. Adding the i + 1 to the start of an 7 starting even i-bracket will create a left i-bracket
on the right.

For (2), removing the i+1 from the left i-bracket on the left creates an ¢ starting even i-bracket.
Adding the i + 1 to the beginning of an ¢ starting even ¢-bracket will create a left i-bracket on the
right. Hence, there is no net change in the i-bracketing.

For (3), removing the i+1 from the i starting even i-bracket on the left creates a right i-bracket.
Adding the i + 1 to the beginning of a right i-bracket will create an 7 + 1 starting even i-bracket
on the right. Hence, there is no net change in the ¢-bracketing.

For (4), removing the ¢ + 1 from the left i-bracket on the left creates an i + 1 starting even
i-bracket. Adding the ¢ + 1 to the beginning of a right i-bracket will create an i + 1 starting even
1-bracket on the right. Since the right and left ¢-brackets before the rightward move would have

been paired, there is no net change in the i-bracketing. ([l

PROPOSITION 3.4.13. Suppose we are performing a rightward move. If the i+1 moves past an

1, then there is no net change in the i-bracketing.

PrRoOOF. By Proposition 3.4.8, we know that whatever ¢-bracket the ¢ + 1 and ¢ were in, they
must be at the end of the i-bracket and after the rightward move they must no longer be in the
1-bracket. Suppose the i-bracket they were in contained more than just two colors, then cutting
off an even amount of colors from the right of the bracket doesn’t change what the bracket is
(i.e., if it was a left i-bracket, it still is) so cutting the i + 1 and 4 from the i-bracket on the left
doesn’t change the ¢-bracketing. Similarly, if we add an even number of alternating i’s and 7+ 1’s

to an i-bracket, it will also not change what the i-bracket is. If it was not connected to anything
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on the left to begin with, or doesn’t connect with an i-bracket on the right after the rightward
move, it doesn’t matter since it is just an even i-bracket, hence there is no net change in the

i-bracketing. 0

PROPOSITION 3.4.14. Let x be a proper coloring of a unit interval graph, 1,1+ 1€ I.
(1) If fisix # 0, then we have two possibilities:
(a) ¢i(firx) = pi(z) and &;(fiaz) =&;(x) -1 or,
(b) i(finz) = ¢i(x) +1 and &( finz) = &i(x)
(2) If fix +0, then we have two possibilities:
(a) i1 (fix) = pin(z) and gin(fix) = in(z) -1 or,
(b) pin(fiz) = pin(z) + 1 and gia(fiz) = € (2)
(8) If e;.1x #0. Then we have two possibilities:
(a) ei(eiz) =&i(x) and pi(einz) = i(x) -1 or,
(b) ei(einz) =i(x) + 1 and p;i(e;z) = pi(x)
(4) If e;x #0. Then we have two possibilities:
(a) ei1(ex) = g1 () and i (eir) = g (x) -1 or,

(b) eis1(eir) =€ (x) + 1 and pi1(eir) = @i ()

ProOOF. We will prove (1). A similar process can be used to prove the other three cases, but
we omit that here for brevity.

Let x be a proper coloring of a unit interval graph, 7,2+ 1 € I, and f;;1x # 0. First, recall
that we can view f;;; being applied to x as a sequence of steps where we begin with the deletion
of an i+ 1 in the induced i-coloring of x, and then perform a sequence of rightward moves that
shift the positions of certain i+ 1’s rightward in the induced i-coloring of x and after this has been
completed we obtain the induced i-coloring of f;, z.

Now, by Proposition 3.4.7, we know after the deletion we either gain a right i-bracket or lose
a left i-bracket.

After the deletion, if we gained a right i-bracket, then it increases the string length ¢; by one,
or keeps it the same if there are unpaired left i-brackets left of it. If we lost a left i-bracket, then
it increases the string length ; by one if it was paired with a right i-bracket that was right of it

and there are no unpaired left i-brackets left of that right i-bracket, or keeps the string length the
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same otherwise. So if we terminated here, we are done, the string length ¢; either remained the
same or increased by one after applying f;,1 to z.

By Propositions 3.4.10, 3.4.11, 3.4.12 and 3.4.13, we know that for each rightward move there
is either no net change in the i-bracketing, or we create a right i-bracket immediately followed by
a left i-bracket.

Now suppose we have already performed the deletion and a sequence of rightward moves and
the number of unpaired right i-brackets has remained the same or increased by one. Now we
perform another rightward move. If there was no net change in the i-bracketing, well of course
we maintain the number of unpaired right i-brackets we had prior to the move. If instead we
created a right i-bracket followed by a left i-bracket, then we have one of two possibilities. Either
we have an unpaired right i-bracket right of it, or we don’t. If we do, there is no net change
in the i-bracketing, since the left i-bracket would pair with it and then we are left with a right
i-bracket that must also be unpaired. If there was no unpaired right ¢-brackets right of them, then
the deletion or any rightward moves which occurred before this one, could not have increased the
number of unpaired right i-brackets (after all since they are to the right, they would have needed
to create an unpaired right i-brackets right of it), hence performing the rightward move would
either increase the number of right i-brackets by one if there are no unpaired left i-brackets left of
the right i-bracket that was just created, or keep it the same if there are unpaired left i-brackets.

This shows that ¢;(fis17) = @i(x) or p;(x) + 1.

We now prove (a). Assume ¢;(fir12) = ¢;(z). We need to show the number of unpaired left
i-brackets decreases by 1 when f;,; is applied to z. Once again we think of f;,1 applied to x as a
deletion, followed by a sequence of rightward moves. We will induct on the number of rightward
moves. When we perform the deletion, we can not not gain an unpaired right i-bracket. So if
the deletion created a new right i-bracket, it must have paired up with a left i-bracket that was
unpaired, or if we lost a left i-bracket, it must have been unpaired, or was paired with a right
i-bracket that again paired up. Either way, we lost an unpaired left i-bracket.

Now suppose we have performed a deletion and a sequence of rightward moves and the number

of unpaired left i-brackets is one less than it was in x. When we perform another rightward move,
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if we have no net change in the i-bracketing, then we are done. Suppose we gain a right i-
bracket, followed by a left i-bracket. Since ¢;( fiz12) = pi(x), the right i-bracket must pair up and
decrease the number of unpaired left i-brackets by one. However the left i-bracket must lead to
the addition of one more unpaired left i-bracket because there are no unpaired right ¢-brackets.
Hence the number of unpaired left i-brackets remains one less than it was in x. Hence when
i1 (fir) = is1(x), it follows we must also have g;,1(f;z) = ;41 (x) — 1.

The proof of (b) is similar to (a). O

Now we are ready to conclude the section:

PROPOSITION 3.4.15. The crystal operators e; and f; defined on unit interval graphs satisfy

the Stembridge axioms SA1 and SA1’.

ProoOF. By Proposition 3.4.2, we know that when the operators are not adjacent, the first
Stembridge axioms hold. By Proposition 3.4.14, the first Stembridge axioms hold when the oper-

ators are adjacent. 0

3.4.2. The Six Cases. We begin this section with a definition:

DEFINITION 3.4.16. We define the Bull graph to be the graph with vertex set V' = {1,2,3,4,5}
and whose edge set is E = {12,23,24,34,45}, the graph of the Bull is below. Notice that deleting

vertex 3 shows that the Bull graph contains a subgraph isomorphic to P;.

1 2 3 4 D
O () () ) O

In this section, we will describe the six cases that can occur when f; and f;;; (or e; and e;,q)
act on a coloring x. We will prove that certain cases only occur when the graph contains an
induced subgraph isomorphic to the Bull. This is important because G, does not contain graphs

which contain an induced subgraph isomorphic to the Bull.

DEFINITION 3.4.17. Let A be an i-bracket, and let B be a j-bracket for some i,j € I. Then
we say A is strictly left of B if the last vertex of A is left of the first vertex of B and there is no

edge between these two vertices. We define A to be strictly right of B in a similar fashion.
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The main issue with the crystal operators as defined, is that when a right i-bracket overlaps
with a right (i+ 1)-bracket, there can be different scenarios depending upon whether the f; or the
firs1 operator acts first. Therefore, we have broken this down into six cases which describe the
overlap of where the operators act and their relative positions. This will help us tremendously

with proving Stembridge axioms. We will refer to each of these cases by their number as seen in

Figure 3.5.
Clase 1 Oo—i—o0 o-1+1 -0
O i O
Case 2 G i+1 =
i
Case 3 © i+1 ©
O ] O
Case 4 i+1
O 1 O
Case 5 © i+1 ©
Clase 6 O-1+1 -0 Oo—1—0

F1GURE 3.5. The six cases of where the f; and f;;; operators will act on a coloring.

When the reader sees
O—i—0
we mean that this is the location of the right i-bracket that f; will act on in the coloring. So for
Case 1, since we have

Oo—i—0 o-i+1 -0

it means that the right i-bracket that f; will act on is strictly left of the right i + 1-bracket that
fir1 will act upon in the coloring. And for Case 2, since we have

O i O
O——1+1 —=0

it means that the the right i-bracket begins before the right i + 1-bracket does, and the right

1-bracket ends after the right ¢ + 1-bracket begins, but before the right i + 1-bracket ends.

REMARK 3.4.18. The six cases also apply to the e; operators in the exact same fashion, so for
Case 1, it means that the left i-bracket that e; will act on is strictly left of the left i + 1-bracket

that e;y; will act upon in the coloring.
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DEFINITION 3.4.19. To reference these cases easily, we denote which operator before the Case,
for instance if we want to refer to the f; operator version of Case 3, we will say f-Case 3 and
similarly if we want to refer to the e; operator version of Case 3, we will say e-Case 3. It should

be noted that what ¢ value the case is referring to should be clear from the context.

Cases 2-5 are where the brackets overlap and these will be the cases that give us the most
trouble. However, as noted previously, many of these cases involve the Bull graph, and we will

now prove which cases do.

REMARK 3.4.20. In the following proofs we will talk about deleting vertices to create an
induced subgraph, to be clear when we say delete a vertex of the graph, we also mean delete any

edge that was attached to that vertex so that we get an induced subgraph.

PROPOSITION 3.4.21. If f-Case 2 applies to a coloring x of a unit interval graph G, then the

graph G must contain an induced subgraph isomorphic to the Bull graph.

Proor. We claim the graph G must contain an induced subgraph with the following induced
coloring of x :
i 1+1 i 1+2 1+1

O u\—/ O

To achieve this, begin by deleting every vertex not contained in the f-Case 2 right i-bracket

and right ¢+ 1-bracket. Then in the right i-bracket, delete all but the last three vertices. The 7+ 1
colored vertex in the right i-bracket must be part of the overlap of the right brackets, and hence
the 7 + 1 colored vertex must also be a part of the right 7 + 1-bracket. Now the right ¢ + 1-bracket
must continue past the right ¢-bracket because this is f-Case 2, so there must be at least two more
vertices colored 7 + 2 and ¢ + 1 that are right of this 7 + 1 colored vertex. Now delete all vertices
in the right 7 + 1-bracket that are not these three vertices. This explains all but one part of the
picture, the ordering of the 7 colored vertex that is left of the ¢ + 2 colored vertex. But this is
because we have specified that this is the last ¢ colored vertex in the right i-bracket. Since the two
vertices on the end of the right ¢ + 1-bracket must be connected by an edge, if the ¢ colored vertex

were right of the ¢ + 2 colored vertex, it would be forced to share an edge with the ¢ + 1 colored
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vertex (because of the properties of unit interval graphs), hence contradicting the fact that it is
the last vertex in the right ¢-bracket.

Since this subgraph is isomorphic to the Bull graph, we have the result. 0

The proofs of the next three propositions are similar to Proposition 3.4.21 and we omit many

of the details for brevity.

PROPOSITION 3.4.22. If f-Case 5 applies to a coloring x of a unit interval graph G, then the

graph G must contain an induced subgraph isomorphic to the Bull graph.

ProOOF. Through a process similar to Proposition 3.4.21, it can be shown that the graph G

must contain an induced subgraph whose look and corresponding induced coloring of = is the

following;:
1+1 142 i 1+1 i
Since this subgraph is isomorphic to the Bull graph, the result follows. O

PROPOSITION 3.4.23. If e-Case 2 applies to a coloring x of a unit interval graph G, then the

graph G must contain an induced subgraph isomorphic to the Bull graph.

PROOF. Through a process similar to Proposition 3.4.21, it can be shown that the graph G

must contain an induced subgraph whose look and corresponding induced coloring of x is the

following:
i+1 i i+2 i+1 142
Since this subgraph is isomorphic to the Bull graph, the result follows. 0

PROPOSITION 3.4.24. If e-Case 5 applies to a coloring x of a unit interval graph G, then the

graph G must contain an induced subgraph isomorphic to the Bull graph.

PrRoOOF. Through a process similar to Proposition 3.4.21, it can be shown that the graph G
must contain an induced subgraph whose look and corresponding induced coloring of x is the

following;:
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1+2 i+1 1+2 i i+1

Since this subgraph is isomorphic to the Bull graph, the result follows. U

We now cover the last two cases: f-Case 4 and e-Case 3.

ProproOSITION 3.4.25. If f-Case 4 applies to a coloring x of a unit interval graph G, then the

graph G must contain an induced subgraph isomorphic to the Bull graph.

Proor. We first note that the right i-bracket must have a length of at least 3. If the length
was only one, since it is contained in a right ¢ + 1-bracket, the vertex colored i is forced to share
an edge with a vertex colored 7 + 1, a contradiction. We now claim the graph G must contain an

induced subgraph whose look and corresponding induced coloring of x is the following:
i i+1 i i+2 i+1

The proof will now follow a similar reasoning as in the proof of Proposition 3.4.21. To obtain

the induced subgraph with corresponding induced coloring of x shown above, we first delete every
vertex not in the right i-bracket and right ¢+ 1-bracket that the f-Case 4 refers to. Then, we delete
every vertex in the right i-bracket except for the last three vertices. The vertex colored i + 1 in
these last three vertices must also be in the right ¢ + 1-bracket, we delete every vertex in the right
1 + 1-bracket except for that vertex and the two vertices immediately right of it. These vertices
must exist because we are in f-Case 4, and a portion of the right ¢ + 1-bracket must extend past
the right i-bracket. These five vertices are the ones shown above. We need only explain why the
middle ¢ colored vertex is left of the ¢ + 2 colored vertex. This is because if it were right of the
1+ 2 colored vertex, by properties of the unit interval graphs, it must share an edge with the ¢ + 1
colored vertex that is on the right end in the picture, a contradiction because the right ¢-bracket
wouldn’t end with the ¢ colored vertex in the middle.

Since this subgraph is isomorphic to the Bull graph, the result follows. O

The next proposition will follow a similar proof to Proposition 3.4.25, so we omit many of the

details.
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PROPOSITION 3.4.26. If e-Case 3 applies to a coloring x of a unit interval graph G, then the

graph G must contain an induced subgraph isomorphic to the Bull graph.

PRrROOF. We first note that the right i+ 1-bracket must have a length of at least 3. If the length
was only one, since it is contained in a right i-bracket, the vertex colored i + 2, by properties of
unit interval graphs, is forced to share an edge with a vertex colored ¢ + 1, a contradiction. By
following the same proof idea in Proposition 3.4.25, it can be shown the graph G must contain an

induced subgraph whose look and corresponding induced coloring of x is the following:

1+2 i+1 1+2 i i+1
O O

Since this subgraph is isomorphic to the Bull graph, we have the result. U

Notice that the Bull graph contains an induced subgraph isomorphic to P,;. This leads us to

the main result of the section.

PROPOSITION 3.4.27. Suppose our operators are adjacent, meaning for some i we have i,i+1 €
1. To prove Stembridge axioms S2’° and S8’ for G4, it suffices to show the axioms hold for f-Cases
1, 3, and 6. To prove Stembridge axioms S2 and S3 for Gy, it suffices to show the axioms hold
for e-Cases 1, 4, and 6.

The proof of the f-Cases of the proposition follows directly from Proposition 3.4.21, Propo-
sition 3.4.25, and Proposition 3.4.22. The proof of the e-Cases of the proposition follows directly
from Proposition 3.4.23, Proposition 3.4.26, and Proposition 3.4.24.

We end this section by showing that when restricted to graphs G € G4, there is only one way

for f-Case 3 and e-Case 4 to occur, as the next proposition will show:

PROPOSITION 3.4.28. Let G € G4 and let x € G, if f-Case 3 applies to x, then the right i-bracket
must have length 3 and the right i+ 1-bracket contained within it must have length 1. Additionally,
it must be the case that ¢;(fis12) = pi(x)+1 and @1 (fix) = i1 (x) + 1. This means that S27 will

never apply to this situation, only S3°.

Proor. First, if the length was greater than 3, then we would have to contain a subgraph

isomorphic to P;. To see this, simply delete all vertices except the first 4 in the right ¢-bracket.
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Second, since the right 7+ 1-bracket must be of odd length and contained within the right i-bracket,
if it were of length 3 or more, the right i-bracket would contain at least two vertices colored i + 1,
forcing its length to be greater than 3, a contradiction.

Now, we must have the following look in our induced %, + 1-coloring of x:

i i+1
O O O

—

To complete this part of the proof we need to show there are no other vertices sharing edges
with these three that are colored i, i + 1, or i + 2. The fact that we can have no more vertices
colored i or 7 + 1 sharing an edge with any of these vertices follows because if they did exist, it
would alter the length of the right i-bracket, which we can’t do. So let’s now consider if it is
possible to have a vertex colored 7 + 2 sharing an edge with one of these vertices. First, it cannot
share an edge with the vertex colored i + 1, or it would affect the length of the right ¢ + 1-bracket.
Suppose it shared an edge with one of the vertices colored i, then because it can not also share an
edge with the 7 + 1 colored vertex, we would have an induced subgraph isomorphic to P,. Hence
in the induced 7,7 + 1-coloring of x, this is the entire connected component, we have no additional
vertices sharing edges that have colors ¢, i + 1, or 7 + 2.

Then, after applying f; and f;,; to x, this section becomes:

1+1 i 1+1
After applying f; : O O O

i i+2 i
After applying fi;1: O O O

After applying f;, we gain a right ¢ + 1-bracket, and because the original right i + 1-bracket was
an unpaired bracket, we must have both of these be unpaired as well, so that ¢;.1(fix) = @1 (z)+1.
Similarly, after applying f;,1, we gain a right i-bracket, and because the original right i-bracket was
an unpaired bracket, we must have both of these be unpaired as well, so that o;(fi;12) = ¢i(x)+1.

Since this is the only possible look of f-Case 3 for graphs in G, we can never get a situation
where ¢;(fiz12) = pi(x) or i1 (fix) = pir1(x) when f-Case 3 applies to . Hence S2’ will never

apply to this situation, only S3’. O
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PROPOSITION 3.4.29. Let G € G4 and let x € G, if e-Case 4 applies to x, then the left i+1-bracket
must have length 3 and the left i-bracket contained within it must have length 1. Additionally, it
must be the case that £;(fiz) = €i(x) + 1 and €1 (fix) = ep1(x) + 1. This means that S2 will

never apply to this situation, only S3.

The proof of this is similar and is omitted.

3.4.3. Stembridge Axiom 2. In this section, we will show Stembridge axioms S2 and S2’

are both satisfied for the crystal operators e; and f; for colorings of a unit interval graph G € G,.

DEFINITION 3.4.30. Suppose z is the coloring of a unit interval graph G and f;x # 0 and
fjz #0. Let R be a right i-bracket of x. If R is exactly the same before and after f; is applied to
x, we say that R is unaltered by the action of f; on x. Similarly, we can use unaltered when talking
about left i-brackets that are not changed by applying e; to a coloring. Now, if the rightmost
unpaired right i-bracket of z is unaltered by the action of f; on x and is still the rightmost right

i-bracket of f;x, then we say that f; acts independently of f; on .

REMARK 3.4.31. It should be clear from the definition that if f; acts independently of f; on

x and f; acts independently of f; on z, then it must be the case that f;f;z = f; fiz.

PROPOSITION 3.4.32. Let x be a coloring of a unit interval graph. Let 1,7 € I with j+1i- 1,1,

ori+1 and both fix #0 and f;x #0. Then §2’ holds.

PROOF. Because j # i — 1,7, or i + 1, it directly follows that f; and f; act independently of
each other since f; can’t affect the induced i-coloring of x and vice versa. So it follows that
fifix = f;fix. Additionally, it also follows that ¢;(fix) = ¢;(x) > 0 and ¢;(fjz) = ;(z) for the

same reason, since f; can’t affect the induced 7-coloring of « and vice versa. 0

PROPOSITION 3.4.33. Let x be a coloring of a unit interval graph. Let i,5 € I with j +1-1,1,

ori+1 and both e;x #0 and e;x #0. Then S2 holds.

The proof of Proposition 3.4.33 is similar to Proposition 3.4.32 and is omitted. Now we need
only focus on the case where the operators are adjacent to finish proving the second Stembridge

axioms. We consider f-Case 1 and f-Case 6 in this next proposition.
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PROPOSITION 3.4.34. Let x be a proper coloring of a unit interval graph G. Then we have the

following:

(1) Suppose that fi.ix+0 and fix +0. If f-Case 1 applies, then fi11 acts independently of f;
m .

(2) Suppose that fix + 0, fix + 0, and for operators f; and fi1, f-Case 1 applies. Then
wir1(fir) = pina(2) + 1.

(3) Suppose that fi.ix+0 and fix +0. If f-Case 6 applies, then f; acts independently of fi1
m x.

(4) Suppose that fix + 0, fix + 0, and for operators f; and fi.1, f-Case 6 applies. Then

©i(firir) = pi(x) + 1.

PrOOF. To prove (1), since f-Case 1 applies, the rightmost unpaired right 7 + 1-bracket is
unaltered by f; applied to x. We need only show that it is still the rightmost unpaired right
1+ 1-bracket in f;xz. We first note that we can’t have any newly created right ¢ + 1-brackets right
of it (because everything is unaltered right of it). Secondly, the coloring x either gains a right
1+ 1-bracket or loses a left ¢ + 1-bracket. Since the creation of a right ¢ + 1-bracket must be strictly
left of the rightmost right ¢ + 1-bracket of z, this would not change where f;,; acts. And since
we are left of the rightmost unpaired right i + 1-bracket, it must be the case that a loss of a left
1 + 1-bracket unpairs a right ¢ + 1-bracket that must be left of the rightmost right ¢ + 1-bracket of
x, finishing the proof of (1).

We now prove (2). Applying f; either creates a right i+1-bracket, or destroys a left i+1-bracket.
This must occur left of the rightmost right ¢ + 1-bracket of x, which is still the rightmost right
i+ 1-bracket of f;x by (2). We have two scenarios. If we gained a right i + 1-bracket, then clearly
wir1(fir) = pir1(x) + 1. If we lost a left ¢ + 1-bracket, then since we are left of the rightmost right
1+ 1-bracket, it must have been paired and this would mean we gain an unpaired right ¢+ 1-bracket,
so we have ;1 (fir) = @i (x) + 1.

The proofs of (3) and (4) are similar to (1) and (2). O

We now show S2’ holds for f~Cases 1 and 6.
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PROPOSITION 3.4.35. S2’ is satisfied by a coloring x where f-Case 1 applies. Meaning, if

iyi+1lel, vi1(x)>0, and @;(fiix) = pi(x) >0, then:

(1) fifisix = fin1 fiz, and
(2) 5i+1(fil’) = 5i+1($).

PROOF. From Proposition 3.4.34 (2), we have ¢;,1(fix) = viz1(x) + 1. Hence, it must be the
case that ¢;(fi;17) = @;(x) for S2’ to apply to the coloring x.

We first prove (1). Let ¢;(fiz12) = ¢i(x). Then the unpaired right i-brackets of = are unaltered
by applying f;;1 because it acts strictly right of them. And because p;(fi;12) = ¢i(x), we couldn’t
have gained an unpaired right i-bracket, so that the rightmost right i-bracket of x remains such
for fi;1x. Thus, f; acts independently of f;,; in x. By Proposition 3.4.34 (1), we know f;;; acts
independently of f; in x. Hence f;fi;1x = fii1 fix.

Now we prove (2). By Proposition 3.4.14 (1), since @;,1(fix) = @iz (x) + 1, it must be the case
that €,,1(fix) = €5401(). O

PROPOSITION 3.4.36. S2’ is satisfied by a coloring x where f-Case 6 applies. Meaning, if

ivi+1lel, pi(z)>0, and @ir1(fix) = @i (x) >0, then:

(1) fifisix = fis1fiz, and
(2) ei(finx) = i(7).

PROOF. From Proposition 3.4.34 (4), we have o;(fi112) = @;(x) + 1. Hence, it must be the
case that ¢;1(fix) = pi1(x) for S2° to apply to the coloring x.

We first prove (1). Let ¢;1(fiz) = ¢ir1(x). Then the unpaired right ¢ + 1-brackets of x are
unaltered by applying f; because it acts strictly right of them. And because ;1 (fiz) = piv1(x),
we couldn’t have gained an unpaired right ¢ + 1-bracket, so that the rightmost right ¢ + 1-bracket
of x remains such for f;xz. Thus, f;;; acts independently of f; in z. By Proposition 3.4.34 (3), we
know f; acts independently of f;,; in . Hence f;fi,1x = fii1 fix.

Toprove (2), by Proposition 3.4.14, since ¢;(fis12) = @i(x) + 1, it must be the case that
€Z‘(fi+1l') = 81(17)

Using a similar strategy we could prove the following propositions for S2.
111



PROPOSITION 3.4.37. S2 is satisfied by a coloring x where e-Case 1 applies. Meaning, if
ivi+1lel, gi(x)>0, and g;11(e;x) = €541(x) > 0, then:
(1) ejei1x = ejpe;x, and

(2) pi(ei1x) = i(x).

PROPOSITION 3.4.38. S2 is satisfied by a coloring x where e-Case 6 applies. Meaning, if
ivi+1lel, g;(x)>0, and g;(e;11x) = €;(x) >0, then:
(1) eje;1x = ejre;x, and

(2) pini(eir) = pi(x).

PROPOSITION 3.4.39. Let x be the coloring of a unit interval graph G € G4. Then the for the

crystal operators e; and f;, S2 and S2’ are satisfied.

PROOF. Let i,5 € I and i # j. If p;(x) > 0 and ¢;(fiz) = p;(z) > 0, then we need to show
fifix = fifix and g,(f;x) = €;(x).

If 7#7-1 or ¢+ 1, then by Proposition 3.4.32 S2’ holds.

If j=i—1or i+1, then we have the six Cases to consider for the adjacent operators. Propo-
sitions 3.4.21, 3.4.22, and 3.4.25 show that f-Cases 2, 4, and 5 can never occur for a coloring x of
a graph G € G,. Proposition 3.4.28 shows that S2’ will never apply to f-Case 3 for a coloring x
of a graph G € G4. Proposition 3.4.35 shows S2’ holds for f-Case 1 and Proposition 3.4.36 shows
S2’ holds for f-Case 6.

Since this exhausts all possibilities, this shows the crystal operators satisfy S2’.

Again, let 4,57 € [ and 7 # j. If ¢;(x) > 0 and ¢;(e;z) = ¢j(z) > 0, then we need to show
eiejr = eje;x and p;(e;r) = pi(z).

If j#i-1 or 7+ 1, then by Proposition 3.4.33 S2 holds.

If j=2-1ori+1, then we have the six Cases to consider for the adjacent operators. Propo-
sitions 3.4.23, 3.4.24, and 3.4.26 show that e-Cases 2, 3, and 5 can never occur for a coloring z of
a graph G € G4. Proposition 3.4.29 shows that S2 will never apply to e-Case 4 for a coloring x of
a graph G € G4. Proposition 3.4.37 shows S2 holds for e-Case 1 and Proposition 3.4.38 shows S2
holds for e-Case 6.

Since this exhausts all possibilities, this shows the crystal operators satisfy S2. ([l
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3.4.4. Stembridge Axiom 3. In this section we will prove that the crystal operators satisfy
S3 and S3’ when restricted to colorings of unit interval graphs G € G,. We begin with the case of

when the operators are not adjacent.

PROPOSITION 3.4.40. Let x be the coloring of a unit interval graph and i,7 € I. Suppose
j#i—-1,4, ori+1. If fix #0 and fix # 0, then v;(x) = p:i(f;z) and p;(x) = p;(fix). If e;x 0
and e;x # 0, then €;(x) = €;(e;x) and £;(x) = €;(e;x). In other words, S8 and 83’ will never apply

to these cases.

PROOF. Let f;x # 0 and f;z # 0. The colors ¢ and ¢+1 are not present in the induced j-coloring
of x and the colors j and j + 1 are not present in the induced ¢-coloring of z, hence string lengths
are unaffected: ¢;(x) = p;(f;x) and p;(z) = ¢;(fiz).

Similarly, let e;z # 0 and ejx # 0. For the same reason we have ¢;(x) = ¢;(e;z) and €;(x) =
gj(e;x).

The last statement follows because Stembridge axiom 3 applies only when the string length of

both of the operators increases by one. 0

We now delve into the cases where the crystal operators are adjacent. Recall from the six
cases section that we need only consider f-Cases 1, 3, and 6 and e-Cases 1, 4, and 6. We begin

with f-Case 3 and e-Case 4.

PROPOSITION 3.4.41. Let x be the coloring of a unit interval graph G € G4. Let 1,1+ 1€l and

suppose f-Case 3 applies. Then the crystal operators obey S3°.

PRroOOF. By Proposition 3.4.28, we know that there is only one situation for which f-Case 3
can apply to such a coloring when restricted to graphs in G4, and this component in the induced
1,1+ 1-coloring of x contains only three vertices colored 7, i + 1, i, in that order. Here we show the

directed graph for the component of the induced 4,7 + 1-coloring of x that f; and f;,; act on.
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[i+1,4,i+1] [i,i+2,4]
1+ 1 i
[i+1,i,i+2] [i,i+2,i+1]
1+ 1 (
[1+2,,7+2] [i+1,i+2,i+1]

L

[i+2,i+1,i+2]

Let’s label this component A. Now we will explain why A is the only component of the induced
1,1+ 1-coloring of x that needs to be tracked to determine what happens to the coloring of z. First,
because it is f-Case 3, we know that the first paths of the directed graph f;, headed down and to
the left, and f;;1, headed down and to the right, must act on A exactly as detailed.

Now let’s consider the right path. Since A is the rightmost unpaired right i-bracket in z, it
must be the case that when f;,; acts and changes the ¢ + 1 to an 7 + 2, the two i colored vertices
in the A component must now be the two rightmost unpaired right i-brackets of the new coloring.
This explains why the next two f;’s act where they do in f;;1x and f;f;;1x. Now, since there was
nothing else in the A component of x and f;,; would have acted on the i + 1 in the A component
of z, it must also be the case that in f?f;; 2, that f;;; must act on the length 3 right i + 1-bracket
that is in component A. This explains the path down the right.

For the path down the left, we have a similar reasoning. Since the i + 1 colored vertex in A is
the rightmost unpaired right ¢ + 1-bracket in x, it must be the case that when f; acts and changes
A to the i+1, 7, i+ 1 sequence, the two 7+ 1 colored vertices in the A component must now be the
two rightmost unpaired right ¢ + 1-brackets of the new coloring. This explains why the next two
fir1’s act where they do in f;z and f;;1f;z. Now since there was nothing else in the A component

of z, and f; would have acted on the A component of x, it must also be the case that in f2, fiz,
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that f; must act on the ¢ colored vertex that is in component A. This explains the path down the
left.

This shows that f;f2,fix = fis1 f2fis1iz # 0. Now we need to show &;(finix) = &;(f2, fiz) and
€i+1(fi9€) = 5i+1(fi2fi+1$)-

Component A of x, fiiz, and f2,f;x does not contain any left i-brackets, and their right
i-brackets must all be unpaired. Therefore, &;(fiz1z) = €;(z) = &;(f2, fix). Similarly, component
Aof x, fix, and f?fi1x does not contain any left ¢+ 1-brackets, and their right ¢ + 1-brackets must

all be unpaired. Hence, &;,1(fiz) = €;41(2) = €141 (f? fis1x). This shows S3’ is satisfied. O

PROPOSITION 3.4.42. Let x be the coloring of a unit interval graph G € G4. Let 1,1+ 1€l and

suppose e-Case 4 applies. Then the crystal operators obey S3.

The proof of this is similar and we omit it.
In order to prove S3’ for f-Case 1 or 6, we will need to prove that for a coloring x where one of
these cases applies, fif2,fix = fis1f? firiz. To structure our way of thinking about this scenario,

we introduce some new language.

DEFINITION 3.4.43. Let = be a coloring where f-Case 1 and S3’ both apply. Define (i); to be
the rightmost unpaired right i-bracket of = and define (i + 1); to be the rightmost unpaired right
i+ 1-bracket of . Then define (i)3 to be the rightmost unpaired right i-bracket of f;,;2 and define

(i +1)9 to be the second rightmost unpaired right i + 1-bracket of f;x.

By Proposition 3.4.45, we will have the following look of x and f;,; fiz:

Coloring of x: -+ (i); - (i+1)

Coloring of fi1fiz: - (i+1)y - (i)

LEMMA 3.4.44. Let x be the coloring of a unit interval graph G € G4 and let 1,1+ 1€ 1. Then
we have the following:

(1) Let A be a right i + 1-bracket that is strictly left of the rightmost unpaired right i-bracket

of x. Then A is unaltered by the action of f; on x.
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(2) Let A be a right i+ 1-bracket that is strictly right of the rightmost unpaired right i-bracket
of x. Then A is unaltered by the action of f; on x.

(8) Let A be a right i-bracket that is strictly left of the rightmost unpaired right © + 1-bracket
of x. Then A is unaltered by the action of fi;.1 on x.

(4) Let A be a right i-bracket that is strictly right of the rightmost unpaired right i + 1-bracket

of x. Then A is unaltered by the action of fi11 on x.

PrROOF. For (1), applying f; to x can only modify where i + 1’s occur in the induced i + 1-
coloring of x, so we can’t change the ¢ +2’s in A. Since A is strictly left of B, it is not possible to
change the 7+ 1’s in A either. Nor can we add to the length of this bracket, as it would require an
7+ 2 color on the end of A, a contradiction since it is a right 7 + 1-bracket. Hence A is unaltered

by the action of f; on z. A similar reasoning proves (2), (3), and (4). O

PROPOSITION 3.4.45. Let x be the coloring of a unit interval graph G € G4. Let i,i+1€ 1l and

suppose f-Case 1 and S3’ apply to x for i. Then we have the following:

(1) (i+1); is unaltered by the action of f; on x.

(2) (i)1 is unaltered by the action of fi;1 on x.

(3) (i+ 1)y is still the rightmost unpaired right i + 1-bracket of f;x.

(4) (@)1 is the second rightmost unpaired right i-bracket of fi1x.

(5) If (i)2 was altered by applying fi,1 to x, then we must have at least one vertex that shared
an edge with (i +1);.

(6) If (i + 1)y was altered by applying f; to x, then we must have at least one shared vertex
with (7)1.

(7) (i+1)q is strictly left of (i)s.

(8) (i)2 is unaltered by the action of fiy1 on fi fix.

ProOOF. (1) and (2) follow directly from Lemma 3.4.44.

To prove (3), by (1) we know that (i +1); is unaltered by the action of f; on x. By Propo-
sition 3.4.14, we know that we either gained a right i + 1-bracket or lost a left i + 1-bracket that
is left of (i + 1);. If we gained a right i + 1-bracket, that is left, then it is clear (i + 1) is still the

rightmost unpaired right i + 1-bracket. If we lost a left ¢+ 1-bracket, then it must have been paired
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with a right 7 + 1-bracket that is left of (i + 1), hence (7 + 1); is still the rightmost unpaired right
1+ 1-bracket.

To prove (4), we first note that by (2), (i); is unaltered by the action of f;;; on z. By a similar
rationale, every i-bracket of = that is left of (i); is unaltered by the action of f;;; on x. Hence,
the number of unpaired right i-brackets left of (i); remains the same as in z. Since S3’ applies,
there must be one unpaired right i-bracket that is right of it.

For (5) to apply, some part of (i), must be changed when going from x to f;,12. Since applying
fi+1 only changes the amount or locations of ¢ + 1 colors in the induced i-colorings of  and f;,1x.
Then ()2 either contains an i+1 color that was moved into the component, within the component,
or out of the component. In any of these three cases, it must be true that some vertex of (i),
shared an edge with (i +1);.

For (6) to apply, some part of (i + 1), must be changed when going from z to f;z. Since
applying f; only changes the number and locations of i + 1 colors in the induced ¢ + 1-colorings
of z and f;,12, then (i + 1)y either contains an i + 1 color that was moved into the component or
within the component (here, we can’t have lost an i+ 1 or it wouldn’t be a right i + 1-bracket). In
both of these scenarios, one of the i + 1 colored vertices is moved to a vertex shared by both (i),
and the (i +1),.

For (7), (i + 1)y was either altered or unaltered, when applying f; to = and we break our
arguments into these two cases.

Let’s first suppose (i + 1), is altered. From Proposition 3.4.27, we know that there is only
three possibilities for (i + 1), and (7)y, f-Case 1, 3, or 6. Let’s consider f-Case 3. By (6), the i + 1
colored vertex in the 7,7+ 1,7 component must have been an ¢ changed to an ¢+ 1 in the rightmost
right ¢-bracket of x. But then it must be the case that the ¢ colored vertices in the component
also had to be i + 1 colored vertices in x, and this implies the length of (i); was greater than 3 in
length, violating Proposition 3.4.28. If we consider {-Case 1, because of (5) and (6), there is no
way for this to occur if both the right brackets were altered. If (i), was unaltered, then it must
be strictly right of (i + 1)1, which is strictly right of (i + 1);. Hence only f-Case 6 is possible if

(i+1)s is altered.
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Now, let’s consider if (i + 1), was unaltered. It must still be strictly left of (i +1);. If (i)s
is unaltered, then it must be strictly right of (i + 1)y, so f-Case 6 applies. If (i), is altered, then
by (5), it is at most an edge away from the vertices of (i + 1)1, so f-Case 1 is not possible. If we
consider f-Case 3, we are assuming the i+ 1 colored vertex in the 7,7+ 1,7 component of the induced
i,7 + 1-coloring must be unaltered as a right ¢ + 1-bracket, and by (5), the right i colored vertex
must have shared an edge with (i + 1);. This vertex can’t share an edge with the i+ 1, or else it
would have been in the right ¢ + 1-bracket. But this can’t happen since this would have given us
an induced subgraph isomorphic to P;. This means again that only f-Case 6 is possible, proving
(7).

By (7), f-Case 6 applies to fi,1f;x, hence applying Lemma 3.4.44 proves (8). O

DEFINITION 3.4.46. Similar to Definition 3.4.43, let x be a coloring where f-Case 6 and S3’
both apply. Define (i); to be the rightmost unpaired right i-bracket of = and define (i +1); to be
the rightmost unpaired right i + 1-bracket of z. Then define (i + 1), to be the rightmost unpaired

right i + 1-bracket of f;x and define (i); to be the second rightmost unpaired right i-bracket of

fin.

By Proposition 3.4.47, we will have the following look of x and f; f;11x:

Coloring of x: -+ (i+1); - (i)

Coloring of f;fiyix: -+ (i)g - (i+1)y

Again, this will help to visualize some of the results in the next proposition.

PROPOSITION 3.4.47. Let x be the coloring of a unit interval graph G € G4. Let i,i+ 1€ 1 and

suppose f-Case 6 and S8’ apply to x for i. Then we have the following:

(1) (@)1 is unaltered by the action of fiy1 on x.
(2) (i+1); is unaltered by the action of f; on x.
(8) (i)1 is still the rightmost unpaired right i-bracket of fi,1x.

(4) (i+1)1 is the second rightmost unpaired right i + 1-bracket of f;x.
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(5) If (i+ 1)y was altered by applying f; to x, then we must have at least one shared vertex
with ().

(6) If (i)2 was altered by applying fi.1 to x, then we must have at least one vertex that shared
an edge with (i+1);.

(7) (i)q is strictly left of (i +1)s.

(8) (i +1)s is unaltered by the action of f; on f;fiix.

The proof of this is similar and is omitted.

Now, Proposition 3.4.45 and Proposition 3.4.47 provide most of the structure we need to prove
S3’. However, we still need to prove that there is certain situations that can’t happen. Examples

of these situations are given in Example 3.4.48 and Example 3.4.50.

EXAMPLE 3.4.48. Let GG be the following graph:

1 2 3 4 5 6
o——oO0 O O O O

Let x =[2,1,1,2,3,1] be a coloring of this graph. Then consider the following crystal digraph:

[2, 1,1,2,3, 1]
VN
[2,1,1,2,3,2] (3,1,1,2,3,1]
2 1
[2,1,1,3,2,3] (3,1,1,2,3,2]
2 1
(3,1,1,3,2,3] (3,2,1,2,3,2]
1 2
[3,1,2,3,2,3] [3,2,1,3,2,3]

Notice that S3’ applies to x, but fif2 fix # foffox.

REMARK 3.4.49. How did this occur? Suppose we have f-Case 6 for a coloring x, like we do in

Example 3.4.48. When we consider the path fi,1f?fir1 takes when applied to z, (i + 1), is acted

on first, then (i)q, then (i), and lastly (i + 1)s. If we consider the other path, f;f2,f:, first we
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act on (7)1, then on (i + 1), and then on (i + 1);. But when we act with f;,; on f;x, if by acting
on (i+ 1)y we have p(fi11fix) = ¢(fiz) + 1, then by Proposition 3.4.47 (4), we must gain a right
i-bracket that is strictly right of (i)s (call this (7)3), meaning this second path would act on (7)3

instead of (i),, thereby violating S3’. A similar situation occurs for f-Case 1.

ExXAMPLE 3.4.50. Let GG be the following graph:

1 2 3 4 5 6
O O O O Oo——0

Let z =[1,2,3,1,1,2] be a coloring of this graph. Then consider the following crystal digraph:

[1,2,3,1,1,2]
P
[1,2,3,2,1,2] [1,2,3,1,1,3]
2 1
[1,2,3,2,1,3] [1,2,3,1,2,3]
2 1
[1,3,2,3,1,3] [1,2,3,2,2,3]
1 2
(2,3,2,3,1,3] [1,3,2,3,2,3]

Notice that S3’ applies to x, but fif2fix # fofEfox.

REMARK 3.4.51. Again we ask, how did this occur? Suppose we have f-Case 1 for a coloring
z, like we do in Example 3.4.50. When we consider the path fi,1f2fi+1 takes when applied to ,
(i+1); is acted on first, then (i),, then (7)1, and lastly (i + 1),. If we consider the other path,
fif?, fi, first we act on (7)1, then on (i + 1)1, and then on (i + 1)s. Now (i), is a right é-bracket
that is paired up with the left i-bracket that (i); became. If when f;,; acts on f;,1 fiz it does not
destroy a paired left i-bracket so that ()2 becomes unpaired, but instead creates a right i-bracket
that is left of the left i-bracket that (i); now is, then this second path doesn’t act on (i), but

this new right i-bracket, thereby violating S3’. A similar thing can happen for f-Case 6.
120



This next proposition will show that when restricted to graphs G € G4, a situation like what

occurred in Example 3.4.48 will never occur.

PROPOSITION 3.4.52. Let x be the coloring of a graph G € G4 where f-Case 1 applies to x for
an index i € I. Then wi(fifisnix) = win1(fis1x), meaning (i + 1)3 can not occur. Similarly, if

f-Case 6 applies to the coloring x, then @;(f? fis12) = wi(fifis1x), meaning (i)s can not occur.

PrROOF. We will prove that for f-Case 1, @i1(fifis12) = wir1(fir1x) and because the proof of
f-Case 6 is similar to the proof in Proposition 3.4.53, we will omit it.

Suppose f-Case 1 applies to a coloring x of a graph G € G;. We will use the terminology given
in Definition 3.4.43. First, note that by Proposition 3.4.45 the second rightmost unpaired right
i+ 1-bracket of f;x that we call (i + 1)9 is strictly left of (i + 1);, which will be important later.

Now suppose @i1(fifir1x) = @ir1(fisiz) + 1. Applying fiy1 to (i + 1); would have turned
(i +1); into the leftmost unpaired left ¢ + 1-bracket in f;,;x, denote this as a left bracket by
(i+1)F. Applying f; to fi;s12 means that f; acts on ()2 and this results in the creation of (i +1)s3.
We now consider two cases depending upon whether (i), was altered or unaltered by applying fi,1
to x.

Suppose (i)s was unaltered by applying fi,1 to . Then we know that (i)s is strictly right of
(i + 1)L, And when we apply f; and act on (7)q, the net change in the 7 + 1-bracketing is that we
either lose a left i + 1-bracket or gain a right ¢ + 1-bracket. If we lose a left ¢ + 1-bracket and it
wasn’t paired, then we don’t gain an unpaired right 7 + 1-bracket and (i + 1)3 couldn’t exist. If we
lose a left ¢ + 1-bracket and it was paired, then it unpairs a right 7 + 1-bracket that must then pair
up with (i + 1), If we gain a right ¢ + 1-bracket, then (i + 1) would ensure that it would have to
be a paired bracket and again (i + 1)3 couldn’t exist.

Suppose ()2 was altered by applying f;;1 to z. Then, any right bracket must be of length 3 or
less since otherwise we would have an induced subgraph isomorphic to P;. Now suppose (i + 1),
and (i) have length 3. By Proposition 3.4.45 (5), we know that at least one vertex of (i) shares
an edge with (7+ 1);. Suppose one of the i + 1 colored vertices of (i + 1); shares an edge with one
of the i colored vertices of (i),. If this was the only edge, we contain a subgraph isomorphic to
P;. Now the i + 1 colored vertex of (i+1); can’t share another edge with (i), and still be a proper

coloring. The only other vertex the 7 colored vertex of (i), can share an edge with is the central
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i+ 2 colored vertex of (i+ 1)1, but even if this edge exists, we still contain a subgraph isomorphic
to Py. So then it must be the case that (i)s and (i + 1); share at least one vertex. If this is the
case, after f;,1 is applied to x, the i+ 2 colored vertex must become the central 7+ 1 colored vertex

of (i)y. This gives us four scenarios that come from graphs in G,.

Scenario 1: 111 \1j H\—JQ \; i+r1
Scenario 2: 111 ?/ / ;4:—;25 \ \i\il i
o e o
Scenario 3: 1 i+l it i+1 i
Scenario 4: 1 ifl/ - ;‘:i:; - ? i+1

Here, the dashed edges may or may not be present. In all four scenarios, we begin with a right
i+ 1-bracket (i+1);. After f;,1 is applied to x, this becomes a left i + 1-bracket. And after f; is
applied to f;,12 and acts on ()9, the left i + 1-bracket is lost and replaced with even i+ 1 brackets.
Hence in all scenarios (i + 1)3 is not created and we have @;,1(f;fiz12) = wis1(fis1).

Now suppose ()2 has length 1 and (i +1); has length 3. Then ()5 is just an i colored vertex.
By Proposition 3.4.45 (5), the i colored vertex shares an edge with some vertex of (i +1); in z.
Suppose the ¢ colored vertex shares an edge with an ¢+ 1 and an ¢ + 2 colored vertex, then it
wouldn’t be a right i-bracket after (i + 1); is acted upon by fi;;;. The only other possibility is
that it shares an edge with an 7 + 1 colored vertex only, but then we have an induced subgraph
isomorphic to Py, a contradiction.

Now suppose (i+1); was length 1, which means it is just an i + 1 colored vertex, and (i), was
length 3. Again, by Proposition 3.4.45 (5) the i + 1 colored vertex of (i + 1); must share an edge
with (i) in 2, and this means it must only share an edge with an i colored vertex on the end.

But then we would have an induced subgraph isomorphic to Pj.

122



If ()2 and (i+1); were both length 1, then for (i), to be altered, we must have the i and i+ 1
in (i) and (¢ + 1); respectively, be connected by an edge in the same component of the induced
1,1 + 1-coloring of x. Then there are exactly four scenarios for this component in the induced

1,1 + 1-coloring of x when restricted to graphs G € G,.

1 1+1
Scenario1: Oo——o0O

1+1 1
Scenario 2: o——o0

Scenario 3: O

Scenario 4 : O O O

These are the only four scenarios because the ¢ can only be connected to another vertex colored
1+ 2 and the 7+ 1 can only be connected to another vertex colored 7. Moreover the ¢ + 2 must be
right of the 7+ 1 or else it would pair up with it in the i + 1-bracketing. Adding any other vertices
would create an induced subgraph isomorphic to Pj.

In all four scenarios, after (i+1); is acted on that i+ 1 becomes an i+2. After (i), is acted on,
that ¢ becomes an i+ 1. The i becoming an i + 1 destroys the left i + 1-bracket that i + 2 was (or
in the case of scenario 4 the two i +2’s were two left ¢ + 1-brackets that become one with the ¢ + 1
between them), but this can’t create an unpaired right i + 1-bracket, because if there was it would
have been unpaired before (i +1); was acted on, violating the fact that (i +1); was the rightmost

right 7 + 1-bracket. 0

And now the next proposition will address the issue that occurred in Example 3.4.50, again

showing that this situation cannot occur when we restrict ourselves to graphs G € G,.

PROPOSITION 3.4.53. Let x be the coloring of a graph G € G4 where f-Case 1 applies to x for
an index i € I. Then:

(1) pi(f71fir) = ¢i(fisn fix) + 1 and

(2) (i)2 is the rightmost unpaired right i-bracket of f2, fix.

Similarly, if f-Case 6 applies to the coloring x for i, then:
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(1) 901;+1(fi2fi+1$) = 01 (fifinx) +1 and
(2) (i+1)q is the rightmost unpaired right i + 1-bracket of f?fis1.

ProOF. We prove (1) and (2) for {-Case 1 and f-Case 6 (1) follows from a similar reasoning,
while the proof of (2) is similar to that of the proof of Proposition 3.4.52.

First, consider fi;1f;x. At this point we have (i + 1)y strictly left of (i) and since (i); has
already been acted upon, it is a left i-bracket (denote this by (7)) that is strictly left of (i), and
hence paired with it. Now the leftmost unpaired left i-bracket must be right of (i), because (i),
is the rightmost right i-bracket of f;;12 and in f;,; fiz the only difference is that we have (i); as
a left i-bracket, not a right i-bracket. Now (1) follows directly because when we act on (i + 1)
we are strictly left of the leftmost left i-bracket, and regardless of whether this creates a right
1-bracket, or we lose a left i-bracket, both result in the creation of an unpaired right i-bracket.
Now we proceed to prove (2) with two cases, depending upon whether (i + 1), was altered or not.
We note that if acting with f;;1 on fi;,1fiz unpairs (i), it would make (i)s the rightmost right
i-bracket of f2, fix, so most of the proofs will focus on proving that () becomes unpaired.

Suppose (i + 1)y is unaltered by f; acting on x. Then it must be strictly right of (:)¥ and
since we are strictly left of (7)s, it must be the case that creating a right i-bracket must result in
(1)F being paired with a right i-bracket that is left of (i),, hence unpairing (i),. Similarly, if a
left i-bracket was lost, it must be the case that the right i-bracket it was paired with is left of (),
(because otherwise (i), would be paired with it) and would pair with ()%, hence unpairing (i),
again.

Now suppose (i + 1) is altered by f; acting on x. We know that when restricted to graphs in
Ga, the length of right brackets must be 1 or 3. Let’s first consider the case where the lengths of
(i+1)2 and (7); are both 3. By Proposition 3.4.45 (6), we know that (i+ 1)s and (¢); must share
a vertex. Since the shared vertex must be an i+ 1 colored vertex of (i + 1)y, we can either share 1
or 2 vertices. If we share only one vertex, we must have had one of two scenarios for these vertices

in x, where the dashed edge is optional.
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O OF O O O

Scenario 1: i i+1 i i+2 i+1

Scenario 2: 111 i+2 i i+1 i
However, all of these would imply that the graph contains an induced subgraph isomorphic to
Py, so these cannot occur. Now suppose (i + 1), and (4); share two vertices. Then we again have

two scenarios:

o

i 1+2 i+1 1

o

i 1+1 142 i

Scenario 1:

Scenario 2:

In both of these scenarios, after we apply f; to (i); and fi,; to (i + 1), we lose (i)l as a left
i-bracket, so that (i), would unpair as desired and become the rightmost right i-bracket of x.

Now suppose (i); has length 1 and (i + 1), has length 3. Again, (7); and (7 + 1), must share
a vertex, in this case this is the i colored vertex that (7); is in x, and becomes an i + 1 colored

vertex in f;x for (i +1);. We have the following 4 scenarios when restricted to graphs Gj.

Scenario 1 :
O O O
Scenario 2: 1 i+2 i+1
e e
Scenario 3: 1 i+1 i+2 1
O O O
Scenario 4: 111 i+2 i
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The i colored vertex on the right in scenario 1 and on the left in scenario 3 is not in (i); or
(i + 1)2, but could still be in the same component of the induced 4,3 + 1-coloring of z. In all four
of these scenarios we again have that after f; is applied to (i); and f;;; is applied to (i + 1),, we
lose (i) as a left i-bracket so that (i), becomes an unpaired right i-bracket.

Now suppose (i); has length 3 and (i + 1), has length 1. Again, (7); and (i + 1), must share
a vertex, in this case this is one of the i colored vertices of (i); in x that becomes an 7 + 1 colored

vertex in f;x for (i + 1). We have the following 4 scenarios when restricted to graphs G.

Scenario 1:
O/:\ o
Scenario 2: ! i+2 i+1 1
O O O
Scenario 3: ! i+1 1
O m
Scenario 4: ! i+1 1 i+2
O m
Scenario 5 : 1 i+1 i+2 1

The i + 2 colored vertex in scenarios 1, 2, 4, and 5 is not in (i); or (i+ 1), but can be present
in the same component of the induced 7,7 + 1-coloring of x. Again in all five scenarios we have
that after f; is applied to (i); and f;, is applied to (i+ 1), we lose (i)l as a left i-bracket so that
(i)2 becomes an unpaired right i-bracket.

The last case is when both (i); and (i + 1), have length 1. There is only one possibility for
this. (4); is an i colored vertex. After f; acts on it, it becomes an i + 1 colored vertex. This vertex
is both (i+ 1)y and (7)f. When f;,; acts on it, we lose (i)F as a left i-bracket, which unpairs (7),.

This exhausts all cases, so it must be the case that (i), unpairs and becomes the rightmost

unpaired right i-bracket in f2, fiz. O
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PROPOSITION 3.4.54. Let x be the coloring of a graph G € G4. Assume i,i+1 € I and f-Case

1 or f-Case 6 applies to x fori. If vi1(fix) = pi1(x) +1>1 and p;(fis1x) = pi(x) + 1> 1, then:

(1) fifz%dfﬂ = fi+1f¢2fi+137 #0;
(2) 5¢(fi+19€) = Ei(fz%rlfﬂ') and 5i+1(fi1') = 5¢+1(fi2fi+1$)-

PROOF. We begin by proving (1) for f-Case 1. We will again be using the language of Defini-
tion 3.4.43. To prove this we will simply show that both paths act on exactly (i), (i + 1)1, (7)a,
(i + 1), and nothing else.

Let’s first consider the path fi.1f?fis1. When fi11 acts on x, it acts on (i + 1); by definition.
Next, when f; acts on f;;1x, it acts on (i), again by definition. By Proposition 3.4.45 (4), we
know that f; acting on f;f;;1x will act on (7);. Now we know acting on (4); creates (i + 1)q, and
this is strictly left of ()2 by Proposition 3.4.45 (7). By Proposition 3.4.45 (8), we know that
(i)2 can’t alter (i + 1), and by Proposition 3.4.52, it follows that (i + 1), is the rightmost right
1 + 1-bracket of fffma:. Hence it is the case that f;,; acting on fffiﬂx acts on (i +1)s.

Now let’s consider the path f; f2,f;. When f; acts on z, it acts on (i); by definition. Next, when
fi+1 acts on fix, it acts on (i+1); because by Proposition 3.4.45 (3), we know it is still the rightmost
unpaired right ¢ + 1-bracket of f;z and it is unaltered by f; acting on = by Proposition 3.4.45 (1).
When f;;1 acts on fi,1 fiz, it acts on (i + 1)5 by definition. And lastly, by Proposition 3.4.45 (8),
we know that (i), is unaltered by f;,1 acting on f;,1 fiz and by Proposition 3.4.53, we know it
is the rightmost right i-bracket of f2, fiz, so that f; acts on (i), when it acts on f2, fix. Hence
fif?, fix = fua f2finiz, and this clearly isn’t 0.

Now we prove (2). Let’s first begin by proving e;(fis1x) = ;(f4,fiz). Since we know that
i(fis1x) = @i(x)+1 > 1, by Proposition 3.4.14, this implies ¢;( fis12) = €;(z). Now, it is clear that
gi(fir) = e;i(xr) + 1. When f;,1 is applied to fiz, it acts on (i + 1); and we know that we gain a
right i-bracket, but since (i); was acted upon and is now an unpaired left i-bracket strictly left of
it, these must be paired. Hence, ;( fi;1fiz) = €;(x). Lastly, by Proposition 3.4.53, we know that
when we apply f;;1 again to act on (i + 1), we know it must increase the number of unpaired

right i-brackets by one, meaning ¢;(f2, fix) = ¢:i(fiz1fix) + 1, which again by Proposition 3.4.14

implies that &;(f2,fix) = &i(fis1 fix). Hence ;(f2, fix) = £i(x) = &i( fir12).
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Now let’s prove e;,1(fix) = €iv1(f? fis1z). Since we know that @1 (fiz) = pia(z) +1> 1, by
Proposition 3.4.14, this implies €;,1(fiz) = ;11(x). Now it is clear that e;,1(fiz12) = 1 (z) + 1.
By Proposition 3.4.52, we know that when we apply f; to fi,1x, it will act on ()2, and we know it
doesn’t increase the number of unpaired right i + 1-brackets, meaning ;,1(fifis17) = i1 (fi12),
and again by Proposition 3.4.14, this implies €;,1(fi fiz17) = €31 (fiz1x) = 1 = g;41(2). Lastly, when
fi acts again, this time on (7)1, we know we gain an unpaired right i + 1-bracket, so ;1 (f? fis1x) =
i1 (fifinx) + 1. By applying Proposition 3.4.14 again we have e;.1(f2fis1z) = i (fifinx) =
6¢+1($) = 5i+1(fi$)- O

A similar strategy can be used to prove the e version of Proposition 3.4.54, and we state this

now without proof.

PROPOSITION 3.4.55. Let x be the coloring of a graph G € G4. Assume i,0+1 €I and e-Case
1 or e-Case 6 applies to x fori. If e;1(e;x) =i (x) +1>1 and g;(e;12) = €;(x) + 1> 1, then:
(1) e;e?, e;x = ej1€2eiqx % 0;

(2) pi(einx) = pi(e}, ex) and i (eir) = pii(efein).
We are now ready to state the final result of this section.

PROPOSITION 3.4.56. Let = be the coloring of a graph G € G4. Then the crystal operators

satisfy the Stembridge axioms S8 and S3°.

PRrOOF. Leti,jeland ¢+ 5. If j#i-1 or i+ 1, then by Proposition 3.4.40, S3 and S3’ never
apply to these cases, so we now assume we have adjacent operators for the rest of the proof.

Suppose S3’ applies to x, meaning for i,i + 1 € I we have p;,1(fix) = pi(x) +1 > 1 and
©i(fis1r) = @i(x) + 1> 1. Then there are three possible situations for these operators, f-Case 1, 3
or 6. Proposition 3.4.41 shows that S3’ holds for f-Case 3, and Proposition 3.4.54 shows that it
holds for f-Cases 1 and 6.

Suppose S3 applies to x, meaning for 7,7 + 1 € I we have g;,1(e;x) = g;41(x) +1 > 1 and
gi(e;1x) = ei(x) +1 > 1. Then there are three possible situations for these operators, e-Case 1, 4
or 6. Proposition 3.4.42 shows that S3 holds for e-Case 4, and Proposition 3.4.55 shows that it
holds for e-Cases 1 and 6. U
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3.5. Schur positivity using crystal structure

In Section 3.4, we showed that colorings of unit interval graphs G € G, create a Stembridge
crystal structure, and by Theorem 3.3.2; this is a way to prove Schur positivity of these graphs.
However, producing crystal operators that give a Stembridge crystal structure for a larger set
of graphs than G, appears to be a significantly challenging task. And proving that these new
operators satisfy the Stembridge axioms would also be significantly challenging. So, it does not
seem that seeking Stembridge crystal operators is desirable for claw-free graphs more generally.

The advantages of our crystal operators to Ehrhard’s [Ehr22], is that our operators can be
applied directly to colorings of graphs, seem easier to apply and understand, and can be applied
to the set of all claw-free graphs, rather than just claw-free incomparability graphs. Given that
Ehrhard proved Schur positivity using the crystal structure for claw-free incomparability graphs
and our operators are isomorphic on this set of graphs, ours by extension can use the exact same
proof technique to prove Schur positivity. So it is possible to try to extend Schur positivity to
claw-free graphs which are not incomparability graphs using our crystal structure and a Schur
positivity proof similar to one used by Ehrhard in Theorem 6.2 of [Ehr22|. This is what we are
currently pursuing.

Our current idea is to consider types of small graphs which are claw-free but not incompa-
rability graphs such as cycle graphs of length greater than 4, and prove Schur positivity of these
graphs using our crystal structure and find ways of attaching claw-free incomparability graphs to
these graphs such that the proof techniques still work to produce greater and greater subsets of
claw-free graphs.

In general, if the crystal operators were to give us the correct number of highest weight
colorings, then the Schur positivity proof would be straightforward. However, it seems for most (if
not all) claw-free graphs which are not incomparability graphs, we do not get the correct number
of highest weight colorings. So we need to either modify the operators until we do, or modify the
proof to account for this difference.

Despite the difficulty, this process at least seems like it could be used to extend the Schur posi-
tivity results to rather large sets of claw-free graphs in the future and we are currently considering

crystal operator modifications for claw-free graphs that will make this possible.
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