
The Immersion Poset and a Crystal Analysis of Claw-Free Graphs

By

DAVID KENEPP
DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Mathematics

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Anne Schilling, Chair

Eugene Gorsky

Monica Vazirani

Committee in Charge

2025

i



© David S. Kenepp, 2025. All rights reserved.



To Chuck, David, Lila, Marion and Stanton, my grandparents who are no longer with us.

ii



Contents

Abstract iv

Acknowledgments v

Chapter 1. Introduction 1

1.1. Overview 1

1.2. Preliminaries 2

Chapter 2. The immersion poset on partitions 7

2.1. Background and Definitions 7

2.2. Standard immersion poset 10

2.3. Immersion poset 21

2.4. Discussion 54

2.5. Maximal Element Conjecture 56

Chapter 3. A crystal analysis of claw-free graphs 64

3.1. Background and definitions 64

3.2. Crystal Operators 66

3.3. Stembridge Crystals 88

3.4. Graphs of G4 are Stembridge crystals 92

3.5. Schur positivity using crystal structure 129

Bibliography 130

iii



Abstract

This thesis consists of two independent parts. In the first part, we introduce the immersion

poset (P(n),⩽I) on partitions, defined by λ ⩽I µ if and only if sµ(x1, . . . , xN) − sλ(x1, . . . , xN) is

monomial-positive. Relations in the immersion poset determine when irreducible polynomial rep-

resentations of GLN(C) form an immersion pair, as defined by Prasad and Raghunathan [PR22].

We develop injections SSYT(λ, ν) ↪ SSYT(µ, ν) on semistandard Young tableaux given constraints

on the shape of λ, and present results on immersion relations among hook and two column parti-

tions. The standard immersion poset (P(n),⩽std) is a refinement of the immersion poset, defined

by λ ⩽std µ if and only if λ ⩽D µ in dominance order and fλ ⩽ fµ, where f ν is the number of

standard Young tableaux of shape ν. We classify maximal elements of certain shapes in the stan-

dard immersion poset using the hook length formula. Finally, we prove Schur-positivity of power

sum symmetric functions pAµ on conjectured lower intervals in the immersion poset, addressing

questions posed by Sundaram [Sun19].

In the second part, we use crystals to explore Schur positivity results of claw-free graphs.

Crystals were introduced by Kashiwara [Kas90] and have often been used to prove Schur positivity.

Using Kashiwara crystals, we give a type A crystal structure on the set of colorings of claw-free

graphs. Previously, Ehrhard [Ehr22] had given a type A crystal structure on P -arrays, where P

is a (3+1)-free poset, which is equivalent to having a crystal structure on the colorings of claw-free

incomparability graphs. We show that our operators are isomorphic to Ehrhard’s when confined

to claw-free incomparability graphs. Stembridge showed that when a crystal satisfies certain local

axioms, then the character of the crystal corresponds to the character of some representation

[Ste03]. We show that the crystal structure satisfies these Stembridge axioms for the set of

graphs which are unit interval graphs, but do not contain an induced sub graph isomorphic to the

path graph of length 4. Finally, we end with a discussion of ways to prove Schur positivity on

claw-free graphs which are not incomparability graphs using this crystal structure.
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CHAPTER 1

Introduction

1.1. Overview

Representation theory has been used as a powerful mathematical tool to study various ap-

plications, such as particle physics and quantum mechanics. Often, the study of certain aspects

of representation theory can be rephrased in terms of symmetric functions. This is because the

Frobenius characteristic map establishes an isometry between the ring of symmetric functions and

the ring of characters of the symmetric group. Meaning we have a direct bridge between the

orthonormal bases of each, which are the irreducible representations and the Schur functions; and

both can be indexed by integer partitions. In the study of immersion pairs for finite-dimensional

irreducible polynomial representations of the general linear group GLN(C), we can rephrase the

language of representations into the language of symmetric functions and reduce this relationship

to a combinatorial one. In the symmetric function perspective, the integer partitions now index

Schur functions, and we say a partition λ is immersed in a partition µ if the difference in the Schur

functions is monomial positive. This sets up a partial order on integer partitions which is called

the immersion poset.

In Chapter 2, we analyze various properties of the immersion poset. We begin in Section 2.2 by

defining the standard immersion poset. The relation λ ⩽I µ in the immersion poset for λ,µ ∈ P(n)

holds if the Kostka numbers Kλ,α ⩽ Kµ,α for all α ∈ P(n). In the standard immersion poset,

one only compares the number of standard tableaux of shape λ and µ (instead of semistandard

tableaux of all content). Relations in the immersion poset imply relations for the standard immer-

sion poset, but not vice versa. In Section 2.2, we study properties and maximal elements of the

standard immersion poset. In particular, maximal elements in the standard immersion poset are

also maximal elements in the immersion poset. In Section 2.3, we study properties of the immer-

sion poset. In particular, in Section 2.3.2 we study relations and covers in the immersion poset

using explicit injections between sets of semistandard tableaux. In Section 2.3.3, we analyze the
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immersion poset restricted to partitions of hook shape. In Section 2.3.4, we analyze the immersion

relations on partitions with at most two columns. In Section 2.3.5 we conjecture the structure

of certain lower intervals in the immersion poset and prove that p[(1n),(n−2,1,1)] and p[(1n),(n−2,2)]

(n ≠ 7) are Schur-positive. In Section 2.5, we prove the case when k = 3 of Conjecture 2.2.14,

which guarantees the maximality of a partition in the immersion poset if certain inequalities are

satisfied. We conclude in Section 2.4 with a discussion of open problems.

In Chapter 3, we introduce crystal operators on colorings of claw-free graphs. P -arrays, which

were introduced by Gessel and Viennot in [GV89] and later used by Gasharov in [Gas96], are

combinatorial objects which correspond to proper colorings of incomparability graphs. Crystal

operators on P -arrays, where P is a finite (3+ 1)-free poset, were introduced by Ehrhard [Ehr22]

and in Section 3.2.2, we show that our crystal operators are isomorphic to Ehrhard’s crystal

operators when restricted to claw-free incomparability graphs.

In [Kas90], Kashiwara introduced crystals, which have often been used as a means to achieve

Schur positivity results that also have a strong connection to the representation theory of Lie

groups. Later, in [Ste03], Stembridge showed that when a crystal satisfies certain local axioms,

one can be sure that the character of the crystal corresponds to the character of a representation,

thereby immediately proving Schur positivity. In Section 3.3, we show that in general, our opera-

tors do not satisfy the Stembridge axioms. However, in Section 3.4, we show that for unit interval

graphs which do not contain an induced subgraph isomorphic to the path graph of length 4, these

Stembridge axioms are satisfied. We end with Section 3.5, where we discuss our current research

in how to prove Schur positivity of claw-free graphs which are not incomparability graphs.

1.2. Preliminaries

1.2.1. Schur functions. Let x = (x1, x2, . . . ) be a set of indeterminates. Suppose the formal

power series f(x) with coefficients in C satisfies the condition that for every permutation σ of the

natural numbers N we have f(x1, x2, . . . ) = f(xσ(1), xσ(2), . . . ), then we say f(x) is a symmetric

function. Let α = (α1, α2, . . . ) be a weak composition of n ∈ N and let xα = xα1
1 x

α2
2 ⋯. Consider the

symmetric function

f(x) = ∑
α

cαx
α,
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where α varies over all weak compositions of n and cα ∈ C. Here we call f(x) a homogeneous

symmetric function of degree n.

Suppose f and g are homogeneous symmetric functions of degree n. Then assuming we don’t

get 0, f ± g is also a homogeneous symmetric function of degree n. Similarly, any non-zero scalar

multiple of a homogeneous symmetric function of degree n, remains so. Hence, we can form a

vector space.

Definition 1.2.1. We let Λn be the vector space over C consisting of all homogeneous sym-

metric functions of degree n plus the zero symmetric function. Let f ∈ Λn and g ∈ Λm. Then

fg ∈ Λn+m. Hence we can form

Λ = ⊕
n∈Z≥0

Λn.

We refer to Λ as the algebra of symmetric functions .

Definition 1.2.2. Let λ = (λ1, λ2, . . . , λl) be a partition. Then the monomial symmetric

function that corresponds to λ is

mλ = ∑
α(λ)

xα

where the sum ranges over all distinct permutations α of the entries of λ.

Example 1.2.3.

m(1) = ∑
i

xi

m(2) = ∑
i

x2i

m(2,1) = ∑
i,j

xix
2
j

Theorem 1.2.4. Let n be a fixed non-negative integer. Let Par(n) = {λ∣λ ⊢ n} and let

Par = ∪n≥0Par(n). Then the set {mλ∣λ ∈ Par(n)} is a basis for Λn, and the set {mλ∣λ ∈ Par} is

a basis for Λ.

Definition 1.2.5. Let λ = (λ1, λ2, . . . , λl) be a partition. Then the Young (or Ferrers) diagram

of shape λ is the finite collection of left justified boxes whose ith row contains λi boxes. T is a

semistandard Young tableau of shape λ if T is a filling of the Young diagram of shape λ with
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entries from N where the entries are weakly increasing within a row and strictly increasing down

a column. The content µ of T is the vector whose ith position contains the number of boxes in T

containing the number i. We can define the weight of T , denoted xT as follows

xT = xµ

Example 1.2.6. The following is a semistandard Young tableau of shape λ = (5,3,1,1), whose

content is µ = (2,4,1,1,1,1,0, . . . )
1 1 2 2 4
2 2 6
3
5

Definition 1.2.7. The Schur function corresponding to λ is

sλ = ∑
T

xT

where the sum ranges over all possible semistandard Young tableaux of shape λ. The set of all

Schur functions is also a basis for Λ.

For a more extensive treatment of Schur functions, or symmetric functions in general, see

chapter 7 of [Sta99]. For those wishing to understand the intimate connection between Schur

functions and irreducible representations of the symmetric group see [Sag91].

1.2.2. Graphs. Here we introduce the terminology used for graphs in Chapter 3.

Definition 1.2.8. A simple graph is an undirected graph containing no multiple edges or

loops. All graphs in Chapter 3 will be simple graphs, so from now on, we will simply say graphs,

though we really mean simple graphs. If G is a graph with edge set E and vertex set V =

{1,2, . . . , n} and G has the property that for i < j, if ij ∈ E (ij is the edge between vertices i and

j), then for any k where i < k < j, we must have ik ∈ E and kj ∈ E, then we say G is a unit interval

graph. An induced subgraph of G is the graph obtained by deleting some subset of vertices of G

and any edges shared by a deleted vertex. We say a graph is claw-free if it does not contained an

induced subgraph isomorphic to the claw graph, shown below.
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Definition 1.2.9. Define Pn to be the path graph of length n with vertex set V = {1,2, . . . , n}

and whose edge set is E = {12,23, . . . , n − 1n}. For example, P4 is the following graph:

1 2 3 4

For much of Chapter 3 we will focus on unit interval graphs which do not contain an induced

subgraph isomorphic to P4, we refer to this set as G4.

Let n ≥ 3. Define Cn to be the cycle graph of length n with vertex set V = {1,2, . . . , n} and

whose edge set is E = {12,23, . . . , n − 1n,1n}. For example, C4 is the following graph:

1 2 3 4

Definition 1.2.10. Let (P,≤P ) be a finite poset. The incomparability graph of P , denoted

inc(P ) is the graph whose vertex set is P and vertices a, b ∈ P share an edge when a and b are

incomparable in P . We say a poset is (a + b)-free if it does not contain an induced subposet

isomorphic to a disjoint union of chains with lengths a and b.

Example 1.2.11. Consider the Hasse diagram of a poset P pictured on the left, with its

corresponding incomparability graph on the right.

a

b

c

d

e

a

b cd e

Notice that P is not (3 + 1)-free because if we delete the element e, what we obtain is a

poset containing a chain of length 3 and a chain of length 1 that is disjoint. Notice that the

corresponding incomparability graph of this induced poset is the claw graph, as shown below.
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a

b

c

d
a

b cd

Example 1.2.11 illustrates the fact that saying G is the incomparability graph of a (3+1)-free

poset is the same as saying G is a claw-free incomparability graph, so we may use these descriptors

interchangeably, depending upon the context.

Let G be the incomparability graph of a (3+ 1)-free and (2+ 2)-free poset P , then G is a unit

interval graph. The converse of this statement is also true. So once again, we can either character-

ize unit interval graphs from the incomparability graph perspective, or from the characterization

given by Definition 1.2.8.
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CHAPTER 2

The immersion poset on partitions

This chapter is based on work in collaboration with Lisa Johnston, Evuilynn Nguyen, Digjoy

Paul, Anne Schilling, Mary Claire Simone, and Regina Zhou, published in [JKN+25]. Section 2.5

was based on work performed after the paper was published.

2.1. Background and Definitions

2.1.1. Immersion of representations. Given two finite-dimensional representations π1∶G→

GL(W1) and π2∶G→ GL(W2) of a group G, we say that the representation π1 is immersed in the

representation π2 if the eigenvalues of π1(g), counting multiplicities, are contained in the eigenval-

ues of π2(g) for all g ∈ G. In this case, we call (W1,W2) an immersion pair denoted by W1 ⩽I W2.

Note that, if π1 is a subrepresentation of π2, then W1 ⩽I W2, but the converse is not true.

Question 2.1.1 (Prasad and Raghunathan [PR22]). Classify immersion of representations

W1 ⩽I W2 for a given group.

Recently, some progress was made on the above problem for symmetric groups [PPS24b]

and alternating groups [PPS24a]. In this thesis, we study immersion pairs for finite-dimensional

irreducible polynomial representations of the general linear group GLN(C).

2.1.2. Polynomial representation theory of GLN(C) and symmetric polynomials.

The polynomial representation theory of GLN(C) was developed by Schur [Sch07] and later

popularized by Weyl [Wey39] in his expository book on the representation theory of the classical

groups. Briefly, the homogeneous irreducible polynomial representations (of degree n) of GLN(C),

also known as Weyl modules Wλ(CN), are indexed by integer partitions λ (of size n) with at

most N non-zero parts. The corresponding irreducible characters, known as Schur polynomials

sλ(x1, . . . , xN), are homogeneous symmetric polynomials (of degree n) in N variables x1, . . . , xN .
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2.1.3. Monomial positivity. Given a partition λ of n with at most N parts, the monomial

symmetric polynomials are mλ(x1, . . . , xN) ∶= ∑α x
α1
1 ⋯xαN

N , where the sum is over all distinct

permutations α of the parts of λ. For example, m(2,1)(x1, x2, x3) = x21x2+x21x3+x22x1+x22x3+x23x1+

x23x2.

The Schur polynomials {sλ ∣ λ ⊢ n} as well as the monomial symmetric polynomials {mλ ∣

λ ⊢ n} form a basis for the vector space of symmetric polynomials of degree n. A symmetric

polynomial f(x1, . . . , xN) is called monomial-positive if

f(x1, . . . , xN) = ∑
λ

cλmλ(x1, . . . , xN),

where the coefficients cλ are non-negative numbers.

2.1.4. Immersion of Weyl modules: the immersion poset. For a partition λ of n with

length ℓ(λ) ⩽ N , let

ρλ∶GLN(C) Ð→ GL (Wλ(CN))

be the irreducible polynomial representation of degree n of highest weight λ. It is a known fact

that (for example, see [Sta99, Chapter 7]) if g ∈ GLN(C) has the eigenvalues x1, . . . , xN , then the

eigenvalues of ρλ(g) are the monomials appearing in the Schur polynomial sλ(x1, . . . , xN).

Thus, given two partitions λ,µ of n with ℓ(λ), ℓ(µ) ⩽ N , the Weyl moduleWλ(CN) is immersed

in Wµ(CN) if and only if sµ(x1, . . . , xN) − sλ(x1, . . . , xN) is monomial-positive. Hence studying

the immersion of Weyl modules is equivalent to studying monomial positivity of the difference of

Schur polynomials.

Let P(n) denote the set of integer partitions of n.

Definition 2.1.2. We define a partial order on P(n) as follows. For λ,µ ∈ P(n), we define

λ ⩽I µ if sµ(x1, . . . , xN) − sλ(x1, . . . , xN) is monomial-positive. We call the poset (P(n),⩽I) the

immersion poset .

2.1.5. Representation theory of symmetric groups. The irreducible representations as

well as the conjugacy classes of the symmetric group Sn are indexed by partitions of n. Let χλ(µ)

denote the character value of the irreducible character χλ evaluated at an element of cycle type µ.

The character table of Sn is a square matrix encoding character values, whose rows are indexed by

8



irreducible characters χλ and whose columns are indexed by conjugacy classes Cµ. The character

values of Sn are all integers. Solomon [Sol61] proved that all row sums of the character table of

Sn are non-negative integers. Finding a combinatorial interpretation of the row sums is still an

open problem (see [Sta99, Exercise 7.71]).

2.1.6. Schur-positivity. A symmetric polynomial f(x1, . . . , xN) of degree n is called Schur-

positive if

f(x1, . . . , xN) = ∑
λ⊢n

cλsλ(x1, . . . , xN),

where the coefficients cλ are non-negative numbers. Schur-positivity is intimately tied to represen-

tation theory. Namely, the symmetric function f is Schur-positive if it is the character of a repre-

sentation W of GLN(C) which admits the decomposition into irreducibles W ≅ ⊕
l(λ)⩽N

Wλ(CN)⊕cλ .

The Frobenius characteristic map is a bridge between characters of the symmetric group and

symmetric polynomials. The irreducible character χλ maps to sλ under the Frobenius characteristic

map. Via the Frobenius map, Schur-positivity of f implies that there exists a representation V of

Sn such that V ≅ ⊕
λ⊢n

V ⊕cλλ , where Vλ is the irreducible representation of Sn indexed by λ.

2.1.7. Power sum symmetric polynomials and restricted row sums of character

table. Define the r-th power sum symmetric polynomial as

pr(x1, . . . , xN) ∶=
N

∑
i=1
xri .

For a partition µ = (µ1, µ2, . . .) ⊢ n, define the power sum symmetric polynomial as pµ ∶= pµ1pµ2⋯.

Given a subset An of partitions of n, consider the sum of power sum symmetric polynomials

(2.1.1) pAn ∶= ∑
µ∈An

pµ.

By the Murnaghan–Nakayama rule [Sta99, Corollary 7.17.4], pµ can be expressed in the basis

of Schur polynomials as

pµ = ∑
λ⊢n

χλ(µ)sλ.

Observe that the coefficient of sλ in the expansion of pAn is ∑µ∈An
χλ(µ). This is precisely the

restricted row sum (ignoring the columns not in An) of the character table of Sn. These values

need not always be non-negative integers, that is, pAn need not be Schur-positive. For example,
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if A4 = {(14), (2,1,1), (4)}, then one can deduce from the character table of S4 that pA4 = 3s(4) +

3s(3,1) + 2s(2,2) + 3s(2,1,1) − s(14) is not Schur-positive.

Question 2.1.3 (Sundaram [Sun18]). For which choices of An is the symmetric polynomial

pAn Schur-positive? In other words, which subsets An of columns in the character table of Sn

result in non-negative row sums?

In pursuit of Sundaram’s question, we explore the immersion poset in detail, hence under-

standing the immersion of polynomial representations for GLN(C). Given a partition µ of n,

consider the interval in the immersion poset [(1n), µ] ∶= {λ ∣ (1n) ⩽I λ ⩽I µ}. One may ask for

what choices of µ, the symmetric polynomial p[(1n),µ] defined in Equation (2.1.1) is Schur-positive.

Assuming Conjectures 2.3.40 and 2.3.43, we prove that:

(1) p[(1n),(n−2,1,1)] is Schur-positive;

(2) p[(1n),(n−2,2)] is Schur-positive for n ≠ 7.

One natural question which arises from the Schur-positivity of the above symmetric functions

is to explore the representation theory behind it. It would be interesting to construct a natural

representation V of the symmetric group such that its character maps to the symmetric polynomial

p[(1n),µ] under the Frobenius map, when µ = (n − 2,1,1) or (n − 2,2).

2.2. Standard immersion poset

In this section, we introduce the standard immersion poset, which is a refinement of the

immersion poset. The definition is given in Section 2.2.1. Basic properties of the standard im-

mersion poset are proved in Section 2.2.2. In Section 2.2.3, the maximal elements of the standard

immersion poset are studied. We follow the notational conventions in [Sta99, Chapter 6,7].

2.2.1. Definition of the standard immersion poset. The Schur polynomial sλ for λ ⊢ n

is defined as

(2.2.1) sλ(x1, . . . , xN) = ∑
µ⊢n

Kλ,µmµ(x1, . . . , xN),

where Kλ,µ are the Kostka numbers which count the number of semistandard Young tableaux

of shape λ and content µ. Note that with this definition the Schur polynomials are zero unless

10



N ⩾ ℓ(λ), that is, the number of variables needs to be at least as large as the number of parts in

λ.

Lemma 2.2.1. For λ,µ ∈ P(n), λ ⩽I µ if Kλ,α ⩽Kµ,α for all α ∈ P(n).

Proof. By Definition 2.1.2, two partitions λ,µ ∈ P(n) are comparable in the immersion poset

λ ⩽I µ if

sµ(x1, . . . , xN) − sλ(x1, . . . , xN)

is monomial-positive. Using (2.2.1), this can be restated as saying λ ⩽I µ if Kλ,α ⩽ Kµ,α for all

α ∈ P(n). □

In particular, Lemma 2.2.1 implies that a necessary condition for λ ⩽I µ is that Kλ,(1n) ⩽

Kµ,(1n), which count the standard Young tableaux of shape λ and µ, respectively. Note that

fλ ∶= Kλ,(1n) is also the dimension of the Specht module Vλ (the irreducible representation of Sn)

indexed by λ.

Let λ,µ ∈ P(n). Define λ ⩽D µ in dominance order on partitions by requiring that

k

∑
i=1
λi ⩽

k

∑
i=1
µi for all k ⩾ 1.

The Kostka matrix (Kλ,α)λ,α∈P(n) is unit upper-triangular with respect to dominance order, that

is, Kλ,λ = 1 and Kλ,α = 0 unless α ⩽D λ. This implies another necessary condition for λ ⩽I µ,

namely λ ⩽D µ. This motivates the definition of the standard immersion poset.

Definition 2.2.2. On P(n), define λ ⩽std µ if λ ⩽D µ in dominance order and fλ ⩽ fµ. We

call this poset the standard immersion poset .

As argued above, the standard immersion poset is a refinement of the immersion poset, that

is, λ ⩽I µ implies that λ ⩽std µ. The converse is not always true. For n ⩾ 12, there are examples

of λ ⩽std µ, which do not satisfy λ ⩽I µ. For example (5,3,1,1,1,1) covers (4,2,2,2,1,1) in the

standard immersion poset for n = 12, but not in the immersion poset.

Example 2.2.3. The immersion poset for n = 8 is given in Figure 2.1. It is equal to the

standard immersion poset.
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Figure 2.1. The (standard) immersion poset for n = 8.

2.2.2. Properties of the standard immersion poset. We now state and prove properties

of the standard immersion poset. Our main tool is the hook length formula for λ ∈ P(n)

(2.2.2) fλ = n!

∏u∈λ h(u)
,

where h(u) is the hook length of the cell u in λ which counts the cells weakly to the right of u

and strictly below u (in English notation for partitions).
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We write λ ⋖std µ if µ covers λ in the standard immersion poset. More precisely, λ ⋖std µ if

λ <std µ and there does not exist any ν such that λ <std ν <std µ.

Lemma 2.2.4. The partition (1n) is the unique minimal element in the standard immersion

poset.

Proof. The partition (1n) is the unique minimal element in dominance order. Furthermore,

f (1
n) = 1 ⩽ fλ for all λ ∈ P(n). This proves the claim. □

Lemma 2.2.5. We have

(1) (1n) ⋖std (n) for all n and

(2) (2,1n−2) ⋖std (n − 1,1) for all n ⩾ 3.

Proof. We have (1n) <D (n) and f (1n) = f (n) = 1. There is no other partition λ with fλ = 1.

This implies (1n) ⋖std (n). Similarly, (2,1n−2) <D (n − 1,1) and f (2,1n−2) = f (n−1,1) = n − 1. There is

no other partition λ with fλ = n − 1. This implies (2,1n−2) ⋖std (n − 1,1). □

Remark 2.2.6.

(1) Let λ <std µ. If µ covers λ in dominance order, then µ covers λ with respect to <std. The

converse is not true. Take λ = (1n) and µ = (n).

(2) For a given partition λ with transpose λt, if λ <D λt, then λ <std λt as both representations

have the same dimension, that is, fλ = fλt
. In general, λt does not cover λ.

Given a partition λ such that λ <D λt, it would be interesting to find all partitions λ <D ν <D λt

satisfying fλ = f ν . This would help to understand when the transpose of λ covers λ in the

immersion poset.

Lemma 2.2.7. Let λ = (2a,1b) and µ = (2a+1,1b−2). Then λ ⋖std µ if and only if b(b−1)
2 > a.

Proof. We have λ ⋖D µ. Hence by Remark 2.2.6(1), it suffices to show that λ <std µ. By

the hook length formula, this is true if fλ

fµ = (b+1)(a+1)
(b−1)(a+b+1) ⩽ 1, which is equivalent to the condition

b(b−1)
2 > a. □
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2.2.3. Classifying maximal elements. In this section, we study the maximal elements of

the standard immersion poset. Recall that the standard immersion poset is a refinement of the

immersion poset. This implies that if a partition is maximal in the standard immersion poset,

then it is also maximal in the immersion poset.

Proposition 2.2.8. The partition (a+ b, a) is a maximal element in the standard immersion

poset if and only if b(b+3)
2 ⩾ a.

Proof. Let λ = (a + b, a). Any partition ν which dominates λ, that is, ν >D λ, must have the

form ν = ν(i) = (a + b + i, a − i) for some i ⩾ 1. Note that fν(1)

fλ = a(b+3)
(b+1)(a+b+2) . Hence f

ν(1) < fλ if and

only if b(b+3)
a−1 > 2 (which is equivalent to b(b+3)

2 ⩾ a). Thus, the condition is necessary.

To prove that the condition b(b+3)
a−1 > 2 is sufficient, note that

f ν(i+1)

f ν(i)
= (a − i)(b + 3 + 2i)
(b + 1 + 2i)(a + b + i + 2) <

a(b + 3)
(b + 1)(a + b + 2) =

f ν(1)

fλ
.

Since f ν(1) < fλ when b(b+3)
a−1 > 2, we must have fν(i+1)

fν(i) < 1. This is true for each i. Hence λ is a

maximal element. □

Proposition 2.2.9. Let λ = (a + b, a,1) where a ⩾ 2. Then λ is maximal in the standard

immersion poset if and only if a ⩽ (b+1)(b+2)2 .

Proof. We first prove the reverse direction by inducting on a. For our base case, let a = 2

and 2 ⩽ (b+1)(b+2)2 . To prove that λ = (2+ b,2,1) is maximal, we show that there exists no partition

ν such that λ <D ν and fλ < f ν . We start by classifying all partitions ν such that λ <D ν. It is

known that λ ⋖D ν if and only if the Young diagram of ν can be obtained from the Young diagram

of λ by moving a single box in row k to row k−1 or by moving a single box in column k to column

k + 1. This means that the partition (2 + b,2,1) has exactly two covers: (2 + b,3) and (3 + b,12).

The former is obtained by moving the box in row 3 to row 2, and the latter is obtained by moving

the box at the end of row 2 to row 1. Furthermore, (2 + b,3) and (3 + b,12) are only covered

by (3 + b,2). Below is the Hasse diagram in dominance order summarizing the specific covering

relations:

14



⋮

(3 + b,2)

(2 + b,3) (3 + b,12)

(2 + b,2,1)

Let ν be any partition such that λ <D ν. By our covering relations, we have that either ν = (2+b,3)

or ν is contained in some chain λ <D (3 + b,12) <D ⋅ ⋅ ⋅ <D ν.

Now, we will show that for λ = (2 + b,2,1), fλ > f ν for all ν such that λ <D ν.

By Proposition 2.2.12, we know that (3 + b,12) is maximal in the standard immersion poset.

That is, if (3 + b,12) <D ν then f (3+b,1
2) > f ν . Note that our assumption that 2 ⩽ (b+1)(b+2)2 implies

b ⩾ 1. By this fact and the hook length formula,

f (2+b,3)

fλ
= b(b + 4)
2(b + 1)(b + 3) < 1 and

f (3+b,1
2)

fλ
= 3(b + 4)
2(b + 1)(b + 5) < 1.

Since fλ > f (2+b,3) and fλ > f (3+b,12) > f ν , we have shown that fλ > f ν for all ν such that λ <D ν.

Now for the remainder of the proof, let λ = (a + b, a,1) where a ⩽ (b+1)(b+2)2 and suppose that

for some a ⩾ 2, the partition (c + b, c,1) is maximal when c < a ⩽ (b+1)(b+2)2 . We follow a similar

argument as the base case and show that fλ > f ν for λ ⋖D ν. Observe that the Hasse diagram in

dominance order around λ looks as follows:

⋮

(a + b + 1, a) ⋮

(a + b, a + 1) (a + b + 1, a − 1,1)

(a + b, a,1)

We first consider the partition (a + b, a + 1). Then by the hook length formula,

f (a+b,a+1)

fλ
= (a + b + 2)(b)
(a + b + 1)(a)(b + 1) <

(a + b + 2)
(a + b + 1)(a) < 1

where the last inequality follows since a ⩾ 2.
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Next, consider the partition (a+b+1, a−1,1). By our inductive hypothesis, (a+b+1, a−1,1) =

((a − 1) + (b + 2), a − 1,1) is maximal since a − 1 < a ⩽ (b+1)(b+2)2 < (b+3)(b+4)2 . Suppose that a is

the upper bound of our inequality a ⩽ (b+1)(b+2)2 , that is, a = (b+1)(b+2)2 . Then by the hook length

formula,

f (a+b+1,a−1,1)

fλ
= (a + b + 2)(a + 1)(a − 1)(b + 3)(a + b + 3)(a + b + 1)(a)(b + 1)(2.2.3)

= ((b + 1)(b + 2) + 2b + 4) ((b + 1)(b + 2) + 2) ((b + 1)(b + 1 − 2)) (2b + 6)((b + 1)(b + 2) + 2b + 6) ((b + 1)(b + 2) + 2b + 2) ((b + 1)(b + 2)) (2b + 2)

= b7 + 14b6 + 82b5 + 260b4 + 477b3 + 486b2 + 216b
b7 + 14b6 + 82b5 + 260b4 + 477b3 + 502b2 + 280b + 64 < 1.

It follows that if a < (b+1)(b+2)2 then f (a+b+1,a−1,1) < fλ because for fixed b, Equation (2.2.3)

decreases as a decreases. To see this, we examine the effect of decreasing a on a+b+2
a+b+3 ,

a+1
a+b+1 , and

a−1
a individually. Each of these factors is of the form x

x+d for fixed d > 0. Notice that g(x) = x
x+d is a

strictly increasing function for x > 0. Therefore, each of the above factors decreases as a decreases.

Thus, we have shown that for all ν such that λ <D ν, fλ > f (a+b,a+1) and fλ > f (a+b+1,a−1,1) > f ν .

Hence, (a + b, a,1) is maximal whenever a ⩽ (b+1)(b+2)2 .

Now in the reverse direction, if a > (b+1)(b+2)2 , then f (a+b+1,a−1,1) > fλ. To see this it suffices to

consider a = (b+1)(b+2)2 + 1 since Equation (2.2.3) increases as a increases for the same reason as

above. If a = (b+1)(b+2)2 + 1, then

f (a+b+1,a−1,1)

fλ
= b

7 + 14b6 + 88b5 + 322b4 + 739b3 + 1056b2 + 852b + 288
b7 + 14b6 + 88b5 + 318b4 + 707b3 + 964b2 + 740b + 240 > 1.

Therefore, λ is maximal if only if a ⩽ (b+1)(b+2)2 . □

Proposition 2.2.10. Let λ = (a + b, a,2) where a ⩾ 3. Then λ is maximal in the standard

immersion poset if and only if a ⩽ (b+1)(b+2)2 .

Proof. We first prove the reverse direction by inducting on a. For our base case, let a = 3

and 3 ⩽ (b+1)(b+2)2 . To prove that λ = (3 + b,3,2) is maximal, we follow a similar argument to

Proposition 2.2.9. We first classify all partitions ν such that λ <D ν and then show that fλ > f ν

for all such ν by finding chains in the dominance order that contain maximal elements from the

standard immersion poset. Our assumption that 3 ⩽ (b+1)(b+2)2 implies that b ⩾ 1. Hence it suffices
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to show that λ = (3 + b,3,2) is maximal for all b ⩾ 1. We consider the cases b = 1, b = 2, and b ⩾

3 separately. It can be checked explicitly (for example using SageMath [The24]) that (4,3,2)

and (5,3,2) are maximal in the standard immersion poset.

For b ⩾ 3, the Hasse diagram in dominance order around λ = (3 + b,3,2) looks as follows:

⋮

⋮ (4 + b,3,1)

(3 + b,4,1) (4 + b,2,2)

(3 + b,3,2)

If λ <D ν then ν = (3 + b,4,1), (4 + b,2,2), or ν is contained in some chain λ <D (3 + b,4,1) <D ν.

By Proposition 2.2.9, (3+b,4,1) is maximal in the standard immersion poset so it suffices to show

that fλ > f ν for ν = (3 + b,4,1) and (4 + b,2,2). By the hook length formula,

f (3+b,4,1)

fλ
= 4(b)(b + 4)
5(b + 1)(b + 3) =

4(b2 + 4b)
5(b2 + 4b + 3) < 1 and

f (4+b,2,2)

fλ
= 4(b + 4)
2(b + 1)(b + 6) < 1.

Hence, for b ⩾ 3, (3 + b,3,1) is maximal in the standard immersion poset, so we have shown that

(3 + b,3,1) is maximal for all b ⩾ 1.

Now, let λ = (a + b, a,2) where a ⩽ (b+1)(b+2)2 and suppose that for some a ⩾ 3, the partition

(c + b, c,2) is maximal when c < a ⩽ (b+1)(b+2)2 . Again, we show that fλ > f ν for λ <D ν. Observe

that the Hasse diagram in dominance order around λ looks as follows:

⋮

(a + b + 1, a + 1) ⋮

(a + b, a + 2) (a + b + 1, a,1)

(a + b, a + 1,1) (a + b + 1, a − 1,2)

(a + b, a,2)
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By the Hasse diagram, if ν is a partition such that λ <D ν, then ν = (a + b, a + 1,1), (a + b, a +

2), (a + b + 1, a − 1,2), or ν is contained in some chain λ <D (a + b + 1, a − 1,2) <D ν. Observe

that (a + b + 1, a − 1,2) = ((a − 1) + (b + 2), a − 1,2) is maximal by our inductive hypothesis since

a − 1 < a ⩽ (b+1)(b+2)2 ⩽ (b+3)(b+4)2 . Therefore, it suffices to check that fλ > f ν for ν = (a + b, a +

1,1), (a + b, a + 2), and (a + b + 1, a − 1,2).

For ν = (a + b, a + 1,1), we have that

(2.2.4)
f (a+b,a+1,1)

fλ
= 2b(a + b + 1)(a + 1)
(a + b)(a − 1)(a + 2)(b + 1) .

Since

d

da

f (a+b,a+1,1)

fλ
= −(2b(a

4 + 2a3b + 4a3 + a2b2 + 5a2b + 7a2 + 2ab2 + 8ab + 2a + 3b2 + 3b − 2))
((a − 1)2(a + 2)2(b + 1)(a + b)2) ,

we have that Equation (2.2.4) decreases as a increases. Therefore, it suffices to consider a = 3

which we have done in our base case. Hence, f (a+b,a+1,1) < fλ.

For ν = (a + b, a + 2), we have that

f (a+b,a+2)

fλ
= 2(b − 1)(a + b + 2)
(a − 1)(b + 1)(a + b)(a + 2) ⩽

a + b + 2
(a + b)(a + 2)

since a ⩾ 3. As (a + b)(a + 2) = a2 + 2a + ab + 2b ⩾ a + b + 2, we have that f (a+b,a+2) < fλ.

Lastly, for ν = (a + b + 1, a − 1,2), we first consider when a = (b+1)(b+2)2 . By the hook length

formula, we have

f (a+b+1,a−1,2)

fλ
= (b + 3)(a + b + 1)(a − 2)(a + 1)(b + 1)(a + b + 3)(a − 1)(a + b)(2.2.5)

= (2b + 6)((b + 1)(b + 2) + 2b + 2)((b + 1)(b + 2) − 4)((b + 1)(b + 2) + 2)((b + 1)(b + 2) + 2b)(2b + 2)((b + 1)(b + 2) + 2b + 6)((b + 1)(b + 2) − 2)

= b
7 + 14b6 + 78b5 + 220b4 + 321b3 + 182b2 − 80b − 96
b7 + 14b6 + 78b5 + 220b4 + 321b3 + 214b2 + 48b

< 1.

Following a similar argument as in Proposition 2.2.9 for Equation (2.2.3), we can see that for

fixed b, Equation (2.2.5) decreases as a decreases by considering a+b+1
a+b+3 ,

a−2
a−1 , and

a+1
a+b .
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Value for α λ = (α,β) λ =
(α,β,1)

λ = (α,β,2)

α ⩾ 2 (α,1)
α ⩾ 3 (α,2) (α,2,1)
α ⩾ 4 (α,3,1) (α,3,2)
α ⩾ 5 (α,3)
α ⩾ 6 (α,4) (α,4,1) (α,4,2)
α ⩾ 7 (α,5) (α,5,1) (α,5,2)
α ⩾ 8 (α,6,1) (α,6,2)
α ⩾ 9 (α,6)
α ⩾ 10 (α,7) (α,7,1) (α,7,2)
α ⩾ 11 (α,8) (α,8,1) (α,8,2)
α ⩾ 12 (α,9) (α,9,1) (α,9,2)
α ⩾ 13 (α,10,1) (α,10,2)
α ⩾ 14 (α,10)
α ⩾ 15 (α,11) (α,11,1) (α,11,2)
α ⩾ 16 (α,12) (α,12,1) (α,12,2)
α ⩾ 17 (α,13) (α,13,1) (α,13,2)
α ⩾ 18 (α,14) (α,14,1) (α,14,2)
α ⩾ 19 (α,15,1) (α,15,2)
α ⩾ 20 (α,15)
⋮ ⋮ ⋮ ⋮

Table 2.1. Necessary and sufficient conditions for maximality of a partition λ.

We have thus shown that when a ⩾ 3, λ = (a+b, a,2) is maximal if a ⩽ (b+1)(b+2)2 . For the reverse

direction, consider Equation (2.2.5) when a = (b+1)(b+2)2 + 1. We have that

f (a+b+1,a−1,2)

fλ
= b6 + 12b5 + 60b4 + 162b3 + 243b2 + 162b
b6 + 12b5 + 60b4 + 158b3 + 219b2 + 150b + 40 > 1.

Since Equation (2.2.5) increases as a increases, λ ⩽std (a + b + 1, a − 1,2) when a > (b+1)(b+2)2 .

Therefore, λ is maximal if and only if a ⩽ (b+1)(b+2)2 . □

Remark 2.2.11. We may translate the results of Propositions 2.2.8, 2.2.9, and 2.2.10 into

statements about partitions of the form (α,β), (α,β,1), and (α,β,2). Table 2.1 summarizes our

maximality conditions.
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We next classify all maximal hook shape partitions. As noted in Lemma 2.2.5, (1n) ⋖std (n)

and so the single column shape is only maximal when n = 1. By Lemma 2.2.7, (2,1b) ⋖std (22,1b−2)

whenever b ⩾ 3. Since (2,1,1) ⋖std (3,1), the only maximal hook shape with arm length 2 is (2,1).

In the following proposition, we investigate all hook shape partitions with arm length greater than

2.

Proposition 2.2.12. Let λ = (a,1b) be a hook shape partition such that a > 2. Then λ is a

maximal element in the standard immersion poset if and only if b ⩽ 2.

Proof. When b = 1, the only partition that dominates (a,1) is (a+1) and f (a,1) = (a+1)−1 >

1 = f (a+1). Thus, (a,1) is maximal. When b = 2, the only partitions that dominate (a,12) are

(a + 2), (a + 1,1), and (a,2). By the hook length formula,

f (a+1,1)

f (a,12)
= 2

a
< 1 and

f (a,2)

f (a,12)
= (a + 2)(a − 1)(a + 1)a = a

2 + a − 2
a2 + a < 1.

Therefore, no partition dominates (a,12) and has more standard Young tableaux, so (a,12) is

maximal.

When b ⩾ 3, (a,1b) <std (a,2,1b−2), by the hook length formula:

f (a,1
b)

f (a,2,1b−2)
= a(a + b − 1)
(a + b)(a − 1)(b − 1) ⩽ 1

since

(a + b)(a − 1)(b − 1) ⩾ 2(a − 1)(a + b) ⩾ a(a + b − 1).

Therefore f (a,1
b) ⩽ f (a,2,1b−2) and (a,1b) <D (a,2,1b−2), so we have (a,1b) <std (a,2,1b−2) whenever

b ⩾ 3. □

Proposition 2.2.13. If λ is a maximal element in the standard immersion poset, then λ1 > λ2.

Proof. Suppose by contradiction that λ = (ab, λb+1, . . .) with a > λb+1 and b ⩾ 2. Let µ =

(a + 1, ab−2, a − 1, λb+1, . . .) and denote by SYT(λ) the set of all standard Young tableaux of shape

λ. The map

φ∶SYT(λ) → SYT(µ),
20



where φ(T ) is the standard Young tableau obtained from T by moving the box in position (b, a)

to position (1, a + 1), is an injection. Note that since the entry in position (b, a) is greater than

the entry in (1, a) from strictly increasing columns, then it follows that the newly obtained Young

tableau is standard. Therefore, λ <D µ and fλ ⩽ fµ, which implies λ ⩽I µ and thus demonstrates

that λ is not a maximal element in the standard immersion poset. □

In fact, the injection φ used in the proof of Proposition 2.2.13 remains an injection when

the domain and codomain are extended to semistandard Young tableaux of content ν, for any

ν ⊢ ∣λ∣. Injection arguments between sets of semistandard Young tableaux are expanded on in

Section 2.3.2. In particular, this result is extended to the immersion poset in Corollary 2.3.7.

We conclude this section with a conjecture about more general maximal elements in the

standard immersion poset.

Conjecture 2.2.14. Suppose λ = (∑ℓ
i=1 ai,∑ℓ−1

i=1 ai, . . . , a2 + a1, a1) for ℓ > 2. If

(aj + 2
2
) ⩾

j−1

∑
i=1
ai + j − 2

is satisfied for all 2 ⩽ j ⩽ ℓ, then λ is maximal in the standard immersion poset.

This conjecture has been verified with SageMath [The24] for ∣λ∣ ⩽ 30.

Remark 2.2.15. Proposition 2.2.8 addresses the case ℓ = 2 associated to Conjecture 2.2.14.

Note that for ℓ = 2 the condition stated in Conjecture 2.2.14 reads

(a2 + 2
2
) ⩾ a1, whereas the condition from Proposition 2.2.8 is (a2 + 2

2
) > a1.

This discrepancy comes from the fact that for ℓ > 2, there are more factors contributing to the

inequality in fµ

fλ < 1.

2.3. Immersion poset

In this section we turn to the immersion poset. In Section 2.3.1, we study basic properties

of the immersion poset. In Section 2.3.2, we provide explicit injections between certain sets of

semistandard Young tableaux, which are used to determine statements about maximal elements

and cover relations in the immersion poset. In Sections 2.3.3 and 2.3.4, we study the immersion
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poset restricted to hook partitions and two column partitions, respectively. We conclude in Sec-

tion 2.3.5 with conjectures about certain lower intervals in the immersion poset and prove that

the conjectured intervals give Schur-positive sums of power sum symmetric functions.

2.3.1. Properties of the immersion poset. We begin by specifying the minimal element.

Lemma 2.3.1. The partition (1n) is the unique minimal element in the immersion poset

(P(n),⩽I).

Proof. We have f (1
n) = 1 ⩽ fλ for all λ ∈ P(n). Furthermore K(1n),α = 0 ⩽Kλ,α for all α ≠ (1n)

and λ ∈ P(n). By Lemma 2.2.1 this proves the claim. □

Analogously to Lemma 2.2.5, we prove the following result.

Lemma 2.3.2. We have

(1) (1n) ⋖I (n) for all n and

(2) (2,1n−2) ⋖I (n − 1,1) for all n ⩾ 3.

Proof. By Lemma 2.3.1, we have (1n) <I (n). By Lemma 2.2.5, (1n) ⋖std (n). Since in the

immersion poset there are fewer order relations than in the standard immersion poset, the first

part of the lemma follows.

We have (2,1n−2) <I (n − 1,1) since

s(2,1n−2) = (n−1)m(1n)+m(2,1n−2) and s(n−1,1) = (n−1)m(1n)+(n−2)m(2,1n−2)+ ∑
µ≠(1n),(2,1n−2)

K(n−1,1),µmµ.

Again, since by Lemma 2.2.5 we have (2,1n−2) ⋖std (n − 1,1), the second part of the lemma

follows. □

Unlike in the standard immersion poset, where λ and λt are always comparable as long as they

are comparable in dominance order (see Remark 2.2.6), this is not always true in the immersion

poset. For example λ = (4,4,2,1,1) and λt are not comparable in the immersion poset since

K(4,4,2,1,1),(4,4,1,1,1,1) > K(5,3,2,2),(4,4,1,1,1,1). For hook partitions, it is however true that λ <I λt if

λ <D λt (see Corollary 2.3.30).

We prove the analog of Lemma 2.2.7 in the next section using injections on semistandard

Young tableaux. See Corollaries 2.3.6, 2.3.13, and 2.3.21.
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2.3.2. Explicit injections. Recall from Lemma 2.2.1 that λ ⩽I µ if and only if Kλ,ν ⩽ Kµ,ν

for all ν ∈ P(n). The Kostka number Kλ,ν is the cardinality of the set of semistandard Young

tableaux SSYT(λ, ν) of shape λ and content ν. Hence we can analyze the order relations λ ⩽I µ

by constructing explicit injections

(2.3.1) φ∶SSYT(λ, ν) → SSYT(µ, ν)

for all ν ∈ P(n).

To this end, we present one such injection, where µ differs from λ by moving a single cell

from the c-th column to the (c + 1)-th column, and λ has a bound on the relative size of the two

columns. Upon establishing this first injection, we refine it to obtain more precise bounds on the

relative size of the columns. We partially characterize what elements cannot be maximal in the

immersion poset, similar to those given in Section 2.2.3 for the standard immersion poset.

Let

λ = (λ1, . . . , λα, cβ, λα+β+1, . . . ),

µ = (λ1, . . . , λα, c + 1, cβ−2, c − 1, λα+β+1, . . . ),
(2.3.2)

such that either α > 0 and λβ+α+1 < c < λα, or α = 0 and λβ+α+1 < c. In particular, λβ+α+1 can be 0.

We define a map

φ0∶SSYT(λ, ν) → YT(µ, ν),

where YT(µ, ν) is the set of all tableaux of shape µ and content ν, not necessarily semistandard.

We will show in Proposition 2.3.5 that when β ⩾ α + 2, the image of φ0 will be contained in

SSYT(µ, ν), so φ0 will be as in (2.3.1).

For T ∈ SSYT(λ, ν), we define φ0(T ) as follows. Suppose the entries in the c-th column of T in

increasing order are xβ+α, xβ+α−1, . . . , x1 and the entries in the (c+ 1)-th column of T in increasing

order are yα, yα−1, . . . , y1. Let i be the smallest index such that xi > yi. If no such index exists, let

i = α + 1. Then φ0(T ) is the tableau such that the entries in the c-th column of φ0(T ) are

xβ+α, xβ+α−1, . . . , xi+1, yi−1, yi−2, . . . , y1,
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the entries in the (c + 1)-th column of φ0(T ) are

yα, yα−1, . . . , yi, xi, xi−1, . . . , x1,

and all other entries are the same as those in T . In other words, φ0 moves the cell containing x1

to the (α + 1)-th row of the (c + 1)-th column, and swaps each xj with yj−1 for all 2 ⩽ j ⩽ i.

More concretely, the c-th and (c + 1)-th column in T and φ0(T ) look as follows:

(2.3.3) T ∶ xβ+α yα
⋮ ⋮

xβ+i yi
xβ+i−1 yi−1
⋮ ⋮

xβ+1 y1
xβ
⋮

xi+1
xi
⋮
x2
x1

φ0(T ) ∶ xβ+α yα
⋮ ⋮

xβ+i yi
xβ+i−1 xi
⋮ ⋮

xβ+1 x2
xβ x1
⋮

xi+1
yi−1
⋮
y1

The cells marked in green contain the entries that move from the c-th column to the (c + 1)-th

column, and the cells marked in yellow are the entries that move from (c + 1)-th column to the

c-th column. We continue to use this convention for all subsequent examples of φ0.

Remark 2.3.3. Observe that by our choice of i, both xi+1 < xi−1 ⩽ yi−1 and yi < xi, so the

columns of φ0(T ) are strictly increasing by construction.

Example 2.3.4. For λ = (3,2,14) and µ = (3,2,2,12,0), we have c = 1, α = 2 and β = 4. Here

are some examples of the injection φ0 on various tableaux of shape λ:

1 1 3

2 2

3

4

5

6

↦ 1 1 3

2 2

3 6

4

5

1 1 2

2 7

3

4

5

6

↦ 1 1 2

2 5

3 6

4

7

1 6 9

2 8

3

4

5

7

↦ 1 4 9

2 5

3 7

6

8
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Proposition 2.3.5. Let λ and µ be as in (2.3.2) with β ⩾ α + 2. Then φ0 as defined above is

an injection

φ0∶SSYT(λ, ν) → SSYT(µ, ν).

Proof. Let T ∈ SSYT(λ, ν). Note that the content does not change under φ0. We need to

check that the c-th and (c+1)-th columns of φ0(T ) are strictly increasing, and that the (α−i+2)-th

through (α + β − 1)-th rows of φ0(T ) are weakly increasing, since all other entries are identical to

those in T . (It may be helpful to consult (2.3.3).) The columns are strictly increasing by Remark

2.3.3.

For rows, we first consider the (α−i+2)-th through (α+1)-th rows. Due to the bound β ⩾ α+2,

in the c-th column, these rows contain xβ+i−1, . . . , xβ. In the (c + 1)-th column, irrespective of the

bound on α and β, these rows contain xi, . . . , x1. In particular, the bound β ⩾ α + 2 makes it so

that there is no yj entry in these rows, so there is no “overlap” of yj and xk for 1 ⩽ k ⩽ i. The rows

are thus strictly increasing because xj > xk for all j < k, so the xj entries in the (c + 1)-th column

are greater than the entries to their left in the c-th column; and xj < xj−1 ⩽ yj−1 for 2 ⩽ j ⩽ i, so the

xj entries in the (c+1)-th column are less than any entries to their right, originally from T . (Such

entries on the right do not necessarily exist. In particular, x1 never has any cell to its right.)

Now consider the (α+2)-th through (α+β−1)-th rows. In the c-th column, these rows contain

xβ−1, . . . , xi+1, yi−1, . . . , y1,

and in the (c + 1)-th column, these rows contain no cells. They are weakly increasing because

yj−1 ⩾ xj−1 > xj for 2 ⩽ j ⩽ i, so the yj−1 entries in the c-th column are greater than the entries to

their left, originally from T , and they have no cells to their right.

To show injectivity, we define an explicit inverse ψ0. Let T ′ ∈ φ0(SSYT(λ, ν)). Suppose the

entries in the c-th column of T ′ in increasing order are x′β+α−1, x
′
β+α−2, . . . , x

′
1, and the entries in the

(c + 1)-th column of T ′ in increasing order are y′α+1, y
′
α, . . . , y

′
1. Let i′ be the smallest index such

that y′i′ > x′i′ . This i′ will be equal to the i from the definition of φ0, because xi > xi+1 and xj ⩽ yj
for 1 ⩽ j ⩽ i − 1 in T .
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Then ψ0(T ′) is the tableau of shape λ such that the entries in the c-th column of ψ0(T ′) are

x′β+α−1, x
′
β+α−2, . . . , x

′
β−1, x

′
β−2, x

′
β−3, . . . , x

′
i′ , y

′
i′ , y

′
i′−1, . . . , y

′
1,

the entries in the (c + 1)-th column of ψ0(T ′) are

y′α+1, y
′
α, . . . , y

′
i′+1, x

′
i′−1, x

′
i′−2, . . . , x

′
1,

and all other entries are the same as those in T ′. In other words, ψ0 moves the cell containing

y′1 to the (α + β)-th position in the c-th column, and swaps each y′j′ with x
′
j′−1 for all 2 ⩽ j′ ⩽ i′.

Concretely:

(2.3.4) T ′ ∶ x′β+α−1 y′α+1
⋮ ⋮

x′β+i′−1 y′i′+1
x′β+i′−2 y′i′

⋮ ⋮
x′β y′2
x′β−1 y′1
x′β−2
⋮
x′i′

x′i′−1
⋮
x′1

ψ0(T ′) ∶ x′β+α−1 y′α+1
⋮ ⋮

x′β+i′−1 yi′+1
x′β+i′−2 x′i′−1
⋮ ⋮
x′β x′1
x′β−1
x′β−2
⋮
x′i′

y′i′

⋮
y′2
y′1

Since i′ = i, ψ0 moves back exactly the entries in T ′ that were originally moved by φ0 in T , so

ψ0 is the inverse of φ0. □

As a corollary, the injection describes a class of cover relations in the immersion poset. As a

specific example, it can partially address the two column case, which was completely addressed

by Lemma 2.2.7 for the standard immersion poset.

Corollary 2.3.6. The partitions λ and µ as in (2.3.2) with β ⩾ α + 2 form a cover in the

immersion poset. In particular, λ = (2α,1β) and µ = (2α+1,1β−2) form a cover.

Proof. The partition µ covers λ in dominance order, and the injection shows that µ is greater

than λ in the immersion poset, so µ must also cover λ in the immersion poset. □
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The injection also gives a few conditions on which partitions cannot be maximal.

Corollary 2.3.7. If λ = (aβ, b, . . . ), where a > b, and β ⩾ 2, then λ is not maximal.

Proof. We have β ⩾ 2 with α = 0, so we can apply the injection. □

Corollary 2.3.8. If λ = (a, bβ, c, . . . ), where a > b > c, and β ⩾ 3, then λ is not maximal. In

particular, λ = (a,1β) is not maximal for a ⩾ 2, β ⩾ 3.

Proof. We have β ⩾ 3 with α = 1, so we can apply the injection. □

Note that Corollary 2.3.7 and Corollary 2.3.8 repeat the results from Proposition 2.2.13 and the

forward direction of Proposition 2.2.12 concerning nonmaximal elements in the standard immersion

poset.

Corollary 2.3.9. If λ = (a, b, c, d) is maximal in the immersion poset, then it has no more

than two identical non-zero parts.

Proof. If λ has three or more identical parts, then λ is one of (a4), (a3, d), or (a, b3), so we

can apply the injection. □

As stated in the proof of Proposition 2.3.5, the bound β ⩾ α + 2 is necessary for φ0(T ) to be

semistandard for T semistandard. When β < α + 2, φ0 can cause an “overlapping” row, where for

certain 1 ⩽ j ⩽ α − β + 2, yβ−2+j is to the left of xj, yet yβ−2+j > xj.

Example 2.3.10. For λ = (22,13), so α = 2 and β = 3 = α + 1, φ0 can give:

1 6

2 7

3

4

5

↦ 1 3

2 4

6 5

7

One natural modification to restore weakly increasing rows is to swap yβ−2+j and xj whenever

the problem occurs. Unfortunately, doing so on its own would not maintain injectivity. If we try

to swap the 5 and 6 in the previous example, our final tableau is the same as the following tableau
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obtained from φ0 with no switches:

1 5

2 7

3

4

6

↦ 1 3

2 4

5 6

7

However, if we are able to implement subsequent modifications in a way such that the resulting

tableau is semistandard, yet cannot be obtained from φ0 alone, then we can restore injectivity.

We now define the modification of our original φ0 injection for the case when β = α + 1, and

α ⩾ 2, which we call

φ1∶SSYT(λ) → SSYT(µ).

From now on, we drop the content ν as all maps in this subsection preserve the content.

Let T ∈ SSYT(λ). As before, suppose that the entries in the c-th column of T in increasing

order are xβ+α, xβ+α−1, . . . , x1, and the entries in the (c+ 1)-th column of T in increasing order are

yα, yα−1, . . . , y1. We define φ1(T ) to be the same as φ0(T ) if φ0(T ) ∈ SSYT(µ).

If φ0(T ) /∈ SSYT(µ), then necessarily i = α + 1 as defined for φ0 and x1 is to the right of

yβ−1 = yα, with yα > x1. Then φ1(T ) is the same as φ0(T ), except we swap yα with x1, as well as

xβ+1 with xβ.

Concretely, when φ1(T ) ≠ φ0(T ), the c-th and (c+1)-th columns of T , φ0(T ), and φ1(T ) look

as follows:

(2.3.5) T ∶ xβ+α yα
xβ+α−1 yα−1
⋮ ⋮

xβ+2 y2
xβ+1 y1
xβ
xβ−1
⋮
x2
x1

φ0(T ) ∶ xβ+α xβ
xβ+α−1 xβ−1
⋮ ⋮

xβ+2 x3
xβ+1 x2
yα x1
yα−1
⋮
y1

φ1(T ) ∶ xβ+α xβ+1

xβ+α−1 xβ−1
⋮ ⋮

xβ+2 x3
xβ x2
x1 yα
yα−1
⋮
y1

We indicate the additional swaps φ1 adds to φ0 using boldface on the relevant entries, xβ+1 and

xβ. We will continue to use this convention for any subsequent modifications to φ0.
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Observe that for the xβ+1 with xβ swap to be between cells in different rows, we must have

α ⩾ 2. This property is necessary for the tableau to remain semistandard after the swap.

The intuition behind the swaps is that the swap of yα with x1 makes the tableau semistandard,

and the swap of xβ+1 with xβ prevents the new tableau from being in the image of φ0.

Example 2.3.11. For T in Example 2.3.10, φ1 maps:

(2.3.6) 1 6

2 7

3

4

5

↦ 1 2

3 4

5 6

7

Proposition 2.3.12. Let λ and µ be as in (2.3.2) with β = α + 1 ⩾ 3. Then φ1 as defined

above is an injection

φ1∶SSYT(λ) → SSYT(µ).

Proof. Let T ∈ SSYT(λ). We need to check that φ1(T ) is semistandard. It suffices to do

so for the case when φ1(T ) ≠ φ0(T ), where there is an overlap in φ0(T ) consisting of a single

decreasing pair of cells in a row, yα > x1. In particular, φ0(T ) would be semistandard if it were

not for this single pair by the proof of Proposition 2.3.5, so it suffices to check that swapping the

x1 with yα makes the tableau semistandard, and swapping the xβ+1 with xβ keeps it semistandard,

by examining the changed entries.

Swapping the entries x1 with yα makes the (α + 1)-th row weakly increasing since x1 < yα
by assumption. The c-th column remains strictly increasing since xβ+1 < x1 < yα < yα−1, and the

(c + 1)-th column remains strictly increasing since x2 < x1 < yα.

Swapping the entries xβ with xβ+1 keeps the relevant rows, namely the 1st row and α-th row,

weakly increasing and their columns strictly increasing since xj > xk for all j < k.

Specifically, the c-th column remains strictly increasing since xβ+2 < xβ < x1, and (c + 1)-

th column remains strictly increasing since xβ+1 < xβ−1. The 1st row remains weakly increasing

because xβ+1 < xβ, so xβ+1 is also less than all entries to its right, which are originally right of xβ.

The α-th row remains weakly increasing because xβ+1 < xβ, so xβ is greater than all entries to its

left, which are originally left of xβ+1.
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To show injectivity, it suffices to check that the modified tableau cannot be in the image of

φ0, allowing us to define an explicit inverse ψ1 by likewise modifying ψ0. Namely, we must verify

that φ1(T ) is not equal to φ0(S) for any S ∈ SSYT(λ).

Indeed, consider φ0(S) for any S ∈ SSYT(λ). Let i be as in the definition of φ0. Then the

i-th entry from the bottom of the (c+1)-th column in φ0(S) must have originally been below and

hence greater than the i-th entry from the bottom of the c-th column in φ0(S), which stays in

the same place in φ0(S). That is, if the j-th entry from the bottom of the (c + 1)-th column in

φ1(T ) is less than or equal to the j-th entry from the bottom of the c-th column in φ1(T ) for all

1 ⩽ j ⩽ α + 1, then φ1(T ) ≠ φ0(S) for all S ∈ SSYT(λ). If we check these corresponding pairs of

entries in φ1(T ), we have yα < y1, xj < yj for 2 ⩽ j ⩽ α − 1, xβ−1 < x1, and xβ+1 < xβ. Thus, we do

not have a requisite pair of entries, and no S satisfies φ1(T ) = φ0(S).

We can now define our explicit inverse ψ1. Let T ′ ∈ φ1(SSYT(λ)). As before, the entries in

the c-th column of T ′ in increasing order are x′β+α−1, x
′
β+α−2, . . . , x

′
1, and the entries in the (c+1)-th

column of T ′ in increasing order are y′α+1, y
′
α, . . . , y

′
1.

Let ψ1(T ′) = ψ0(T ′) when T ′ ∈ φ0(SSYT(λ)), the domain of ψ0. This occurs when there exists

an i′ such that y′i′ > x′i′ , so we can take the smallest such i′ as in the definition of ψ0.

If such an i′ does not exist, then ψ1 first swaps x′β with y′α+1, and x
′
β−1 with y′1, undoing the

modifications. Relabelling the new tableau obtained after these swaps T ′′, we now let ψ1(T ′) =

ψ0(T ′′).

Concretely, when ψ1 differs from ψ0, the c-th and (c + 1)-th columns look as follows:

(2.3.7)

T ′ ∶ x′β+α−1 y′α+1

x′β+α−2 y′α

⋮ ⋮
x′β y′2

x′β−1 y′1

x′β−2

⋮
x′1

T ′′ ∶ x′β+α−1 x′β

x′β+α−2 y′α

⋮ ⋮
y′α+1 y′2

y′1 x′β−1

x′β−2

⋮
x′1

ψ1(T ′) ∶ x′β+α−1 y′1

x′β+α−2 x′β−2

⋮ ⋮
y′α+1 x′1

x′β

y′α

⋮
y′2

x′β−1
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It is straightforward to check that for T ′ = φ1(T ), ψ1 exactly reverses all the swaps done by

φ1. □

We now obtain stronger versions of the corollaries obtained from the previous injection, in

particular Corollary 2.3.6.

Corollary 2.3.13. The partitions λ and µ as in (2.3.2) with β ⩾ α + 1 ⩾ 3 form a cover in

the immersion poset.

Corollary 2.3.14. If λ = (a2, bβ, c, . . . ), where a > b > c, and β ⩾ 3, then λ is not maximal.

Corollary 2.3.15. If λ = (a, b, c, d, e) is maximal in the immersion poset, then it has no more

than two identical non-zero parts.

In order to further improve the bound for the injection, we must continue to apply modifica-

tions to resolve decreasing pairs in “overlapping” rows, and then apply further modifications to

establish injectivity. However, there are now multiple cases to consider.

Firstly, any combination of the overlapping rows containing both yβ−2+j and xj can be decreas-

ing.

Example 2.3.16. For λ = (24,14), so α = β = 4, following φ0 can give two overlapping rows.

We have each possible combination of rows with decreasing pairs as follows:

(2.3.8) 1 7

2 10

3 11

4 12

5

6

8

9

↦ 1 4

2 5

3 6

7 8

10 9

11

12

1 8

2 9

3 11

4 12

5

6

7

10

↦ 1 4

2 5

3 6

8 7

9 10

11

12

1 9

2 10

3 11

4 12

5

6

7

8

↦ 1 4

2 5

3 6

9 7

10 8

11

12

While all these previous tableaux give 2 rows of overlap, it is also possible for a tableau of the

same shape to give 0 or 1 rows of overlap instead. More generally, φ0(T ) for T of shape λ as in

(2.3.2) can have anywhere between 0 and max{0, α − β + 2} rows of overlap.
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Example 2.3.17. For the same λ = (24,14) as in Example 2.3.16, φ0 can give a single over-

lapping row, which contains a decreasing pair:

(2.3.9) 1 5

2 10

3 11

4 12

6

7

8

9

↦ 1 5

2 6

3 7

4 8

10 9

11

12

Hence, in our next modifications of φ0, we must encode the information of every possible case

in a way that both distinguishes the cases from φ0 with no modifications, and distinguishes the

cases from each other. To achieve this, our modifications will involve cyclically rotating certain

entries in the c-th and (c + 1)-th columns. These rotations will be analogous to the xβ with xβ+1

swap in φ1, which can be thought of as a rotation of 2 elements.

We now define a second set of modifications of our original φ0 injection for the case when

β = α, and α ⩾ 4, which we call

φ2∶SSYT(λ) → SSYT(µ).

Let T ∈ SSYT(λ). As before, suppose that the entries in the c-th column of T in increasing

order are xβ+α, xβ+α−1, . . . , x1, and the entries in the (c+ 1)-th column of T in increasing order are

yα, yα−1, . . . , y1. We define φ2(T ) to be the same as φ0(T ) if φ0(T ) ∈ SSYT(µ).
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If φ0(T ) /∈ SSYT(µ), then we have several cases. If there are two rows of overlap, then i as

defined for φ0 is α + 1, x1 is to the right of yα−1, and x2 is to the right of yα = yβ:

(2.3.10) T ∶ xβ+α yα
xβ+α−1 yα−1
xβ+α−2 yα−2
⋮ ⋮

xβ+3 y3
xβ+2 y2
xβ+1 y1
xβ
xβ−1
⋮
x2
x1

φ0(T ) ∶ xβ+α xβ+1
xβ+α−1 xβ
xβ+α−2 xβ−1
⋮ ⋮

xβ+3 x4
xβ+2 x3
yα x2
yα−1 x1
yα−2
⋮
y1

If yα−1 > x1 and yα ⩽ x2, then we swap yα−1 with x1. We also “clockwise rotate” the entries

xβ+2 and xβ+3 in the c-th column, and xβ+1 in the (c+1)-th column, as shown in our next diagram.

In our definition of φ2, a clockwise rotation of a set of entries in the c-th and (c+1)-th columns

moves all entries in the c-th column up one cell except the topmost entry, which moves to the

topmost cell in the (c + 1)-th column containing an entry being rotated. The rotation moves all

entries in the (c + 1)-th column down one cell except the bottommost entry, which moves to the

bottommost cell in the c-th column containing an entry being rotated. As another example, a

rotation of a single entry in the c-th column and a single entry in the (c + 1)-th column is a swap

of those entries. We will continue to describe all cases of φ2 with rotations of different sets of

entries.

If yα−1 ⩽ x1 and yα > x2, then we swap yα with x2. We also clockwise rotate xβ+2 in the c-th

column, and xβ+1 and xβ in the (c + 1)-th column.

If yα−1 > x1 and yα > x2, then we swap both yα−1 with x1 and yα with x2. We also clockwise

rotate xβ+2 and xβ+3 in the c-th column, and xβ+1 and xβ in the (c + 1)-th column.
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Concretely, the two row overlap cases are as follows:

φ2(T ) ∶ xβ+α xβ+3

xβ+α−1 xβ
xβ+α−2 xβ−1
⋮ ⋮

xβ+2 x4
xβ+1 x3
yα x2
x1 yα−1
yα−2
⋮
y1

xβ+α xβ+2

xβ+α−1 xβ+1

xβ+α−2 xβ−1
⋮ ⋮

xβ+3 x4
xβ x3
x2 yα
yα−1 x1
yα−2
⋮
y1

xβ+α xβ+3

xβ+α−1 xβ+1

xβ+α−2 xβ−1
⋮ ⋮

xβ+2 x4
xβ x3
x2 yα
x1 yα−1
yα−2
⋮
y1

(2.3.11)

yα−1 > x1, yα ⩽ x2 yα−1 ⩽ x1, yα > x2 yα−1 > x1, yα > x2

Consider the entries involved in the clockwise rotation in each case. For the topmost entry in

the c-th column to move strictly up to the (c + 1)-th column, and the bottommost entry in the

(c + 1)-th column move strictly down to the c-th column, we must have α ⩾ 3. This property is

necessary for the tableau to remain semistandard after the rotation, which partially necessitates

the α ⩾ 4 assumption, which is analogous to the α ⩾ 2 assumption for φ1.

If there is one row of overlap, then i as defined for φ0 is α, and x1 is to the right of yα−1 with

x1 < yα−1:

(2.3.12) T ∶ xβ+α yα

xβ+α−1 yα−1

xβ+α−2 yα−2

⋮ ⋮
xβ+3 y3

xβ+2 y2

xβ+1 y1

xβ

xβ−1

⋮
x2

x1

φ0(T ) ∶ xβ+α yα

xβ+α−1 xβ

xβ+α−2 xβ−1

⋮ ⋮
xβ+3 x4

xβ+2 x3

xβ+1 x2

yα−1 x1

yα−2

⋮
y1
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In this case, we only have the single pair of decreasing entries, yα−1 < x1, so we swap yα−1 with

x1. However, for the additional modifications after and in addition to this swap, we have different

subcases.

If yα < xβ+2, we clockwise rotate xβ+1 and xβ+2 in the c-th column, and xβ in the (c + 1)-th

column.

If xβ+2 ⩽ yα < xβ+1, we swap xβ+2 with yα, and xβ+1 with xβ. Observe in particular that this

subcase is two separate swaps, and not a rotation.

If xβ+1 ⩽ yα, we clockwise rotate xβ+1 and xβ+2 in the c-th column, and yα, xβ, and xβ−1 in the

(c + 1)-th column. Concretely, the one row overlap cases are as follows:

φ2(T ) ∶ xβ+α yα

xβ+α−1 xβ+2

xβ+α−2 xβ−1

⋮ ⋮
xβ+3 x4

xβ+1 x3

xβ x2

x1 yα−1

yα−2

⋮
y1

xβ+α xβ+2

xβ+α−1 xβ+1

xβ+α−2 xβ−1

⋮ ⋮
xβ+3 x4

yα x3

xβ x2

x1 yα−1

yα−2

⋮
y1

xβ+α xβ+2

xβ+α−1 yα

xβ+α−2 xβ

⋮ ⋮
xβ+3 x4

xβ+1 x3

xβ−1 x2

x1 yα−1

yα−2

⋮
y1

(2.3.13)

yα < xβ+2 xβ+2 ⩽ yα < xβ+1 xβ+1 ⩽ yα

Again, consider the entries involved in the modifications in each case, either the rotations

when yα < xβ+2 or xβ+1 ⩽ yα, or the swaps when xβ+2 ⩽ yα < xβ+1. For the topmost entry in the c-th

column to move strictly up to the (c + 1)-th column, and the bottommost entry in the (c + 1)-th

column to move strictly down to the c-th column, we must have α ⩾ 4. This property is necessary

for the tableau to remain semistandard after the rotation, as we will see in Lemma 2.3.19, which

fully necessitates the α ⩾ 4 assumption.
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Example 2.3.18. For λ = (24,14) and T from Example 2.3.16, we get all the two row overlap

cases of φ2:

(2.3.14) 1 7

2 10

3 11

4 12

5

6

8

9

↦ 1 2

3 5

4 6

7 8

9 10

11

12

1 8

2 9

3 11

4 12

5

6

7

10

↦ 1 3

2 4

5 6

7 8

9 10

11

12

1 9

2 10

3 11

4 12

5

6

7

8

↦ 1 2

4 3

5 6

7 9

8 10

11

12

For the same λ, we have all the one row overlap cases of φ2 as follows, including the T from

Example 2.3.17:

(2.3.15) 1 3

2 10

4 11

5 12

6

7

8

9

↦ 1 3

2 4

5 7

6 8

9 10

11

12

1 4

2 10

3 11

5 12

6

7

8

9

↦ 1 3

2 5

4 7

6 8

9 10

11

12

1 5

2 10

3 11

4 12

6

7

8

9

↦ 1 3

2 5

4 6

7 8

9 10

11

12

The proof that φ2 is an injection of semistandard tableaux relies on the following lemma

regarding the clockwise rotation.

Lemma 2.3.19. Suppose S is a semistandard tableau. Suppose that we perform a clockwise

rotation on elements in the c-th and (c + 1)-th columns of S to obtain S′, such that the following

are true:

(1) The bottommost rotated entry in the c-th column in S is less than or equal to the topmost

rotated entry in the (c + 1)-th column in S.

(2) The entry moving from the c-th column in S to the (c+ 1)-th column in S′ moves strictly

upwards.

(3) The entry moving from the (c+ 1)-th column in S to the c-th column in S′ moves strictly

downward.
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(4) The entry moving from the c-th column in S to the (c+1)-th column in S′ is greater than

the entry above it in the (c + 1)-th column in S′, if such an entry exists.

(5) The entry moving from the (c + 1)-th column to the c-th column is less than the entry

below it in the c-th column in S′.

Then S′ is semistandard.

Proposition 2.3.20. Let λ and µ be as in (2.3.2) with β = α ⩾ 4. Then φ2 as defined above

is an injection

φ2∶SSYT(λ) → SSYT(µ).

The proof of Proposition 2.3.20 is technical and omitted here. It follows similar ideas to the

proof of Proposition 2.3.12. We can now further improve upon Corollary 2.3.6 and Corollary 2.3.13.

Corollary 2.3.21. The partitions λ and µ as in (2.3.2) with β ⩾ α ⩾ 4 form a cover in the

immersion poset.

We summarize the bounds on α and β needed for each map to be an injection:

Map α β

φ0 α ⩾ 0 β ⩾ α + 2

φ1 α ⩾ 2 β = α + 1

φ2 α ⩾ 4 β = α

2.3.3. Immersion poset on hook partitions. For this section, set λi = (i,1n−i) ⊢ n and

let S = {λi ∣ 1 ⩽ i ⩽ n} be the set of all hook partitions of size n. We study the immersion poset

restricted to S.

Proposition 2.3.22. Let 1 ⩽ i ⩽ n and α = (α1, . . . , αk) ⊢ n such that α ⩽D λi. Then

Kλi,α = (
k − 1
n − i).

Proof. Since λi dominates α, we know that Kλi,α ⩾ 1. To form a semistandard Young tableau

of shape λi and content α, the α1 entries 1 must be placed leftmost in the first row of λi. The

remaining n − i positions in the first column of λi can be filled with distinct values from the set
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{2,3, . . . , k}. This gives (k−1n−i) choices. Once these are placed, there is only one way to fill the

remainder of the first row so that the resulting tableau is semistandard. □

Recall from Lemma 2.2.1 that µ ⩽I λ if and only if Kµ,α ⩽ Kλ,α for all α ⊢ n. Hence with

Proposition 2.3.22, we are now ready to describe all the relations between hook partitions λi ∈ S

in the immersion poset. To illustrate what the proposition implies, we form a matrix of values in

the following way:

● The j-th column is indexed by the content αj, where αj is any content that has j parts.

● The i-th row is indexed by the shape λi.

● The (i, j) entry of this matrix is the value Ti,j ∶=Kλi,αj = (j−1n−i) for 1 ⩽ i, j ⩽ n.

Example 2.3.23. We give the matrix for n = 7:

Partition

# of parts
1 2 3 4 5 6 7

(17) 0 0 0 0 0 0 1

(2,15) 0 0 0 0 0 1 6

(3,14) 0 0 0 0 1 5 15

(4,13) 0 0 0 1 4 10 20

(5,12) 0 0 1 3 6 10 15

(6,1) 0 1 2 3 4 5 6

(7) 1 1 1 1 1 1 1

Remark 2.3.24. In this context, λi ⩾I λj if and only if Ti,m ⩾ Tj,m for all m. Equivalently,

since Tj,m = 0 when n − j ⩾ m and λi dominates λj when i > j, we need only show Ti,m ⩾ Tj,m for

all m > n − j when i > j.

The following lemma is used to prove the structure of the immersion poset restricted to hook

partitions.
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Lemma 2.3.25. Suppose (n−1n−i) ⩾ (
n−1
n−j) and i > j (note that this implies j ⩽ n

2 ). Then for all

0 ⩽ p ⩽ j − 1, we have

(n − 1 − p
n − i ) ⩾ (

n − 1 − p
n − j ).

The proof follows from basic properties of binomial coefficients, and is omitted here.

Corollary 2.3.26. If Ti,n ⩾ Tj,n for i > j, then λi ⩾I λj.

Proof. By Proposition 2.3.22, Ti,n−p =Kλi,αn−p = ((n−p)−1n−i ). Hence if Ti,n ⩾ Tj,n, by Lemma 2.3.25,

we also have Ti,n−p ⩾ Tj,n−p for 0 ⩽ p ⩽ j − 1. By Remark 2.3.24, this implies λi ⩾I λj. □

Example 2.3.27. Take the rows corresponding to the partitions (5,12) and (3,14) in Exam-

ple 2.3.23. Since the last column entries give T5,7 = 15 ⩾ 15 = T3,7, then by Corollary 2.3.26 we also

have T5,7−p ⩾ T3,7−p for 1 ⩽ p ⩽ 2: T5,6 = 10 ⩾ 5 = T3,6, T5,5 = 6 ⩾ 1 = T3,5.

We now describe the relations in the immersion poset on S depending upon whether n is even

or odd.

Proposition 2.3.28. Let n = 2k + 1 be odd, then:

(1) λℓ+1 ⩾I λℓ for all 1 ⩽ ℓ ⩽ k.

(2) (λk+1−ℓ)t = λk+1+ℓ ⩾I λk+1−ℓ for all 1 ⩽ ℓ ⩽ k.

(3) For any 1 < i ⩽ k + 1, λi is incomparable to λj for all j > n − i + 1.

(4) For any k + 2 ⩽ i < n, λi is incomparable to λj for all j > i.

These describe all relations in the immersion poset restricted to hook partitions S.

Proof. Let us first prove (1). Fix an ℓ with 1 ⩽ ℓ ⩽ k. Then by Corollary 2.3.26, λℓ+1 ⩾I λℓ if

and only if Tℓ+1,n ⩾ Tℓ,n. Note that Tℓ+1,n = ( n−1
n−ℓ−1) = (

n−1
ℓ
) and Tℓ,n = (n−1n−ℓ) = (

n−1
ℓ−1). Since 1 ⩽ ℓ ⩽ k,

we have (n−1ℓ ) ⩾ (
n−1
ℓ−1) and the result follows.

To prove (2), note that λk+1+ℓ ⩾I λk+1−ℓ if and only if Tk+1+ℓ,n ⩾ Tk+1−ℓ,n. Since Tk+1+ℓ,n = (n−1k−ℓ) =

( 2k
k−ℓ) = (

2k
k+ℓ) = (

n−1
k+ℓ) = Tk+1−ℓ,n, the result follows.

To prove (3) we show for any 1 < i ⩽ k + 1 that λi is incomparable to λj for all j > n − i + 1.

Since λj dominates λi, we need only show there exists some α such that Kλi,α > Kλj ,α. Choose

α = (1n). Then Kλi,α = (n−1n−i) = (
n−1
i−1) > (

n−1
n−j) =Kλj ,α because i − 1 > n − j and 1 < i ⩽ k + 1.
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(k + 1,1k) (k + 2,1k−1)

(k,1k+1) ⋮

⋮ (2k,1)

(2,12k−1) (2k + 1)

(12k+1)

(k + 1,1k−1)

(k,1k) ⋮

⋮ (2k − 1,1)

(2,12k−2) (2k)

(12k)

Figure 2.2. Immersion poset restricted to hook partitions for n = 2k + 1 (left) and
n = 2k (right).

Lastly, to prove (4) we follow the same strategy as (3). Since λj dominates λi, we can let

α = (1n), and since k + 1 < i < j we get Kλi,α = (n−1n−i) > (
n−1
n−j) =Kλj ,α, and the result follows. □

Proposition 2.3.29. Let n = 2k be even, then:

(1) λℓ+1 ⩾I λℓ for all 1 ⩽ ℓ < k.

(2) (λk−ℓ)t = λk+1+ℓ ⩾I λk−ℓ for all 0 ⩽ ℓ ⩽ k − 1.

(3) For any 1 < i ⩽ k, λi is incomparable to λj for all j > n − i + 1.

(4) For any k + 1 ⩽ i < n, λi is incomparable to λj for all j > i.

These describe all relations in the immersion poset restricted to hook partitions S.

The proof of the even case is similar to the odd case.

The Hasse diagram of the immersion poset restricted to hook partitions is given in Figure 2.2.

Notice that item (1) in Propositions 2.3.28 and 2.3.29 proves the string of covers on the left going

up each Hasse diagram, while (2) proves the covers going up the right side which are the transposes.

Corollary 2.3.30. Let λ ∈ S be a hook partition such that λ ⩽D λt. Then λ ⩽I λt.

The rank of a poset is the length of the longest chain of elements of the poset.

Corollary 2.3.31. The rank of the immersion poset (P(n),⩽I) is at least ⌊n/2⌋.

2.3.4. Immersion poset on two column partitions. Now let S be the set partitions

with at most two columns, that is, S = {λ ∣ λ1 ⩽ 2}. If n = 2k, then for this section we define
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λj = (2k−j,12j) for 0 ⩽ j ⩽ k. Similarly, if n = 2k + 1, then λj = (2k−j,12j+1) for 0 ⩽ j ⩽ k. In this

section, we study the immersion poset restricted to S.

Remark 2.3.32. Note that Kλ,µ = 0 if λ ∈ S and µ ∉ S. Hence there does not exist an

immersion pair µ ⩽I λ with λ ∈ S and µ /∈ S. This implies that if λi is a cover for λj in the subposet

restricted to S, then λi is a cover for λj in the immersion poset.

This remark implies that we only need to consider Kλ,µ for λ,µ ∈ S when determining the

immersion relations for this subset. Recall that fλ is the number of standard Young tableaux of

shape λ.

Proposition 2.3.33.

(1) Let λj = (2k−j,12j) ⊢ 2k for 0 ⩽ j ⩽ k. Then Kλi,λj = f (j+i,j−i) when i ⩽ j and Kλi,λj = 0

when i > j.

(2) Let λj = (2k−j,12j+1) ⊢ 2k + 1 for 0 ⩽ j ⩽ k. Then Kλi,λj = f (j+i+1,j−i) when i ⩽ j and

Kλi,λj = 0 when i > j.

Proof. For (1), if i > j, λj dominates λi and hence Kλi,λj = 0. If i = j, clearly Kλi,λi = f (2i) = 1.

Suppose j > i. Then the first k − j of the k − i two length rows of any tableau T ∈ SSYT(λi, λj)

are fixed by the content. Hence, there is a bijection SSYT(λi, λj) → SSYT((2j−i,12i), (12j)) by

removing the first k−j rows. Note that K(2j−i,12i),(12j) = f (2
j−i,12i), which is also equal to the number

of standard tableaux of the transpose of (2j−i,12i). The result follows.

The proof of part (2) is similar. □

Using the hook length formula with Proposition 2.3.33, we can describe Kλi,λj . We present

this in the form of a matrix. More explicitly, suppose n = 2k or n = 2k+1. Then for all 0 ⩽ i, j ⩽ k,

the i-th row and j-th column entry of the matrix T = (Ti,j) is Ti,j =Kλi,λj . Note that the indexing

starts with 0.

Example 2.3.34. Below are the matrices in tabular form for cases n = 14,15.
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The case when n = 14:

Shape

Content
(27) (26,12) (25,14) (24,16) (23,18) (22,110) (2,112) (114)

(27) 1 1 2 5 14 42 132 429

(26,12) 0 1 3 9 28 90 297 1001

(25,14) 0 0 1 5 20 75 275 1001

(24,16) 0 0 0 1 7 35 154 637

(23,18) 0 0 0 0 1 9 54 273

(22,110) 0 0 0 0 0 1 11 77

(2,112) 0 0 0 0 0 0 1 13

(114) 0 0 0 0 0 0 0 1

The case when n = 15:

Shape

Content
(27,1) (26,13) (25,15) (24,17) (23,19) (22,111) (2,113) (115)

(27,1) 1 2 5 14 42 132 429 1430

(26,13) 0 1 4 14 48 165 572 2002

(25,15) 0 0 1 6 27 110 429 1638

(24,17) 0 0 0 1 8 44 208 910

(23,19) 0 0 0 0 1 10 65 350

(22,111) 0 0 0 0 0 1 12 90

(2,113) 0 0 0 0 0 0 1 14

(115) 0 0 0 0 0 0 0 1
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Since the columns and rows are decreasing in dominance order, for any i < j we have λi ⩾I λj

if Ti,m ⩾ Tj,m for all 0 ⩽m ⩽ k. In the following lemma, we prove some properties of the matrix T

that will show that this statement is equivalent to only comparing values in the last column of the

matrix. That is, if i < j and Ti,k ⩾ Tj,k, then λi ⩾I λj. The reader can verify this in Example 2.3.34.

Lemma 2.3.35. The matrix (Ti,j) = (Kλi,λj) defined above with 0 ⩽ i, j ⩽ k has the following

properties:

(1) The entries weakly increase within each row.

(2) The entries within each column are unimodal.

(3) The rate of change of entries within a row increases as the row number increases. In

particular, for any fixed i and j with 0 ⩽ i < j ⩽ k, we have for all j ⩽ r < k:

Ti,r+1
Ti,r

< Tj,r+1
Tj,r

.

(4) For any fixed i and j with i < j, if Ti,k ⩾ Tj,k, then Ti,m ⩾ Tj,m for all 0 ⩽m ⩽ k.

Proof. We begin by proving (1). Let n = 2k be even. Then for a fixed row i, given any

i ⩽ j < k, we need to show that Ti,j+1 ⩾ Ti,j. Using Proposition 2.3.33, we have:

Ti,j+1
Ti,j

= f
(j+1+i,j+1−i)

f (j+i,j−i)
= (2j + 2)(2j + 1)
(j + i + 2)(j + 1 − i) ⩾ 1

because j ⩾ i implies

2j + 2 ⩾ j + i + 2 and 2j + 1 ⩾ j + 1 − i.

Now let n = 2k + 1 be odd. Using the same strategy as the even case we have:

Ti,j+1
Ti,j

= f
(j+2+i,j+1−i)

f (j+i+1,j−i)
= (2j + 3)(2j + 2)
(j + i + 3)(j + 1 − i) ⩾ 1

because j ⩾ i implies

2j + 3 ⩾ j + i + 3 and 2j + 2 ⩾ j + 1 − i.

Next we prove statement (2). Let n = 2k be even. Since statement (2) holds trivially if there

is only one non-zero entry in the column, we focus on columns with more than one non-zero entry.

Fix a 2 ⩽ j ⩽ k. To determine when the column is increasing and decreasing we consider the
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fraction:

Ti+1,j
Ti,j

= f
(j+i+1,j−i−1)

f (j+i,j−i)
=

(2j)!(2i+3)
(j+i+2)!(j−i−1)!
(2j)!(2i+1)
(j+i+1)!(j−i)!

= (2i + 3)(j − i)
(2i + 1)(j + i + 2) .

Analyzing the following inequalities gives:

Ti+1,j
Ti,j

> 1 ⇐⇒ 2i2 + 4i + 1 < j,

Ti+1,j
Ti,j

= 1 ⇐⇒ 2i2 + 4i + 1 = j,

Ti+1,j
Ti,j

< 1 ⇐⇒ 2i2 + 4i + 1 > j.

(2.3.16)

Thus, for values of i such that 2i2 + 4i + 1 < j the column entries are increasing, and when the

values of i satisfy 2i2 + 4i + 1 > j the column entries are decreasing. This proves (2) for the even

case.

Now let n = 2k + 1 be odd. Fix a 2 ⩽ j ⩽ k. Similar to the even case we have:

Ti+1,j
Ti,j

= f
(j+i+2,j−i−1)

f (j+i+1,j−i)
=

(2j+1)!(2i+4)
(j+i+3)!(j−i−1)!
(2j+1)!(2i+2)
(j+i+2)!(j−i)!

= (2i + 4)(j − i)
(2i + 2)(j + i + 3) .

Analyzing the following inequalities gives:

Ti+1,j
Ti,j

> 1 ⇐⇒ 2i2 + 6i + 3 < j,

Ti+1,j
Ti,j

= 1 ⇐⇒ 2i2 + 6i + 3 = j,

Ti+1,j
Ti,j

< 1 ⇐⇒ 2i2 + 6i + 3 > j.

(2.3.17)

Again, we notice that for values of i such that 2i2 + 6i + 3 < j the column entries are increasing,

and when the values of i satisfy 2i2 + 6i + 3 > j the column entries are decreasing. This concludes

the proof of (2).

To prove statement (3), we use Proposition 2.3.33 and the hook length formula to get the

following equivalences:

Ti,r+1
Ti,r

< Tj,r+1
Tj,r

⇐⇒ Kλi,λr+1

Kλi,λr

< Kλj ,λr+1

Kλj ,λr

⇐⇒ (r + j + 2)(r + 1 − j)
(r + i + 2)(r + 1 − i) < 1 ⇐⇒ i2+i < j2+j.

The last inequality is always true since 0 ⩽ i < j, thus proving (3).
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To prove (4), fix i and j with i < j where Ti,k ⩾ Tj,k. Then by statement (3) it directly follows

that Ti,m ⩾ Tj,m for all j ⩽ m ⩽ k. Because Tj,m = 0 for all 0 ⩽ m < j, it trivially follows that

Ti,m ⩾ Tj,m for these values of m, this finishes the proof of (4). □

The beauty of Lemma 2.3.35, in particular statement (4), is that we can now reduce much of

the work in determining the immersion relations between partitions in S to just comparing the

numbers of standard Young tableaux, as is done in the next proposition.

Proposition 2.3.36. For n = 2k even or n = 2k + 1 odd, the last (k-th) column of T can

be used to completely determine relations in the immersion poset restricted to the subset S. In

particular:

(1) λi ⩾I λj if and only if i < j and Ti,k ⩾ Tj,k,

(2) For i < j, λi and λj are incomparable if and only if Tj,k > Ti,k.

Proof. To prove (1), by definition λi ⩾I λj if and only if λi >D λj and Ti,ℓ ⩾ Tj,ℓ for all 0 ⩽ ℓ ⩽ k.

But λi dominates λj if and only if i < j, and by (4) of Lemma 2.3.35, Ti,ℓ ⩾ Tj,ℓ for all 0 ⩽ ℓ ⩽ k if

and only if Ti,k ⩾ Tj,k (when i < j).

To prove (2), let i < j. If λi and λj are incomparable, then there exists some ℓ such that

Tj,ℓ > Ti,ℓ. By (3) of Lemma 2.3.35, we have:

Ti,r+1
Ti,r

⩽ Tj,r+1
Tj,r

for all ℓ ⩽ r < k, which guarantees that Tj,k > Ti,k. □

As a consequence we obtain the following immediate corollary.

Corollary 2.3.37. The cover relations for the immersion poset of the set S are the exact

same as those in the standard immersion poset.

We can now explain the cover relations of the immersion poset restricted to the set S.

Proposition 2.3.38. Let n = 2k be even or n = 2k + 1 be odd, then:

(1) λi ⋗I λi+1 when 2i2+4i+2 > k for n even and 2i2+6i+4 > k for n odd. This also coincides

with Lemma 2.2.7, taking a = k − i − 1 and b = 2i + 2 (n even) or b = 2i + 3 (n odd).
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(2) λi and λj are incomparable in the immersion poset for all 0 ⩽ i, j ⩽ imax with i ≠ j and

imax being the largest i value not satisfying (1).

(3) Fix i with 0 ⩽ i ⩽ imax and let m > imax − i be smallest such that Ti,k ⩾ Ti+m,k. Then

λi ⋗I λi+m.

Proof. If Ti,k ⩾ Ti+1,k, then by Proposition 2.3.36 and Remark 2.3.32, we have that λi ⩾I λi+1

is a cover. We determine the values for i such that Ti,k ⩾ Ti+1,k by using the middle equation and

bottom inequality of (2.3.16) (for n even) and (2.3.17) (for n odd), where we replace j with k.

Specifically, for n even:

2i2 + 4i + 1 ⩾ k Ô⇒ 2i2 + 4i + 2 > k,

and for n odd:

2i2 + 6i + 3 ⩾ k Ô⇒ 2i2 + 6i + 4 > k.

To prove (2), notice that since imax is the number of the row containing the first maximum,

by the increasing nature of the column up to the maximum value given by (2) of Lemma 2.3.35,

then for any 0 ⩽ i < j ⩽ imax we have Ti,k < Tj,k. Hence by Proposition 2.3.36 (2), λi and λj are

incomparable.

To prove (3) notice that by Proposition 2.3.36 statement (1), since m is the smallest value it

must be a cover. □

Example 2.3.39. Suppose n = 14, so that k = 7. By (1) of Proposition 2.3.38, the inequality

holds for 1 ⩽ i ⩽ k = 7 so we obtain:

λ7 ⋖I λ6 ⋖I λ5 ⋖I λ4 ⋖I λ3 ⋖I λ2 ⋖I λ1.

Applying (3) of Proposition 2.3.38 to λ0, with i = 0 we find that m = 4:

T0,7 = 429 ⩾ 273 = T4,7.

Notice that m = 3 does not satisfy the inequality:

T0,7 = 429 ≱ 637 = T3,7.

So our final cover relation for the poset is λ4 ⋖I λ0.
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Figure 2.3. Subposet of the immersion poset only containing partitions in A(n−2,2)
for n = 8 (left), n = 9 (middle), and n = 15 (right).

2.3.5. Lower intervals and Schur-positivity of interval power sums. In this section,

we make conjectures about certain lower intervals Aµ ∶= {λ ∣ (1n) ⩽I λ ⩽I µ} in the immersion

poset. Determining intervals will

(1) enhance our understanding of the immersion of polynomial representations for GLN(C)

and

(2) allow us to investigate when pAµ of Equation (2.1.1) is Schur-positive, as asked in Ques-

tion 2.1.3. We call pAµ an interval power sum. It also helps towards constructing a natural

corresponding representation of the symmetric group.

In this section, we prove that pAµ is Schur-positive for the conjectured intervals.

Conjecture 2.3.40. For n = 5 and n ⩾ 9, the interval A(n−2,2) = {λ ∣ (1n) ⩽I λ ⩽I (n− 2,2)} is

exactly

(1n) ⋖I (2,1n−2) ⋖I (2,2,1n−4) ⋖I (n − 2,2).

Remark 2.3.41. The first two covers are consequences of Proposition 2.3.38 (1). The map

SSYT((2,2,1n−4), ν) Ð→ SSYT((n − 2,2), ν),
47



which is the transpose if ν1 = 1 and which moves the boxes in positions (3,1), . . . , (n − 2,1) to

positions (1,3), . . . , (1, n − 2) if ν1 = 2 is an injection. This shows that (2,2,1n−4) <I (n − 2,2).

Therefore, we have

{(1n), (2,1n−2), (2,2,1n−4), (n − 2,2)} ⊆ A(n−2,2).

However, we have not proven the cover relation (2,2,1n−4) ⋖I (n− 2,2). One strategy to show the

reverse containment is to argue that for all partitions λ such that λ and λt are not included in the

above list, we have fλ > n(n−3)
2 = f (n−2,2). This would prove that λ /<I (n − 2,2), hence λ /∈ A(n−2,2).

We have confirmed the conjecture up to n = 18. See Figure 2.3.

Proposition 2.3.42.

(1) For n < 7 and n = 8, pA(n−2,2) is Schur-positive.

(2) For n ⩾ 9, p(1n) + p(2,1n−2) + p(2,2,1n−4) + p(n−2,2) is Schur-positive.

Proof. Part (1) can be checked explicitly by SageMath. For part (2), let

(2.3.18) p(1n) + p(2,1n−2) + p(2,2,1n−4) + p(n−2,2) = ∑
λ⊢n

cλsλ.

We prove that cλ ⩾ 0 for all λ ⊢ n by proving that all partial sums p(1n), p(1n) + p(2,1n−2),

p(1n)+p(2,1n−2)+p(2,2,1n−4), p(1n)+p(2,1n−2)+p(2,2,1n−4)+p(n−2,2) are Schur-positive. We employ the com-

binatorial Murnaghan–Nakayama rule involving ribbon tableaux (see for example [Sta99, Chapter

7.17])

pµ = ∑
λ⊢n

χλ(µ)sλ where χλ(µ) = ∑
T ∈R(λ,µ)

(−1)ht(T )

and R(λ,µ) is the set of all ribbon tableaux of shape λ and type µ and ht(T ) is equal to the sum

of the heights of all ribbons in T . We show that each subset of ribbon tableaux that contributes

a negative term to cλ is in bijection with a distinct subset of ribbon tableaux that contributes a

positive number to cλ, ensuring that cλ ⩾ 0. We examine each partial sum of power sum symmetric

functions, and demonstrate Schur-positivity at each step through these bijections.

(1) It is well-known that p(1n) = ∑λ⊢n f
λsλ since R(λ, (1n)) is the set of all standard Young tableaux

of shape λ.
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(2) For T ∈ R(λ, (2,1n−2)), T has either a horizontal or a vertical 2-ribbon and the remaining

are single box ribbons. If T has a horizontal 2-ribbon, then ht(T ) = 0 and T contributes +1 to

χλ((2,1n−2)). There are fλ/(2) such ribbon tableaux in R(λ, (2,1n−2)), where fλ/µ is the cardinality

of SYT(λ/µ), the set of standard Young tableaux of skew shape λ/µ. If T has a vertical 2-ribbon,

then ht(T ) = 1 and T contributes −1 to χλ((2,1n−2)). There are fλ/(1,1) such ribbon tableaux in

R(λ, (2,1n−2)). Therefore, the coefficient of sλ in p(2,1n−2) is fλ/(2) − fλ/(1,1). If (1,1) ⊆ λ, then cλ
includes −fλ/(1,1). The natural bijection

SYT(λ/(1,1)) → {T ∈ SYT(λ) ∣ T1,1 = 1 and T2,1 = 2}

demonstrates that fλ − fλ/(1,1) ⩾ 0. Hence p(1n) + p(2,1n−2) is Schur-positive.

(3) For any T ∈ R(λ, (2,2,1n−4)), there are six possible ways to arrange two 2-ribbons.

1 1
2 2

1 2
1 2

1 1 2 2 1
1
2
2

1 2 2
1

1 1
2
2

ht(T ) = 0 ht(T ) = 2 ht(T ) = 0 ht(T ) = 2 ht(T ) = 1 ht(T ) = 1

The remaining n − 4 ribbons in T are single boxes. Therefore, the coefficient of sλ in p(2,2,1n−4) is

2fλ/(2,2) + fλ/(4) + fλ/(14) − fλ/(3,1) − fλ/(2,1,1).

If (3,1) ⊆ λ, then cλ includes −fλ/(3,1). Consider the bijection

SYT(λ/(3,1)) → {T ∈ SYT(λ/(2)) ∣ T1,3 = 1, and T2,1 = 2}.

If (2,1,1) ⊆ λ, then cλ includes −fλ/(2,1,1). Consider the bijection

SYT(λ/(2,1,1)) → {T ∈ SYT(λ/(2)) ∣ T2,1 = 1 and T3,1 = 2}.

Hence fλ/(2) from (2) and the terms −fλ/(3,1)−fλ/(2,1,1) from (3) satisfy fλ/(2)−fλ/(3,1)−fλ/(2,1,1) ⩾ 0.

So far, we have shown that p(1n) + p(2,1n−2) + p(2,2,1n−4) is Schur-positive.
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(4) For T ∈ R(λ, (n − 2,2)), the possible ways of arranging one (n − 2)-ribbon and one 2-ribbon in

T are the following. Note that 10 appearing in λ means that there are no parts of size 1 in λ.

λ(1) = (a,1b) λ(2) = (a,1b) λ(3) = (a,3,1b) λ(4) = (a,2,2,1b) λ(5) = (2,2,1n−4) λ(6) = (n − 2,2)

0 ⩽ b ⩽ n − 3 2 ⩽ b ⩽ n − 1 0 ⩽ b ⩽ n − 6 0 ⩽ b ⩽ n − 6
1 1 ⋯ 1 2 2
1
⋮
1

1 1 ⋯ 1
1
⋮
1
2
2

1 1 ⋯ 1
1 2 2
⋮
1

1 1 ⋯ 1
1 2
1 2
⋮
1

1 2
1 2
⋮
1

1 1 ⋯ 1
2 2

ht(T ) = b ht(T ) = b − 2 + 1 ht(T ) = b + 1 ht(T ) = b + 2 + 1 ht(T ) = n − 3 + 1 ht(T ) = 0

If λ = (a,1b) with 2 ⩽ b ⩽ n−3, then cases λ(1) and λ(2) both apply. Since ht(λ(1)) and ht(λ(2)) have

opposite parity, χ(a,1
b)((n− 2,2)) = 0. For λ = (2,1n−2), only λ(2) applies and χ(2,1n−2)((n− 2,2)) =

(−1)n−3. For λ = (1n), only λ(2) applies and χ(1
n)((n − 2,2)) = (−1)n−1. Since (14) is contained

in both λ = (2,1n−2), (1n), cλ also includes fλ/(14) ⩾ 1. For λ = (n − 1,1), only λ(1) applies and

χ(n−1,1)((n− 2,2)) = −1. In this case, (4) ⊆ λ, and thus cλ also includes fλ/(4) ⩾ 1. For λ = (n), the

height of any ribbon tableaux is 0, so there are no negatives to worry about.

If λ is of the form λ(3), λ(4), or λ(5), then it is possible that cλ(i) includes −1 from the unique

T ∈ R(λ(i), (n−2,2)) for i = 3,4,5. In any of these disjoint cases, (2,2) ⊆ λ(i), which means cλ(i) also

includes fλ(i)/(2,2) ⩾ 1. Hence fλ/(14), fλ/(4), and fλ/(2,2) from (3) and χλ((n−2,2)) from (4) satisfy

fλ/(14) +fλ/(4) +fλ/(2,2) +χλ((n−2,2)) ⩾ 0. We have shown that p(1n) +p(2,1n−2) +p(2,2,1n−4) +p(n−2,2)
is Schur-positive. □

Conjecture 2.3.43. For n ⩾ 9, the interval A(n−2,1,1) = {λ ∣ (1n) ⩽I λ ⩽I (n−2,1,1)} is exactly

(1n) ⋖I (2,1n−2) ⋖I (2,2,1n−4) ⋖I (3,1n−3) ⋖I (n − 2,1,1).

Remark 2.3.44. The first two covers are consequences of Corollary 2.3.6. By Proposition 2.3.5,

φ0∶SSYT((2,2,1n−4), ν) → SSYT((3,1n−3), ν)
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is an injection (with α = 0, β = 2). Since (2,2,1n−4) <D (3,1n−3), this implies (2,2,1n−4) ⋖I (3,1n−3).

By Corollary 2.3.30, we know (3,1n−3) <I (n − 2,1,1) because (3,1n−3) <D (3,1n−3)t = (n − 2,1,1).

This implies

{(1n), (2,1n−2), (2,2,1n−4), (3,1n−3), (n − 2,1,1)} ⊆ A(n−2,1,1).

However, we have not proven the cover relation (3,1n−3) ⋖I (n − 2,1,1). To show that A(n−2,1,1)

is contained in the above set, one could show that for all partitions λ such that λ and λt are not

included in the above list, we have fλ > (n−1)(n−2)2 = f (n−2,1,1). This would prove that λ /∈ A(n−2,1,1).

We have confirmed the conjecture up to n = 18.

Proposition 2.3.45.

(1) For n < 9, pA(n−2,1,1) is Schur-positive.

(2) For n ⩾ 9, p(1n) + p(2,1n−2) + p(2,2,1n−4) + p(3,1n−3) + p(n−2,1,1) is Schur-positive.

Proof. Part (1) can be checked explicitly using SageMath. For part (2), as shown in the

proof of Proposition 2.3.42, p(1n) + p(2,1n−2) + p(2,2,1n−4) is Schur-positive. We next show p(1n) +

p(2,1n−2)+p(2,2,1n−4)+p(3,1n−3) is Schur-positive. For T ∈ R(λ, (3,1n−3)), there are three possible ways

of arranging one 3-ribbon in T .

1 1 1 1 1
1

1
1
1

ht(T ) = 0 ht(T ) = 1 ht(T ) = 2

Therefore, the coefficient of sλ in p(3,1n−3) is fλ/(3) − fλ/(2,1) + fλ/(1,1,1).

If (2,1) ⊆ λ, then cλ includes −fλ/(2,1). Consider the bijection

SYT(λ/(2,1)) → {T ∈ SYT(λ) ∣ T1,1 = 1, T1,2 = 2, and T2,1 = 3}.

Note, the above subset of standard Young tableaux of shape λ in the term fλ in p(1n) was not used

in the bijections in the proof of Proposition 2.3.42. This shows that p(1n) + p(2,1n−2) + p(2,2,1n−4) +

p(3,1n−3) is Schur-positive.

51



We now examine the Schur expansion of p(n−2,1,1). There are a few specific shapes λ where

R(λ, (n−2,1,1)) is nonempty. Note that for a ribbon tableau T of type (n−2,1,1), ht(T ) = ht(R1),

where R1 is the (n − 2)-ribbon of 1’s in T . In Case 1, we examine all hook shapes λ = (a,1b).

In Case 2, we examine all shapes λ = (a,2,1b). In Case 3, we examine the remaining two shapes

(a,3,1b) and (a,2,2,1b).

Case 1a: λ = (a,1b) with 4 ⩽ a ⩽ n − 3 and 3 ⩽ b ⩽ n − 4. These conditions on a, b require that the

(n − 2)-ribbon forms a hook with nontrivial arm and nontrivial leg.

1 ⋯ 1 2 3
⋮
1

1 ⋯ 1
⋮
1
2
3

1 ⋯ 1 2
⋮
1
3

1 ⋯ 1 3
⋮
1
2

ht(T ) = b ht(T ) = b − 2 ht(T ) = b − 1 ht(T ) = b − 1

Since b, b− 2 have opposite parity to b− 1, χλ((n− 2,1,1)) = 0 for λ = (a,1b) with 4 ⩽ a ⩽ n− 3 and

3 ⩽ b ⩽ n − 4.

Case 1b: λ = (3,1n−3).

1 2 3
⋮
1

1 1 2
⋮
1
3

1 1 3
⋮
1
2

1 1 1
⋮
1
2
3

ht(T ) = n − 3 ht(T ) = n − 4 ht(T ) = n − 4 ht(T ) = n − 5

Since n − 3, n − 5 have opposite parity to n − 4, χλ((n − 2,1,1)) = 0 for λ = (3,1n−3).

Case 1c: λ = (2,1n−2).

1 2
⋮
1
3

1 3
⋮
1
2

1 1
⋮
1
2
3

ht(T ) = n − 3 ht(T ) = n − 3 ht(T ) = n − 4
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Since n− 3 and n− 4 have opposite parity, χλ((n− 2,1,1)) = (−1)n−3 for λ = (2,1n−2). Since n ⩾ 5,

(14) ⊆ λ and fλ/(14) ⩾ 1, the coefficient of sλ in p(2,2,1n−4) will cancel this potential negative.

Case 1d: λ = (1n). The unique ribbon tableau T ∈ R((1n), (n − 2,1,1)) has height n − 3, hence

χλ((n− 2,1,1)) = (−1)n−3 for λ = (1n). Since n ⩾ 5, (14) ⊆ λ and fλ/(14) ⩾ 1, the coefficient of sλ in

p(2,2,1n−4) will cancel this potential negative.

Case 1e: λ = (n − 2,1,1).

1 ⋯ 1
2
3

1 ⋯ 1 2
1
3

1 ⋯ 1 3
1
2

1 ⋯ 1 2 3
1
1

ht(T ) = 0 ht(T ) = 1 ht(T ) = 1 ht(T ) = 2

Thus, χλ((n − 2,1,1)) = 0 for λ = (n − 2,1,1).

Case 1f: λ = (n − 1,1).
1 ⋯ 1 2
3

1 ⋯ 1 3
2

1 ⋯ 1 2 3
1

ht(T ) = 0 ht(T ) = 0 ht(T ) = 1

Thus, χλ((n − 2,1,1)) = 1 for λ = (n − 1,1).

Case 1g: λ = (n). The unique ribbon tableau T ∈ R((n), (n − 2,1,1)) has height 0, hence

χλ((n − 2,1,1)) = 1 for λ = (n).

Case 2a: λ = (a,2,1b) with 3 ⩽ a ⩽ n − 3 and 1 ⩽ b ⩽ n − 5.

1 1 ⋯ 1 3
1 2
⋮
1

1 1 ⋯ 1 2
1 3
⋮
1

1 1 ⋯ 1
1 2
⋮
1
3

1 1 ⋯ 1
1 3
⋮
1
2

ht(T ) = b + 1 ht(T ) = b + 1 ht(T ) = b ht(T ) = b

Since b and b + 1 have opposite parity, χλ((n − 2,1,1)) = 0 for λ = (a,2,1b) with 3 ⩽ a ⩽ n − 3 and

1 ⩽ b ⩽ n − 5.
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Case 2b: λ = (n − 2,2).

1 1 ⋯ 1
2 3

1 1 ⋯ 1 3
1 2

1 1 ⋯ 1 2
1 3

ht(T ) = 0 ht(T ) = 1 ht(T ) = 1

Thus, χλ((n − 2,1,1)) = −1 for λ = (n − 2,2). Since (2,2) ⊆ λ and fλ/(2,2) ⩾ 1, the coefficient of sλ

in p(2,2,1n−4) will cancel this negative.

Case 2c: λ = (2,2,1n−4).

1 2
1 3
⋮
1
1

1 1
1 3
⋮
1
2

1 1
1 2
⋮
1
3

ht(T ) = n − 3 ht(T ) = n − 4 ht(T ) = n − 4

Since n − 3 and n − 4 have opposite parity, χλ((n − 2,1,1)) = (−1)n−4 for λ = (2,2,1n−4). Since

(2,2) ⊆ λ and fλ/(2,2) ⩾ 1, the coefficient of sλ in p(2,2,1n−4) will cancel this potential negative.

Case 3a: λ = (n − (3 + b),3,1b) for 0 ⩽ b ⩽ n − 6. The unique ribbon tableau T ∈ R((n − (3 +

b),3,1b), (n − 2,1,1)) has height b + 1, hence χλ((n − 2,1,1)) = (−1)b+1 for λ = (n − (3 + b),3,1b).

Since (2,2) ⊆ λ and fλ/(2,2) ⩾ 1, the coefficient of sλ in p(2,2,1n−4) will cancel this potential negative.

Case 3b: λ = (n − (4 + b),2,2,1b) for 0 ⩽ b ⩽ n − 6. The unique ribbon tableau T ∈ R((n −

(4 + b),2,2,1b), (n − 2,1,1)) has height b + 2, hence χλ((n − 2,1,1)) = (−1)b+2 for λ = (n − (4 +

b),2,2,1b). Since (2,2) ⊆ λ and fλ/(2,2) ⩾ 1, the coefficient of sλ in p(2,2,1n−4) will cancel this

potential negative. □

2.4. Discussion

In this thesis, we studied various properties of the immersion and standard immersion poset,

which are tightly linked to finite-dimensional irreducible polynomial representations of GLN(C)

through their immersion pairs.
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There are still many open questions to pursue in this line of research. It would be interesting

to characterize all maximal elements in the immersion and standard immersion poset. In partic-

ular, a proof of Conjecture 2.2.14 seems in reach with the methods developed in this thesis. In

Corollary 2.3.30, we showed that for hook shapes λ and λt form an immersion pair. The same

seems true for two column partitions. It would be interesting to classify when λ and its transpose

form an immersion pair. In Corollary 2.3.31, we showed that the rank of the immersion poset is

at least ⌊n/2⌋. It would be desirable to find better bounds for the rank.

Furthermore, it would be interesting to classify all intervals and chains in the immersion

poset, in particular to obtain proofs of Conjectures 2.3.40 and 2.3.43. In view of the results of

Section 2.3.5, the following question is natural.

Question 2.4.1. Which intervals Aµ ∶= {λ ∣ (1n) ⩽I λ ⩽I µ} in the immersion poset give rise

to Schur-positivity of pAµ?

Sundaram conjectured that all intervals [(1n), µ] in reverse lexicographic order make (2.1.1)

Schur-positive [Sun18, Conjecture 1], and has proven the conjecture for certain intervals [Sun19].

When n ⩾ 5, it appears that the immersion poset always contains some interval(s) which do not

give rise to Schur-positivity. For example, pA(n−1,1) = p(1n)+p(2,1n−2)+p(n−1,1) contains −s(1n) when n

is odd. This observation shows that the analog of [Sun18, Conjecture 1] is false for the immersion

poset order. However, it does seem true that a large percentage of intervals Aµ in the immersion

poset yield Schur-positivity. Using SageMath [The24], we observe that when 6 ⩽ n ⩽ 9 at least

91% of the intervals in the immersion poset make (2.1.1) Schur-positive. When n = 10,11 the

percentage of Schur-positive intervals drops to at least 81%, and when n = 18, the percentage is

approximately 73.5%.

We conclude with some probabilistic and asymptotic questions.

Question 2.4.2. For randomly chosen partitions λ <D µ, what is the probability that λ ⩽I µ?

For a partition λ of any size, consider the padded partition λ[N] ∶= (N−∣λ∣, λ1, λ2, . . .) of sizeN ,

where N ⩾ ∣λ∣. For any two partitions λ ⩽D µ (of any size), what can we say about λ[N] ⩽I µ[N]

for N ≫ 1? Furthermore, it would be interesting to study the asymptotical behaviors of the

(standard) immersion poset.
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2.5. Maximal Element Conjecture

For this section, let λ be a partition of n with the form of λ = (∑k
i=1 ai,∑k−1

i=1 ai, . . . , a2 + a1, a1).

To suppress some of the notation, we will let sji = ∑
j
l=i al, so that λ = (sk1, sk−11 , . . . , s21, s

1
1). In

this section, we begin with (2.5.1) which relates the number of standard Young tableau of two

particular shapes. This allows us to prove a few propositions that serve as framework for the end

of the section, where in Proposition 2.5.11 we prove the maximality Conjecture 2.5.2 for the case

when k = 3.

Definition 2.5.1. We say that λ = (sk1, sk−11 , . . . , s21, s
1
1) satisfies the maximality inequalities if

for all 1 ⩽ p ⩽ k − 1 we have:

(ap+1 + 2
2
) ⩾ (

p

∑
i=1
ai) + p − 1,

We now restate the maximality conjecture for partitions of the immersion poset.

Conjecture 2.5.2. If λ ⊢ n ⩾ 5 satisfies the maximality inequalities, then λ is a maximal

element in the standard immersion poset and consequently the immersion poset as well.

Definition 2.5.3. A partition λ can be thought of in terms of Ferrers diagrams. We let the

number of boxes in the ith row of the Ferrers diagram corresponding to λ equal the number in the

ith part of the partition λ. Let p,m ∈ Z>0 and recall λ has k parts, or k rows in its corresponding

Ferrers diagram. Then we define the new partition λ(p,m) as follows. The corresponding Ferrers

diagram for λ(p,m) is the Ferrers diagram obtained by taking λ’s corresponding Ferrers diagram

and moving m boxes from the (k − p + 1)th row to the (k − p)th row. As a partition, this means

λ(p,m) = (sk1, sk−11 , . . . , sp+21 , sp+11 +m,sp1 −m,s
p−1
1 , . . . , s21, s

1
1), assuming λ(p,m) is also a partition of n,

which we require.

Example 2.5.4. Let λ = (5,3,1,1), Then λ(3,1) = (6,2,1,1). Below we have the Ferrers

diagrams of λ (on the left) and λ(3,1) (on the right), where we have highlighted the box being

moved in green.
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We refer the reader back to Equation (2.2.2) for the hook length formula. To calculate fλ,

the number of standard Young tableau of shape λ, we fill the Ferrers diagram boxes with values

equal to the number of boxes in the row right of it plus the number of boxes in the column below

it plus one, which we call the hook length. For example with λ = (5,3,1,1) and λ(3,1) = (6,2,1,1)

we have

8 5 4 2 1
5 2 1
2
1

9 6 4 3 2 1
4 1
2
1

.

We refer to the hook length entry of the ith row and jth column as hi,j. Then by the hook

length formula from (2.2.2) we have the following equation for λ = (5,3,1,1) and λ(3,1) = (6,2,1,1),

and the ratio f(5,3,1,1)
f(6,2,1,1)

f (5,3,1,1) = 10!

8 ⋅ 5 ⋅ 4 ⋅ 2 ⋅ 1 ⋅ 5 ⋅ 2 ⋅ 1 ⋅ 2 ⋅ 1
,

f (6,2,1,1) = 10!

9 ⋅ 6 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 ⋅ 4 ⋅ 1 ⋅ 2 ⋅ 1
,

f (5,3,1,1)

f (6,2,1,1)
= 81

50

Proposition 2.5.5 will provide us with a formula for fλ

f
λ(p,m) . This formula will be incredibly

useful in proving many of the propositions that follow. One should write out the hook lengths for

λ = (sk1, sk−11 , . . . , s21, s
1
1) and λ(p,m) = (sk1, sk−11 , . . . , sp+21 , sp+11 +m,sp1 −m,s

p−1
1 , . . . s21, s

1
1) to be able to

understand (2.5.1) in Proposition 2.5.5.

Proposition 2.5.5. Let λ = (sk1, sk−11 , . . . , s21, s
1
1) and λ(p,m) = (sk1, sk−11 , . . . , sp+21 , sp+11 +m,sp1 −

m,sp−11 , . . . s21, s
1
1) as defined above where p andm are positive integers such that λ(p,m) is a partition.

Then when a1, ap, ap+2 ⩾ 1 and ai ⩾ 0 for all other i ≠ 1, p, p + 2, we have the following:

(2.5.1)
fλ

fλ(p,m)
=
(∏p+m

j=p+1(s
p+1
1 + j))(sp+1p+1 + 1)

(∏p−1
j=p−m(s

p
1 + j))(s

p+1
p+1 + 2m + 1)

Pλ,p,mQλ,p,m,
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where

Pλ,p,m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∏p
j=2

(sp+1j +p+2−j)(spj+p+1−j)

(sp+1j +p+m+2−j)(spj+p+1−m−j)
if 2 ⩽ p ⩽ k − 1

1 if p = 1

and

Qλ,p,m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∏k
j=p+2

(sjp+1+j−p)(sjp+1+j−p−1)

(sjp+1+j−p+m)(sjp+1+j−p−1−m)
1 ⩽ p ⩽ k − 2

1 if p = k − 1

.

The proof of the proposition is a straightforward calculation using the hook lengths formula.

Example 2.5.6. In Example 2.5.4, we calculated fλ and fλ(3,1) for λ = (5,3,1,1) and λ(3,1) =

(6,2,1,1). We can now verify (2.5.1) for these partitions.

Pλ,3,1 =
3

∏
j=2

(s4j + 5 − j)(s3j + 4 − j)

(s4j + 6 − j)(s3j + 3 − j)
= (7)(4)(8)(3)

(6)(3)
(7)(2)

Qλ,3,1 = 1

fλ

fλ(3,1)
=
(∏4

j=4(s41 + j))(s44 + 1)

(∏2
j=2(s31 + j))(s44 + 3)

Pλ,3,1Qλ,3,1

= (9)(3)(5)(5)
(7)(4)
(8)(3)

(6)(3)
(7)(2)

= 81

50

Proposition 2.5.7. Let k ⩾ 3, 1 ⩽ p ⩽ k − 1 and λ ⊢ n with λ = (sk1, sk−11 , . . . , s21, s
1
1). If λ

satisfies the maximality inequalities, then fλ > fλ(p,1) when λ(p,1) ⊢ n.

Proof. Let y > x > 0. Then every fraction in the products of Pλ,p,1 and Qλ,p,1 is of the form:

(y + 2)(x + 1)
(y + 3)(x) > 1
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Thus each of these is strictly greater than 1 and since k ⩾ 3 there is at least one of these fractions

to guarantee that Pλ,p,1Qλ,p,1 > 1. Then, since:

((∑p+1
i=1 ai) + p + 1)((ap+1) + 1)

((∑p
i=1 ai) + p − 1)((ap+1) + 3)

⩾ 1 ⇐⇒ (ap+1 + 2
2
) ⩾ (

p

∑
i=1
ai) + p − 1,

the result follows. □

Proposition 2.5.8. Let k ⩾ 3, m ⩾ 1 and λ ⊢ n with λ = (sk1, sk−11 , . . . , s21, s
1
1). If

(ap+1 + 2
2
) ⩾ (

p

∑
i=1
ai) + p − 1,

for all 1 ⩽ p ⩽ k − 1, then fλ > fλ(p,m) when λ(p,m) ⊢ n.

Proof. We proceed by induction on m. When m = 1, Proposition 2.5.7 proves the base case.

Now suppose the proposition holds for m− 1 and λ(p,m) ⊢ n, we will show it holds for m. To show

fλ > fλ(p,m) , we will show fλ

f
λ(p,m) >

fλ

f
λ(p,m−1) , which is equivalent to fλ(p,m−1) > fλ(p,m) , then by the

inductive hypothesis the result will follow.

First notice that Pλ,p,m−1 > Pλ,p,m and Qλ,p,m−1 > Qλ,p,m follows immediately. But,

(∏p+m
j=p+1(s

p+1
1 + j))(sp+1p+1 + 1)

(∏p−1
j=p−m(s

p
1 + j))(s

p+1
p+1 + 2m + 1)

⩾
(∏p+(m−1)

j=p+1 (sp+11 + j))(sp+1p+1 + 1)

(∏p−1
j=p−(m−1)(s

p
1 + j))(s

p+1
p+1 + 2(m − 1) + 1)

which simplifies to

(sp+11 + p +m)(sp+1p+1 + 2m − 1) ⩾ (s
p+1
1 + p −m)(sp+1p+1 + 2m + 1)

and again simplifies to

(ap+1 + 2m
2

) +m − 1 ⩾ sp1 + p − 1

and since m ≥ 1 we have

(ap+1 + 2m
2

) +m − 1 ⩾ (ap+1 + 2
2
)

and finally

(ap+1 + 2
2
) ⩾ sp1 + p − 1

is assumed to be true, completing the proof. □
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Proposition 2.5.9. Let λ = (sk1, sk−11 , . . . , s21, s
1
1) ⊢ n. If λ satisfies the maximality inequalities,

then λ′ = (sk1 +1, sk−11 , . . . , s21, s
1
1−1) also satisfies the maximality inequalities. In particular, as long

as k > 1 (which implies s11 > 0), λ′ always exists.

The proof is straightforward, as only the first and last inequalities are different. This simple

result will be the critical piece for our first major result.

Proposition 2.5.10. If λ = (s31, s21, s11) ⊢ n ⩾ 5 satisfies the maximality inequalities, then

fλ > fλ′, where λ′ = (s31 + 1, s21, s11 − 1).

Proof. The reader can verify that:

fλ

fλ′ =
(s31 + 3)(s32 + 2)(s22 + 1)(s33 + 1)
(s11)(s32 + 4)(s22 + 2)(s33 + 2)

From this point on, we will assume a1 ⩾ 1 (required for λ to have three parts), a2 ⩾ 1 and a3 ⩾ 2.

The only λ ⊢ n ⩾ 5 with three parts where these inequalities are not satisfied, but the maximality

inequalities are satisfied is (3,2,1) and (3,1,1) and the reader can verify that if λ is one of these

two, then fλ > fλ′ . Now recall the two maximality inequalities for when k = 3:

(a3 + 2
2
) ⩾

2

∑
i=1
ai + 1 ⇐⇒ a23 + 3a3 ⩾ 2a2 + 2a1

(a2 + 2
2
) ⩾

1

∑
i=1
ai ⇐⇒ a22 + 3a2 + 2 ⩾ 2a1

60



Now with a little rewriting we have:

fλ > fλ′ ⇐⇒ (s31 + 3)(s32 + 2)(s22 + 1)(s33 + 1) − (s11)(s32 + 4)(s22 + 2)(s33 + 2) > 0

⇐⇒ a2a
3
3 + a32a3 + 2a22a23 + a33 + 8a2a23 + 8a22a3 + a32 + 6a23 + 6a22 + 18a2a3 + 11a2 + 11a3 + 6

− a1a23 − a1a22 − 4a1a2a3 − 9a1a2 − 9a1a3 − 14a1 > 0

⇐⇒ (1
2
a22a

2
3 +

3

2
a22a3 − a32 − a1a22)

+ (a32a3 + 3a22a3 + 2a2a3 − 2a1a2a3)

+ (a2a33 + 3a2a23 − 2a22a3 − 2a1a2a3)

+ (1
2
a22a

2
3 +

3

2
a2a

2
3 + a23 − a1a23)

+ (a33 + 3a23 − 2a2a3 − 2a1a3)

+ (7
2
a22a3 +

21

2
a2a3 + 7a3 − 7a1a3)

+ (2a2a23 + 6a2a3 − 4a22 − 4a1a2)

+ (3a22 + 9a2 + 6 − 6a1)

+ (a23 + 3a3 − 2a1 − 2a2)

+ (2a32 + 6a22 + 4a2 − 4a1a2)

+ (1
2
a2a

2
3 +

3

2
a2a3 − a1a2 − a22)

+ (a22a23 + 2a22a3 + 2a22 + a2a23 + a23 + a3 − 6a1) > 0

There are eleven parentheses in the above inequality. We will show that for each parentheses,

the terms being added are at least as big as those being subtracted by using the maximality
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inequalities.

1

2
a22a

2
3 +

3

2
a22a3 =

1

2
a22(a23 + 3a2) ⩾ a1a22 + a32

a32a3 + 3a22a3 + 2a2a3 = a2a3(a22 + 3a2 + 2) ⩾ 2a1a2a3

a2a
3
3 + 3a2a23 = a2a3(a23 + 3a3) ⩾ 2a22a3 + 2a1a2a3

1

2
a22a

2
3 +

3

2
a2a

2
3 + a23 =

1

2
a23(a22 + 3a2 + 2) ⩾ a1a23

a33 + 3a23 = a3(a23 + 3a3) ⩾ 2a1a3 + 2a2a3
7

2
a22a3 +

21

2
a2a3 + 7a3 =

7

2
a3(a22 + 3a2 + 2) ⩾ 7a1a3

2a2a
2
3 + 6a2a3 = 2a2(a23 + 3a3) ⩾ 4a1a2 + 4a22

3a22 + 9a2 + 6 = 3(a22 + 3a2 + 2) ⩾ 6a1

a23 + 3a3 ⩾ 2a1 + 2a2

2a32 + 6a22 + 4a2 = 2a2(a22 + 3a2 + 2) ⩾ 4a1a2
1

2
a2a

2
3 +

3

2
a2a3 =

1

2
a2(a23 + 3a3) ⩾ a1a2 + a22

a22a
2
3 + 2a22a3 + 2a22 + a2a23 + a23 + a3 ⩾ 10a22 + 4a2 + 6 > 3a22 + 9a2 + 6 ⩾ 6a1

All but the last inequality follows directly from the maximality inequalities we are assuming. The

last inequality follows because a3 ⩾ 2, and when a2 ⩾ 1 we have a22 ⩾ a2. Notice the strictness of

the last inequality guarantees the strictness of the whole sum and the result follows. □

Proposition 2.5.11. Let λ = (s31, s21, s11) ⊢ n ⩾ 5. If λ satisfies the maximality inequalities,

then λ is maximal in the immersion poset.

Proof. We proceed with a proof by induction on the number of steps away from (n) that λ

is in dominance order. The base case is trivial; there are no inequalities for (n) to satisfy, and it is

indeed maximal in the immersion poset. Now assume every partition less than m steps away from

(n) that satisfies the maximality inequalities is also a maximal element in the immersion poset.

Let λ satisfy the maximality inequalities and be m steps away from (n) in dominance order.

If we think about the partition as a tableau, then all partitions that dominate λ are obtained

by either (1) moving only boxes from the third row to the second row, (2) moving only boxes
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from the second row to the first row, or (3) some combination of both (this includes the case of

only moving boxes from the third row to the first). We need to show that if µ is a partition that

dominates λ, then fλ > fµ.

For µ a partition in case (1) or (2), fλ > fµ by Proposition 2.5.8. Let λ′ be defined as it is in

Proposition 2.5.9, then every µ in case (3) dominates λ′. Since λ′ is less than m moves away from

(n), by the induction hypothesis we have fλ′ > fµ. Finally, by Proposition 2.5.10, fλ > fλ′ and

the result follows. □
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CHAPTER 3

A crystal analysis of claw-free graphs

This chapter is based on work in collaboration with Evuilynn Nguyen and Anne Schilling.

3.1. Background and definitions

Definition 3.1.1. Let G = (V,E) be a graph with ∣V ∣ = n. Given S ⊆ N, a proper S-coloring

of G is a function κ∶V → S such that κ(i) ≠ κ(j) when (i, j) ∈ E. In [Sta95], Stanley defined the

chromatic symmetric function of G as

(3.1.1) XG(x) ∶= ∑
κ∈K(G)

xκ(1)⋯xκ(n),

where K(G) is the set of all proper N-colorings of G. It is easy to see that XG(x) lies in the ring

of symmetric functions ΛZ in x1, x2, . . . with integer coefficients.

In [Sta95], Stanley conjectured the chromatic symmetric functions of incomparability graphs

of (3 + 1)-free posets are e-positive where e refers to the elementary symmetric functions, known

as the Stanley-Stembridge conjecture. A weaker result stating that XG(x) is Schur-positive when

G is as in the conjecture was proven by Gasharov [Gas96].

Motivated by this conjecture, Shareshian and Wachs define a refinement of the chromatic

symmetric functions called chromatic quasisymmetric functions [SW16].

Definition 3.1.2. The chromatic quasisymmetric function of a graph G is

XG(x, t) ∶= ∑
κ∈K(G)

xκ(1)⋯xκ(n)tasc(κ)

where asc(κ) = ∣{(i, j) ∈ E ∶ i < j and κ(i) < κ(j)}∣ . We note that XG(x,1) = XG(x), so it follows

that XG(x,1) is Schur positive when G is the incomparability graph of a (3 + 1)-free poset.

Using a proof similar to Gasharov’s [Gas96], Shareshian and Wachs prove Schur positivity of

XG(x, t) when G is the incomparability graph of a (2 + 2) and (3 + 1)-free poset [SW16].
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In [SW16], Shareshian and Wachs also show that for unit interval graphs, XG(x, t) ∈ ΛZ[t],

that is, XG(x, t) is a polynomial in t with coefficients in ΛZ. Although this is a much smaller class

of posets, Guay-Paquet showed that proving e-positivity of (3 + 1)-free posets was equivalent to

proving e-positivity of unit interval graphs, thereby simplifying the Stanley-Stembridge conjecture

[GP13]. As of October 2024, the Stanley-Stembridge conjecture has been proven by Tatsuyuki

Hikita [Hik24].

Now, Stanley [Sta98] conjectured that the chromatic symmetric function of all claw-free

graphs G is Schur positive.

Conjecture 3.1.3 ( [Sta98]). The chromatic symmetric function of a claw-free graph G is

Schur-positive.

Special cases of this conjecture were considered in [Gas96,WW20,Ehr22, SvW24]. In

particular, Gasharov [Gas96] proved that claw-free incomparability graphs are Schur positive.

Ehrhard [Ehr22] reproved Gasharov’s results by defining a crystal structure on P -arrays.

Kashiwara crystals, introduced by Kashiwara in [Kas90], have been a common tool to prove

Schur positivity results. In [Ste03], Stembridge showed that when a crystal satisfies certain local

axioms, then the character of the crystal corresponds to the character of a certain representa-

tion, providing a connection to representation theory and providing an immediate proof of Schur

positivity.

In this chapter, we begin in Section 3.2 by defining crystal operators on claw-free graphs and

end the section by showing the crystal structure of these crystal operators is isomorphic to that

of Ehrhard’s [Ehr22] crystal structure when restricted to claw-free incomparability graphs. In

Section 3.3 we review the definition of a Stembridge crystal and show our crystal operators don’t

satisfy the local axioms for the crystal to be Stembridge. In Section 3.4, we show that when

restricted to unit interval graphs which do not contain an induced subgraph isomorphic to P4

(the path graph of length 4), then our operators do satisfy the Stembridge axioms. The proof

is technical and long, suggesting that for claw-free graphs, a different approach to proving Schur

positivity using the crystal structure would be more suitable. So, we end with Section 3.5, where

we discuss how to extend Schur positivity results using crystals beyond claw-free incomparability

graphs.
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3.2. Crystal Operators

In Section 3.2.1, we will define the crystal operators that will act on the colorings of claw-free

graphs (see Definition 1.2.8) and we will show that these operators do satisfy the crystal axioms

defined in Definition 3.2.5. In Section 3.2.2, we will show that the crystal structure generated

by these operators is isomorphic to Ehrhard’s crystal structure in [Ehr22] when restricted to

incomparability graphs of (3 + 1)-free posets.

3.2.1. Crystal operators on claw-free graphs.

Definition 3.2.1. We define the simple roots , αi (i ∈ {1,2, . . . , k − 1}), of a type Ak−1 (GL(r)

version) root system in Rk to be αi = ei − ei+1, where ei is the ith standard basis vector. The

simple coroots , α∨i (i ∈ {1,2, . . . , k − 1}), are defined to be:

α∨i =
2

⟨αi, αi⟩
αi

The weight lattice for the GL(r) version is Zk. Let V be the quotient space of Rk by the subspace

spanned by the diagonal vector ∑k
i=1 ei. Then the type Ak−1 (SL(k) version) root system has for

simple roots, the images of the simple roots of the GL(k) version under the quotient map. The

weight lattice Λ is the image of Zk in the quotient space.

Notice that since ⟨⋅, ⋅⟩ is the usual dot product, αi = α∨i for a type A root system.

We note that the weight lattice for the SL(k) version is semi-simple, whereas the GL(k)

version is not. Since we want it to be semi-simple, we need to use the SL(k) version. Since the

root systems are in bijection through the quotient map, and the GL(k) version is easier to work

with, we will use this throughout the rest of the chapter, with the understanding that one can

easily use the quotient map to identify the SL(k) version.

Definition 3.2.2. Let Ak−1 be the root system, I = {1, . . . , k − 1} be the index set, and Zk be

the weight lattice. A finite type crystal of type Ak−1 is a nonempty set C together with the maps:

ei, fi ∶ C → C ⊔ {0}

εi, φi ∶ C → Z
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wt ∶ C → Λ

satisfying the following conditions:

A1: If x, y ∈ C, then ei(x) = y if and only if fi(y) = x. If so, then we assume:

● wt(y) = wt(x) + αi

● εi(y) = εi(x) − 1

● φi(y) = φi(x) + 1

A2: We must have:

φi(x) − εi(x) = ⟨wt(x), α∨i ⟩

for all x ∈ C and i ∈ I. ei and fi will be referred to as our crystal operators .

More specifically, the elements of C will be the proper colorings of some claw-free graph that

uses only the colors 1,2, . . . , k. For a more extensive treatment of crystals of various root systems

see chapter 2 of [BS17].

Definition 3.2.3. Let x be a proper coloring. We define the induced i-coloring of x to be

the coloring on the induced subgraph containing only the vertices colored i or i + 1 and the edges

between these vertices, however we will also for brevity, sometimes refer to the induced subgraph

as the induced i-coloring of x as well, and the context should make this difference clear. Similarly,

we define the induced i, i+1-coloring of x to be the same as before, except that we keep the vertices

colored i, i + 1, and i + 2.

Proposition 3.2.4. Let G be a claw-free graph, I the index set with i, i + 1 ∈ I and let x be

a proper coloring of G. Then each connected component of the induced i-coloring of x must be a

subgraph isomorphic to the path graph Pk or the cycle graph Ck (see Definition 1.2.9) for some k.

In addition, Ck is only possible if the component has an even number of vertices. If G is a unit

interval graph, then Ck is not possible.

Proof. The reader can check by hand that if there are 3 or less vertices, the component must

be isomorphic to P1, P2 or P3. Now suppose our component consists of four or more vertices. We

can reconstruct this component by starting with any vertex in the component and then repetitively

adding vertices that share an edge with at least one of the vertices we have already added, and

add any edges this new vertex shares with any of the vertices we already have. We now prove the
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result through induction. Suppose we have already added k vertices (k ≥ 4) and the component

is isomorphic to Pk. If we add a vertex and edge to one of the end vertices and this is all that is

added, we get Pk+1 and we are done. If we add an additional edge to a vertex not on one of the

ends, we have the following look.

a b a b a
. . . . . .

Here a is the color i or i+1, and b is the other color that a is not. Notice that if this b colored

vertex in the middle (that the newly added a colored vertex on the end shares an edge with) must

share an edge with three a colored vertices. If we delete all other vertices, we get the claw; hence

this is not possible. So, the only other possibility is that it could share an edge with the other

end vertex. But this is only possible if that vertex is colored differently, and hence the number of

vertices is even, giving us Ck+1.

Now suppose the newly added vertex does not share an edge with a vertex on the end. If it

shares an edge with a vertex in the middle, we get a claw again by the same logic as before. So, if

we start with Pk, the only possibilities are that we get Pk+1 or Ck+1, and in the case of Ck+1, k + 1

must be even.

Now suppose that the component is isomorphic to Ck and k is even. If we were to try to add

a new vertex colored a (again a is i or i + 1 and b will represent the other color) to this, this new

vertex must share an edge with some vertex colored b. But that b colored vertex already has edges

with two other a colored vertices. Deleting everything except these four vertices will again give

us the claw. Hence, the component must be Ck and the process terminates.

If G is a unit interval graph, it should be clear from Definition 1.2.8 that Ck is not possible. □

We will now define the crystal operators fi and ei that will act upon the proper colorings of

a claw-free graph G.

Definition 3.2.5. Let G be a claw-free graph with vertex set V , with ∣V ∣ = n and whose

vertices are labeled 1, . . . , n. Now, let x be a proper coloring of G. If we act on x with fi or ei,

then we only consider the induced i-coloring of x. At this point, by Proposition 3.2.4, the induced

subgraph can contain only connected components where the colors alternate between i and i + 1
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within each component and are isomorphic to Pk or Ck for some k. We will think of the position

of a component as the value of the vertex that is the largest in magnitude in the component. We

then order the components based upon the position of the component in increasing order. If the

component consists entirely of a path of alternating i and i+1’s of even length, we disregard these,

but often refer to this as an even i-bracket . When the graph is a unit interval graph, we may

wish to refer to an even i-bracket more specifically based upon the color of the smallest-valued

vertex. For example, an i starting even i-bracket or an i + 1 starting even i-bracket depending

upon whether it begins with an i or i + 1 colored vertex. If the component is of odd length, and

if the ends of the path graph are colored i, we label this a right i-bracket ; if the ends of the path

graph are colored i+ 1, we label this a left i-bracket . At this point, we pair any left i-bracket with

a right i-bracket that is to the right of it and contains no unpaired left and right i-brackets in

between them. Once all possible pairings have been made, the fi operator will act on the rightmost

unpaired right i-bracket, while the ei operator will act on the leftmost unpaired left i-bracket. If

there is no such unpaired bracket for the operator, then it sends x to 0. When the operator acts

on a bracket, it simply changes i’s to i + 1’s and vice versa. Figure 3.1 shows an example of this

process. For all our pictures involving colorings of graphs, the colors will be located directly above

the vertices. Occasionally the vertices will be represented by their numbers, but it should still be

easy to tell what numbers represent vertices because there will be edges going between them.
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x ∶

1 3 2 3 1 3 2 1 3 2 1 3 2

Induced 1-coloring of x ∶

1 2 1 2 1 2 1 2

Reordering:
12 1 2 1 2 1 2

1 −Bracketing of x ∶ ( ) ) (

Unpaired 1-brackets of x ∶ ) (

f1(x) ∶

2 3 2 3 1 3 1 2 3 2 1 3 2

e1(x) ∶

1 3 2 3 1 3 2 1 3 2 1 3 1

Figure 3.1. Notice that f1 acts on the component whose colors are labeled in red,
while e1 acts on the component whose colors are labeled in green.

Remark 3.2.6. When we want to refer to a coloring x without drawing the coloring out, we

will simply write it in vector form, where the ith position of the vector contains the color of vertex

i in the coloring x. For instance, in Figure 3.1, x = [1,3,2,3,1,3,2,1,3,2,1,3,2].

Remark 3.2.7. We note that when an fi operator is applied to a coloring x, and fix ≠ 0, then

the rightmost unpaired right i-bracket that fi acts on in x, becomes a left i-bracket. In particular,

it becomes the leftmost unpaired left i-bracket of fix. Similarly, when we apply ei to fix, the

leftmost unpaired left i-bracket it acts upon becomes a right i-bracket–the rightmost unpaired

right i-bracket we had in x. That is eifix = x when fix ≠ 0. Similarly fieix = x when eix ≠ 0.

So, the ei and fi operators are partial inverses in the sense that they are inverses provided that

applying the operator does not send the coloring to 0.

Definition 3.2.8. We define the string lengths to be φi(x) = max{k ∈ Z≥0∣fk
i ≠ 0} and

εi(x) = max{k ∈ Z≥0∣eki ≠ 0}. Our string lengths will only take on finite non-negative integers. As

a result, we say our crystal is of finite type. Any crystal whose string lengths are defined in the

exact way that we have is said to be seminormal .
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Definition 3.2.9. For a type Ak−1 crystal of a claw-free graph, we define the weight of

coloring x, wt(x), to be the vector of length k whose ith position contains the number of vertices

of x colored i. For example, in type A4, the weight of x in Example 3.1 is wt(x) = ⟨4,4,5,0,0⟩.

We define a highest weight to be a weight of a coloring x where eix = 0 for all i ∈ I.

Definition 3.2.10. Let C be a crystal. We define the character of C to be χC(x) = ∑b∈C x
wt(b).

We will now show that our operators satisfy the crystal axioms A1 and A2.

Proposition 3.2.11. The crystal operators ei and fi we defined previously satisfy the crystal

axioms A1 and A2.

Proof. Let x be the coloring of a claw-free graph. We first note that the vertices in the

components of the induced i-coloring of x are fixed when applying ei or fi multiple times (assuming

that it does not get sent to 0). This means that the positions of the components remain fixed

when applying ei or fi, so that our crystal operators are well defined. By Remark 3.2.7, it clearly

follows that if x, y ∈ C, then ei(x) = y if and only if fi(y) = x.

Let y = ei(x). When we apply ei to x, we gain an i-colored vertex and lose an i + 1-colored

vertex. This is the same as saying wt(y) = wt(x) + αi.

From Definition 3.2.8 and Definition 3.2.5, εi(x) is equal to the number of unpaired left i-

brackets in x and φi(x) is equal to the number of unpaired right i-brackets in x. Since applying

fi to x decreases the number of unpaired right i-brackets by one and increases the number of

unpaired left i-brackets by one, it follows that εi(y) = εi(x) − 1 and φi(y) = φi(x) + 1.

We now prove A2 holds. Because αi = α∨i (see Definition 3.2.1), it follows that the right

hand side of the equation is equal to the number of vertices colored i minus the number of vertices

colored i+1. On the left hand side of the equation, consider the i-bracketing. Every vertex colored

i or i + 1 participates in an even i-bracket, left i-bracket, or a right i-bracket. Since the number

of vertices colored i minus the number of vertices colored i + 1 is equal to −1 for a left i-bracket,

0 for an even i-bracket, and 1 for a right i-bracket, then the number of vertices colored i minus

the number of vertices colored i + 1 can be rephrased as the number of right i-brackets minus the

number of left i-brackets. Additionally, since paired left and right i-brackets will cancel each other

out, we can also rephrase it to be the number of unpaired right i-brackets minus the number of
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unpaired left i-brackets. Since φi(x) refers to the number of unpaired right i-brackets in x and

εi(x) refers to the number of unpaired left i-brackets in x, the result follows. □

As noted in Section 3.1, in [SW16], Shareshian and Wachs showed that for unit interval graphs

G, the chromatic quasisymmetric function of G has symmetric functions in x for each coefficient

of powers of t, the ascent statistic. That is, it should be possible to have a crystal structure that

preserves the number of ascents in each connected component of the crystal. We now show that

our crystal operators are ascent-preserving on unit interval graphs.

Proposition 3.2.12. The crystal operators ei and fi on the set of colorings of a unit interval

graph G are ascent preserving.

Proof. When fi or ei acts on a coloring x, it is only changing i’s to i + 1’s and vice versa. If

we consider an edge between a vertex A colored i or i + 1 in the i-bracket that fi or ei acts on,

and a vertex B not in the i-bracket, we first note that the vertex B must be colored something

other than i or i + 1, otherwise it would be part of the i-bracket. Then it must be the case that

changing the color of vertex A to i or i + 1 does not change whether or not the edge between A

and B is an ascent. So we need only consider whether the number of ascents within the i-bracket

that ei or fi acts on changes. But regardless of whether it is a left i-bracket or a right i-bracket,

an odd length i-bracket of length 2k + 1 for k ∈ Z≥0, has exactly k ascents within the i-bracket.

This shows that ei and fi are ascent preserving. □

Definition 3.2.13. If C is a crystal and we want to visualize it, we can do so by creating

a directed graph called a crystal graph of C. The crystal graph of C has vertices in C and edges

labeled by some i ∈ I, where if fix = y for some x, y ∈ C, then we draw an edge labeled i from x to

y.
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[1,2,3,1]

[1,2,4,1] [2,1,3,2]

[2,3,4,2]

[3,2,4,3]

[2,1,4,2][1,3,4,1]

[4,2,4,3]

[3,1,4,2]

[4,1,4,2]

[3,1,3,2]

[1,3,4,2]

[4,1,4,3]

[2,1,4,3]

[3,1,4,3]

3 1

2

12

3

3

23

3

1

2

21

1 3

1

2

Figure 3.2. The crystal of highest weight [1,2,3,1] using 4 colors for the graph
G in Example 3.2.14

Example 3.2.14. Let G be the graph shown below.

1 2 3 4

Then the component with highest weight color [1,2,3,1] of the crystal graph of G using k = 4

colors is shown in Figure 3.2.
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3.2.2. P-array bijection. In this section, we will define the crystal structure on P-arrays

that Ehrhard [Ehr22] introduced and show that our crystal, when restricted to (3+1)-free incom-

parability graphs, is equivalent to that of Ehrhard’s.

Definition 3.2.15. Let B and C be two crystals associated to the root system Φ and index

set I. A crystal morphism is a map ψ ∶ B → C ⊔ {0} such that

(1) if b ∈ B and ψ(b) ∈ C, then

(a) wt(ψ(b)) = wt(b),

(b) εi(ψ(b)) = εi(b) for all i ∈ I, and

(c) φi(ψ(b)) = φi(b) for all i ∈ I;

(2) if b, eib ∈ B such that ψ(b), ψ(eib) ∈ C, then we have ψ(eib) = eiψ(b);

(3) if b, fib ∈ B such that ψ(b), ψ(fib) ∈ C, then we have ψ(fib) = fiψ(b).

A crystal morphism ψ ∶ B → C ⊔ {0} is called a crystal isomorphism if the induced map

ψ ∶ B ⊔ {0} → C ⊔ {0} with ψ(0) = 0 is a bijection.

In this section, we will refer to three pairs of crystal operators. The first pair is the one we

have defined already and we will refer to these as fC
i and eCi (the C refers to the fact that these

are crystal operators on claw-free graphs). The second set of operators, which we refer to as fR
i

and eRi , is isomorphic to the first and is only introduced because it will make the bijection with

Ehrhard’s operators easier to establish. We introduce these operators now.

Definition 3.2.16. Let x be the coloring of a claw-free graph G. We define the crystal

operators fR
i and eRi , similar to those in Definition 3.2.5. The differences are that these operators

will label brackets in the exact opposite way, i.e. left brackets will be right brackets and vice versa,

and the position of the bracket will be based upon the vertex number that is least in value in the

bracket. fR
i will now act on the leftmost unpaired left i-bracket in the induced i coloring of x, and

eRi will now act on the rightmost unpaired right i-bracket in the induced i coloring of x.

Proposition 3.2.17. The crystal operators eRi and fR
i defined on claw-free graphs satisfy the

crystal axioms.

We omit the proof as it is essentially the same as in Proposition 3.2.11.
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Proposition 3.2.18. Let G be a claw-free graph G and let CC be the crystal defined by the

operators eCi and fC
i on the colorings of G. Let GR be the reverse graph of G (the graph that

relabels vertices so that vertex i is now relabeled vertex n − i + 1 for each i). Now let CR be the

crystal defined by the operators eRi and fR
i on the colorings of GR. Then CC and CR are isomorphic

as crystals.

We omit this proof as it is straightforward to verify this map is bijective, weight preserving,

and also preserves the bracketing.

Now we will review Erhard’s crystal structure in [Ehr22] with examples.

Definition 3.2.19. Let P be a finite poset. A P-array is an indexing {Ai,j} of the elements

of P such that if Ai,j is defined with j > 1, then Ai,j−1 is also defined and Ai,j−1 <P Ai,j. Notice

that this implies that the elements of P in row i must form a chain in the poset. Let AP denote

the set of P -arrays.

Now a P -array can be thought of as a way of encoding a coloring of inc(P ).

Definition 3.2.20. Fix a poset P , let G = inc(P ) be its incomparability graph, and let A be

any P -array. We will denote by xA a coloring of G that corresponds to A in the following way.

If v ∈ P is in the ith row of A, then vertex v of G is colored i in the coloring xA. Let XP denote

the set of all proper colorings of the graph G using only natural numbers for colors. When P is

(3 + 1)-free, we will define the map ψ ∶ XG → AP by ψ(xA) = A.

Example 3.2.21. On the left is a poset P . In the middle, we have a coloring of inc(P ). On

the right is a P -array A corresponding to the coloring of inc(P ).

a b

c de

fg

a
1

b

3
c
1

d

2
e
4

f

3
g
1

a c g
d
b f
e

Proposition 3.2.22. The map ψ in Definition 3.2.20 is a well defined bijection.
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Proof. Let x be a coloring of G. If vertex v of G is colored i, we place it in the ith row of

the P -array. Since any two vertices colored i in G can not share an edge, this implies all vertices

placed in row i of the corresponding P -array ψ(x) must be comparable, so we order all vertices

in the P -array in ascending order as determined by relations in P . This ordering is unique, hence

we get a unique P -array, so that ψ is well defined.

The inverse map ψ−1 ∶ AP → XG is given by ψ−1(A) = xA. Here, if v ∈ P is in row i of A,

then we color vertex v of G with i. Since we have specified that the colorings are of the natural

numbers only, then the number of the row coincides, so that we have a bijection. □

We define the weight of a P -array A, denoted wt(A), to be the weak composition whose ith

part is the number of elements in row i. Notice that the weight of A and the weight of xA coincide.

Proposition 3.2.23. Let P be a finite (3 + 1)-free poset. Then for each xA ∈ XP and each

A ∈ AP we have wt(ψ(xA)) = wt(A).

So we can think of a poset as actually just a graph, namely G = inc(P ) and the P -arrays can

actually just be thought of as colorings of G. Making this association early will help the reader

understand the crystal isomorphism that we will describe later between the crystal operators

acting on colorings of (3+1)-free incomparabilty graphs and Ehrhard’s crystal operators acting on

P -arrays of (3+1)-free posets. To this end, we now describe Ehrhard’s crystal operators. To avoid

being repetitive for the rest of this section, we will always take P as a finite (3+1)-free poset.

Definition 3.2.24. [Ehr22] Let A be a P -array with r ≥ 1. Let the chains a1 <P ⋯ <P am and

b1 <P ⋯ <P bn be the elements of rows r and r+1 of A respectively. Let C ∶ {a1, . . . , am, b1, . . . , bn} →

Z+ be the function inductively defined so that C(bk) = k for each 1 ≤ k ≤ n, and

C(ak) =max({C(bi)∣bi <P ak} ∪ {C(aI)∣1 ≤ i < k}) + 1.

Then we define the r pre-alignment of A to be the map

{a1, . . . , am, b1, . . . , bn} → {r, r + 1} ×Z+

such that each ak maps to (r,C(ak)), and each bk to (r + 1,C(bk)).
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Definition 3.2.25. [Ehr22] Let A be a P -array with r ≥ 1. Let the chains a1 <P ⋯ <P am and

b1 <P ⋯ <P bn be the elements of rows r and r+1 of A respectively. Let ϕ0 be the r pre-alignment.

We construct the r alignment of A as follows.

Suppose we have some ϕk ∶ {a1, . . . , am, b1, . . . , bn} → {r, r+1}×Z+. Select the rightmost element

x mapped to some (i, c) such that column c + 1 of ϕk is nonempty and contains no y >P x, if such

an x exists. Then we define

ϕk+1 ∶ {a1, . . . , am, b1, . . . , bn} → {r, r + 1} ×Z+

so that ϕk+1(x) = (i, c + 1) and ϕk+1 coincides with ϕk elsewhere. If no such x exists, then the r

alignment of A is defined to be ϕk.

Definition 3.2.26. [Ehr22] The P -array crystal lowering operator fP
r ∶ AP → AP ∪{0} acts

on A ∈ AP as follows. Let a1 <P ⋯ <P am and b1 <P ⋯ <P bn be the entries of rows r and r + 1 of A

respectively.

● If every column of the r alignment with an entry in row r also contains an entry in row

r + 1, then define fr(A) = 0.

● Otherwise, let p be minimal such that ap does not share a column with an element in row

r + 1 in the r alignment. Let t ≥ 0 be minimal such that there is bi >P ap+t one column

right of ap+t or there is no bi one column right of ap+t. Then we move ap, . . . , ap+t to row

r + 1, and any bi that shares a column with one of these entries to row r.

In this section, we will refer to the set of elements ap, . . . , ap+t as well as any bi that shares a

column with one of these entries as the leftmost unpaired left r-bracket of A to help facilitate the

correspondence between these crystal operators and the ones defined in Definition 3.2.16. If p

is not necessarily chosen to be minimal, then we refer to this set of entries as an unpaired left

r-bracket of A.

The P -array crystal raising operator ePr ∶ AP → AP ∪ {0} acts on A ∈ AP as follows. Let

a1 <P ⋯ <P am and b1 <P ⋯ <P bn be the entries of rows r and r + 1 of A respectively.

● If every column of the r alignment with an entry in row r + 1 also contains an entry in

row r, then define er(A) = 0.
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● Otherwise, let p be maximal such that bp does not share a column with an element in row

r in the r alignment. Let t ≥ 0 be minimal such that there is ai >P bp+t one column right

of bp+t, or there is no ai one column right of bp+t. Then we move bp, . . . , bp+t to row r, and

any ai that shares a column with one of these entries to row r + 1.

We will refer to the set of elements bp, . . . , bp+t as well as any ai that shares a column with one of

these entries as the rightmost unpaired right r-bracket of A. Again if p is not necessarily chosen

to be maximal, then we refer to this set of entries as an unpaired right r-bracket of A.

Figure 3.3 shows an example of the 1 pre-alignment of a P -array A as well as the 1 alignment

of A, fP
1 A, e

P
1 A, and the associated coloring xA.

Our goal now will be to show that there is a crystal isomorphism between the crystal structure

CP on P -arrays given by the crystal operators fP
i and ePi for some finite (3 + 1)-free poset P and

the crystal CR on the colorings of the graph G = inc(P ) (with a particular relabeling that we will

soon describe) given by the crystal operators fR
i and eRi .
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Unpaired 1-brackets of xA: ) ( (

A: a d f h i k m o
b c e g j l n

1 pre-alignment of A: a d f h i k m o
b c e g j l n

1 alignment of A: a d f h i k m o
b c e g j l n

fP
1 A:

a d f i k m o
b c e g h j l n

eP1 A:
a c d f h i k m o
b e g j l n

Figure 3.3. For a poset P , an example of a P -array A and corresponding coloring
xA associated through the map ψ. Notice how the unpaired 1-brackets of xA can be
used to exactly determine the 1 alignment of A.

Remark 3.2.27. Let P be a (3 + 1)-free poset with n elements and let G = inc(P ) be its

incomparability graph. In order for eRi and fR
i to act on the colorings of G, we need to relabel the

vertices of G 1 through n. We do so in the following way. For any a, b ∈ P , let na, nb ∈ [n] be the

number labels of a and b in the relabeling of G. We need only require that if a <P b, then we need

na < nb. One might wonder why this is the only condition required. For the crystal structure CR,
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when we consider an induced i-coloring of G, the components are disjoint. The only thing that a

labeling could change in the way the crystal operators act is the position of a left or right bracket

in the bracketing phase. However, if we compare two components, every vertex in one component

can not share an edge with any vertex in the other component. This implies that every vertex

in a component is comparable to every vertex in another component (recall two vertices share an

edge if and only if they are incomparable in the poset). Requiring that if a <P b, then na < nb

is all we need for the bracketing to be well defined. This means that when we are confined to

claw-free incomparability graphs, the position of the bracket could be determined by any vertex

in the bracket, and we would still end up with the exact same bracketing. We summarize this in

Lemma 3.2.28.

Lemma 3.2.28. In the relabeling of G = inc(P ), any vertices na, nb, with na < nb where vertices

na and nb appear in different components of the induced i-coloring of xA, then we must have a <P b.

Next we show that unpaired left and right brackets of CR and CP coincide through correspon-

dence of xA with A.

Proposition 3.2.29. Let A ∈ AP , r ∈ I, and let xA be the corresponding coloring of G = inc(P )

with relabeling. Now suppose eRr xA ≠ 0. If an unpaired right r-bracket of the induced r-coloring

of xA is the 2k + 1 vertices nai , nai+1 , . . . nai+k−1 , nbj , nbj+1 , . . . , nbj+k , where the a’s are colored r and

the b’s are colored r + 1, then ePr A ≠ 0 and the elements of A corresponding to these vertices,

ai, ai+1, . . . ai+k−1, bj, bj+1, . . . , bj+k, are exactly the elements of an unpaired right r-bracket of A.

Proof. First, suppose i > j. Then it follows from Lemma 3.2.28 that there are more r colored

vertices than r + 1 colored vertices in components left of the right r-bracket in the induced r-

coloring of xA, so that there must be an unpaired left r-bracket left of the unpaired right r-bracket,

a contradiction. Hence i ≤ j.

We have two scenarios. If ai−1 exists, let’s first assume that ai−1 is in a column left of column j

in the r prealignment. Then, the r prealignment of A for columns j through j+k has the following

look.
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ai ⋯ ai+k−1

bj ⋯ bj+k−1 bj+k

This follows because by Lemma 3.2.28, if bj−1 exists, we know ai >P bj−1 and if ai+k exists, we

must have ai+k >P bj+k. We also have that ai+m is incomparable to bj+m and bj+1+m for all 0 ≤m < k,

due to the shared edges in the graph. This explains why ai, . . . , ai+k−1 appear in columns j + 1

through j +k of the r prealignment of A. Next, because of the incomparability we just mentioned

and the fact that ai+m <P bj+m+2 for all 0 ≤ m ≤ k − 1 (not including k − 1 if bj+k+1 doesn’t exist),

the r alignment of A for columns j through j + k has the following look.

ai ⋯ ai+k−1

bj bj+1 ⋯ bj+k

Hence, they form an unpaired right r-bracket of A. Now suppose that ai−1 is not in a column

left of column j in the r prealignment. Then if we look left of entry ai−1, there must be at least

one empty column entry in row r. Choose the first that occurs when scanning from the ai−1 entry

leftward. Suppose this occurs in column l, with ai′ being the entry in row r in column l + 1. Then

we have the following look at that area.

ai′

bl bl+1

Now we want to be able to say that every entry in a column left of and including column l in

the r prealignment is in a component (of the induced r coloring of xA) left of any component that

contains an entry in a column right of column l in the r prealignment. By Lemma 3.2.28, we need

only prove that ai′ >P aq and bl+1 >P aq for all 1 ≤ q < i′ and ai′ >P bt and bl+1 >P bt for all 1 ≤ t ≤ l.

Since ai′ >P bl and ai′ >P ai′−1 (assuming ai′−1 exists), then it clearly follows that ai′ >P aq for all

1 ≤ q < i′ and ai′ >P bt for all 1 ≤ t ≤ l. It is also clear that bl+1 >P bt for all 1 ≤ t ≤ l. So we need

only prove that if ai′−1 exists, then bl+1 >P ai′−1 so that we will have bl+1 >P aq for all 1 ≤ q < i′. If

ai′−1 exists, then bl−1 must also exist. Now row r column l being open in the r prealignment means

that ai′−1 />P bl−1, and hence ai′−1 />P bl+1 but if ai′−1 /<P bl+1, the only other possibility would be
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that it is incomparable to bl−1, bl and bl+1. Since these three form a chain, this is a contradiction

since P is (3 + 1)-free.

Now this means that in the components of the induced r coloring of xA that are right of the

components that contain ai′−1 (if it exists) and bl and left of the unpaired right r-bracket that

contains nai , nai+1 , . . . nai+k−1 , nbj , nbj+1 , . . . , nbj+k , we must have i − i′ vertices colored r and j − l − 1

vertices colored r + 1. But by the fact that ai−1 is not in a column left of column j and the choice

of ai′ , it follows that i − i′ ≥ j − l − 1. If i − i′ > j − l − 1, then there must be an unpaired left

r-bracket that is left of our unpaired right r-bracket, a contradiction. So it must be the case that

i − i′ = j − l − 1. Then the r alignment of A for columns j through j + k has the following look.

ai−1 ai ⋯ ai+k−1

bj bj+1 ⋯ bj+k

Now it follows that ai−1 >P aq and bj >P aq for all 1 ≤ q < i−1 and ai−1 >P bt and bj >P bt for all

1 ≤ t < j. So all entries in columns left of j are in components of the induced r coloring of xA that

are left of components that contain any of the elements shown in columns j through j +k of the r

prealignment. But we know that ai−1 <P ai and ai−1 <P bj because it must be in a component left

of our unpaired left r-bracket in the induced r coloring of xA. This implies nai−1 is a left r-bracket

immediately left of our unpaired right r-bracket of xA, a contradiction. □

Proposition 3.2.30. Let A ∈ AP , r ∈ I, and let xA be the corresponding coloring of G = inc(P )

with relabeling. Now suppose fR
r xA ≠ 0. If an unpaired left r-bracket of the induced r coloring of

xA is the 2k + 1 vertices nai , nai+1 , . . . nai+k , nbj , nbj+1 , . . . , nbj+k−1, where the a’s are colored i and

the b’s are colored i + 1, then fP
r A ≠ 0 and the elements of A corresponding to these vertices,

ai, ai+1, . . . ai+k, bj, bj+1, . . . , bj+k−1, are exactly the elements of an unpaired left r-bracket of A.

Proof. Suppose i ≤ j and element ai−1 appears in a column left of column j in the r pre-

alignment of A. Then by the same arguments made in Proposition 3.2.29, we have that the r pre

alignment of A has the following look for columns j through j + k.
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ai ⋯ ai+k−1 ai+k

bj ⋯ bj+k−1 bj+k

Note that bj+k may not exist, but if it does, ai+k+1 must exist and we must not have ai+k+1 >P
bj+k. If bj+k exists and there is no ai+k+1, then there are more r + 1 colored vertices in xA after

this unpaired left r-bracket of xA, meaning that there is an unpaired right r-bracket right of it, a

contradiction. Similarly, if bj+k exists but ai+k+1 >P bj+k, then nbj+k is an r + 1 colored vertex in a

component by itself in the induced r coloring of xA that is immediately right of our unpaired left

r-bracket of xA, a contradiction. Hence the component that is immediately right of our unpaired

left r-bracket of xA must be an even bracket or another left r-bracket of xA, so that in the r

alignment phase of A, we are guaranteed to have at some point bj+k move a column right so we

have the following look.

ai ⋯ ai+k−1 ai+k

bj ⋯ bj+k−1

Now because the vertices nai , nai+1 , . . . nai+k , nbj , nbj+1 , . . . , nbj+k−1 are in an unpaired left r-

bracket of xA, then it follows that bj+m is incomparable to ai+m+1 for 0 ≤ m < k. Hence it follows

that after the r alignment phase we have the following look.

ai ⋯ ai+k−1 ai+k

bj ⋯ bj+k−1

So that it is easy to verify that these elements form an unpaired left r-bracket of A.

Now suppose that ai−1 is not in a column left of column j in the r prealignment. Then if we

look left of entry ai−1, there must be at least one empty column entry in row r. Choose the first

that occurs when scanning from the ai−1 entry leftward. Suppose this occurs in column l, with ai′

being the entry in row r in column l + 1. Then we have the following look at that area.

ai′

bl bl+1
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Now we must have l < j because this state of the r prealignment implies ai′ >P bl and i′ < i

and we know bj+m >P aq for any q < i and 0 ≤ m < k. Now this means that bj+m can move up

to the column that contains ai+m+1 in the r alignment phase as long as the bq with q ≥ j + k can

move past the column containing ai+k. Suppose this isn’t possible. We know that bq >P ai+m for

q ≥ j + k and 0 ≤m ≤ k, so if it is not possible it is because there is either an empty column in row

r after some element ai+k+p or there exists some elements ai+k+p+1 >P bj+k+q with 0 ≤ q < p. So that

we have the following look for the ai+k column and those until the empty space or the existence

of ai+k+p+1 as defined.

ai+k ⋯ ai+k+p ai+k+p+1

bj+k+q ⋯ bj+k+q+p

Now all elements in columns right of the ai+k+p element correspond to vertices contained

in components strictly right of the component that contains our unpaired left r-bracket of xA.

This also means that the vertices corresponding to the elements {ai+k+1, . . . , ai+k+p, bj+k,⋯, bj+k+q+p}

occur in components immediately right of the component that contains our unpaired left r-bracket

of xA. But this means we have more r + 1 colored vertices than r colored vertices in this set of

components, so that there must be at least one unpaired right r-bracket following our unpaired left

r-bracket of xA, a contradiction. So it must be the case that we can slide all bj+m with 0 ≤m < k

into the desired columns, so that the unpaired left r-bracket of xA does correspond again to an

unpaired left r-bracket of A.

Now suppose i > j. If we repeat the argument noting that we may not have an empty column

left of ai in row r (but this doesn’t stop the proof from working) we again get that the unpaired

left r-brackets correspond. □

Before we can do the next proposition, we will need the following new definition.

Definition 3.2.31. Define a maximal set of paired r-brackets to be all of the vertices of xA in

any set of components where the set includes every component in the induced r-coloring of xA in

between two consecutive unpaired r-brackets, or every component that is left of the first unpaired

r-bracket, or every component that is right of the last unpaired r-bracket.
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Example 3.2.32. In Figure 3.3, there are four maximal sets. Vertices 1 and 2 form the first

set, then the second is vertices 4, 5, 6, and 7, the third set is vertices 9 and 10, and the fourth set

is vertices 14 and 15.

Lemma 3.2.33. Let nai , nai+1 , . . . , nai+k be the vertices colored r and let nbj , nbj+1 , . . . , nbj+k be

the vertices colored r + 1 in a maximal set of paired r-brackets for some coloring xA. Then the

maximal set has the following property

ai+m />P bj+m for all 0 ≤m ≤ k.

Proof. By the definition of maximal set, if we have a pair of left and right r-brackets, it must

be the case that the left r-bracket must occur before the right r-bracket it is paired with. Hence if

ai+m >P bj+m for some m, then we know vertex nai+m occurs in a component that is right of nbj+m .

But this implies that in the maximal set we have more r+1 colored vertices than r colored vertices

left of the nai+m vertex’s component (call this component Y ) within the maximal set. And that

would imply we have at least one more right r-bracket then left r-bracket that is left of component

Y within the maximal set, a contradiction. □

Proposition 3.2.34. The corresponding elements of A in any maximal set of paired r-brackets

for a coloring xA must appear as a block of consecutive fully filled columns in the r alignment of

A. That is, if the elements are ai, . . . , ai+k, bj, . . . , bj+k, then we must have the corresponding look

in the r alignment of A.

ai ⋯ ai+k

bj ⋯ bj+k

Proof. Suppose i ≤ j. Then because ai >P bj−1 (if bj−1 exists), then it is clear that ai is

in a column whose value is at least j in the r prealignment. By Lemma 3.2.33, we know that

ai+m />P bj+m for all 0 ≤ m ≤ k. Hence the corresponding look shown above is exactly the look of

columns j through j+k in the r prealignment of A. Lastly, since bj+k <P ai+k+1, bj+k+1 should either

exist, then it follows no bj+m can move rightward in the r alignment phase for any 0 ≤m ≤ k.
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Now suppose i > j. Now since any vertex naq with q < i is in a component left of every

component in the maximal set, it follows that aq <P bj+m for all 0 ≤ m ≤ k. Again recall, bj+k <P
ai+k+1, bj+k+1 should either exist, so in the r alignment phase bj+k can only move at most to the

column that contains ai+k. Lemma 3.2.33 implies that aq />P bj+m for any 0 ≤m ≤ k and 1 ≤ q ≤ i+m.

Hence we know that bj+k can move to the column with ai+k and no further. And because bj+k−1

can move to the column of ai+k−1, but no further because bj+k is in the next column, the process

repeats so that we get the r alignment of A as pictured.

There is only two things that could stop this process. The first is if there was no element in row

r in a column right of a bj+m at some point in the r alignment phase before it achieved its position

in a column with ai+m. This is a contradiction though. The only way an aq can have an empty

column before it after the r prealignment, is if aq was greater in the poset than the element in row

r + 1 that was in a column before it, but bj+m >P aq for all q < i so this couldn’t have happened.

And because ai, . . . , ai+k can’t move in the r alignment phase (ai+k <P ai+k+1, bj+k+1 should either

exist) we can’t have any empty columns before ai be created in the r alignment phase that would

prevent any of the bj+m’s from moving.

The second case is that there is an empty column in row r or r+1 that occurs after ai+k so that

we can’t move entries in the alignment phase to get the desired picture. Then after the alignment

phase, consider the new block of columns that aren’t participating in an unpaired left or right

r-bracket of A, where q, l ≥ 1 and p ≥ 0.

ai−p−q ⋯ ai−q ⋯ ai ⋯ ai+k ⋯ ai+k+l

bj−p ⋯ bj ⋯ bj+q ⋯ bj+q+k ⋯ bj+q+k+l

Since we choose the set to be maximal, this implies there are some vertices of the set

{nai−p−q , . . . , nai−1 , nai+k+1 , . . . , nai+k+l , nbj−p , . . . , nbj−1 , nbj+k+1 , . . . , nbj+q+k+l}

That are in unpaired left or right i-brackets in xA and by Proposition 3.2.29 and Proposi-

tion 3.2.30, we must have also as unpaired left or right i-brackets in A, but this is not the case, a

contradiction. □
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Proposition 3.2.35. Let P be a finite (3 + 1)-free poset and let G = inc(P ) be its incompa-

rability graph, with relabeling according to what is specified in Remark 3.2.27. Let A ∈ AP be a

P -array, let xA be the coloring of G corresponding to A and let I be the index set of CP and CR.

Then we have

(1) εRi (xA) = εPi (A) for all i ∈ I,

(2) φR
i (xA) = φP

i (A) for all i ∈ I,

(3) If fR
i xA ≠ 0, let B = fP

i A. Then f
R
i xA = xB, and

(4) If eRi xA ≠ 0, let B = ePi A. Then eRi xA = xB.

Proof. By Proposition 3.2.29, for every unpaired right i-bracket of xA, we have a correspond-

ing unpaired right i-bracket of A. By Proposition 3.2.30, for every unpaired left i-bracket of xA,

we have a corresponding unpaired left i-bracket of A. Lastly, by Proposition 3.2.34, we know that

since every vertex of the induced i coloring of xA is contained in an unpaired left i-bracket, an

unpaired right i-bracket, or a maximal set of paired i-brackets, then all of the elements of rows

i and i + 1 of the i alignment of A are accounted for and we can definitively say the number of

unpaired left i-brackets of A and xA are equal and the number of unpaired right i-brackets of A

and xA are equal. So it follows that εRi (xA) = εPi (A) and φR
i (xA) = φP

i (A) for all i ∈ I.

Let fR
i xA ≠ 0, and let B = fP

i A. Then by Proposition 3.2.30 and (2), since the unpaired left

i-brackets of A and xA coincide, we have fR
i xA = xB. Now let eRi xA ≠ 0, and let B = ePi A. Then

by Proposition 3.2.29 and (1), since the unpaired right i-brackets of A and xA coincide, we have

eRi xA = xB. □

Theorem 3.2.36. CP and CR are isomorphic as crystals.

Proof. Let P be a finite (3 + 1)-free poset and let G = inc(P ) be its incomparability graph,

with relabeling according to what is specified in Remark 3.2.27. Let A ∈ AP be a P -array and let

xA be the coloring of G corresponding to A. Let ψ be the bijective map from Definition 3.2.19.

We need only show that ψ satisfies the criteria of Definition 3.2.15.

By Proposition 3.2.23, we know that ψ is weight preserving. By Proposition 3.2.35 (1) and

(2), we know that ψ preserves the string lengths.
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Suppose eRi xA ≠ 0. Then let xB = eRi xA. By Proposition 3.2.35 (4), we have

ψ(eRi xA) = ψ(xB) = B = ePi A = ePi ψ(xA)

Similarly, suppose fR
i xA ≠ 0. Then let B = fP

i A. By Proposition 3.2.35 (3), we have

ψ(fR
i xA) = ψ(xB) = B = fP

i A = fP
i ψ(xA)

This shows that the bijective map ψ satisfies the criteria of Definition 3.2.15, hence CP and

CR are isomorphic as crystals. □

Since Proposition 3.2.18 shows CR and CC are isomorphic as crystals, we immediately have

the following corollary.

Corollary 3.2.37. CP and CC are isomorphic as crystals.

3.3. Stembridge Crystals

In this section, we will review the Stembridge axioms. We will then show that the crystal

operators defined in Section 3.2.1 do not satisfy all of the Stembridge axioms.

Definition 3.3.1. A simply laced root system is a root system where all the roots have

the same length, hence a type Ak−1 root system is a simply laced root system. A finite type,

seminormal crystal C with a simply laced root system that satisfies the Stembridge axioms is a

Stembridge crystal .

Before we give the definition of the Stembridge axioms, we will provide some motivation for

why we want a crystal with a simply laced root system to satisfy these axioms. When the crystal

satisfies the Stembridge axioms we are guaranteed that each connected component in the crystal

has a unique highest weight element. Moreover, any two crystals whose highest weight elements

have the same weight are isomorphic. Furthermore, the character of a Stembridge crystal of weight

λ will coincide with the character of an irreducible representation with the same highest weight

λ. We state this formally in the following proposition:

Theorem 3.3.2. The following are true:
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(1) If C is a connected Stembridge crystal, then C has a unique highest weight element.

(2) Let C and C′ be connected Stembridge crystals with u ∈ C and u′ ∈ C′ being highest weight

vectors. If wt(u) = wt(u′), then C and C′ are isomorphic.

(3) The character of a connected Stembridge crystal with a unique highest λ equals the char-

acter of the irreducible representation with highest weight λ.

(4) The character of a Stembridge crystal is Schur positive.

To read more about, or see a proof of Theorem 3.3.2 please refer to Theorems 4.12, 4.13 and

Corollary 13.9 of [BS17]. Statement (4) of Theorem 3.3.2 is a direct consequence of (3).

Definition 3.3.3. The Stembridge axioms , as mentioned in Definition 3.3.1, are the local

conditions a crystal needs to satisfy to be a Stembridge crystal. There are four conditions for the

ei crystal operators: S0, S1, S2, and S3; and four conditions for the fi crystal operators: S0’,

S1’, S2’, and S3’. We list the axioms now:

S0: If ei(x) = 0, then εi(x) = 0.

S0’: If fi(x) = 0, then φi(x) = 0.

S1: Assume i, j ∈ I and i ≠ j. If x, y ∈ C and y = eix, then εj(y) equals either εj(x) or εj(x)+1.

The second case is only possible when αi and αj are not orthogonal.

S1’: Assume i, j ∈ I and i ≠ j. If x, y ∈ C and y = fix, then φj(y) equals either φj(x) or

φj(x) + 1. The second case is only possible when αi and αj are not orthogonal.

S2: Assume i, j ∈ I and i ≠ j. If x ∈ C with εi(x) > 0 and εj(eix) = εj(x) > 0, then eiejx = ejeix

and φi(ejx) = φi(x).

S2’: Assume i, j ∈ I and i ≠ j. If x ∈ C with φi(x) > 0 and φj(fix) = φj(x) > 0, then

fifjx = fjfix and εi(fjx) = εi(x).

S3: Assume i, j ∈ I and i ≠ j. If x ∈ C with εj(eix) = εj(x) + 1 > 1 and εi(ejx) = εi(x) + 1 > 1,

then eie2jeix = eje2i ejx ≠ 0 and we also have φi(ejx) = φi(e2jeix) and φj(eix) = φj(e2i ejx).

S3’: Assume i, j ∈ I and i ≠ j. If x ∈ C with φj(fix) = φj(x)+1 > 1 and φi(fjx) = φi(x)+1 > 1,

then fif 2
j fix = fjf 2

i fjx ≠ 0 and we also have εi(fjx) = εi(f 2
j fix) and εj(fix) = εj(f 2

i fjx).
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Remark 3.3.4. Recall the definiton of a seminormal crystal in Definition 3.2.8. Since our

crystal is seminormal, we are guaranteed to satisfy Stembridge axioms S0 and S0’. We will show

in the next section that S1 and S1’ are also satisfied for all unit interval graphs.

Now that we are formally introduced to the Stembridge axioms, we will now show that the

Type A crystal operators defined in Section 3.2.1 do not satisfy all of the axioms. Specifically, S2,

S3, S2’, and S3’ are not satisfied. We will show now an example that is the first occurence of a

Stembridge axiom violation, more specifically a violation of S2’.

Example 3.3.5. Consider the coloring x = [1,2,1,3] of the graph G = P4. Then f1x =

[2,1,2,3], f2x = [1,3,1,3], and we have the following string lengths: φ2(x) = φ2(f1x) = 1. Since

φ2(x) = 1 > 0, and φ2(f1x) = φ2(x) = 1 > 0, then we should have that f1f2x = f2f1x in order to

satisfy S2’. However, f1f2x = [1,3,2,3] and f2f1x = [3,1,2,3], hence the crystal operators don’t

satisfy all of the Stembridge axioms. Figure 3.4 shows the connected component of the crystal

graph where this takes place.
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[1,3,1,3]

[1,3,2,3] [1,3,1,4]

[1,3,2,4]

[2,3,2,4] [1,4,2,4]

[3,2,3,4]

[4,2,3,4]

[2,4,2,4]

[2,4,3,4]

[1,4,3,4]

[1,2,1,3]

[2,1,2,3][1,2,1,4]

[3,1,3,4]

[4,1,3,4]

[2,1,3,4]

[1,2,4,1]

[1,2,4,2][1,3,4,1]

[1,3,4,3]

[2,3,4,3]

[1,2,4,3]

[3,1,2,3]

[3,1,2,4][2,3,2,3]

[1,2,1,2]

[1,3,4,2]

[2,3,4,2]

[2,1,2,4]

[1,4,1,4]

[3,4,3,4]

[1,2,3,2]

[4,1,2,4]

[1,2,3,1]
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Figure 3.4. One connected component of the crystal graph associated to the graph
P4 using 4 colors, which is not a Stembridge crystal
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3.4. Graphs of G4 are Stembridge crystals

In this section, we focus on unit interval graphs. Recall that a graph G ∈ G4 is a unit interval

graph that does not contain an induced subgraph isomorphic to P4 (Definition 1.2.9). For any

graph G ∈ G4, let C be the crystal structure of the colorings of G using k colors. Then we have the

following theorem.

Theorem 3.4.1. The crystal C forms a type Ak−1 Stembridge crystal structure using the op-

erators ei and fi with i ∈ I = {1, . . . , k − 1}.

We have already shown C satisfies the crystal axioms, we need only show it satisfies the

Stembridge Axioms. Remark 3.3.4 shows S0 and S0’ are already satisfied. In Section 3.4.1, we

will show C satisfies S1 and S1’. In Section 3.4.2, we will describe six cases for when adjacent

operators act on a coloring x that will help us prove the remaining axioms. In Section 3.4.3, we

will show C satisfies S2 and S2’ and in Section 3.4.4, we will show C satisfies S3 and S3’.

3.4.1. Stembridge Axiom 1. In this section we will prove that the crystal operators ei and

fi do satisfy S1 and S1’ for all unit interval graphs. To this end, we begin with the following

proposition:

Proposition 3.4.2. Let x be a coloring and i, j ∈ I with j ≠ i − 1, i or i + 1. If fjx ≠ 0, then

φix = φi(fjx). Also, if ejx ≠ 0, then εix = εi(ejx).

Proof. The crystal operators fi and ei can only change colors on vertices if they are colored

i or i + 1, since the string lengths represent how many times the operators can be applied, and fj

and ej cannot change the i-induced coloring of x, the result follows immediately. □

Let x be a coloring of a unit interval graph. In order to prove S1’ completely, we will need

a clear way to think about how fi acting on x can affect the i + 1-bracketing and similarly, how

fi+1 acting on x can affect the i-bracketing. Similarly, to prove S1, we will need to consider how

ei acting on x can affect the i + 1-bracketing and how ei+1 acting on x can affect the i-bracketing.

In this section, we will show how fi+1 applied to a coloring x can affect the i-bracketing.

Since the process is similar for the other three, we will omit it. Applying fi+1 to x will change

a sequence of alternating i + 1 and i + 2’s that begins and ends with an i + 1 into an alternating
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sequence that begins and ends with i + 2. The i-coloring of fi+1x can be thought of as being

obtained by performing a sequence of steps to the induced i-coloring of x. The sequence of steps

will consist of a deletion of an i + 1, followed by sequence of ’rightward moves’ of i + 1’s. The

sequence begins with the last i + 1 in the right i + 1-bracket being deleted. Then the remaining

steps consist of moving each of the other i + 1’s that remain in the right i + 1-bracket rightward.

To determine the number of i + 1’s that will be moved rightward, we take the length of the right

i + 1-bracket, subtract one, and divide by two.

Example 3.4.3. Let’s clarify what we’ve said so far with an example where i = 1.

vertex numbers: 1 2 3 4 5 6 7 8 9 10 11 12 13

x ∶
2 3 1 2

1
3 2 3

1
2 1 3 1

1 − bracketing of x ∶ ( ) ( ) )

induced 1-coloring of x ∶
2 1 2 1 2 1 2 1 1

deletion and leftward moves: − − −− > −− > X

induced 1-coloring of f2x ∶
2 1 1 2 2 1 1 1

1 − bracketing of f2x ∶ ( ) ) )

f2x ∶
2 3 1 3

1
2 3 2

1
3 1 3 1

The alternating sequence of 2’s and 3’s begins on vertex 4 and ends on vertex 10 in the coloring

x where the 2’s in this sequence are colored red. Compare the induced 1-colorings of x and f2x.

Following the procedure we discussed above we first begin with the deletion of the coloring of 2

on vertex 10 (denoted by the X). Then, since the alternating sequence of 2’s and 3’s is length 5,

we expect 2 rightward moves of 2’s in the induced 1-coloring of x. This is the rightward move of

the color 2 on vertex 7 to vertex 8 (denoted by the −− >), followed by the rightward move of the

color 2 on vertex 4 to vertex 6 (denoted by the −−−− >). Notice that applying these three moves

to the induced 1-coloring of x gives us the induced 1-coloring f2x.
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Definition 3.4.4. For the rest of this section, we will call the ’movement’ of an i + 1 in the

induced i-coloring of x rightward to its new position in the induced i-coloring of fi+1x a rightward

move. It will be important to remember that this ’movement’ is from a vertex that was colored

i + 1 in x to a vertex that is colored i + 2 in x, and these vertices share an edge because they are

part of a right i + 1-bracket of x.

Definition 3.4.5. Let x be a coloring. We say that there is no net change in the i-bracketing

of fi+1x if the number of unpaired left i-brackets of x and fi+1x are equal and the number of

unpaired right i-brackets of x and fi+1x are equal. If there is a change, we will specify what left

or right i-brackets we gained or lost.

Remark 3.4.6. It should be noted, that in the following propositions we will know that we

gained or lost brackets when applying the crystal operators to colorings. However specifying

exactly what unpaired brackets we gained or lost is left to the end of this section. For example,

if we gain a right i-bracket, it is possible that there are no unpaired left i-brackets left of it, so

that we gain an unpaired right i-bracket. However, it is also possible this bracket pairs up with a

previously unpaired left i-bracket left of it and we end up losing an unpaired left i-bracket.

We now show that the induced i-coloring obtained after each one of these steps will always

either keep the string length the same (φi(fi+1x) = φi(x)), or increase it by one (φi(fi+1x) =

φi(x) + 1). Since the i-bracketing of fi+1x is equivalent to a deletion and a sequence of rightward

moves in the i-bracketing of x as described previously, we will simply track what can happen to

the i-bracketing after each of these steps.

We begin by considering what happens to the i-bracketing after a deletion of an i + 1.

Proposition 3.4.7. The net change of i-bracketing for a coloring x after the deletion of an

i + 1 (as described above as the last i + 1 in a right i + 1-bracket) is:

(1) a deletion of a left i-bracket, or

(2) the creation of an additional right i-bracket.

Proof. The deleted i+ 1 is either in a left i-bracket, an even i-bracket or a right i-bracket. If

it is in a right i-bracket, then its deletion results in a right i-bracket that is left of its position and
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a right i-bracket that is right of its position, the net change in the i-bracketing here is the creation

of a right i-bracket. If the i + 1 is in an i starting even i-bracket, then after deletion we obtain

a right i-bracket that is left of its position and an i starting even i-bracket that is right of its

position (assuming it didn’t end with the i+ 1 we deleted); if it is an i+ 1 starting even i-bracket,

then after deletion we obtain a right i-bracket that is right of its position and an i + 1 starting

even i-bracket that is left of its position (assuming it didn’t start with the i + 1 we deleted). The

net change for a deletion within an even i-bracket is the creation of a right i-bracket. If the i+1 is

in a left i-bracket, then after deletion we get an i+ 1 starting even i-bracket on the left (assuming

the i + 1 deleted wasn’t at the beginning of the bracket) and an i starting even i-bracket on the

right (assuming the i+ 1 deleted wasn’t at the end of the bracket). The net change is the deletion

of a left i-bracket. Since these are the only possibilities, the proof is completed. □

Now let’s consider the possibilities of rightward moves. We first note that because we began

with the deletion of the i + 1 in the right i + 1-bracket that the fi+1 is acting upon, after each

rightward move the induced i-coloring is a proper coloring as long as we start with the rightmost

rightward move and go from right to left. The situation for rightward moves is more complicated

than just a simple deletion and we need to know what possibilities there are for the look of the

induced i-coloring of x before and after a rightward move. The following proposition will help

make this clearer.

Proposition 3.4.8. Suppose we are performing a rightward move in the induced i-coloring of

x. Then the i + 1 can’t move past two vertices colored i. And if the i + 1 is moved from a vertex

left of a vertex colored i, to a vertex that is right of that same vertex colored i, then the following

are true:

(1) it must share an edge with that vertex colored i before and after the rightward move;

(2) the i + 1 must be the last i + 1 of the i-bracket it is in;

(3) the i colored vertex and the vertex colored i + 1 after the rightward move must no longer

be connected to the i-bracket it was in before the rightward move was performed; and the

new bracket they are in begins with the i colored vertex.
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Proof. First we prove the i + 1 can’t move past two vertices colored i. Since the movement

of the i + 1 is to and from vertices that share an edge, we know that for a unit interval graph

(Definition 1.2.8) every vertex in between these two vertices must also share an edge. If there was

more than one i colored vertex in between them, then it would not have been a proper coloring.

For (1), again, this follows because it is a unit interval graph. Every vertex in between the

start and end vertex of the move must have an edge with both the start and end vertices because

the start and end vertices of a rightward move share an edge.

For (2), an i-bracket consists of only i’s and i + 1’s. The only colored vertex that could have

been right of the i colored vertex (that the i + 1 is moving right of) and share an edge with it, is

an i + 1 colored vertex. However, since we know the movement of the i + 1 must create a proper

coloring, if the i+1 being moved is moved right of the i colored vertex, by properties of unit interval

graphs, its new vertex must also share an edge with that i+1 colored vertex that is already on the

right. This creates a contradiction, hence the i colored vertex must be at the end of the i-bracket

and the i + 1 must be the last of its color in the i-bracket.

For (3), since an i-bracket consists of only i’s and i + 1’s, an i + 1 can only share an edge on

its left with an i in the induced i-coloring. Let’s suppose the i + 1 has a vertex on its left (before

the rightward move) colored i, then we shall call this vertex A. Then the i colored vertex that is

right of the i + 1 that will be moved can’t share an edge with vertex A, and by extension of the

property of unit interval graphs no vertex right of the i can share an edge with vertex A as well.

So, it is clear the new bracket they are in must begin with the i colored vertex. □

Definition 3.4.9. In a rightward move, if the i + 1 moves to a vertex that shares an edge

with an i colored vertex and the i + 1’s original vertex didn’t share an edge with, we say the i + 1

acquires an edge.

From Proposition 3.4.8, we can now say that there are four possible cases for the induced

i-coloring of x when performing a rightward move:

(1) The i + 1 doesn’t move past an i and doesn’t acquire a new edge on its right.

(2) The i+ 1 doesn’t move past an i, does acquire a new edge on its right, and maintains the

edge on its left.
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(3) The i+ 1 doesn’t move past an i, does acquire a new edge on its right, and loses the edge

on its left.

(4) The i + 1 does move past an i.

We now want to determine what the net change is in the i-bracketing of each of these four

cases. Case (1) is covered in Proposition 3.4.10. Case (2) is covered in Proposition 3.4.11. Case

(3) is covered in Proposition 3.4.12. Case (4) is covered in Proposition 3.4.13.

Proposition 3.4.10. Suppose we are performing a rightward move. If the i + 1 is not moved

past an i colored vertex, and does not acquire an edge in the i-induced coloring of x, then we have

the following situations:

(1) If it was in a left i-bracket, there is no net change in the i-bracketing.

(2) If it was in a right i-bracket, there is no net change in the i-bracketing.

(3) If it was in an i + 1 starting even i-bracket, there is no net change in the i-bracketing.

(4) If it was in an i starting even i-bracket, there is either no net change, or the change in the

i-bracketing is the even i-bracket gets replaced by a right i-bracket immediately followed

by a left i-bracket on its right.

Proof. For all four situations, if there is no loss of edges in moving from the old vertex to

the new, clearly there is no change in the i-bracketing. So for each of the situations we will now

assume that in moving the i + 1 to the right, we lose an edge with the i colored vertex it had on

its left.

For (1), when we lose the edge we end up with an i + 1 starting even i-bracket, immediately

followed by a left i-bracket. So we have no net change in the i-bracketing.

For (2), when we lose the edge we end up with a right i-bracket, immediately followed by an

i + 1 starting even i-bracket. So we have no net change in the i-bracketing.

For (3), when we lose the edge, we end up with two i+ 1 starting even i-brackets. So we have

no net change in the i-bracketing.

For (4), when we lose the edge, we end up with a right i-bracket immediately followed by a

left i-bracket. □
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Proposition 3.4.11. Suppose we are performing a rightward move. If the i + 1 is not moved

past a vertex colored i, acquires an edge with another i-bracket on its right, and maintains the

edge it shared with a vertex colored i on its left (assuming there was such an i), then we have the

following situations:

(1) If it was in an i starting even i-bracket and it joined on its right an i starting even

i-bracket, then there is no net change in the i-bracketing.

(2) If it was in a left i-bracket and it joined on its right an i starting even i-bracket, then

there is no net change in the i-bracketing.

(3) If it was in an i starting even i-bracket and it joined on its right a right i-bracket, then

there is no net change in the i-bracketing.

(4) If it was in a left i-bracket and it joined on its right a right i-bracket, then there is no net

change in the i-bracketing.

Proof. For (1), when the two i starting even i-brackets combine, we get one i starting even

i-bracket. Hence, no net change in the i-bracketing.

For (2), when the left i-bracket combines with the i starting even i-bracket, we get one left

i-bracket. Hence, no net change in the i-bracketing.

For (3), when the i starting even i-bracket combines with the right i-bracket we get one right

i-bracket. Hence, no net change in the i-bracketing.

For (4), when the left i-bracket combines with the right i-bracket we get one i+1 starting even

i-bracket. Since before the rightward move the right and left i-brackets must have been paired,

we have no net change in the i-bracketing. □

Proposition 3.4.12. Suppose we are performing a rightward move. If the i + 1 is not moved

past an i, acquires an edge on the right, and loses the edge it shared with the i colored vertex it

had on its left (assuming there was such an i), then we have the following situations:

(1) If it was in an i starting even i-bracket and it joined on its right an i starting even i-

bracket, then the i starting even i-brackets get replaced by a right i-bracket followed by a

left i-bracket.
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(2) If it was in a left i-bracket and it joined on its right an i starting even i-bracket, then

there is no net change in the i-bracketing.

(3) If it was in an i starting even i-bracket and it joined on its right a right i-bracket, then

there is no net change in the i-bracketing.

(4) If it was in a left i-bracket and it joined on its right a right i-bracket, then there is no net

change in the i-bracketing.

Proof. For (1), removing the i+1 from the i starting even i-bracket on the left creates a right

i-bracket. Adding the i + 1 to the start of an i starting even i-bracket will create a left i-bracket

on the right.

For (2), removing the i+1 from the left i-bracket on the left creates an i starting even i-bracket.

Adding the i+ 1 to the beginning of an i starting even i-bracket will create a left i-bracket on the

right. Hence, there is no net change in the i-bracketing.

For (3), removing the i+1 from the i starting even i-bracket on the left creates a right i-bracket.

Adding the i + 1 to the beginning of a right i-bracket will create an i + 1 starting even i-bracket

on the right. Hence, there is no net change in the i-bracketing.

For (4), removing the i + 1 from the left i-bracket on the left creates an i + 1 starting even

i-bracket. Adding the i + 1 to the beginning of a right i-bracket will create an i + 1 starting even

i-bracket on the right. Since the right and left i-brackets before the rightward move would have

been paired, there is no net change in the i-bracketing. □

Proposition 3.4.13. Suppose we are performing a rightward move. If the i+1 moves past an

i, then there is no net change in the i-bracketing.

Proof. By Proposition 3.4.8, we know that whatever i-bracket the i + 1 and i were in, they

must be at the end of the i-bracket and after the rightward move they must no longer be in the

i-bracket. Suppose the i-bracket they were in contained more than just two colors, then cutting

off an even amount of colors from the right of the bracket doesn’t change what the bracket is

(i.e., if it was a left i-bracket, it still is) so cutting the i + 1 and i from the i-bracket on the left

doesn’t change the i-bracketing. Similarly, if we add an even number of alternating i’s and i + 1’s

to an i-bracket, it will also not change what the i-bracket is. If it was not connected to anything
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on the left to begin with, or doesn’t connect with an i-bracket on the right after the rightward

move, it doesn’t matter since it is just an even i-bracket, hence there is no net change in the

i-bracketing. □

Proposition 3.4.14. Let x be a proper coloring of a unit interval graph, i, i + 1 ∈ I.

(1) If fi+1x ≠ 0, then we have two possibilities:

(a) φi(fi+1x) = φi(x) and εi(fi+1x) = εi(x) − 1 or,

(b) φi(fi+1x) = φi(x) + 1 and εi(fi+1x) = εi(x)

(2) If fix ≠ 0, then we have two possibilities:

(a) φi+1(fix) = φi+1(x) and εi+1(fix) = εi+1(x) − 1 or,

(b) φi+1(fix) = φi+1(x) + 1 and εi+1(fix) = εi+1(x)

(3) If ei+1x ≠ 0. Then we have two possibilities:

(a) εi(ei+1x) = εi(x) and φi(ei+1x) = φi(x) − 1 or,

(b) εi(ei+1x) = εi(x) + 1 and φi(ei+1x) = φi(x)

(4) If eix ≠ 0. Then we have two possibilities:

(a) εi+1(eix) = εi+1(x) and φi+1(eix) = φi+1(x) − 1 or,

(b) εi+1(eix) = εi+1(x) + 1 and φi+1(eix) = φi+1(x)

Proof. We will prove (1). A similar process can be used to prove the other three cases, but

we omit that here for brevity.

Let x be a proper coloring of a unit interval graph, i, i + 1 ∈ I, and fi+1x ≠ 0. First, recall

that we can view fi+1 being applied to x as a sequence of steps where we begin with the deletion

of an i + 1 in the induced i-coloring of x, and then perform a sequence of rightward moves that

shift the positions of certain i+1’s rightward in the induced i-coloring of x and after this has been

completed we obtain the induced i-coloring of fi+1x.

Now, by Proposition 3.4.7, we know after the deletion we either gain a right i-bracket or lose

a left i-bracket.

After the deletion, if we gained a right i-bracket, then it increases the string length φi by one,

or keeps it the same if there are unpaired left i-brackets left of it. If we lost a left i-bracket, then

it increases the string length φi by one if it was paired with a right i-bracket that was right of it

and there are no unpaired left i-brackets left of that right i-bracket, or keeps the string length the
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same otherwise. So if we terminated here, we are done, the string length φi either remained the

same or increased by one after applying fi+1 to x.

By Propositions 3.4.10, 3.4.11, 3.4.12 and 3.4.13, we know that for each rightward move there

is either no net change in the i-bracketing, or we create a right i-bracket immediately followed by

a left i-bracket.

Now suppose we have already performed the deletion and a sequence of rightward moves and

the number of unpaired right i-brackets has remained the same or increased by one. Now we

perform another rightward move. If there was no net change in the i-bracketing, well of course

we maintain the number of unpaired right i-brackets we had prior to the move. If instead we

created a right i-bracket followed by a left i-bracket, then we have one of two possibilities. Either

we have an unpaired right i-bracket right of it, or we don’t. If we do, there is no net change

in the i-bracketing, since the left i-bracket would pair with it and then we are left with a right

i-bracket that must also be unpaired. If there was no unpaired right i-brackets right of them, then

the deletion or any rightward moves which occurred before this one, could not have increased the

number of unpaired right i-brackets (after all since they are to the right, they would have needed

to create an unpaired right i-brackets right of it), hence performing the rightward move would

either increase the number of right i-brackets by one if there are no unpaired left i-brackets left of

the right i-bracket that was just created, or keep it the same if there are unpaired left i-brackets.

This shows that φi(fi+1x) = φi(x) or φi(x) + 1.

We now prove (a). Assume φi(fi+1x) = φi(x). We need to show the number of unpaired left

i-brackets decreases by 1 when fi+1 is applied to x. Once again we think of fi+1 applied to x as a

deletion, followed by a sequence of rightward moves. We will induct on the number of rightward

moves. When we perform the deletion, we can not not gain an unpaired right i-bracket. So if

the deletion created a new right i-bracket, it must have paired up with a left i-bracket that was

unpaired, or if we lost a left i-bracket, it must have been unpaired, or was paired with a right

i-bracket that again paired up. Either way, we lost an unpaired left i-bracket.

Now suppose we have performed a deletion and a sequence of rightward moves and the number

of unpaired left i-brackets is one less than it was in x. When we perform another rightward move,
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if we have no net change in the i-bracketing, then we are done. Suppose we gain a right i-

bracket, followed by a left i-bracket. Since φi(fi+1x) = φi(x), the right i-bracket must pair up and

decrease the number of unpaired left i-brackets by one. However the left i-bracket must lead to

the addition of one more unpaired left i-bracket because there are no unpaired right i-brackets.

Hence the number of unpaired left i-brackets remains one less than it was in x. Hence when

φi+1(fix) = φi+1(x), it follows we must also have εi+1(fix) = εi+1(x) − 1.

The proof of (b) is similar to (a). □

Now we are ready to conclude the section:

Proposition 3.4.15. The crystal operators ei and fi defined on unit interval graphs satisfy

the Stembridge axioms SA1 and SA1’.

Proof. By Proposition 3.4.2, we know that when the operators are not adjacent, the first

Stembridge axioms hold. By Proposition 3.4.14, the first Stembridge axioms hold when the oper-

ators are adjacent. □

3.4.2. The Six Cases. We begin this section with a definition:

Definition 3.4.16. We define the Bull graph to be the graph with vertex set V = {1,2,3,4,5}

and whose edge set is E = {12,23,24,34,45}, the graph of the Bull is below. Notice that deleting

vertex 3 shows that the Bull graph contains a subgraph isomorphic to P4.

1 2 3 4 5

In this section, we will describe the six cases that can occur when fi and fi+1 (or ei and ei+1)

act on a coloring x. We will prove that certain cases only occur when the graph contains an

induced subgraph isomorphic to the Bull. This is important because G4 does not contain graphs

which contain an induced subgraph isomorphic to the Bull.

Definition 3.4.17. Let A be an i-bracket, and let B be a j-bracket for some i, j ∈ I. Then

we say A is strictly left of B if the last vertex of A is left of the first vertex of B and there is no

edge between these two vertices. We define A to be strictly right of B in a similar fashion.
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The main issue with the crystal operators as defined, is that when a right i-bracket overlaps

with a right (i+1)-bracket, there can be different scenarios depending upon whether the fi or the

fi+1 operator acts first. Therefore, we have broken this down into six cases which describe the

overlap of where the operators act and their relative positions. This will help us tremendously

with proving Stembridge axioms. We will refer to each of these cases by their number as seen in

Figure 3.5.

Case 1 i i+1

Case 2

i
i+1

Case 3

i
i+1

Case 4

i
i+1

Case 5

i
i+1

Case 6 ii+1

Figure 3.5. The six cases of where the fi and fi+1 operators will act on a coloring.

When the reader sees

i

we mean that this is the location of the right i-bracket that fi will act on in the coloring. So for

Case 1, since we have

i i+1

it means that the right i-bracket that fi will act on is strictly left of the right i + 1-bracket that

fi+1 will act upon in the coloring. And for Case 2, since we have

i
i+1

it means that the the right i-bracket begins before the right i + 1-bracket does, and the right

i-bracket ends after the right i + 1-bracket begins, but before the right i + 1-bracket ends.

Remark 3.4.18. The six cases also apply to the ei operators in the exact same fashion, so for

Case 1, it means that the left i-bracket that ei will act on is strictly left of the left i + 1-bracket

that ei+1 will act upon in the coloring.
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Definition 3.4.19. To reference these cases easily, we denote which operator before the Case,

for instance if we want to refer to the fi operator version of Case 3, we will say f -Case 3 and

similarly if we want to refer to the ei operator version of Case 3, we will say e-Case 3 . It should

be noted that what i value the case is referring to should be clear from the context.

Cases 2-5 are where the brackets overlap and these will be the cases that give us the most

trouble. However, as noted previously, many of these cases involve the Bull graph, and we will

now prove which cases do.

Remark 3.4.20. In the following proofs we will talk about deleting vertices to create an

induced subgraph, to be clear when we say delete a vertex of the graph, we also mean delete any

edge that was attached to that vertex so that we get an induced subgraph.

Proposition 3.4.21. If f -Case 2 applies to a coloring x of a unit interval graph G, then the

graph G must contain an induced subgraph isomorphic to the Bull graph.

Proof. We claim the graph G must contain an induced subgraph with the following induced

coloring of x ∶

i i+1 i i+2 i+1

To achieve this, begin by deleting every vertex not contained in the f -Case 2 right i-bracket

and right i+1-bracket. Then in the right i-bracket, delete all but the last three vertices. The i+1

colored vertex in the right i-bracket must be part of the overlap of the right brackets, and hence

the i + 1 colored vertex must also be a part of the right i + 1-bracket. Now the right i + 1-bracket

must continue past the right i-bracket because this is f -Case 2, so there must be at least two more

vertices colored i + 2 and i + 1 that are right of this i + 1 colored vertex. Now delete all vertices

in the right i + 1-bracket that are not these three vertices. This explains all but one part of the

picture, the ordering of the i colored vertex that is left of the i + 2 colored vertex. But this is

because we have specified that this is the last i colored vertex in the right i-bracket. Since the two

vertices on the end of the right i+ 1-bracket must be connected by an edge, if the i colored vertex

were right of the i + 2 colored vertex, it would be forced to share an edge with the i + 1 colored
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vertex (because of the properties of unit interval graphs), hence contradicting the fact that it is

the last vertex in the right i-bracket.

Since this subgraph is isomorphic to the Bull graph, we have the result. □

The proofs of the next three propositions are similar to Proposition 3.4.21 and we omit many

of the details for brevity.

Proposition 3.4.22. If f -Case 5 applies to a coloring x of a unit interval graph G, then the

graph G must contain an induced subgraph isomorphic to the Bull graph.

Proof. Through a process similar to Proposition 3.4.21, it can be shown that the graph G

must contain an induced subgraph whose look and corresponding induced coloring of x is the

following:

i+1 i+2 i i+1 i

Since this subgraph is isomorphic to the Bull graph, the result follows. □

Proposition 3.4.23. If e-Case 2 applies to a coloring x of a unit interval graph G, then the

graph G must contain an induced subgraph isomorphic to the Bull graph.

Proof. Through a process similar to Proposition 3.4.21, it can be shown that the graph G

must contain an induced subgraph whose look and corresponding induced coloring of x is the

following:

i+1 i i+2 i+1 i+2

Since this subgraph is isomorphic to the Bull graph, the result follows. □

Proposition 3.4.24. If e-Case 5 applies to a coloring x of a unit interval graph G, then the

graph G must contain an induced subgraph isomorphic to the Bull graph.

Proof. Through a process similar to Proposition 3.4.21, it can be shown that the graph G

must contain an induced subgraph whose look and corresponding induced coloring of x is the

following:
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i+2 i+1 i+2 i i+1

Since this subgraph is isomorphic to the Bull graph, the result follows. □

We now cover the last two cases: f -Case 4 and e-Case 3.

Proposition 3.4.25. If f -Case 4 applies to a coloring x of a unit interval graph G, then the

graph G must contain an induced subgraph isomorphic to the Bull graph.

Proof. We first note that the right i-bracket must have a length of at least 3. If the length

was only one, since it is contained in a right i + 1-bracket, the vertex colored i is forced to share

an edge with a vertex colored i + 1, a contradiction. We now claim the graph G must contain an

induced subgraph whose look and corresponding induced coloring of x is the following:

i i+1 i i+2 i+1

The proof will now follow a similar reasoning as in the proof of Proposition 3.4.21. To obtain

the induced subgraph with corresponding induced coloring of x shown above, we first delete every

vertex not in the right i-bracket and right i+1-bracket that the f -Case 4 refers to. Then, we delete

every vertex in the right i-bracket except for the last three vertices. The vertex colored i + 1 in

these last three vertices must also be in the right i+ 1-bracket, we delete every vertex in the right

i + 1-bracket except for that vertex and the two vertices immediately right of it. These vertices

must exist because we are in f -Case 4, and a portion of the right i + 1-bracket must extend past

the right i-bracket. These five vertices are the ones shown above. We need only explain why the

middle i colored vertex is left of the i + 2 colored vertex. This is because if it were right of the

i+ 2 colored vertex, by properties of the unit interval graphs, it must share an edge with the i+ 1

colored vertex that is on the right end in the picture, a contradiction because the right i-bracket

wouldn’t end with the i colored vertex in the middle.

Since this subgraph is isomorphic to the Bull graph, the result follows. □

The next proposition will follow a similar proof to Proposition 3.4.25, so we omit many of the

details.
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Proposition 3.4.26. If e-Case 3 applies to a coloring x of a unit interval graph G, then the

graph G must contain an induced subgraph isomorphic to the Bull graph.

Proof. We first note that the right i+1-bracket must have a length of at least 3. If the length

was only one, since it is contained in a right i-bracket, the vertex colored i + 2, by properties of

unit interval graphs, is forced to share an edge with a vertex colored i + 1, a contradiction. By

following the same proof idea in Proposition 3.4.25, it can be shown the graph G must contain an

induced subgraph whose look and corresponding induced coloring of x is the following:

i+2 i+1 i+2 i i+1

Since this subgraph is isomorphic to the Bull graph, we have the result. □

Notice that the Bull graph contains an induced subgraph isomorphic to P4. This leads us to

the main result of the section.

Proposition 3.4.27. Suppose our operators are adjacent, meaning for some i we have i, i+1 ∈

I. To prove Stembridge axioms S2’ and S3’ for G4, it suffices to show the axioms hold for f -Cases

1, 3, and 6. To prove Stembridge axioms S2 and S3 for G4, it suffices to show the axioms hold

for e-Cases 1, 4, and 6.

The proof of the f -Cases of the proposition follows directly from Proposition 3.4.21, Propo-

sition 3.4.25, and Proposition 3.4.22. The proof of the e-Cases of the proposition follows directly

from Proposition 3.4.23, Proposition 3.4.26, and Proposition 3.4.24.

We end this section by showing that when restricted to graphs G ∈ G4, there is only one way

for f -Case 3 and e-Case 4 to occur, as the next proposition will show:

Proposition 3.4.28. Let G ∈ G4 and let x ∈ G, if f -Case 3 applies to x, then the right i-bracket

must have length 3 and the right i+1-bracket contained within it must have length 1. Additionally,

it must be the case that φi(fi+1x) = φi(x)+1 and φi+1(fix) = φi+1(x)+1. This means that S2’ will

never apply to this situation, only S3’.

Proof. First, if the length was greater than 3, then we would have to contain a subgraph

isomorphic to P4. To see this, simply delete all vertices except the first 4 in the right i-bracket.
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Second, since the right i+1-bracket must be of odd length and contained within the right i-bracket,

if it were of length 3 or more, the right i-bracket would contain at least two vertices colored i+ 1,

forcing its length to be greater than 3, a contradiction.

Now, we must have the following look in our induced i, i + 1-coloring of x:

i i+1 i

To complete this part of the proof we need to show there are no other vertices sharing edges

with these three that are colored i, i + 1, or i + 2. The fact that we can have no more vertices

colored i or i + 1 sharing an edge with any of these vertices follows because if they did exist, it

would alter the length of the right i-bracket, which we can’t do. So let’s now consider if it is

possible to have a vertex colored i + 2 sharing an edge with one of these vertices. First, it cannot

share an edge with the vertex colored i+ 1, or it would affect the length of the right i+ 1-bracket.

Suppose it shared an edge with one of the vertices colored i, then because it can not also share an

edge with the i + 1 colored vertex, we would have an induced subgraph isomorphic to P4. Hence

in the induced i, i+ 1-coloring of x, this is the entire connected component, we have no additional

vertices sharing edges that have colors i, i + 1, or i + 2.

Then, after applying fi and fi+1 to x, this section becomes:

After applying fi ∶
i+1 i i+1

After applying fi+1 ∶
i i+2 i

After applying fi, we gain a right i+1-bracket, and because the original right i+1-bracket was

an unpaired bracket, we must have both of these be unpaired as well, so that φi+1(fix) = φi+1(x)+1.

Similarly, after applying fi+1, we gain a right i-bracket, and because the original right i-bracket was

an unpaired bracket, we must have both of these be unpaired as well, so that φi(fi+1x) = φi(x)+1.

Since this is the only possible look of f -Case 3 for graphs in G4, we can never get a situation

where φi(fi+1x) = φi(x) or φi+1(fix) = φi+1(x) when f -Case 3 applies to x. Hence S2’ will never

apply to this situation, only S3’. □
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Proposition 3.4.29. Let G ∈ G4 and let x ∈ G, if e-Case 4 applies to x, then the left i+1-bracket

must have length 3 and the left i-bracket contained within it must have length 1. Additionally, it

must be the case that εi(fi+1x) = εi(x) + 1 and εi+1(fix) = εi+1(x) + 1. This means that S2 will

never apply to this situation, only S3.

The proof of this is similar and is omitted.

3.4.3. Stembridge Axiom 2. In this section, we will show Stembridge axioms S2 and S2’

are both satisfied for the crystal operators ei and fi for colorings of a unit interval graph G ∈ G4.

Definition 3.4.30. Suppose x is the coloring of a unit interval graph G and fix ≠ 0 and

fjx ≠ 0. Let R be a right i-bracket of x. If R is exactly the same before and after fj is applied to

x, we say that R is unaltered by the action of fj on x. Similarly, we can use unaltered when talking

about left i-brackets that are not changed by applying ej to a coloring. Now, if the rightmost

unpaired right i-bracket of x is unaltered by the action of fj on x and is still the rightmost right

i-bracket of fjx, then we say that fi acts independently of fj on x.

Remark 3.4.31. It should be clear from the definition that if fi acts independently of fj on

x and fj acts independently of fi on x, then it must be the case that fifjx = fjfix.

Proposition 3.4.32. Let x be a coloring of a unit interval graph. Let i, j ∈ I with j ≠ i − 1, i,

or i + 1 and both fix ≠ 0 and fjx ≠ 0. Then S2’ holds.

Proof. Because j ≠ i − 1, i, or i + 1, it directly follows that fi and fj act independently of

each other since fj can’t affect the induced i-coloring of x and vice versa. So it follows that

fifjx = fjfix. Additionally, it also follows that φj(fix) = φj(x) > 0 and εi(fjx) = εi(x) for the

same reason, since fj can’t affect the induced i-coloring of x and vice versa. □

Proposition 3.4.33. Let x be a coloring of a unit interval graph. Let i, j ∈ I with j ≠ i − 1, i,

or i + 1 and both eix ≠ 0 and ejx ≠ 0. Then S2 holds.

The proof of Proposition 3.4.33 is similar to Proposition 3.4.32 and is omitted. Now we need

only focus on the case where the operators are adjacent to finish proving the second Stembridge

axioms. We consider f -Case 1 and f -Case 6 in this next proposition.
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Proposition 3.4.34. Let x be a proper coloring of a unit interval graph G. Then we have the

following:

(1) Suppose that fi+1x ≠ 0 and fix ≠ 0. If f -Case 1 applies, then fi+1 acts independently of fi

in x.

(2) Suppose that fi+1x ≠ 0, fix ≠ 0, and for operators fi and fi+1, f -Case 1 applies. Then

φi+1(fix) = φi+1(x) + 1.

(3) Suppose that fi+1x ≠ 0 and fix ≠ 0. If f -Case 6 applies, then fi acts independently of fi+1

in x.

(4) Suppose that fi+1x ≠ 0, fix ≠ 0, and for operators fi and fi+1, f -Case 6 applies. Then

φi(fi+1x) = φi(x) + 1.

Proof. To prove (1), since f -Case 1 applies, the rightmost unpaired right i + 1-bracket is

unaltered by fi applied to x. We need only show that it is still the rightmost unpaired right

i + 1-bracket in fix. We first note that we can’t have any newly created right i + 1-brackets right

of it (because everything is unaltered right of it). Secondly, the coloring x either gains a right

i+1-bracket or loses a left i+1-bracket. Since the creation of a right i+1-bracket must be strictly

left of the rightmost right i + 1-bracket of x, this would not change where fi+1 acts. And since

we are left of the rightmost unpaired right i + 1-bracket, it must be the case that a loss of a left

i + 1-bracket unpairs a right i + 1-bracket that must be left of the rightmost right i + 1-bracket of

x, finishing the proof of (1).

We now prove (2). Applying fi either creates a right i+1-bracket, or destroys a left i+1-bracket.

This must occur left of the rightmost right i + 1-bracket of x, which is still the rightmost right

i + 1-bracket of fix by (2). We have two scenarios. If we gained a right i + 1-bracket, then clearly

φi+1(fix) = φi+1(x) + 1. If we lost a left i + 1-bracket, then since we are left of the rightmost right

i+1-bracket, it must have been paired and this would mean we gain an unpaired right i+1-bracket,

so we have φi+1(fix) = φi+1(x) + 1.

The proofs of (3) and (4) are similar to (1) and (2). □

We now show S2’ holds for f-Cases 1 and 6.
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Proposition 3.4.35. S2’ is satisfied by a coloring x where f -Case 1 applies. Meaning, if

i, i + 1 ∈ I, φi+1(x) > 0, and φi(fi+1x) = φi(x) > 0, then:

(1) fifi+1x = fi+1fix, and

(2) εi+1(fix) = εi+1(x).

Proof. From Proposition 3.4.34 (2), we have φi+1(fix) = φi+1(x) + 1. Hence, it must be the

case that φi(fi+1x) = φi(x) for S2’ to apply to the coloring x.

We first prove (1). Let φi(fi+1x) = φi(x). Then the unpaired right i-brackets of x are unaltered

by applying fi+1 because it acts strictly right of them. And because φi(fi+1x) = φi(x), we couldn’t

have gained an unpaired right i-bracket, so that the rightmost right i-bracket of x remains such

for fi+1x. Thus, fi acts independently of fi+1 in x. By Proposition 3.4.34 (1), we know fi+1 acts

independently of fi in x. Hence fifi+1x = fi+1fix.

Now we prove (2). By Proposition 3.4.14 (1), since φi+1(fix) = φi+1(x)+1, it must be the case

that εi+1(fix) = εi+1(x). □

Proposition 3.4.36. S2’ is satisfied by a coloring x where f -Case 6 applies. Meaning, if

i, i + 1 ∈ I, φi(x) > 0, and φi+1(fix) = φi+1(x) > 0, then:

(1) fifi+1x = fi+1fix, and

(2) εi(fi+1x) = εi(x).

Proof. From Proposition 3.4.34 (4), we have φi(fi+1x) = φi(x) + 1. Hence, it must be the

case that φi+1(fix) = φi+1(x) for S2’ to apply to the coloring x.

We first prove (1). Let φi+1(fix) = φi+1(x). Then the unpaired right i + 1-brackets of x are

unaltered by applying fi because it acts strictly right of them. And because φi+1(fix) = φi+1(x),

we couldn’t have gained an unpaired right i + 1-bracket, so that the rightmost right i + 1-bracket

of x remains such for fix. Thus, fi+1 acts independently of fi in x. By Proposition 3.4.34 (3), we

know fi acts independently of fi+1 in x. Hence fifi+1x = fi+1fix.

Toprove (2), by Proposition 3.4.14, since φi(fi+1x) = φi(x) + 1, it must be the case that

εi(fi+1x) = εi(x).

□

Using a similar strategy we could prove the following propositions for S2.
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Proposition 3.4.37. S2 is satisfied by a coloring x where e-Case 1 applies. Meaning, if

i, i + 1 ∈ I, εi(x) > 0, and εi+1(eix) = εi+1(x) > 0, then:

(1) eiei+1x = ei+1eix, and

(2) φi(ei+1x) = φi(x).

Proposition 3.4.38. S2 is satisfied by a coloring x where e-Case 6 applies. Meaning, if

i, i + 1 ∈ I, εi(x) > 0, and εi(ei+1x) = εi(x) > 0, then:

(1) eiei+1x = ei+1eix, and

(2) φi+1(eix) = φi+1(x).

Proposition 3.4.39. Let x be the coloring of a unit interval graph G ∈ G4. Then the for the

crystal operators ei and fi, S2 and S2’ are satisfied.

Proof. Let i, j ∈ I and i ≠ j. If φi(x) > 0 and φj(fix) = φj(x) > 0, then we need to show

fifjx = fjfix and εi(fjx) = εi(x).

If j ≠ i − 1 or i + 1, then by Proposition 3.4.32 S2’ holds.

If j = i − 1 or i + 1, then we have the six Cases to consider for the adjacent operators. Propo-

sitions 3.4.21, 3.4.22, and 3.4.25 show that f -Cases 2, 4, and 5 can never occur for a coloring x of

a graph G ∈ G4. Proposition 3.4.28 shows that S2’ will never apply to f -Case 3 for a coloring x

of a graph G ∈ G4. Proposition 3.4.35 shows S2’ holds for f -Case 1 and Proposition 3.4.36 shows

S2’ holds for f -Case 6.

Since this exhausts all possibilities, this shows the crystal operators satisfy S2’.

Again, let i, j ∈ I and i ≠ j. If εi(x) > 0 and εj(eix) = εj(x) > 0, then we need to show

eiejx = ejeix and φi(ejx) = φi(x).

If j ≠ i − 1 or i + 1, then by Proposition 3.4.33 S2 holds.

If j = i − 1 or i + 1, then we have the six Cases to consider for the adjacent operators. Propo-

sitions 3.4.23, 3.4.24, and 3.4.26 show that e-Cases 2, 3, and 5 can never occur for a coloring x of

a graph G ∈ G4. Proposition 3.4.29 shows that S2 will never apply to e-Case 4 for a coloring x of

a graph G ∈ G4. Proposition 3.4.37 shows S2 holds for e-Case 1 and Proposition 3.4.38 shows S2

holds for e-Case 6.

Since this exhausts all possibilities, this shows the crystal operators satisfy S2. □
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3.4.4. Stembridge Axiom 3. In this section we will prove that the crystal operators satisfy

S3 and S3’ when restricted to colorings of unit interval graphs G ∈ G4. We begin with the case of

when the operators are not adjacent.

Proposition 3.4.40. Let x be the coloring of a unit interval graph and i, j ∈ I. Suppose

j ≠ i − 1, i, or i + 1. If fix ≠ 0 and fjx ≠ 0, then φi(x) = φi(fjx) and φj(x) = φj(fix). If eix ≠ 0

and ejx ≠ 0, then εi(x) = εi(ejx) and εj(x) = εj(eix). In other words, S3 and S3’ will never apply

to these cases.

Proof. Let fix ≠ 0 and fjx ≠ 0. The colors i and i+1 are not present in the induced j-coloring

of x and the colors j and j + 1 are not present in the induced i-coloring of x, hence string lengths

are unaffected: φi(x) = φi(fjx) and φj(x) = φj(fix).

Similarly, let eix ≠ 0 and ejx ≠ 0. For the same reason we have εi(x) = εi(ejx) and εj(x) =

εj(eix).

The last statement follows because Stembridge axiom 3 applies only when the string length of

both of the operators increases by one. □

We now delve into the cases where the crystal operators are adjacent. Recall from the six

cases section that we need only consider f-Cases 1, 3, and 6 and e-Cases 1, 4, and 6. We begin

with f-Case 3 and e-Case 4.

Proposition 3.4.41. Let x be the coloring of a unit interval graph G ∈ G4. Let i, i + 1 ∈ I and

suppose f-Case 3 applies. Then the crystal operators obey S3’.

Proof. By Proposition 3.4.28, we know that there is only one situation for which f-Case 3

can apply to such a coloring when restricted to graphs in G4, and this component in the induced

i, i+ 1-coloring of x contains only three vertices colored i, i+ 1, i, in that order. Here we show the

directed graph for the component of the induced i, i + 1-coloring of x that fi and fi+1 act on.
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[i, i + 1, i]

[i + 1, i, i + 1] [i, i + 2, i]

[i + 1, i, i + 2] [i, i + 2, i + 1]

[i + 2, i, i + 2] [i + 1, i + 2, i + 1]

[i + 2, i + 1, i + 2]

i i + 1

i + 1 i

i + 1 i

i i + 1

Let’s label this component A. Now we will explain why A is the only component of the induced

i, i+1-coloring of x that needs to be tracked to determine what happens to the coloring of x. First,

because it is f-Case 3, we know that the first paths of the directed graph fi, headed down and to

the left, and fi+1, headed down and to the right, must act on A exactly as detailed.

Now let’s consider the right path. Since A is the rightmost unpaired right i-bracket in x, it

must be the case that when fi+1 acts and changes the i + 1 to an i + 2, the two i colored vertices

in the A component must now be the two rightmost unpaired right i-brackets of the new coloring.

This explains why the next two fi’s act where they do in fi+1x and fifi+1x. Now, since there was

nothing else in the A component of x and fi+1 would have acted on the i + 1 in the A component

of x, it must also be the case that in f 2
i fi+1x, that fi+1 must act on the length 3 right i+1-bracket

that is in component A. This explains the path down the right.

For the path down the left, we have a similar reasoning. Since the i + 1 colored vertex in A is

the rightmost unpaired right i+ 1-bracket in x, it must be the case that when fi acts and changes

A to the i+1, i, i+1 sequence, the two i+1 colored vertices in the A component must now be the

two rightmost unpaired right i + 1-brackets of the new coloring. This explains why the next two

fi+1’s act where they do in fix and fi+1fix. Now since there was nothing else in the A component

of x, and fi would have acted on the A component of x, it must also be the case that in f 2
i+1fix,
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that fi must act on the i colored vertex that is in component A. This explains the path down the

left.

This shows that fif 2
i+1fix = fi+1f 2

i fi+1x ≠ 0. Now we need to show εi(fi+1x) = εi(f 2
i+1fix) and

εi+1(fix) = εi+1(f 2
i fi+1x).

Component A of x, fi+1x, and f 2
i+1fix does not contain any left i-brackets, and their right

i-brackets must all be unpaired. Therefore, εi(fi+1x) = εi(x) = εi(f 2
i+1fix). Similarly, component

A of x, fix, and f 2
i fi+1x does not contain any left i+1-brackets, and their right i+1-brackets must

all be unpaired. Hence, εi+1(fix) = εi+1(x) = εi+1(f 2
i fi+1x). This shows S3’ is satisfied. □

Proposition 3.4.42. Let x be the coloring of a unit interval graph G ∈ G4. Let i, i + 1 ∈ I and

suppose e-Case 4 applies. Then the crystal operators obey S3.

The proof of this is similar and we omit it.

In order to prove S3’ for f-Case 1 or 6, we will need to prove that for a coloring x where one of

these cases applies, fif 2
i+1fix = fi+1f 2

i fi+1x. To structure our way of thinking about this scenario,

we introduce some new language.

Definition 3.4.43. Let x be a coloring where f-Case 1 and S3’ both apply. Define (i)1 to be

the rightmost unpaired right i-bracket of x and define (i + 1)1 to be the rightmost unpaired right

i+1-bracket of x. Then define (i)2 to be the rightmost unpaired right i-bracket of fi+1x and define

(i + 1)2 to be the second rightmost unpaired right i + 1-bracket of fix.

By Proposition 3.4.45, we will have the following look of x and fi+1fix:

Coloring of x ∶ ⋯ (i)1 ⋯ (i + 1)1 ⋯

Coloring of fi+1fix ∶ ⋯ (i + 1)2 ⋯ (i)2 ⋯

Lemma 3.4.44. Let x be the coloring of a unit interval graph G ∈ G4 and let i, i + 1 ∈ I. Then

we have the following:

(1) Let A be a right i + 1-bracket that is strictly left of the rightmost unpaired right i-bracket

of x. Then A is unaltered by the action of fi on x.
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(2) Let A be a right i+1-bracket that is strictly right of the rightmost unpaired right i-bracket

of x. Then A is unaltered by the action of fi on x.

(3) Let A be a right i-bracket that is strictly left of the rightmost unpaired right i + 1-bracket

of x. Then A is unaltered by the action of fi+1 on x.

(4) Let A be a right i-bracket that is strictly right of the rightmost unpaired right i+1-bracket

of x. Then A is unaltered by the action of fi+1 on x.

Proof. For (1), applying fi to x can only modify where i + 1’s occur in the induced i + 1-

coloring of x, so we can’t change the i + 2’s in A. Since A is strictly left of B, it is not possible to

change the i+ 1’s in A either. Nor can we add to the length of this bracket, as it would require an

i + 2 color on the end of A, a contradiction since it is a right i + 1-bracket. Hence A is unaltered

by the action of fi on x. A similar reasoning proves (2), (3), and (4). □

Proposition 3.4.45. Let x be the coloring of a unit interval graph G ∈ G4. Let i, i + 1 ∈ I and

suppose f-Case 1 and S3’ apply to x for i. Then we have the following:

(1) (i + 1)1 is unaltered by the action of fi on x.

(2) (i)1 is unaltered by the action of fi+1 on x.

(3) (i + 1)1 is still the rightmost unpaired right i + 1-bracket of fix.

(4) (i)1 is the second rightmost unpaired right i-bracket of fi+1x.

(5) If (i)2 was altered by applying fi+1 to x, then we must have at least one vertex that shared

an edge with (i + 1)1.

(6) If (i + 1)2 was altered by applying fi to x, then we must have at least one shared vertex

with (i)1.

(7) (i + 1)2 is strictly left of (i)2.

(8) (i)2 is unaltered by the action of fi+1 on fi+1fix.

Proof. (1) and (2) follow directly from Lemma 3.4.44.

To prove (3), by (1) we know that (i + 1)1 is unaltered by the action of fi on x. By Propo-

sition 3.4.14, we know that we either gained a right i + 1-bracket or lost a left i + 1-bracket that

is left of (i + 1)1. If we gained a right i + 1-bracket, that is left, then it is clear (i + 1)1 is still the

rightmost unpaired right i+1-bracket. If we lost a left i+1-bracket, then it must have been paired
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with a right i+ 1-bracket that is left of (i+ 1)1, hence (i+ 1)1 is still the rightmost unpaired right

i + 1-bracket.

To prove (4), we first note that by (2), (i)1 is unaltered by the action of fi+1 on x. By a similar

rationale, every i-bracket of x that is left of (i)1 is unaltered by the action of fi+1 on x. Hence,

the number of unpaired right i-brackets left of (i)1 remains the same as in x. Since S3’ applies,

there must be one unpaired right i-bracket that is right of it.

For (5) to apply, some part of (i)2 must be changed when going from x to fi+1x. Since applying

fi+1 only changes the amount or locations of i + 1 colors in the induced i-colorings of x and fi+1x.

Then (i)2 either contains an i+1 color that was moved into the component, within the component,

or out of the component. In any of these three cases, it must be true that some vertex of (i)2
shared an edge with (i + 1)1.

For (6) to apply, some part of (i + 1)2 must be changed when going from x to fix. Since

applying fi only changes the number and locations of i + 1 colors in the induced i + 1-colorings

of x and fi+1x, then (i + 1)2 either contains an i + 1 color that was moved into the component or

within the component (here, we can’t have lost an i+ 1 or it wouldn’t be a right i+ 1-bracket). In

both of these scenarios, one of the i + 1 colored vertices is moved to a vertex shared by both (i)1
and the (i + 1)2.

For (7), (i + 1)2 was either altered or unaltered, when applying fi to x and we break our

arguments into these two cases.

Let’s first suppose (i + 1)2 is altered. From Proposition 3.4.27, we know that there is only

three possibilities for (i + 1)2 and (i)2, f-Case 1, 3, or 6. Let’s consider f-Case 3. By (6), the i + 1

colored vertex in the i, i+1, i component must have been an i changed to an i+1 in the rightmost

right i-bracket of x. But then it must be the case that the i colored vertices in the component

also had to be i + 1 colored vertices in x, and this implies the length of (i)1 was greater than 3 in

length, violating Proposition 3.4.28. If we consider f-Case 1, because of (5) and (6), there is no

way for this to occur if both the right brackets were altered. If (i)2 was unaltered, then it must

be strictly right of (i + 1)1, which is strictly right of (i + 1)2. Hence only f-Case 6 is possible if

(i + 1)2 is altered.
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Now, let’s consider if (i + 1)2 was unaltered. It must still be strictly left of (i + 1)1. If (i)2
is unaltered, then it must be strictly right of (i + 1)1, so f-Case 6 applies. If (i)2 is altered, then

by (5), it is at most an edge away from the vertices of (i + 1)1, so f-Case 1 is not possible. If we

consider f-Case 3, we are assuming the i+1 colored vertex in the i, i+1, i component of the induced

i, i + 1-coloring must be unaltered as a right i + 1-bracket, and by (5), the right i colored vertex

must have shared an edge with (i + 1)1. This vertex can’t share an edge with the i + 1, or else it

would have been in the right i + 1-bracket. But this can’t happen since this would have given us

an induced subgraph isomorphic to P4. This means again that only f-Case 6 is possible, proving

(7).

By (7), f-Case 6 applies to fi+1fix, hence applying Lemma 3.4.44 proves (8). □

Definition 3.4.46. Similar to Definition 3.4.43, let x be a coloring where f-Case 6 and S3’

both apply. Define (i)1 to be the rightmost unpaired right i-bracket of x and define (i+ 1)1 to be

the rightmost unpaired right i + 1-bracket of x. Then define (i + 1)2 to be the rightmost unpaired

right i + 1-bracket of fix and define (i)2 to be the second rightmost unpaired right i-bracket of

fi+1x.

By Proposition 3.4.47, we will have the following look of x and fifi+1x:

Coloring of x ∶ ⋯ (i + 1)1 ⋯ (i)1 ⋯

Coloring of fifi+1x ∶ ⋯ (i)2 ⋯ (i + 1)2 ⋯

Again, this will help to visualize some of the results in the next proposition.

Proposition 3.4.47. Let x be the coloring of a unit interval graph G ∈ G4. Let i, i + 1 ∈ I and

suppose f-Case 6 and S3’ apply to x for i. Then we have the following:

(1) (i)1 is unaltered by the action of fi+1 on x.

(2) (i + 1)1 is unaltered by the action of fi on x.

(3) (i)1 is still the rightmost unpaired right i-bracket of fi+1x.

(4) (i + 1)1 is the second rightmost unpaired right i + 1-bracket of fix.
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(5) If (i + 1)2 was altered by applying fi to x, then we must have at least one shared vertex

with (i)1.

(6) If (i)2 was altered by applying fi+1 to x, then we must have at least one vertex that shared

an edge with (i + 1)1.

(7) (i)2 is strictly left of (i + 1)2.

(8) (i + 1)2 is unaltered by the action of fi on fifi+1x.

The proof of this is similar and is omitted.

Now, Proposition 3.4.45 and Proposition 3.4.47 provide most of the structure we need to prove

S3’. However, we still need to prove that there is certain situations that can’t happen. Examples

of these situations are given in Example 3.4.48 and Example 3.4.50.

Example 3.4.48. Let G be the following graph:

1 2 3 4 5 6

Let x = [2,1,1,2,3,1] be a coloring of this graph. Then consider the following crystal digraph:

[2,1,1,2,3,1]

[2,1,1,2,3,2] [3,1,1,2,3,1]

[2,1,1,3,2,3] [3,1,1,2,3,2]

[3,1,1,3,2,3] [3,2,1,2,3,2]

[3,1,2,3,2,3] [3,2,1,3,2,3]

1 2

2 1

2 1

1 2

Notice that S3’ applies to x, but f1f 2
2 f1x ≠ f2f 2

1 f2x.

Remark 3.4.49. How did this occur? Suppose we have f-Case 6 for a coloring x, like we do in

Example 3.4.48. When we consider the path fi+1f 2
i fi+1 takes when applied to x, (i + 1)1 is acted

on first, then (i)1, then (i)2, and lastly (i + 1)2. If we consider the other path, fif 2
i+1fi, first we
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act on (i)1, then on (i + 1)2, and then on (i + 1)1. But when we act with fi+1 on fix, if by acting

on (i + 1)2 we have φ(fi+1fix) = φ(fix) + 1, then by Proposition 3.4.47 (4), we must gain a right

i-bracket that is strictly right of (i)2 (call this (i)3), meaning this second path would act on (i)3
instead of (i)2, thereby violating S3’. A similar situation occurs for f-Case 1.

Example 3.4.50. Let G be the following graph:

1 2 3 4 5 6

Let x = [1,2,3,1,1,2] be a coloring of this graph. Then consider the following crystal digraph:

[1,2,3,1,1,2]

[1,2,3,2,1,2] [1,2,3,1,1,3]

[1,2,3,2,1,3] [1,2,3,1,2,3]

[1,3,2,3,1,3] [1,2,3,2,2,3]

[2,3,2,3,1,3] [1,3,2,3,2,3]

1 2

2 1

2 1

1 2

Notice that S3’ applies to x, but f1f 2
2 f1x ≠ f2f 2

1 f2x.

Remark 3.4.51. Again we ask, how did this occur? Suppose we have f-Case 1 for a coloring

x, like we do in Example 3.4.50. When we consider the path fi+1f 2
i fi+1 takes when applied to x,

(i + 1)1 is acted on first, then (i)2, then (i)1, and lastly (i + 1)2. If we consider the other path,

fif 2
i+1fi, first we act on (i)1, then on (i + 1)1, and then on (i + 1)2. Now (i)2 is a right i-bracket

that is paired up with the left i-bracket that (i)1 became. If when fi+1 acts on fi+1fix it does not

destroy a paired left i-bracket so that (i)2 becomes unpaired, but instead creates a right i-bracket

that is left of the left i-bracket that (i)1 now is, then this second path doesn’t act on (i)2, but

this new right i-bracket, thereby violating S3’. A similar thing can happen for f-Case 6.
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This next proposition will show that when restricted to graphs G ∈ G4, a situation like what

occurred in Example 3.4.48 will never occur.

Proposition 3.4.52. Let x be the coloring of a graph G ∈ G4 where f-Case 1 applies to x for

an index i ∈ I. Then φi+1(fifi+1x) = φi+1(fi+1x), meaning (i + 1)3 can not occur. Similarly, if

f-Case 6 applies to the coloring x, then φi(f 2
i fi+1x) = φi(fifi+1x), meaning (i)3 can not occur.

Proof. We will prove that for f-Case 1, φi+1(fifi+1x) = φi+1(fi+1x) and because the proof of

f-Case 6 is similar to the proof in Proposition 3.4.53, we will omit it.

Suppose f-Case 1 applies to a coloring x of a graph G ∈ G4. We will use the terminology given

in Definition 3.4.43. First, note that by Proposition 3.4.45 the second rightmost unpaired right

i + 1-bracket of fix that we call (i + 1)2 is strictly left of (i + 1)1, which will be important later.

Now suppose φi+1(fifi+1x) = φi+1(fi+1x) + 1. Applying fi+1 to (i + 1)1 would have turned

(i + 1)1 into the leftmost unpaired left i + 1-bracket in fi+1x, denote this as a left bracket by

(i+1)L1 . Applying fi to fi+1x means that fi acts on (i)2 and this results in the creation of (i+1)3.

We now consider two cases depending upon whether (i)2 was altered or unaltered by applying fi+1

to x.

Suppose (i)2 was unaltered by applying fi+1 to x. Then we know that (i)2 is strictly right of

(i + 1)L1 . And when we apply fi and act on (i)2, the net change in the i + 1-bracketing is that we

either lose a left i + 1-bracket or gain a right i + 1-bracket. If we lose a left i + 1-bracket and it

wasn’t paired, then we don’t gain an unpaired right i+ 1-bracket and (i+ 1)3 couldn’t exist. If we

lose a left i+ 1-bracket and it was paired, then it unpairs a right i+ 1-bracket that must then pair

up with (i+ 1)L1 . If we gain a right i+ 1-bracket, then (i+ 1)L1 would ensure that it would have to

be a paired bracket and again (i + 1)3 couldn’t exist.

Suppose (i)2 was altered by applying fi+1 to x. Then, any right bracket must be of length 3 or

less since otherwise we would have an induced subgraph isomorphic to P4. Now suppose (i + 1)1
and (i)2 have length 3. By Proposition 3.4.45 (5), we know that at least one vertex of (i)2 shares

an edge with (i + 1)1. Suppose one of the i + 1 colored vertices of (i + 1)1 shares an edge with one

of the i colored vertices of (i)2. If this was the only edge, we contain a subgraph isomorphic to

P4. Now the i+1 colored vertex of (i+1)1 can’t share another edge with (i)2 and still be a proper

coloring. The only other vertex the i colored vertex of (i)2 can share an edge with is the central
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i + 2 colored vertex of (i + 1)1, but even if this edge exists, we still contain a subgraph isomorphic

to P4. So then it must be the case that (i)2 and (i + 1)1 share at least one vertex. If this is the

case, after fi+1 is applied to x, the i+2 colored vertex must become the central i+1 colored vertex

of (i)2. This gives us four scenarios that come from graphs in G4.

Scenario 1 ∶ i+1 i i+2 i i+1

Scenario 2 ∶ i+1 i i+2 i+1 i

Scenario 3 ∶ i i+1 i+2 i+1 i

Scenario 4 ∶ i i+1 i+2 i i+1

Here, the dashed edges may or may not be present. In all four scenarios, we begin with a right

i + 1-bracket (i + 1)1. After fi+1 is applied to x, this becomes a left i + 1-bracket. And after fi is

applied to fi+1x and acts on (i)2, the left i+1-bracket is lost and replaced with even i+1 brackets.

Hence in all scenarios (i + 1)3 is not created and we have φi+1(fifi+1x) = φi+1(fi+1x).

Now suppose (i)2 has length 1 and (i+ 1)1 has length 3. Then (i)2 is just an i colored vertex.

By Proposition 3.4.45 (5), the i colored vertex shares an edge with some vertex of (i + 1)1 in x.

Suppose the i colored vertex shares an edge with an i + 1 and an i + 2 colored vertex, then it

wouldn’t be a right i-bracket after (i + 1)1 is acted upon by fi+1. The only other possibility is

that it shares an edge with an i + 1 colored vertex only, but then we have an induced subgraph

isomorphic to P4, a contradiction.

Now suppose (i+ 1)1 was length 1, which means it is just an i+ 1 colored vertex, and (i)2 was

length 3. Again, by Proposition 3.4.45 (5) the i + 1 colored vertex of (i + 1)1 must share an edge

with (i)2 in x, and this means it must only share an edge with an i colored vertex on the end.

But then we would have an induced subgraph isomorphic to P4.
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If (i)2 and (i+1)1 were both length 1, then for (i)2 to be altered, we must have the i and i+1

in (i)2 and (i + 1)1 respectively, be connected by an edge in the same component of the induced

i, i + 1-coloring of x. Then there are exactly four scenarios for this component in the induced

i, i + 1-coloring of x when restricted to graphs G ∈ G4.

Scenario 1 ∶
i i+1

Scenario 2 ∶
i+1 i

Scenario 3 ∶
i i+1 i

Scenario 4 ∶
i+1 i i+2

These are the only four scenarios because the i can only be connected to another vertex colored

i + 2 and the i + 1 can only be connected to another vertex colored i. Moreover the i + 2 must be

right of the i+ 1 or else it would pair up with it in the i+ 1-bracketing. Adding any other vertices

would create an induced subgraph isomorphic to P4.

In all four scenarios, after (i+1)1 is acted on that i+1 becomes an i+2. After (i)2 is acted on,

that i becomes an i + 1. The i becoming an i + 1 destroys the left i + 1-bracket that i + 2 was (or

in the case of scenario 4 the two i + 2’s were two left i + 1-brackets that become one with the i + 1

between them), but this can’t create an unpaired right i+1-bracket, because if there was it would

have been unpaired before (i+ 1)1 was acted on, violating the fact that (i+ 1)1 was the rightmost

right i + 1-bracket. □

And now the next proposition will address the issue that occurred in Example 3.4.50, again

showing that this situation cannot occur when we restrict ourselves to graphs G ∈ G4.

Proposition 3.4.53. Let x be the coloring of a graph G ∈ G4 where f-Case 1 applies to x for

an index i ∈ I. Then:

(1) φi(f 2
i+1fix) = φi(fi+1fix) + 1 and

(2) (i)2 is the rightmost unpaired right i-bracket of f 2
i+1fix.

Similarly, if f-Case 6 applies to the coloring x for i, then:
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(1) φi+1(f 2
i fi+1x) = φi+1(fifi+1x) + 1 and

(2) (i + 1)2 is the rightmost unpaired right i + 1-bracket of f 2
i fi+1x.

Proof. We prove (1) and (2) for f-Case 1 and f-Case 6 (1) follows from a similar reasoning,

while the proof of (2) is similar to that of the proof of Proposition 3.4.52.

First, consider fi+1fix. At this point we have (i + 1)2 strictly left of (i)2 and since (i)1 has

already been acted upon, it is a left i-bracket (denote this by (i)L1 ) that is strictly left of (i)2 and

hence paired with it. Now the leftmost unpaired left i-bracket must be right of (i)2 because (i)2
is the rightmost right i-bracket of fi+1x and in fi+1fix the only difference is that we have (i)1 as

a left i-bracket, not a right i-bracket. Now (1) follows directly because when we act on (i + 1)2
we are strictly left of the leftmost left i-bracket, and regardless of whether this creates a right

i-bracket, or we lose a left i-bracket, both result in the creation of an unpaired right i-bracket.

Now we proceed to prove (2) with two cases, depending upon whether (i+ 1)2 was altered or not.

We note that if acting with fi+1 on fi+1fix unpairs (i)2, it would make (i)2 the rightmost right

i-bracket of f 2
i+1fix, so most of the proofs will focus on proving that (i)2 becomes unpaired.

Suppose (i + 1)2 is unaltered by fi acting on x. Then it must be strictly right of (i)L1 and

since we are strictly left of (i)2, it must be the case that creating a right i-bracket must result in

(i)L1 being paired with a right i-bracket that is left of (i)2, hence unpairing (i)2. Similarly, if a

left i-bracket was lost, it must be the case that the right i-bracket it was paired with is left of (i)2
(because otherwise (i)2 would be paired with it) and would pair with (i)L1 , hence unpairing (i)2
again.

Now suppose (i + 1)2 is altered by fi acting on x. We know that when restricted to graphs in

G4, the length of right brackets must be 1 or 3. Let’s first consider the case where the lengths of

(i+ 1)2 and (i)1 are both 3. By Proposition 3.4.45 (6), we know that (i+ 1)2 and (i)1 must share

a vertex. Since the shared vertex must be an i+ 1 colored vertex of (i+ 1)2, we can either share 1

or 2 vertices. If we share only one vertex, we must have had one of two scenarios for these vertices

in x, where the dashed edge is optional.
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Scenario 1 ∶ i i+1 i i+2 i+1

Scenario 2 ∶ i+1 i+2 i i+1 i

However, all of these would imply that the graph contains an induced subgraph isomorphic to

P4, so these cannot occur. Now suppose (i + 1)2 and (i)1 share two vertices. Then we again have

two scenarios:

Scenario 1 ∶ i i+2 i+1 i

Scenario 2 ∶ i i+1 i+2 i

In both of these scenarios, after we apply fi to (i)1 and fi+1 to (i + 1)2, we lose (i)L1 as a left

i-bracket, so that (i)2 would unpair as desired and become the rightmost right i-bracket of x.

Now suppose (i)1 has length 1 and (i + 1)2 has length 3. Again, (i)1 and (i + 1)2 must share

a vertex, in this case this is the i colored vertex that (i)1 is in x, and becomes an i + 1 colored

vertex in fix for (i + 1)2. We have the following 4 scenarios when restricted to graphs G4.

Scenario 1 ∶ i i+2 i+1 i

Scenario 2 ∶ i i+2 i+1

Scenario 3 ∶ i i+1 i+2 i

Scenario 4 ∶ i+1 i+2 i
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The i colored vertex on the right in scenario 1 and on the left in scenario 3 is not in (i)1 or

(i + 1)2, but could still be in the same component of the induced i, i + 1-coloring of x. In all four

of these scenarios we again have that after fi is applied to (i)1 and fi+1 is applied to (i + 1)2, we

lose (i)L1 as a left i-bracket so that (i)2 becomes an unpaired right i-bracket.

Now suppose (i)1 has length 3 and (i + 1)2 has length 1. Again, (i)1 and (i + 1)2 must share

a vertex, in this case this is one of the i colored vertices of (i)1 in x that becomes an i+ 1 colored

vertex in fix for (i + 1)2. We have the following 4 scenarios when restricted to graphs G4.

Scenario 1 ∶ i+2 i i+1 i

Scenario 2 ∶ i i+2 i+1 i

Scenario 3 ∶ i i+1 i

Scenario 4 ∶ i i+1 i i+2

Scenario 5 ∶ i i+1 i+2 i

The i+ 2 colored vertex in scenarios 1, 2, 4, and 5 is not in (i)1 or (i+ 1)2, but can be present

in the same component of the induced i, i + 1-coloring of x. Again in all five scenarios we have

that after fi is applied to (i)1 and fi+1 is applied to (i+1)2, we lose (i)L1 as a left i-bracket so that

(i)2 becomes an unpaired right i-bracket.

The last case is when both (i)1 and (i + 1)2 have length 1. There is only one possibility for

this. (i)1 is an i colored vertex. After fi acts on it, it becomes an i+1 colored vertex. This vertex

is both (i+ 1)2 and (i)L1 . When fi+1 acts on it, we lose (i)L1 as a left i-bracket, which unpairs (i)2.

This exhausts all cases, so it must be the case that (i)2 unpairs and becomes the rightmost

unpaired right i-bracket in f 2
i+1fix. □
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Proposition 3.4.54. Let x be the coloring of a graph G ∈ G4. Assume i, i + 1 ∈ I and f-Case

1 or f-Case 6 applies to x for i. If φi+1(fix) = φi+1(x) + 1 > 1 and φi(fi+1x) = φi(x) + 1 > 1, then:

(1) fif 2
i+1fix = fi+1f 2

i fi+1x ≠ 0;

(2) εi(fi+1x) = εi(f 2
i+1fix) and εi+1(fix) = εi+1(f 2

i fi+1x).

Proof. We begin by proving (1) for f-Case 1. We will again be using the language of Defini-

tion 3.4.43. To prove this we will simply show that both paths act on exactly (i)1, (i + 1)1, (i)2,

(i + 1)2, and nothing else.

Let’s first consider the path fi+1f 2
i fi+1. When fi+1 acts on x, it acts on (i + 1)1 by definition.

Next, when fi acts on fi+1x, it acts on (i)2, again by definition. By Proposition 3.4.45 (4), we

know that fi acting on fifi+1x will act on (i)1. Now we know acting on (i)1 creates (i + 1)2, and

this is strictly left of (i)2 by Proposition 3.4.45 (7). By Proposition 3.4.45 (8), we know that

(i)2 can’t alter (i + 1)2, and by Proposition 3.4.52, it follows that (i + 1)2 is the rightmost right

i + 1-bracket of f 2
i fi+1x. Hence it is the case that fi+1 acting on f 2

i fi+1x acts on (i + 1)2.

Now let’s consider the path fif 2
i+1fi. When fi acts on x, it acts on (i)1 by definition. Next, when

fi+1 acts on fix, it acts on (i+1)1 because by Proposition 3.4.45 (3), we know it is still the rightmost

unpaired right i + 1-bracket of fix and it is unaltered by fi acting on x by Proposition 3.4.45 (1).

When fi+1 acts on fi+1fix, it acts on (i + 1)2 by definition. And lastly, by Proposition 3.4.45 (8),

we know that (i)2 is unaltered by fi+1 acting on fi+1fix and by Proposition 3.4.53, we know it

is the rightmost right i-bracket of f 2
i+1fix, so that fi acts on (i)2 when it acts on f 2

i+1fix. Hence

fif 2
i+1fix = fi+1f 2

i fi+1x, and this clearly isn’t 0.

Now we prove (2). Let’s first begin by proving εi(fi+1x) = εi(f 2
i+1fix). Since we know that

φi(fi+1x) = φi(x)+1 > 1, by Proposition 3.4.14, this implies εi(fi+1x) = εi(x). Now, it is clear that

εi(fix) = εi(x) + 1. When fi+1 is applied to fix, it acts on (i + 1)1 and we know that we gain a

right i-bracket, but since (i)1 was acted upon and is now an unpaired left i-bracket strictly left of

it, these must be paired. Hence, εi(fi+1fix) = εi(x). Lastly, by Proposition 3.4.53, we know that

when we apply fi+1 again to act on (i + 1)2, we know it must increase the number of unpaired

right i-brackets by one, meaning ϕi(f 2
i+1fix) = ϕi(fi+1fix) + 1, which again by Proposition 3.4.14

implies that εi(f 2
i+1fix) = εi(fi+1fix). Hence εi(f 2

i+1fix) = εi(x) = εi(fi+1x).
127



Now let’s prove εi+1(fix) = εi+1(f 2
i fi+1x). Since we know that φi+1(fix) = φi+1(x) + 1 > 1, by

Proposition 3.4.14, this implies εi+1(fix) = εi+1(x). Now it is clear that εi+1(fi+1x) = εi+1(x) + 1.

By Proposition 3.4.52, we know that when we apply fi to fi+1x, it will act on (i)2, and we know it

doesn’t increase the number of unpaired right i + 1-brackets, meaning φi+1(fifi+1x) = φi+1(fi+1x),

and again by Proposition 3.4.14, this implies εi+1(fifi+1x) = εi+1(fi+1x) − 1 = εi+1(x). Lastly, when

fi acts again, this time on (i)1, we know we gain an unpaired right i+1-bracket, so φi+1(f 2
i fi+1x) =

φi+1(fifi+1x) + 1. By applying Proposition 3.4.14 again we have εi+1(f 2
i fi+1x) = εi+1(fifi+1x) =

εi+1(x) = εi+1(fix). □

A similar strategy can be used to prove the e version of Proposition 3.4.54, and we state this

now without proof.

Proposition 3.4.55. Let x be the coloring of a graph G ∈ G4. Assume i, i + 1 ∈ I and e-Case

1 or e-Case 6 applies to x for i. If εi+1(eix) = εi+1(x) + 1 > 1 and εi(ei+1x) = εi(x) + 1 > 1, then:

(1) eie2i+1eix = ei+1e2i ei+1x ≠ 0;

(2) φi(ei+1x) = φi(e2i+1eix) and φi+1(eix) = φi+1(e2i ei+1x).

We are now ready to state the final result of this section.

Proposition 3.4.56. Let x be the coloring of a graph G ∈ G4. Then the crystal operators

satisfy the Stembridge axioms S3 and S3’.

Proof. Let i, j ∈ I and i ≠ j. If j ≠ i−1 or i+1, then by Proposition 3.4.40, S3 and S3’ never

apply to these cases, so we now assume we have adjacent operators for the rest of the proof.

Suppose S3’ applies to x, meaning for i, i + 1 ∈ I we have φi+1(fix) = φi+1(x) + 1 > 1 and

φi(fi+1x) = φi(x) + 1 > 1. Then there are three possible situations for these operators, f-Case 1, 3

or 6. Proposition 3.4.41 shows that S3’ holds for f-Case 3, and Proposition 3.4.54 shows that it

holds for f-Cases 1 and 6.

Suppose S3 applies to x, meaning for i, i + 1 ∈ I we have εi+1(eix) = εi+1(x) + 1 > 1 and

εi(ei+1x) = εi(x) + 1 > 1. Then there are three possible situations for these operators, e-Case 1, 4

or 6. Proposition 3.4.42 shows that S3 holds for e-Case 4, and Proposition 3.4.55 shows that it

holds for e-Cases 1 and 6. □
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3.5. Schur positivity using crystal structure

In Section 3.4, we showed that colorings of unit interval graphs G ∈ G4 create a Stembridge

crystal structure, and by Theorem 3.3.2, this is a way to prove Schur positivity of these graphs.

However, producing crystal operators that give a Stembridge crystal structure for a larger set

of graphs than G4 appears to be a significantly challenging task. And proving that these new

operators satisfy the Stembridge axioms would also be significantly challenging. So, it does not

seem that seeking Stembridge crystal operators is desirable for claw-free graphs more generally.

The advantages of our crystal operators to Ehrhard’s [Ehr22], is that our operators can be

applied directly to colorings of graphs, seem easier to apply and understand, and can be applied

to the set of all claw-free graphs, rather than just claw-free incomparability graphs. Given that

Ehrhard proved Schur positivity using the crystal structure for claw-free incomparability graphs

and our operators are isomorphic on this set of graphs, ours by extension can use the exact same

proof technique to prove Schur positivity. So it is possible to try to extend Schur positivity to

claw-free graphs which are not incomparability graphs using our crystal structure and a Schur

positivity proof similar to one used by Ehrhard in Theorem 6.2 of [Ehr22]. This is what we are

currently pursuing.

Our current idea is to consider types of small graphs which are claw-free but not incompa-

rability graphs such as cycle graphs of length greater than 4, and prove Schur positivity of these

graphs using our crystal structure and find ways of attaching claw-free incomparability graphs to

these graphs such that the proof techniques still work to produce greater and greater subsets of

claw-free graphs.

In general, if the crystal operators were to give us the correct number of highest weight

colorings, then the Schur positivity proof would be straightforward. However, it seems for most (if

not all) claw-free graphs which are not incomparability graphs, we do not get the correct number

of highest weight colorings. So we need to either modify the operators until we do, or modify the

proof to account for this difference.

Despite the difficulty, this process at least seems like it could be used to extend the Schur posi-

tivity results to rather large sets of claw-free graphs in the future and we are currently considering

crystal operator modifications for claw-free graphs that will make this possible.
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