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ABSTRACT. In this paper, we study Hamiltonicity of planar graphs, focusing on the
conjecture of David Barnette that every graph that is 3-regular, 3-connected, planar, and
bipartite has a Hamiltonian cycle. We review work that has been done on the conjecture,
and study properties of the Barnette’s graphs and the complexity of the Hamiltonian cycle
problem on these graphs. Finally, using graph generation and visualization software, we
study the graphs’ diameters, and conjecture an upper bound for all such graphs.
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CHAPTER 1

Background And Motivation

1.1. Basic Definitions

We begin with some basic definitions.

A set of points X in R" is convex if for any two points a and b, the line segment
joining them, {Aa+(1—A)b:0 < X <1} isin X. Figure 6 gives an example of convex and
non-convex sets in the plane. The set on the left is not convex because the line segment
shown in red between the two points lies partially outside the set. It is easy to see that
the hexagon on the right is convex.

The convex hull of a set is the intersection of all convex sets containing the set. For
intuition in the plane, consider a set of points and put a rubber band around the points.
The set bounded by the rubber band and its interior is the convex hull of the set of points.

Figure 1: A non-convex (left) and convex set

A hyperplane in R" generalizes a line in R? and a plane in R3. It is the set {x:
a1z1 + a2y ...a,x, = b} where a; and b are scalars. Replacing = with <, we get a
halfspace, a partition of R” into points above or below a hyperplane. The intersection of
finitely many halfspaces defines a polyhedron. If a polyhedron is bounded, it is a polytope.

1
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Figure 2: A Set of Points and Its Convex Hull

Writing all halfspaces with < (by multiplying through by -1 if necessary), we can write the
halfspaces in the form

a1z + apeTz + ... + 61T < b
a1 + a9z + ... + GpZn < bo
Am1Z1 + am2Z2 + ... + AmaZn < by

The polytope can then be written in the matrix form x € R® : Ax < b.
A d-dimensional polytope is simple if each vertex is adjacent to exactly d edges.

Figure 3: The icosahedron, a convex polytope
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1.2. Graphs and Polytopes

A graph (V, E) is a set of vertices edges connecting the vertices. A graph is simple
if there is at most one edge connecting each any pair of vertices and no self-loops, and
planar if it can be drawn in the plane without any intersecting edges.

If a graph is planar, its planar embedding defines faces: regions of the graph bounded
by sets of edges.

A graph is connected if there is a path along edges between any pair of vertices, and
k-connected if at least k vertices need to be removed from the graph for it to become
disconnected.

A graph is k-regular if each vertex is connected to k other vertices.

Taking the edges and vertices of a polytope as the edges of the graph, we can associate
the 1-skeleton graph to a polytope. Note that the notion of a simple graph and a simple
polytope are distinct. Given a d-dimensional simple polytope P and its associated graph
G, G is k-regular because P is simple, and G is simple because it has no self-loops or
double edges. Conversely, the graph of a 3-octahedron is simple for the same reasons, but
a J-octahedron has vertices of degree 4.

A theorem of Steinitz [Ste22] says that a graph is the graph of a 3-polytope if and only
if it is simple, 3-connected and planar. Many polytopes, such as a rectangular prism and a
3-cube have the same graphs, but different geometries. This thesis is primarily concerned
with combinatorial properties, that is, properties of the graphs of polytopes.

A Hamiltonian cycle on a graph is a path along the edges that passes through each
vertex exactly once and returns to its starting vertex. It is easy to find a Hamiltonian cycle
on the graph in figure 4.

A graph G = (V, E) is bipartite if V can be partitioned into subsets V3 UV2 = V such
that any edge that has an end point in V; has its other end point in V5.

LemMMA 1. A planar graph is bipartite if and only if all of its faces are of even degree.

Proof: It is known that a graph is bipartite if and only if it contains no even cycles.
Suppose a graph is bipartite. Then it cannot have a face of odd degree, because the face
forms an odd cycle. Conversely, suppose that a graph is planar and has only even faces.
Then a cycle on the graph has the set of faces {fi, fa,..., fx} in its interior, with a set X
of edges strictly in the interior. Then

k
ICl =I5kl - 2IX]
i=1
. Since | fx| and 2|X]| are both even, |C| is even. O

1.3. Complexity Theory and Hamiltonian Cycles

In addition to finding infinite families of graphs that are Hamiltonian, much research
has been done in the problem of deciding whether a given graph is Hamiltonian. The
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Figure 4: The graph of a decahedral prism, showing the two coloring and bipartition of
the graph

Hamiltonian cycle decision problem, i.e., “given a graph G, is G Hamiltonian?” is an
interesting problem in computational complexity, as it is computationally difficult for a
general graph but may be easier for Barnette graphs, that graphs that we study and
introduce in the next section.

Computational complexity theory categorizes decision problems by asymptotic running
time of algorithms used to solve them. Problems with algorithms that solve in polynomial
time in the bit size of the input are said to be in P. Problems in P roughly correspond with
those practically solvable on a computer in a general case.

An example of a graph theory problem in P is the path problem: “given a graph G
and two vertices s and t, is there a path between s and t?” For the Hamiltonian path
(and the more difficult Hamiltonian cycle) problem, there is a naive algorithm: for each
pair of vertices s and ¢t € G, find the path between them and check whether it traverses
every vertex. This algorithm is exponential in the number of vertices. Such a brute-force
enummeration can be used to solve many graph problems. For a graph in general, it is
not known whether there is a polynomial time algorithm for finding a Hamiltonian cycle.
Nevertheless, the problem is verifiable in polynomial time.

A problem is verifiable in polynomial time if, given a solution to the problem, the
solution can be checked for correctness in polynomial time. A given cycle can be checked
for Hamiltonicity in polynomial time by simply seeing if it traverses every vertex. Problems
that can be verified in polynomial time are in the computational class NP. Although most
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researchers believe that the classes P and NP are distinct, there is no problem in NP that
has been proved to not be in P.

There are problems that are known to the “most difficult” problems in NP. These
problems are NP-complete. A problem H is NP-complete if it is in NP and every problem
in NP can be reduced to H in polynomial time. This means that if a polynomial algorithm
for an NP-complete problem is found, all problems in NP can be solved in polynomial time.

Cook [Coo71] found the first NP-Complete problem, the Boolean satisfiability prob-
lem, or SAT.

SAT is the following: given a set of Boolean variables z1,...,2, and a sentence using
A, V, — and parenthesis, is there an assignment of true or false to each of the variables that
makes the sentence true. While remaining NP-complete, the problem may be reduced to
one in the form (p1; V p1,; VP1,k) A (D2,i VD25 VP2k) A=+ A(DniVPnjV Pni) Where each
p;,j IS some x; or — ;.

1.3.1. Tutte’s Fragment and Hamiltonian Graphs. We are motivated by the
problem of finding interesting families of Hamiltonian graphs. In 1886, P.G. Tait conjec-
tured that all planar, 3-connected graphs have Hamiltonian cycles. In 1946, W.T. Tutte
found a counterexample to Tait’s conjecture.

Figure 5: Tutte’s Fragment

Tutte’s fragment is the key to the counterexample to Tait’s conjecture. It is 3-connected
(except on the three edges in the corners) and planar. It is, as we will later explain, an
7exclusive-or graph”: any Hamiltonian path beginning at the bottom right or left-hand
vertices must exit through the top vertex. We'll see later that if a graph with this property
that is a Barnette graph exists, then Barnette’s conjecture is not true and the Hamiltonian
cycle problem is NP-complete for Barnette graphs. Similar graphs are used in the proofs
of NP-completeness of the Hamiltonian cycle problem for planar, 3-connected, 3-regular
graphs, and 3-connected, 3-regular, bipartite graphs. By adjoining three Tutte fragments,
we get the counterexample:
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Figure 6: Tutte’s Counterexample, Using Tutte’s Fragment

Starting from any vertex, it is easy to see that there are no Hamiltonian cycles. At
most you can go through two Tutte fragments before returning to the center, with no way
of reaching the third to complete the Hamiltonian cycle.

Tutte later conjectured that 3-regular, 3-connected bipartite graphs were Hamiltonian,
but many counterexamples, including a minimum example on 50 vertices were found.

This thesis is primarily concerned with the following conjecture of David Barnette:
[Bar69]: Conjecture (D. Barnette)

Every graph that is 3-connected, 3-regular, bipartite, and planar has a Hamiltonian cycle.

We call these graphs Barnette graphs and study their combinatorial properties. They
are the graphs of 3-connected, simple, bipartite, 3-dimensional convex polytopes.

1.4. Why Study Graphs of Polytopes?

The study of graphs of polytopes has a strong connection to optimization and compu-
tational complexity theory.

1.4.1. Optimization. Linear programming problems are constrained optimization
problems with linear objectives and constraints. It was created during World War II
as an aid for military planning. An example of a linear programming problem is:
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minimize 2z; + 3z + 23

subject to: 3bz1 4 z2 + 0.523 > 0.5
60z, + 300z5 + 1023 > 15
30z1 + 2022 + 1023 > 4
1 >0
e >0
xz3 >0

The inequalities of a linear programming problem describe halfspaces. Their intersec-
tion defines a polytope on which feasible solutions are found. Geometrically, the objective
function is a vector whose direction is the direction of optimality. The optimal solution
is found on a vertex or edge of a polytope, where a hyperplane normal to the objective
function intersects the polytope on this vertex or edge. It is easy to see that any other
solutions will be either less than optimal or infeasible. If the optimal solution is an edge,
there are infinitely many optimal solutions, otherwise the solution is unique.

The first and most common method for solving linear programming problems is the
simplex method, introduced by George Dantzig in 1950. The simplex method uses both
the combinatorics and geometry of the problem. It begins at one vertex of the polytope
and moves along the graph until reaching the optimal solution. At each step, it uses a
fixed pivot rule to attempt to move in the optimal direction. Despite its great success
in practice, in 1972 Klee and Minty showed that the simplex method has exponential
complexity. They found that on the feasible region now called the n-dimensional Klee-
Minty cube, the simplex method using Dantzig’s original pivot rule traverses every vertex
before arriving at the optimal solution. In 1979, Leonid Khachyian showed that the linear
programming problem is solvable in polynomial time, but there are no known polynomial
time simplex pivot rules, but it is not known whether any exist.

In 1957, Hirsch conjectured that the diameter of any d-dimensional polyhedra with n
facets is is bounded by n—d. It is known to be false for unbounded polyhedra, and true for
three-dimensional and 0-1 polytopes. The Hirsch conjecture implies a serious claim about
linear programming methods like the simplex method. Consider the theoretical “oracle’s
rule” for pivoting: take the shortest path to the optimum. Assuming the Hirsch conjecture
and using the oracle’s rule, starting from any vertex, any linear programming problem is
solvable by the simplex method in at most diameter many steps. [J BO07]

Although Barnette’s conjecture and the simplex method don’t have a direct connection,
they are connected in the sense that they are both problems in combinatorics of polytopes
that lie in a gray area of complexity theory. By relaxing either the condition of planarity
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or bipartiteness, the Hamiltonian cycle problem becomes NP-complete, while the simplex
method is an algorithm that may be exponential for a problem that is polynomial.

1.4.2. The Four-Color Theorem. The following conjecture was posed by Frederick
Guthrie, a student of DeMorgan, in 1852: every planar map, having no countries which
are completely surrounded by others, can be colored such that no countries sharing a
common border are the same color. By adjoining the capitals of adjacent countries by
edges (i.e., taking the dual graph of the map), the four-color theorem can be restated
in graph theoretical terms: Every planar graph has a vertex coloring such that no two
adjacent vertices share the same color. The theorem was proved by Appel and Hakken in
1977.

Its relation to the Barnette conjecture comes from a condition that implies the four-
color theorem. Tait showed that the four-color theorem is equivalent to the condition of
finding a 3-edge coloring for every 3-regular planar graph, which in turn is equivalent to
every 3-regular planar graph having a Hamiltonian cycle. [I. 06] As Tutte’s counterexample
shows, this condition is not true. Although Barnette graphs are four-colorable since they
are bipartite, the work of Tait and others to find a Hamiltonian family of graphs eventually
led to Barnette’s conjecture.

For the remainder of the thesis, we study properties of Barnette’s graphs and previous
work that has been done on the conjecture.




CHAPTER 2

Studying Barnette Graphs

2.1. Holton-Manvel-McKay Construction

Barnette’s conjecture remains an open problem. Holton, Manvel and McKay verified
computationally in [HMMS85] that the conjecture holds for all graphs with up to 66 ver-
tices and have since extended the result to 84 vertices. Most significantly, they found a way
to construct Barnette graphs. The smallest graph satisfying the conjecture is the graph
of a cube. From this cube, we can construct Barnette graphs with iterations of the two
operations. Figures 1 and 2 show the two operations. Given a planar embedding of a
Barnette graph, the operations are as follows: for the first operation, given two edges that
don’t share a vertex, add two vertices to each edge, and connect them with two new edges.
This results in a Barnette graph with four additional vertices. In Appendix A, we see
that Barnette graph 12-1 (hexagonal prism) is a result of this operation being applied to
Barnette graph 8-1 (the cube) on the two center edges. Every prism with even base is thus
a Barnette graph by repeating this operation on the two center edges of the embedding of
the cube shown. The second operation is applied to a vertex, by adding six vertices and
five edges to the graph. Because Barnette graphs are 3-regular, any vertex looks like a “Y”
with a planar embedding. In figure 2 we see how to do this operation: add two vertices to
of the edges, and two new vertices, connecting them to make three new four-sided faces. In
Appendix A, we see that Barnette graph 14-1 is applying this operation once on a vertex
of a cube.

Theorem (Holton, Manvel, McKay)
Every Barnette graph can be generated up to isomorphism using the two operations shown.

Initially, it appears that graphs constructed in this way maintain Hamiltonicity, With
the second operation, a cycle entering on any of the three original graphs and leaving on
any other can be easily extended to the construction, while maintaining Hamiltonicity. We
see that the addition from operation two looks similar to a small Tutte Fragment, except
that a Hamiltonian cycle entering the subgraph can enter or exit on any vertex.

The problem in extending a Hamiltonian cycle comes from the first operation. If the
cycle travels along the two original edges, then the cycle extends to the larger graph without
a change. If instead the cycle on the smaller graph uses neither of the two original edges,
it cannot get to the four middle vertices while maintaining Hamiltonicity. P.R. Goodey

9
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— =

Figure 1: Barnette graph construction: add the vertices and edges in red

Ak

Figure 2: Barnette graph construction: add the vertices and edges in red

[P.R77] showed that Barnette’s conjecture holds when all faces have four or six sides.
Many conditions equivalent to Barnette’s conjecture have been found: [Ale03] Note: a
facial cycle in a planar graph is a cycle in the graph which forms the boundary of a face.

e For every bipartite, 3-regular, 3-connected, and planar graph G and for every two
edges a,b of G, belonging to the same facial cycle of G, there is a Hamiltonian
cycle in G, containing a and avoiding b.

e For every bipartite, 3-regular, 3-connected, and planar graph G and for every two
edges a,b of G, belonging to the same facial cycle of G, there is a Hamiltonian
cycle in G, containing both a and b.

o Every bipartite, cubic, cyclically 4-connected, and planar graph has a Hamiltonian
cycle.
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Although Barnette’s conjecture could be approached through any one of many equiv-
alent conditions, the Tutte Fragment gives rise to an obvious approach to finding a coun-
terexample to Barnette’s conjecture. If a Barnette graph exists with the Tutte Fragment’s
property that Hamiltonian cycles through it can only enter through certain vertices, it
would create a quick counterexample to Barnette’s conjecture. It turns out it also implies
a stronger result about Barnette graphs.

2.2. NP-Completeness and Barnette’s Graphs

Garey and Johnson {GJ90] showed that the Hamiltonian cycle problem is NP-Complete,
and later along with Tarjan [GJT76] showed that the problem is NP-complete for 3-
connected, 3-regular, and planar graphs. Akiyama, Nishizeki, and Saito [TTN80] showed
that the Hamiltonian cycle problem is NP-complete on 3-connected, 3-regular, bipartite
graphs. To prove this, both found a polynomial-time reduction of 3-SAT to the desired
Hamiltonian cycle problem.

Using similar proofs, both cases begin with a logical statement, and build a polytope
with the desired properties that corresponds to the statement. The statement determines
the number of edges, vertices, and connectivity of the polytope, and they show that a
statement is true if and only if the corresponding graph has a Hamiltonian cycle. Both
instances are extremely relevant, as each class of graphs differs from Barnette graphs in
only one property. In proving that this problem is NP-complete on the desired graphs,
they also proved showed (although it was already known) that these classes of graphs are
not Hamiltonian. The key to much of the proofs is the “required edge graph”, a subgraph
used in each construction that has the same properties as the Tutte Fragment.

In the construction of Akiyama, et. al., the required-edge graph is the only non-planar
component of the construction, and in Johnson, et. al., the required-edge graph is the
only non-Bipartite component of the construction, as it contains pentagonal faces. Fig-
ure 3 shows the non-planar required edge graph. In the required-edge graph shown, a
Hamiltonian cycle entering on B or C must leave the subgraph through A. The signifi-
cance of this graph is that it is the only non-planar component of the graph constructed in
the proof. Any graph that has the restricted Hamiltonian cycle property can replace the
required-edge graph. If such a subgraph exists, it can be used in the same way as the Tutte
counterexample, thus disproving Barnette’s conjecture. Because it is the missing piece in
a polynomial-time reduction of the Hamiltonian cycle problem to 3-SAT, its existence also
proves that the Hamiltonian cycle problem is NP-complete on Barnette graphs. Of course,
if Barnette’s conjecture is true, then Hamiltonian cycles on Barnette graphs cannot be
NP-complete. We now have the following conjecture:
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Figure 3: The required-edge graph and its two possible local states.

Conjecture

There is no graph with specified edges (a1, a2), (b1, b2), (c1,¢2) that is bipartite, planar, 3-
regular (except at a1, b1, c2), and 3-connected (except at aj,b;, and c¢1) with Hamiltonian
paths by & ¢1, a1 « by, and ay < ¢3.

It is easy to see that the required-edge graph satisfies all properties except for planarity.
Note that this conjecture is not equivalent to Barnette’s conjecture,. If such a graph exists,
then the conjecture cannot be true and the Hamiltonian cycle problem is NP-complete. If
such a graph does not exist, then we conclude nothing, the complexity remains undecided,
and Barnette’s conjecture may or may not be true.

The problem of finding such a counterexample is a very difficult computational prob-
lem. Checking whether a graph has the required Hamiltonian path properties falls in the
computational category of #P-Hard, counting problems with an associated decision prob-
lem that is usually NP-hard. For a precise definition of #P-Hard, see [GJ90] Checking
the property can be rephrased as a counting problem: how many Hamiltonian paths on a
possible required-edge graph that begin at a specified vertex and end at another? Simply
checking the existence of this type of Hamiltonian path is more difficult than the general
Hamiltonian path problem, let alone finding all such Hamiltonian paths. In addition to
being difficult for any fixed graph, there are many more of these “possible required-edge”
graphs for a given number of vertices than there are Barnette graphs themselves, as we
can generate them with the following method:

Fix a Barnette graph G and a planar embedding. Choose any three vertices on the
outer face of the graph, and add edges A, B, and C. These will connect this fragment to
the rest of a larger Barnette graph. Figure 4 gives an example of this addition to a Barnette
graph on 18 vertices. It is easy to see that here there are Hamiltonian paths beginning at
each of A, B, or C that end at either of the other two. An exhaustive thus requires an
enormous number of attempts: For a given embedding, we have multiple choices of A, B,
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and C, and there are multiple embeddings, and for each graph there are multiple planar
embeddings.

Figure 4: Barnette graph construction: add the vertices and edges in red

We now study the diameter of Barnette’s graphs, including some upper bounds based
on eigenvalues of the graphs’ adjacency matrices.

2.3. Diameters and Eigenvalues of Barnette Graphs

2.3.1. Background on Diameter. In this section, we investigate properties of the
diameter of Barnette graph. Although there is no obvious connection between Hamil-
tonicity and diameter of a graph, these graphs are nevertheless an interesting family to
study.

Given a graph G, we can define the distance between vertices v and v as the length
of the shortest path between them. The diameter of a graph is defined as the maximum
shortest path over all pairs of vertices.

An adjacency matrix is a representation of a graph’s connectivity. Given a graph
with n vertices, an n x n adjacency matrix A is defined as

A 1 if vertex i is adjacent to vertex j
%77 0 if vertex 7 is not adjacent to vertex j
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The Laplacian matriz of a graph is defined as

-1 if vertex ¢ is adjacent to vertex j
Li; = 0 if vertex 7 is not adjacent to vertex j
deg(t) ifi=3j

For a k-regular graph, it is easy to see that the Laplacian of a graph is kI — A, where [ is
the n x n identity matrix.

There are several known upper bounds for the diameter of a graph. We investigate the
diameter and the following upper bounds on the diameter for Barnette’s graphs: We call
A1 € Ao < )\, the eigenvalues of the adjacency matrix.

¢ The number of unique eigenvalues of of the adjacency matrix of a graph
. {(—————hi:i::i ) ln(n —_ 1)-’

The first bound holds for any graph, and the second holds for k-regular graphs. In
[Moh91], a variation of the second bound is given in terms of the eigenvalues of the
Laplacian. For k-regular graphs, the eigenvalues of the Laplacian are a shift by & of the
eigenvalues of the adjacency matrix.

The software package Plantri implements Holton, Manvel and McKay’s construction of
Barnette graphs. Using this, we generate adjacency matrices for all graphs between 8 and
42 vertices. From the adjacency matrices we get the Laplacian matrix. We calculate the
diameters using a well-known property of adjacency matrices: given an adjacency matrix
A, Agj is the number of paths of length n between vertex ¢ and vertex j. Using this fact,
the diameter can be defined as the smallest n such that the matrix 3 ;- ; A™ has no zero
entries. This smallest n means that there at least one path between each vertex of length
n, and for any k < n, there is no path of length k, thus the largest distance over all pairs
of vertices is n.

Table 1 shows that that for Barnette graphs between 8 and 42 vertices, the diameter
ranges from 3 to 14. Mohar’s bound depends completely on on the second largest eigenvalue
of the adjacency matrix and the number of vertices. For the Barnette graphs we calculated,
the second largest eigenvalue grows monotonically with diameter. For two graphs with the
same diameter and distinct number of vertices, the graph with more vertices has a greater
second largest eigenvalue. The rate of increase of the Mohar bound is much larger than
the diameter, and it becomes worse with more vertices.

The number of distinct eigenvalues of the adjacency matrix is of course bounded above
by the number of vertices of the graph. Table 2 is a small sample of data on the graphs.
From this example and from the rest of the data, for Barnette graphs of a fixed number of
vertices n, there is little connection between diameter and the number of unique eigenval-
ues. For graphs on each fixed number of vertices, we find graphs that have the minimum
diameter and close to the maximum number of eigenvalues, and vice-versa.

In both cases, both the number of unique eigenvalues and the Mohar bound are nowhere
near the diameter of the graph. In many cases the number of unique eigenvalues is the
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Table 1: Number of Vertices & Values of Diameters in Barnette Graphs

8 3

12 4

14 5

16 5

18 5.6

20 5,6,7

23 6,7

24 6,7,8

26 6,7,8,9

28 6,7,8,9

30 7,8,9,10

32 7,8,9,10,11

34 7.8,9,10,11

36 7,8,9,10,11,12

38| 7,8,9,10,11,12,13
40| 7,89,10,11,12,13
421 789,10,11,12,13,14
14| 7,8,9,10,11,12,13,14,15
46 | 8,9,10,11,12,13,14,15

maximum, and the Mohar bound is even worse. A simple bound turns out to be much
better:

For any Barnette graph on n vertices, 3 is an upper bound on the diameter, as the
largest distance between any two vertices cannot be greater than traveling along half of
the vertices of the graph.

For the 22,263 Barnette graphs with 36 or less vertices, the number of unique eigenval-
ues is a better bound for the diameter than n/2 for only six graphs, and the Mohar bound
is better than n/2 for only five graphs. We conjecture an even better bound for Barnette
graphs, apparent in table 1: Each odd numbered upper bound occurs twice, and each even
numbered bound occurs twice. If this continues to be the case, then the n/2 bound for
graphs should continue to perform well, at least for the graphs whose diameter is an upper
bound for all others on the same number of vertices. From the pattern found in Table 2,
we conclude with a conjecture of an even tighter bound on the diameter of the graph.
Conjecture

If G is a planar, 3-connected, 3-regular, and bipartite graph on n vertices, d(G) < |_2—n..;*iJ
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Table 2: Sample of Diameter Data For Barnette Graphs

Graph Name | Vertices | Edges | Diameter | Unique Eigenvalues | Mohar Bound
G_12.1 20 30 6 12 14
G.12_2 20 30 6 20 14
G.12.3 20 30 5 13 10
G_124 20 30 6 18 12
G.12.5 20 30 6 16 14
G.12.6 20 30 6 20 16
G_12.7 20 30 6 20 16
G.12.8 20 30 7 14 18
G.13.1 22 33 7 22 18
G.13.2 22 33 7 21 18
G_13.3 22 33 6 22 16
G.134 22 33 7 22 18
G_13.5 22 33 6 22 14
G_13.6 22 33 7 21 18
G_13.7 22 33 6 22 14
G_13.8 22 33 6 21 12
(G.18.1323 32 48 7 31 24
G_18_.1384 32 48 7 31 28
(G_18.1400 32 48 7 32 22
(G_18_1401 32 48 8 31 26
G_18.1402 32 48 8 32 34
G_18.1403 32 48 9 32 36
G_18.1404 32 48 9 32 36
G_18.1405 32 48 8 32 34
G_18_1406 32 48 9 32 38
[Slo07]

Barnette’s Conjecture has been open for nearly 40 years at this point. Although much
work has been done on the problem, there are many ways to approach the problem and
make progress into understand the properties of the graphs. In future work, I hope to
make progress on a proof of the diameter bound conjectured, and work on generating a
Tutte Fragment-like counterexample, or at least give a lower bound on the size of a possible
counterexample graph.




APPENDIX A

Tutte Embeddings of Barnette Graphs From Eight to
Sixteen Vertices

In 1962, W.T. Tutte created the Tutte embedding, by proving that any planar, 3-
connected graph could be embedded in the plane by defining a weight function the edges
and minimizing this function to give embed vertices. Since Barnette graphs are planar and
3-connected, Tutte’s embedding gives us nice planar visualizations, which may be useful
in gaining insight into properties of Barnette graphs. The following are Tutte embeddings
of the sixteen smallest graphs, using Plantri to produce the graphs and Tulip to visualize
the Tutte embedding. Graphs are indexed n — k where n is the number of vertices and k is
the index assigned to the graph by the software Plantri, denoting only the order in which
it was generated by the program.

17
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Figure 1: Barnette Graph 8-1
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Figure 2: Barnette Graph 12-1
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Figure 3: Barnette Graph 14-1
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Figure 4: Barnette Graph 16-1
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Figure 5: Barnette Graph 16-2
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Figure 6: Barnette Graph 18-1
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Figure 7: Barnette Graph 18-2
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Figure 8: Barnette Graph 20-1
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Figure 9: Barnette Graph 20-2
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Figure 10: Barnette Graph 20-3
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Figure 11: Barnette Graph 20-4
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Figure 12: Barnette Graph 20-5
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Figure 13: Barnette Graph 20-6
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Figure 14: Barnette Graph 20-7
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Figure 15: Barnette Graph 20-8
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