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Abstract

Using the representations of the Lie algebra su2 to examine the decomposition of
spin chains, we study the norm of a particular operator, C, on a system of three spins
with magnitudes ji1, j2, and js, described by the representation pj, ® pj; ® pjs- The
operator C is defined as a commutator: C' = [P12® 1,1 ® Py3), where Py2 projects onto
the subrepresentation with spin j1 +j2, contained in pj, ®0j,, and P»3 projects onto the
subrepresentation with spin jz+j3, contained in p;;, ®pj;. On the basis of partial results
and numerical computation, we conjecture that CIl = /7rd2ga(d1 + j2 + J3)/ (1 +
j2)(j2+73) . Estimating the magnitude of this norm is related to estimating the norm of
the operator Gy 3 E2. Determining a sufficiently small upper bound ¢ for |Gz 3 E2||,
guarantees a nonzero lower bound of the spectral gap above the ground state. We
conjecture that this upper bound ¢ does exists, and when an additional condition is
satisfied we calculate the bound to be v/2j152j3(j1 + g2 + j3)/ (71 +ja)(j2+j3) . We are
specifically interested in this result as it guarantees a nonzero spectral gap of a finite
or infinite frustrated antiferromagnetic spin-3/2 chain.

1 Introduction

Using mathematical models to represent physical systems is commonly done by researchers
in the mathematics field. From fluid dynamics, to neuron transmission, mathematical
models help aid researchers in their quest to determine new properties of such systems.
The physical system that we are interested in and analyze throughout this project is that
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of a one dimensional quantum spin chain. Quantum spin chains model the magnetic ma-
terials found in many electronic devices. One can imagine a one dimensional quantum
spin chain as a line of particles held together by bonds between neighboring particles, see
figure 1. Each particle has a number attached to it, called the spin of the particle. This
determines the range of values of the angular momentum in the third component. These
spin values characterize the each particle, its magnetic field, and the range of possible
values of its intrinsic angular momentum. These systems, classically, are of particular
interest to us as its energy is usually quantized, which means that the possible energy
values for which the system can take on is not a continuous spectrum. Thus, there is a
nontrivial difference between two consecutive energy states. Analyzing quantum spin
chains brings new insight into properties of these systems.
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Figure 1: A quantum spin chain of three particles with spins j1, jz, Js-

A spin particle is modeled mathematically by a representation of the group SU,. These
representations act as operators on a Hilbert space, which is a vector space where the in-
ner product is well defined. The vectors in the Hilbert space represent the various states
our system can take. It is not always convenient, however, to model the system using
group representations of SUs as there is no finite basis. We solve this problem by using
representations of the Lie algebra su.. Note that for su, the Lie bracket [, -] is defined
as [A, B] = AB — BA. Since there is a bijective correspondence between the group SU,
and the Lie algebra su, via the exponential map, these two methods are equivalent ways
of studying representations. The Lie algebra representation is a more convenient way of
modeling these particles since it is spanned by the three different elements 53, represent-
ing the third component of angular momentum, S, the lowering operator, and S*, the
raising operator. It is shown in [1] that for these operators the commutation relations are:

[st,57] = 28°
(59,54 = +s*
Each particle has a spin, denoted usually by j, where j = § with a € Z3o. Each particle
also has an intrinsic angular momentum m with possible values ranging from m = j, j —
1,...,—j. Asstated in [1], given a particle with spin j, there is a basis of 2j + 1 vectors for
our Hilbert space C%*!, one for each of the possible components of angular momentum,
such that the irreducible representation is described by
p;(8%)|m) = m|m) —j<m<j
pi(S¥)m) = V(G Fm)(j £ m+1)m £1) —j<m<j

Since these spins are in positive half-integer increments and the dimension of the corre-
sponding representation is 2j + 1, there will be an n-dimensional irreducible representa-
tion for all n € N. Notice that it is simple to create these representations such that the vec-
tors |m) are the standard basis vectors. It is the set of representations using the standard
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basis vectors as these eigenvectors that I will refer to throughout the rest of this paper.
Furthermore, the notation of |m) will represent the standard vector that corresponds to
the eigenvector of p;(S%) with eigenvalue m.

In this specific paper, we are looking at chains of three particles, which are mathemat-
ically modeled by the tensor of their three corresponding irreducible representations of
su,, OT pj, ® pj; ® pj;. The actual representation for all g € su, is given by

Pi, ® P ® s (9) = P, (9) TR T+ 1 ® pj,(9) ®T+TRI® pj,(9)

1 will refer to this representation as p for the rest of the paper.

In general, the energy of a quantum spin chain is modeled by a Hamiltonian. A Hamil-
tonian is a sum of matrices where each specific term in the sum describes the interactions
between pairs of particles in the system. The Hamiltonians of greatest interest describe
interactions only between nearest neighbor pairs. Such is the case in the Hamiltonian
used to describe our system, which we will discuss later. The eigenvalues of the Hamil-
tonian give the different energy states of the system. By ordering the eigenvalues from
least to greatest, one can find a desired energy gap by subtracting successive pairs of en-
ergy values. Since the Hamiltonian is invariant under SU(2) interactions, as rotations do
not change how the particles interact, we used representations of this kind to model a
chain with a specific set of spins. The classical example of a Hamiltonian is that of the
Heisenberg model for the ferromagnetic chain of length N.

For a ferromagnetic chain of length N, the Heisenberg Hamiltonian describing the
systemis Hy = — S0 S - Sz4+1, where S, = (53, 52, S3) consists of the spin matrices for
each component. One can show that the ground state energy (i.e. the lowest energy) is
equal to — S N7 jzjz+1 Where j, is the spin of the particle in the zth position in the chain.
In the case where all the spins are equal, finding the first excited energy state (i.e. the
second lowest energy) is equivalent to diagonalizing an N — 1 x N — 1 banded matrix.
The first excited energy state A; in this example is of the order 1/N. Hence, as N — oo
we see that \; — 0. Since we know the ground state energy is also 0, the gap between
the two energy states tends to 0 as N gets large, and thus there is a vanishing spectral gap
above the ground state. In this paper, we are interested in showing that a quantum spin
chain with a specific Hamiltonian has a non-vanishing spectral gap.

The Casimir operator C = (S')? + (5%)* + (S%)° provides a means for determining an
equivalent way of writing the Heisenberg and other similar Hamiltonians as a sum of
projection matrices. This operator commutes locally with the Hamiltonian. This means
that the Casimir operator commutes with each term inside the Hamiltonian. When the
Casimir operator is diagonal, due to change in basis, each term in the Hamiltonian will
be block diagonalized. This means that Hy = Zf;ll ff__;;’:_';x_ll u:P;, where P, is an
orthogonal projector onto the subspace p; acts on. There is a special class of quantum
spin chains with Hamiltonians of the form

N-1
Hy =Y P, (1.1)

i=1
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where P, ;1 is an orthogonal projection acting non-trivially on sites 7 and 7 + 1. Assuming
that Hy has a non-trivial null space: ker Hy # {0} means that the ground state energy of
Hy is 0. This is true since having a non-trivial null space is equivalent to Hy having an
eigenvector with eigenvalue 0.

This is the type of Hamiltonian we consider in this paper. Since we are analyzing a
chain of three particles as a means to estimate a larger chain, our Hamiltonian is:

H=P,Q1+1& Py

Inside the Hamiltonian, P2 and P3 represent the projectors, respectively, onto the largest
irreducible representations in the decompositions of p;, ® p;, and pj, ® pj,. These allow for
the simultaneous examination of the each particle-interaction pair. We choose the largest
irreducible representation in this decomposition to describe the neighboring particle in-
teractions because it makes it possible to calculate the ground state energy. It is important
to note that the calculation of the ground state is only possible when j, > 1/2, or more
precisely, when no two consecutive j,’s are 1 /2.

Finding the ground state of a quantum spin Hamiltonian of this type can be regarded
as an eigenvalue problem. The classical case occurs when there is a tensor product basis
{lag,...,an) | 1 € a; < d;,1 < 1 < N} of simultaneous eigenvectors of the terms F; ;4.
The set of multi-indices @ = (ay, . .., ax) is such so that |a) is an eigenvalue of P, ;;; with
eigenvalue either 0 or 1 for 1 < ¢ < N — 1. The value of Hy considered as a function ¢,
for arbitrary ¢, is then equal to the number of terms P, ;;; that have eigenvalue 1 when
evaluated on a string . In particular, the spectrum of Hy consist of non-negative integers.

In the general case, where the eigenvectors are not assumed to be of pure tensor prod-
uct form but rather linear combinations of such vectors, the eigenvalues of Hy are usually
not integers and different behaviors can occur. Typically, one is interested in Hamiltoni-
ans {Hy, N 2> 2}, and are interested in determining the the spectral gap above the ground
state. Since we assume )\éN) = 0, the spectral gap, Y™ is simply the smallest non-zero
eigenvalue of Hy. Note that in the classical case referred to in the previous paragraph
it is clear that ™) > 1. In the general case v") may be bounded below by a non-zero
constant, or may vanish at a certain rate as N — oo, implying a continuous spectrum
of energy states. These different behaviors of the spectral gap have implications for the
general properties of the dynamics of the quantum system modeled by Hy. For exam-
ple, if Hy is the Hamiltonian of a quantum algorithm in the adiabatic model of quantum

computation, the gap is related to estimates of the length of time (complexity) of the com-
putation.

When the ground states are known, it is easy to obtain a reasonable upper bound for
v™) using the variational principle. One can obtain the upper bound by finding a state
orthogonal to the ground state and calculate the expectation value of Hy in this state.
Non-trivial lower bounds are more difficult to discover. One approach which has been

applied successfully in a number of cases is the so-called martingale method, which we
now explain.




For an arbitrary subinterval [a,b], with1 < a < b < N, let G be the orthogonal
projection onto

b—1
ker Z Ri,i-i-l (12)

and let Gy = 1 foralli = 0,..., N. It follows from these definitions that the orthogonal
projections G| satisfy the following properties. For intervals I, I> C [1, N] one has

G12G11 = G11G12 = sz ifh C I (1.3-8.)
GG, = GGy, fLNL=0 (1.3-b)
Piit1 = 1-Gpigy (1.3~

Define operators E,,1 <n < N, by

1-— G[l,z] ifn=1
En = G[l,n] — G[l,n+1] if 2 S n S N-1 (14)
G[l,N] if n=N

One can then easily verify, using the properties (1.3-a)-(1.3-c), that {E, | L <n < N }isa
family of mutually orthogonal projections summing up to 1, i.e.:

E:; = En, EnEm = 5m,nEn1 Z En = (15)

n=1
There is a non-trivial lower bound for the spectral gap using the martingale method if
the following assumption is satisfied.
Assumption 1.1. There exists a constant €,0 < € < 1/ V2, such that forall1 <n < N —1
EnG[n,n+1]En < €2En (1-6)
or, equivalently,

”G[n,n-i-l]En” <e (1.7)

Using (1.3-a), it follows that G n+11En = Ginn+1)Gl1,n) — Giin+1)- This relates Assump-
tion 1.1 with Lemma 6.2 in [2], where an estimate for ||Gjnn+1G1,n) — G1n+1ll is given for
general Valence Bond Solid chains with a unique infinite volume ground state. Equation
(1.3-a) also implies that [Gun+1]: Gl = [Ginns1)s Enl, which, if (1.7) holds, the norm is
bounded above by 2e.

The following theorem is a special case of Theorem 2.1 in [3].

Theorem 1.2. With the definitions above and under Assumption 1.1 the following estimate holds
for the smallest non-zero eigenvalue of Hy :

YN > (1 - V2¢)? (1.8)
Thus, the spectral gap above the ground state Hy is at least (1 — v/2¢)?.
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Since for our case n = 2, theorem 1.2 relies on the norm of G| 31 E2. This operator, how-
ever, is difficult to work with, as determining the intersection of the kernels quickly be-
comes complicated. To rectify this situation, we instead work with a commutator whose
norm can be related to the norm of Gjp 3 E2. We define this commutator as

C=[Pr2QLIQ® Py3)

Once this norm is calculated, we can look at how C and G|, 5 E» intersect as projections to
determine how the norms of the two operators correlate. The overall goal of this paper is
to use ||C|| to show that there is a sufficiently small upper bound of ||G{z,3 E2||. This will,
in return, guarantee that the nonzero spectral gap above the ground state that we desire
does in fact exist.

As stated previously, in this work we are interested in investigating the Assumption
1.1 by estimating the chain using three particles. We will consider only a class of Valence
Bond Solid models with nearest neighbor SU(2) invariant interactions. For these models
the interaction terms F;;;; can be characterized by their action on the irreducible rep-
resentations of SU(2) found from the tensor product representation of two neighboring
spins. In general, the different neighboring F; ;11 do not commute and one can suspect
from the discussion above that to satisfy Assumption 1.1, the commutators [P, ;+1, Pit1,i+2]
will have to be sufficiently small. It turns out that this is a necessary but not a sufficient
condition.

We start with a lemma that will help clarify the meaning of Assumption 1.1 in geo-
metric terms.

Lemma 1.3. Let E and F be two orthogonal projections on a Hilbert space, and let E A F denote
the orthogonal projection onto the intersection of their ranges. Define E = E—~ EAFan F =
F—FENF. Then

|EF —EAF|| = ||EF| ) ) (1.9)
= sup{[(¢, )| | ¢ €ran B, ¢ eran F, [|¢| = [[¢]| =1}  (1.10)

Proof. First, using the definition of E and F' one easily verifies the first equahty stated in
the lemma:

EF=(E-EAF)F—-EANF)=EF-E(EANF)—(ENF)F+EANF=EF-ENAF.

Here, we used that E A F' projects onto a subspace of both the range of E and the range
of Fand hence E(EAF)=EANF = (EAF)F.

When the Euclidean norm induces the operator norm, one can rewrite the norm as
follows: 3
IEF|| = sup sup |y*EFaz|
llzll=1 llyli=1




Since E* = E we get

||E’ﬁ’|| = sup sup ly*El:"mI
lfzll=1 llyll=1
= sup sup |(Ey)*ﬁ':1:|
lzll=1 liyli=1

sup |¢*¢| where ¢ = Ey,v = Fx
sup{|(¢,¥)| | ¢ € ran B, ¢ € ran F, ||| = |l¥ll = 1}

O

Clearly, E and F project onto the orthogonal complement of the intersection of the
ranges of E and F considered as subspaces of the range of E and the range of F, respec-
tively. Formula (1.10) expresses | EF — E A F|| as the maximum value of cos 6, where 6 are
the angles between these two orthogonal complements. Hence, the norm is small if the
ranges of E and F are nearly orthogonal after subtraction of their intersection.

Recall that in this work we are dealing with a chain of three particles. Thus, the or-
thogonal projectors E and F in this case correspond to the terms Gyi,5) and Gyz,5, where
these terms are related to the two terms in our Hamiltonian by (1.3-c). Also, we have that
G5 Fs = G2,3G,2 — Gp1,3 is equivalent to EF — E A F,and C is equivalent to [E, F]in
this vocabulary. Since E A F commutes with both E and F, we have that [E, F] = [E, F].
Since [|EF|| = |(EF)*|| = | FE||, we therefore immediately have the inequality

I(E,Fll| < 2| EF| =2I|lEF —EAF]. (1.11)

It would be tempting to try to replace the condition on ||[EF — E A F|| by one on \E, Fl.
because the latter quantity is somewhat easier to compute. Unfortunately, in general
there is no inequality that bounds |EF|| by a multiple of ||[E, F]||. In our research, we
discovered that such a counterexample occurs for ||Gj23E2|l and ||C|| when we use the
spins j1 = 3/2, j2 = 1/2, j3 = 3 to create our spin chain.

However, Section 4 we will obtain such an inequality under an additional condition
determined by the form of G|g 3 E» and [Gp1,2), G2,3)) under a specific change of basis. To
obtain this result, we will begin by look at some of the important background information
needed to analyze quantum spin chains. Brief discussions of the form of the orthogonal
projectors, the type of eigenvalues of the commutator, and the relation between these
eigenvalues and the irreducible decomposition of p will be given. Also, proofs that in
the decomposition of p the second largest irreducible appears exactly twice, and that the
operator norm of C corresponds to the magnitude of its largest eigenvalue will be pre-
sented. It is with this information and some numerical results that we conjecture that
the operator norm of C corresponds to the magnitude of the eigenvalue related to the
second largest irreducible in the decomposition of p. We will calculate this value to be
IICIl = /51525301 + j2 + Ja)/ (41 + j2) (42 + Ja). Finally, looking at how C and G5 E2 inter-
act as projections onto subspaces, we will end the paper with the calculation of an upper
bound of Gz 3 E> when the additional assumption is satisfied.
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2 Background

This section will be used to present the information needed to understand the thought
process that led to the conjecture for the operator norm of C. The structure of the projec-
tors Pj; and Pp3 will be discussed, along with some properties of p and C. Then, connec-
tions between p and C will be made to understand how the commutator norm depends
on p.

2.1 The Projectors

To make the projectors for the commutator we must find orthonormal bases that span the
vector spaces for the largest irreducible representations of both p;, ® p;, and pj, ® p;,. Us-
ing Clebsch-Gordan coefficients, we determine that the largest irreducible representation
for the tensor of two irreducibles p;, ® p;,, where j; and j, are the spins, is pj, +,. This rep-
resentation is of dimension 2(j; 4+ j2) + 1. To find the required basis for this representation,
one only needs to notice that the highest irreducible representation is the only irreducible
representation that will have j; + j2 as an eigenvalue of p;, ® p;,(S%). Observe that the
corresponding eigenvector is |j1) ® |j2). Using the lowering operator repeatedly on this
eigenvector will produce a series of eigenvectors of p(.53) each with eigenvalue one less
than the previous vector. The lowering operator will will produce the zero vector after the
eigenvector with corresponding eigenvalue —(j1 + j2) of p;, ® pj,(S3) is reached. This set
of non-zero vectors are guaranteed to be orthogonal since they have distinct eigenvalues
of pj, ® p;,(S%). By normalizing the vectors, we create an orthonormal basis. Now that
we understand the process used to create these vectors, we wish to know more about the
structure of any given vector as it will only have nonzero entries in specific coordinates.

Proposition 2.1. For i = 0,...,2(j1 + j2) the orthogonal vectors that create the orthogonal
projectors are of the form

%

ui:Z Cjr —i+k,ja~k)|j1 — i+ k) ® |52 — k)
o \F

where C(]l -1+ k,jg - k) = 'Itc-l_il sz___l \/(2]1 - k‘l + 1)[61 \/(2]2 - k2 -+ 1)k2

Proof. This is a proof by induction. Consider the case when ¢ = 0. Then,

0
. 0 . . . .
= > <k>0(]1 +k, j2 — k)|j1 + k) ® |52 — k)
k=0
Uy = |71) ®|j2)

s
)
l




Now, consider this true for some arbitrary ¢ within the given bounds. Then,
Uiy1 = pj ® pj,(S7)W

= Z (;;)C(jl —i+k,jo—k)pj ® pj,(S7T)j1 — i + k) ® |j2 — k)
k='0
B Z(Z)CUI—Hk,jz—kx\/zjl—(i—k+1>(z'—k+1>|j1-i+k>®|j2-k>

k=0

@ — )k + Dljs — i + k) ® |2 — KY)

Reindexing k will produce

i+1 .

-, i+1 ; . : - :

Gor= Y (T 1)U~ G+ )+ ks = Rl =i+ B @2 — )
k=0 .

Notice that when i = 2(j; + j2) + 1 the coefficient C(j; — ¢ + k, j2 — k) = 0 for all terms

in the sum, giving the zero vector as expected. O
: el — [71201+52)
The desired orthonormal basis is B = {#;};=
LU
U = ==
C
Hence, the orthogonal projector is
2(j1+j2)
DAL (2.12)
i=0

2.2 The Second Largest Irreducible Representation

Key to the calculation of ||C| will be knowing how many times the second largest ir-
reducible representations appears in the decomposition of p. This is important as it is
conjectured later in the paper that ||C|| is related to two copies of the second largest irre-
ducible representation. Knowing that there are exactly two copies in the decomposition
allows use to know that these must be the two copies that relate to ||C]].

Lemma 2.2. In the irreducible decomposition of pj, ® pj, ® pj;, Where ji, J2, and js are the

respective nonzero spins, the second largest irreducible representation appears exactly twice.

Proof. Consider pj, ®pj, ® pj, where p;, is an irreducible representation of su, and dim pj;, =
27; + 1. Then,

Pir @ Pjz = Pir+iz D Pj1+ij2—-1 @ ... P
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and

Pir B P ® pj; = (pj1+j2 D Pjr+i-1 D ... O pUl"jzl) ® Pjs

= Pir+jz @ Pz D Pj1+ja-1 @ Pjz D - .. D Plj1—ja) @ Pjs
= (pjx+.7'2+.7'3 D Pji+jatijs-1D ... D p|j1+jz—jal)

D (Pjy+iz+is—1 D Pir+iztis—2 D - - - ® Pljytin—js—1|)

B (pljl—j2|+j3 D Pijr—jal+is—1 D ... © plljl—jzl—jal)
The only way for the second largest irreducible representation to appear more than twice
isif |j1 —jo|+js = j1+J2+jsor |j1—jo| + 43 = 1+ J2+Js— 1. For |j1 — jo| + s = 1+ ja+J3
we need either j; = 0 or j; = 0, a contradiction to one of our assumptions. For, the second
case, let j1 > j2. Then ji —j2 > 0 and |1 ~ j2| = j1 — j2. Thus, if |j1 — ja| +ja = 1+ j2+js —1
we must have that j, = 3. Similarly, if j» > ji, then we must have j; = ;. Without loss of
generality, let j1 = 3. Then, p;, ® pj, = pjp+1/2 ® pjz-1/2, and thus

Pis ® Pir ® Pis =  (Piatjat1/2 D Pistja-172 D - - - ® Pljz—ijat1/2])
OS(Pitis-1/2® - - - @ Pljp—js-1/2|)
Piz+is+1/2 D 2Pjz+ja-1/2 D - . D Plj—js—1/2|

Once again, the second largest irreducible representation occurs twice. Thus, in all cases,
the second largest irreducible representation occurs exactly two times. a

2.3 The Eigenvalues of the Commutator

The operator C for the system p;, ® p;, ® pj, has been defined to be
C=[P2QLIQ Py

where Pj; and Pp3 are the orthogonal projectors onto the vector spaces acted on by the
largest irreducibles in the decompositions of p;; ® p;, and p;, ® p;,, respectively. Since P,
and P,3 are both hermitian (real-symmetric) matrices, so are Pi; ® I and I ® P,3. Now we
will look at the possible kinds of eigenvalues for such a commutator.

Proposition 2.3. The eigenvalues of C are purely imaginary. For any non-zero eigenvalue A of
C, —Xis also an eigenvalue of C.

Proof. Consider any two hermitian matrices A and B. It is easily calculated that:

[4, B]*

(AB)* — (BA)
B*A* - A*B*
BA - AB
""[A’ B]

I
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Therefore, since both P ® I and I ® Py; are hermitian matrices, the commutator C is
anti-hermitian and can be written as iA for some hermitian matrix A. we know from the
Spectral Theorem there exists a unitary matrix U composed of eigenvectors of A such that

U'HU = A

where A is a real, diagonal matrix. Since C is only a scalar multiple of A, the Spectral
Theorem can be applied to find

urcu U*iAU
= (U'AU

A

Hence, C' is diagonalizable with all eigenvalues either imaginary or zero. Furthermore,
since C is composed of projectors with real entries, this implies that its characteristic poly-
nomial p(A) has real coefficients. Since the roots of this polynomial are the eigenvalues of
C, if any imaginary eigenvalue ) of C' exists, A* must also be an eigenvalue of C. O

2.4 The Operator Norm of C

Lemma 2.4. For all anti-hermitian matrices C, ||C|| = max|z)=1 ||Cz|| = max |\| where A is an
eigenvalue of C.

Proof. 1t has been shown that for any anti-hermitian matrix C' there exists a unitary matrix
U such that U*CU = D is diagonalized. Since the operator norm is invariant under
change of bases, |C|| = [U*CU]|| = || D||. Now, choose U such that D = diag(u1, 42, - - - , iin)
with |p1] > |po| > ... > |un|. Then |p1] = max |A|. Let ¥ be any unit vector. Hence,

1Dl = /G0 + -+ (na)? < /(@3 + ...+ 22) = |

Since || Dey|| = ||u1e1]] = || we see that in fact, ||D|| = |u1|. Hence, we have that
ICIl = max || Dl = || = max |3

2.5 Relating the Eigenvalues of C and the Invariant Subspaces

As shown in the previous section, we wish to calculate the largest eigenvalue of C in order
to determine its operator norm. The final piece of information we use in developing our
conjecture for ||C|| comes from relating the eigenvalues of C to the invariant subspaces on
which p acts. We will conclude this section with a proof detailing that the degeneracy of
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a given eigenvalue of C is at least equal to the dimension of an irreducible representation
of p. Furthermore, we will show that there exists a basis for each irreducible subspace p
acts on consisting of eigenvectors of C. In order to prove the aforementioned theorem,
we first start with a proof that p(g) commutes with C for all g.

Lemma 2.5. For any g € suz, p(g)C = Cp(g).

Proof. Consider the tensor pj, ® p;, of any two irreducible representations of su, which
acts on the vector space C¥'*! ® C*2*1, 1t is possible to find an orthonormal basis B of
the vector space C*1*! @ C%2*! such that B can be partitioned so each partition is a basis
of one of the irreducible subspaces. Using this basis we can block diagonalize p;, ® p;,(9)
Vg € su, such that

Pirtiz(9) 0 . 0
0 s e :
Pir ® Pia(g) = , Pirtr: 1(9) _ _
0 T 0 pljl—j2|(g)
Define M to be the partition of B described above correlating to pj,+;,. Let N be the re-
maining ordered subset of B that produces the block diagonalized form described above.

We can write the orthogonal projector P, onto the highest irreducible representation of
Pi, ® pj, as

0

Using the change of basis (M|N)*A(M|N) on this space will keep all the linear transfor-
mations (M|N)*p;, ® p;,(9)(M|N) in a block diagonal form, but will produce the new

orthogonal projector
H ] y O
P, 1' 9 = ( J1O+_72 )

In this basis it is easy to see that p;; ® p;,(9) Pl = P{3p;, ® pj,(g). Note that this process
will work for any block-diagonalized set of matrices with any orthogonal projector of this
form. Define p = p;, ® p;, ® p;, acting on the vector space C¥1*! @ C2+1 @ C%5+1, Then,
Vg € su,

Pa = (i) (B 0 )

[0(9), Pl ®1] = p(g)P, ®1— Py, ®Ip(g)
p(9) P, @1 — p(g) P, Q1

0
This shows that [p(g), P12 ® 1] = 0 Similarly, [p(g), I ® P23 = 0. Recall that C = [P, ® 1,1 ®
Pys]. From the properties proven above and the linearity of [+, ] it immediately follows
that Vg € su,
[0(9),C] = [p(9),[Pr2 ®L,I® Pasl]
= 0
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Knowing that C' commutes with all representations p(g) makes it possible to prove the
main theorem of this subsection.

Theorem 2.6. Given any eigenvalue X of C, the degeneracy of ) is at least equal to the dimen-
sion of a specific irreducible representation in the decomposition of p. Furthermore, there exists

orthonormal bases for each subspace acted on by an irreducible representation of p consisting of
eigenvectors of C.

Proof. Consider any Cp(g)y given that Vg € su,,Cp(g) = p(g9)C and ¢ is an eigenvector
of C with eigenvalue ). Then,

Cp(g)¥ = p(g)C¥ = Ap(g)¥

This implies that p(g)y is also an eigenvector of C with eigenvalue A. Therefore one
can see that span{p(g)y : g € su.} is an invariant subspace of p. Using this process
repeatedly and the fact that dim(C) = dim(p), we can find that all the invariant subspaces
of p are of this form. Since there is a basis for each irreducible representation of p that is
a set of linearly independent eigenvectors of C this implies that the degeneracy of each
eigenvalue of C is at least equal to the dimension of the irreducible representation of p to
which its eigenvectors correspond. o

It should be noted that the degeneracy of an eigenvalue may increase if the invariant
subspaces of two or more irreducibles have the same corresponding eigenvalue.

3 Calculating ||C]|

Since we know that the second largest representation occurs twice, and that all eigenval-
ues of C are either 0 or come in purely imaginary complex-conjugate pairs, we can deter-
mine that the two corresponding eigenvalues of C for the second largest irrep will always
be complex-conjugate pairs (or both zero). Using the information about how to make the
orthogonal projectors, and how each eigenvalue of C relates to a specific irreducible rep-
resentation, we used numerical methods to look at the eigenvalues of the commutator C
for some small cases and with the results from 2 we could determine which irreducible
representation corresponded to max |A|. For a copy of the Maple code we used to obtain
these results, see Appendix A. In all cases, max |A| corresponded to the second largest ir-
reducible representation (irrep). A table of our numerical results is given below.
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Table 1: For a Specific System, ||C|| and The Corresponding Irreducible Representation

P Irrep corresponding to max |A| | max |}
P12 ® P12 @ p1/2 P1/2 ¥3
P1® P12 ® p1y2 P1 &
P1/2 @ P1 D P12 P1 %
P1® p1® p1y2 P3/2 3?
P1® P12 ®pr P3/2 2495
p1®p1® py p2 3
P1/2 @ P32 @ p3j2 Ps/2 ﬁ
P32 @ p1/2 @ P32 P5/2 %
P3j2 @ p3j2 ® p1 P3 =
P3/2 @ P32 @ P32 P2 ‘\‘/1—5

Conjecture 3.1. The eigenvalues £\ corresponding to the two copies of the second largest irre-
ducible representation satisfy the equation | & XN'| > || for all eigenvalues ) of C.

Since there are bases of the invariant subspaces of p;,1j,+j,~1 that consist of the de-
sired eigenvectors of C, we only need one eigenvector to determine the corresponding
eigenvalues of C. Since we know that the two copies of pj, 1 j,+5,-1(5°) are the only other
two representations in the decomposition other than p;, 4,4, (S%) to have the eigenvalue
J1+3J2+73—1, finding a orthonormal basis for the space spanned by these two correspond-
ing eigenvectors will create a two-dimensional space containing two eigenvectors of C.
Next we can determine how C acts on this basis to make a 2 x 2 matrix that has the same
eigenvalues as these two eigenvectors of C. It is important to note that the eigenvectors
Of pj+js+45-1(S*) are some linear combination of the vectors

71, 42,53 = 1) = |71) ® |72) ® |55 — 1) (3.13)
71,52 = 1,73) = |j1) ® |j2 — 1) ® |7a) (3.14)
ljr — 1, 52,73) = |1 —1) ®|j2) ® |73) (3.15)

It is also important to notice that each of these vectors as tensors is a standard basis vector.
Hence, these proposed eigenvectors of p;, +j,+j,—1 will have at most three non-zero entries.

The rest of this section will be dedicated to calculating the conjectured norm of C using
the method described above.

Theorem 3.2. The norm of the eigenvalues of C related to pj, +j,+4,-1 and consequently, the

conjecture for ||C|| is ¥ jijatelis tiatds)

(J1+72)(J2+343)

Proof. The lowering operator can be applied to |51, 72, 43) to find the eigenvector @ of
Pir+ia+5:(S%) with eigenvalue j; + jo + js — 1. Using (@, 7) = 0 where 7 is an arbitrary lin-
ear combination of the three vectors mentioned above, and then using the Gram-Schmidt
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process, we find an orthonormal basis for the two dimensional space spanned by the
eigenvectors of pj, +j,+j,-1(5%) with eigenvalue ji + j2 + j3 — 1. These vectors are

U = 131732,73—1 HJ1+J l71 — 1, 42, 3)

L, J2J3 o J1+73 o .
B o= 4 |ji fa e — 1) = | B |y G — 1,
i \/(.71 ¥+ g ¥ g I de \/(31 Fio)Gi+ s T a2 )

J1J2 . .
+4/ = — - —|j1 — 1,J2,73
\/(91 +J3) (1 + J2 +J3)| )

To know how C acts on these vectors is equivalent to knowing how P2 ® Tand I® P3 act
on 3.13-3.15. This is given by:

P ®1|j1,72,53 — 1) = |j1, 72,93 — 1)
.. . . .. VJ1J2 ..
Po®Ij1,j2— 1,j3) = = J2 - |.71>.72 —1,j3) + ——— - l]l 1, 32, J3)
J1+7 .71
. .o \/31]2 . . ..
P, I - ]-7 s = 3 17 + - . = 17 ’
12 @ 1|71 J2, J3) Tt g |Jl j2 — 1, 73) 7 +32 |71 J2, Ja)
. \/JzJ
I® Paslj1, jo,js — 1) = |Jl,J2,]3—1>+ |]1,.72“1 J3)
J2 + Jo +
.. . \/]2]3 .. .
I® F, - 1’ = 1J2) 1)+ —— ’ - la
® 23|]1,Jz Ja) o+ 73 |71, 92, Js — ) Jz+]3|h J2 J3>
I1® Pys|ji — 1,72,73) = |j1— 1,72, 53)

By acting on 7 first by (P2 ® I) and then by (I ® Pz3) and vice-versa, then subtracting the
two results gives C;. The same processes can be used to also find C%;. These calculations
will result in finding:

c = VJ1J2Js s oo ds — 1) (J1 + js)V71J2ds 1,72 — 1, a)
1 - o = s - - - 3 3 - - = - . . - . ) )
Vi + 73(J2 +33)(31 + j2) Vi1 + 73(j2 + J3) (41 + J2)
J1J2V 33

l71 — 1, ja, Ja)
\/Jl + 73(j2 + 73) (J1 + J2)

Cip, = —1V/J2fs(r + g2 + Jo) |71, J2, 73 —
Vi ¥ 732 +73) 1+ g2)

1) + 13\/91]2 J1+ J2+ 73) it — 1, 42, 7a)
Vi1 + 732 + §3) (1 + J2) e
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From here, the hermitian product is used to determine that

Cr = Vig2ga(i + J2 + Js)
V1 = 3 . ; 3
(1 + 32)(j2 + 73)
. v ceenll
Ci, — V512331 + Ja + J3) 7

(J1 + J2) (G2 + Js)

Thus, C can be viewed as a two-dimensional linear transformation described by the ma-

trix:
0 —+/J152j3(F1+j2+373)
(J1+32)(G2+73)
vV J1j2is(J1+7j2+j3) 0
(J1+72)(G2+73)

The desired eigenvalues of C are determined by finding the eigenvalues of this matrix. It
is fairly apparent that these eigenvalues are:

A=+ V1253 (g1 + Ja + Ja),
(1 + 72)(J2 + Js)
These are the two eigenvalues of C that correspond to the irreducible representation
Pz+y+z—1, Which is the second largest irreducible in the decomposition. Calculating the

specific results of A using the spins from the table agreed with the numerical results of
[|C|| for these cases. Hence, it is the conjecture of this paper that |C|| = || or

|l = VJ172g3(J1 + o + Ja)
(J1 + J2) (2 + Js)

(3.16)

O

4 Bounding ||G[p 3 F>|| Via ||C||

Calculating ||C|| does not directly give us an any information related to the spectral gap
above the ground state of our system. The operator in question that does have a corre-
sponding relationship with this gap is G5 E>. We know that if we are able to bound this
operator from above by a sufficiently small number, the spectral gap will be non-zero, see
1.1. Recall that G[2,3]E2 = G[2,3](G[1,2] - G[1,3]) where G[1,3] = ker(G[l’2]) n keT(G[2’3l)- Work-
ing with this operator is rather difficult, as the term G|3,3 becomes increasingly more
complex as the size of our Hilbert space increases. Instead, we use the fact that these

projections have a nonorthogonal intersection to determine a relationship between their
norms.

We were not able to bound the norm for all cases. We found that with our approach,
whether the norm of Gjp 3 E; can be approximated depends on the angles between the
subspaces projected on by Gz 3E; and C. This is because the projection matrices corre-
sponding to these operators will, in general, have a nontrivial dependence on one another
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as they usually have a nonorthogonal intersection. The rest of this section is dedicated to
determining a sufficient condition for which ||C|| bounds |G 3 E--

To simplify notation, we will be using G 2) and G 3 instead of I ® P2 and I ® Py3
since a simple calculation can show

G2, Glz,3] = I ® Pi2, [ ® Py

Hence, the norm of the former is equal to the norm of C which we have already con-
jectured a calculation. We begin first by defining some constants and describing a loose
process for finding a desirable basis for the Hilbert space.

Definition 4.1. Define three particular subspaces of our Hilbert space by

Ong = Ran(Gpg)
9[2,3] = Ran(G[z,sl)
Gns = Ran(Gpg)

Let my and m, be the dimensions of Gy o1 and Gia,3), respectively. Let n be the dimension of the space
spanned by the intersection of G1 o) and Ga,3). Finally, definem = mg — nand p = my +my — n.
The constants n, m, and p give the dimensions of the non-zero square blocks in the projectors G 2,
G[1,3] and G[1,3].

Before we can create these projectors, however, we must first pick a basis for the
Hilbert space. We begin by first choosing an orthonormal basis B’ of n vectors for the
intersection of Gj19) and Gjz 3. Note that this is also a basis for Gj1 3. Next, extend this
basis to include another m orthonormal vectors to complete a basis Gjz 3). It is imperative
that these m vectors are also orthonormal to the original n vectors. Append these vectors
onto B'. Next, create another m;-n orthonormal vectors that are also orthonormal to B’ to
complete a basis for Gy; o;. Once again, append these vectors onto B'. By adding additional
orthonormal vectors until we span the whole space, we create an orthonormal basis for
the Hilbert space that will make nice projectors.

By partitioning the vectors into the sections in which we constructed them, we will get
that the projectors G|1 3, G2,3 and Gy 3 are block diagonalized. Moreover, the majority of
these blocks are either 0’s or identity blocks, and structurally each one looks like:

I,
Gpa = I
0
In
Gpa = A
0
I,
Gua = 0
0
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The matrix 4 in G[; 5 is a p x p matrix. This is not an identity matrix due to the fact that
the intersection of Gj; 5 and Gz 3 is not necessarily orthogonal, implying that there may
be some non-trivial dependence on the basis vectors corresponding to Gp,2- We further
break down A into a block of four matrices: A;, A,, As, and A, such that the size of A; is
m x m, the size of Ay is p — m x p — m, and finally, that A; and A; are of size m xp — m,
and p — m x m, respectively. This break down of A is of the following manner:

[ A A
A=(% %)
Lemma 4.2. A is an orthogonal projection, and thus satisfies that A* = A and A? = A.

Proof. G2 is an orthogonal projector. So Gy 5 satisfies Ghg = Gua, and G}, 5 = Gp .
Since Gy, is a block diagonal matrix, and A is one of the blocks, it immediately follows
that A* = 4, and A? = A. Hence, by definition, A is an orthogonal projection. O

The previously lemma gives that A3 = A3, and we can replace this for A3 in our block
matrix.

The set of the G matrices gives us all the information needed to analyze how ||C||
and ||Gz,3 E»|| relate. Using the above described matrices, one can easily determine the
following;:

0
3 0 A,
ol = iy
0
0
A A
GpaBall = S
0

From lemma 4.2, we can also determine the following relations.

A2+ A AL = A (4.17)
AjAs +AAy = Ay (4.18)
AS AL+ A4Ay = A : (4.19)

AsA, + AL = A, (4.20)

Proposition 4.3. Given that the matrix A, satisfies ||A1]| < 1, we will have |Gpa || <

v2l[Cll.
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The proof of 4.3 is given directly after the proof of lemma 4.4.

Now, for convenience, define X¢ and X¢g to be the following two matrices:

0 A
Xc = (_ 43 02> (4.21)

A A
Xce = ( 0 02) (4.22)

Lemma 4.4. Defining X¢ and X from above, it follows that ||C|| = || Xc|| and ||Gpg E2|| =
| Xcell-

Proof. Since X¢ and Xgg are the only nonzero components of these representations of
C and Gp3E,, and they are on the main diagonal, we know that lICI| = ||Xc|| and
IGraEell = [ Xexll- O

We now finish with the proof of lemma 4.3.

Proof. We also know that the norms of X¢ and Xgg are the square roots of their, respec-
tive, largest singular values. From the singular value decomposition of matrices, we know
that for any matrix 4, A*A and AA* have the same set of nonzero eigenvalues. We also
know that ||A||? = ||A*4|| = ||]4A*|| when the Euclidean norm induces the operator norm.
Since it does not matter which way we multiply the matrices when determining the norm,
we choose to multiply X¢ as X¢X¢, and Xgg as XceXgp. From these multiplications,

we get:
. [ A4 0O
XeXe = ( 0 A§A2>

. A O
XorXop = ( 0 0 )
Using equations 4.17, we can rewrite the first of these two matrices as follows:

) A= Ay) 0
XoXc = ( 0 Ay Ag) >

The original structure of X% Xc shows that the two new blocks on the main diagonal
will have the same set of nonzero eigenvalues. This means we can look at either block to
determine how the eigenvalues of X% Xc¢ and X% X¢p relate. Thus, we choose the first
block in X% X¢ since it depends only on A;.

Lemma 4.5. Given any eigenvalue X of Ay, X is also an eigenvalue of XeeXGp- Furthermore,
A(1 — A) is an eigenvalue of X5 Xc.
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Proof. Trivially, A is an eigenvalue of XggXs. Let ¥ be an associated eigenvector of .
Then,

Al — AT = A(IT — Ard)

A1 = N7
O

F
Rl XeeXee'l

XeeXGe'll

2

141

IXc™Xcli

= 1:/2 g 1Al

2

Figure 2: A graphic representation of || XX ||, || XceXEE|l, and [Xer X5l as functions of || A4 ||.

Therefore, the eigenvalues of X5 X¢ are quadratically related to the eigenvalues of
XceXgp. It directly follows that if and only if the largest eigenvalue of A; has a norm
less than or equal to a half, that the following relation holds, see figure 2.

IXeXcll < || XeeXepll < 21XeXcl|

Recall that || A||2 = ||A*A|| = ||4* A]|. From here we can find:

| XeXell < | XeeXaoepll £ 2| XeXcl
& [ Xell? < 1 Xeell? < 2|1 Xcll?
& || Xcll € 1 Xeell € V2|1 Xel]
Since ||C|| = || Xcl| and ||G2,3E2|| = || XcE|], we know that:

1
Al < 5 HCIl £ |G, Eall < velltell
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Table 2: The Corresponding || A4,|| Given the Spins of a System

Spins || A
1/2,1/2,1/2 0.2500
1,1/2,1 0.4444

3/2,3,3/2 0.1111
1/2,1/2,3 0.4285

4,2,2 0.3333
1,4,2 0.0666
7/2,2,5/2 0.3535
1,3/2,2 0.2285
3,22 0.3000
2,1,2 0.4444
3/2,1/2,3 0.6428
3,33 0.2500 -
2,2,2 0.2500
3/2,3/2,3/2 0.2500
4,3/2,2 0.4155
1/2,2,3 0.1200

3/2,4,7/2 0.1272
3,1/2,3/2 0.6428
5/2,1,1/2 0.2380
5/2,1,3/2 0.4285

The most natural question to now address is, “What is this matrix 4; and is its norm
always less than a half?” Determining A; depends on how one follows the choice of ba-
sis described above. However, we know that ||A4;]] = ||(G2,3E2)*Gp,3E2|| and while in
general G2 5 E; is difficult to calculate, numerically, it is only as difficult as calculating
C. Hence, we can use the calculation of (Gg3E2)*G[p,3E: to our advantage to obtain
some numerical results. Note that using a similar argument to that of section 2.5, we
can determine that the singular values of Gz 3 E; also have a correlation with the irre-
ducible representations of a given system. However, G|z 3 E; is neither Hermitian or anti-
Hermitian, and thus the method we used to determine which irreducible representation
corresponded to ||C|| does not apply for all Gz 3 E2. Hence, further research is required
to conjecture which irreducible representation corresponds to ||Gz,3 Ez||. A summary of
the numerical results obtained through a Matlab program, code given in Appendix B, is
given in the table 4.

These results show that there are indeed cases where ||A4;]| > 1/2. This shows that
the process described above does not always work as a means to bound G3 3 E2. What
is interesting, though, is there does seem to be some pattern to ||4;|| as the norm, in the
cases above, is the same when j; = j» = js = j. Since ||G 3 Ez|| = v/||A41]|, this implies
there could be another approach to calculate the explicit value of ||Gz,3 E2|| given a set of
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three spins where all spins are the same value.

5 Conclusion

Determining the energy gap above the ground state of a given particle system is of great
interest in the physics and engineering realms. One such system of interest is quantum
spin chains. While in actuality these chains tend towards the infinite limit, we hope to ob-
tain a good estimate for the spectral gap above the ground state by looking at a small sub-
section of a patterned chain (i.e. one in which the spins are repeated in a specific order).
For this specific project, we examined a subsystem of three particles, which we mathe-
matically represented by taking the tensor product of the irreducible representations of
the Lie algebra of su2. The final representation p = p;, ® pj, ® pj, was not itself irreducible,
but by using Clebsch-Gordon coefficients, we could break p into its irreducible parts. We
know that the spectral gap above the ground state as an inverse relation with G2, E]|-
This means, that if we are able to bound G 3 E, from above by a sufficiently small posi-
tive number, that the spectral gap, call it y is bounded below by a nonzero positive value.
This insures that the specified spectral gap is non-vanishing.

The operator Gjp,3) E2, however, is difficult to work with as it requires knowing the zero
eigenspace of P13 and P3, which project orthogonally onto the subspaces corresponding
to the highest irreducible representations of p;, ® p;,, and p;, ® pj,, respectively. Instead,
we defined and analyzed the operator C = [P, ® [, 1 ® Py3), in attempts to relate norm of
this operator to the norm of G{z3 F2. Looking at properties of both p and C determined
a relationship between [|C|| = max|)| and an irreducible representation in the decom-
position of p. Furthermore, numerical analysis led to the conjecture that this max |)| is
associated with the second largest irreducible representations of p. Since the form of the
projectors used to create C was known, we calculated the conjectured value by looking
at how C acted on a pair of vectors where each vector was known to belong the span
of one of the two copies of the second largest irreducible representation. We found the
conjectured value max |A| to be

VJ17233(G1 + j2 + Ja)

max |A| = - N -
A (J1 + J2) (J2 + Ja)

After determining the proposed value of ||C||, we worked toward finding a relation-
ship between ||C||, and ||G(z,5E=||. By choosing a nice orthonormal basis, we determined
that the norms of these operators depend only on a single matrix A4, and because the oper-
ators were orthogonal projectors, depend only on a single block of A labeled A;. Finally,
we showed that as long as ||4,]] < 1/2 that ||C|| < |G, B2|l < v2||C||. Using the results
from calculating [|C|, this implies that

GpaEsl| < V251523371 + J2 + Ja)
ST it )+ i)
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Numerical solutions, however, showed that there are indeed combinations of spins
that result in ||A;|| > 1/2. These results also indicated, however, that there may be some
nice pattern to ||A|| and thus to ||G[y,5 E2||. Therefore, new questions regarding what set
of spins do and do not imply ||A;|| < 1/2 and other possible approaches to solve the prob-
lem arise. Possible future research includes determining conditions on the spin that will
insure that || A,|| < 1/2, and possibly analyzing the structure and properties of Gj B, in
attempts to calculate its norm explicitly. Also, finding a proof or counterexample to the
conjectured value of ||C|| will provide further information into the direction one might
take in approaching the problem in the future.

6 Appendix A: Maple Code

with (LinearAlgebra); interface(rtablesize = infinity);
CommutatorNorm :=proc(dim) local S,Id,i,

#Defining local variables
a,b,x,y,2,

u,v,

Sxy, Syz,

P12, P23, Q, lambda;

#Defining the three dimensions, one fore each particle in the

chain.

x:=dim{1};
y:=dim[2];
z:=dim([3];

#Creating the lowering operator and identity matrices associated
with each particle in the chain.
for i from 1 to 3 do
S[i] :=LowOp{(dim[il);
Id{i] :=IdentityMatrix (dim[i]);
od;

#Defining the final lowering operators used to create the
projections P12 and P23
Sxy:=Kron(S[1l],Id[2])+Kron(Id[1l],S8[2]);\\
Syz:=Kron(S{2],Id[3])+Kron(Id[2],S[3]);\\

# The dimensions of the highest irreducible representations from the
neighboring pairs.

a:=x+y-1; b:=y+z-1;
#Creating the first vectors for the highest irreps for the
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neighboring pairs. Then creating the two projections.
ull] :=StdVec (x*y); v[1l]:=StdVec (y*z);
Pl2:=basis(a, u[l],Sxy); P23:=basis(b, vI[1],Syz);

# The final operator C and the printing out the matrix lambda
consisting of the eigenvalues of C.

C:=Kron(P12,Id[3]).Kron(Id[l],P23)-Kron(Id[1],P23).Kron(PlZ,Id[3]);
lamba:=Eigenvalues (C) ;

end;
# The function LowOP makes the individual lowering operators of each
particle. It puts the values j*(x-3j) in the jth column. Here, x=2s+1

where s is the spin of the particle.

LowOp:=proc(x) local i,Jj,f;

£:=(i,j) —>piecewise (j=i~1,sqrt (j» (x~3)));
Matrix(x, f);
end;

#The function StdVec makes the std basis vector e_1 for the given
dimension d.

StdVec:=proc (d)
local s;
s:={1=1};
Vector(d, s);

end;

#The function Kron defines the tensor product of two matrices. This
code is not found in the version of Maple I used. The source code I
used was found at

http://www.mapleprimes.com/forum/kronecker/tensor—products

Kron:=proc(A::Matrix,B::Matrix)
local M,P,1i, 5;
M:=Matrix(RowDimension(A)*RowDimension(B),
ColumnDimension(A)*ColumnDimension(B)):

P:=Matrix(RowDimension(B),ColumnDimension(B)):
for i to RowDimension(A) do

for j to CeolumnDimension(A) do

P:=ScalarMultiply(B,A[i, j]):

M[l+(i—1)*RowDimension(B)..(i—l)*RowDimension(B)+RowDimension(B),1
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+(j-1) *ColumnDimension (B) .. (j-1) *ColumnDimension (B)
+ColumnDimension (B) ] :=P:
od;
od;
M;
end;

#The function basis creates the basis for the subspace acted on by
the highest irreducible representation of a pair of particles. It
uses the lowering operator to get a new independent vector in the
span, and then normalizes the vector. The result is an orthonormal
basis. Finally, the projector is made by taking the sum of the
tensor product of each vector with itself.

basis:=proc(d, x, S)
local w, norm, A, R, Rt, P;

wll]:=x;

for i from 1 to d-1 do
norm:=VectorNorm(w[i], 2, conjugate=true);
wlil:=w[i]/norm;
wli+l]:=8.w[i];

od;

norm:=VectorNorm(w([d], 2, conjugate=true);
w[d] :=w[d] /norm;

A:=[];
for i from 1 to d do
A:=[op(A), w[il];

od;
R:=Matrix(A);
Rt:=HermitianTranspose (R);
P:=R.Rt;

end;

7 Appendix B: Matlab Code

%Program: Energy Values of G_23E_2

$Input: A matrix A of spins. Each row consists of the spins for a chain of
%three particles.

%$Output: The eigenvalues (in decreasing order) of the operator Al, which
%$satisfies ||G_23E_2]||"2=|]Al|| and the dimensions of all irreps of the 3
$particle spin chain. Both are sent out of the program as arrays.
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function [enval, irreps]=energyvalues (A)
A

for i=1:3
dim(i)=2xA(1i)+1;
end

%The next section of code creates the lowering operators for each
$individual particle. The number at the end of the S denotes its position
%in the chain of three particles.

Sl=zeros(dim(1l),dim(l)); for J=1l:dim(1)-1
S1(3+1, j)=sqgrt (j* (dim(1l)-73));
end

S2=zercs (dim(2),dim(2)); for J=l:dim(2) -1
S2(J+1,3)=sqrt (j*(dim(2)-3));
end

S3=zeros(dim(3),dim(3)); for J=l:dim(3) -1
S3(3+1,J)=sqrt (j* (dim(3)-3));
end

<.

$Creating the lowering operators that act on the two neighboring pairs of
%particles.

Sl2=kron(Sl,eye(dim(2)))+kron(eye(dim(l)), S2);
S23=kron(s2,eye(dim(3)))+kron(eye(dim(2)), S3);

%u and v are the eigenvectors of the S_3 operator on each neighboring pair
$with the highest eigenvalue. These are also known to be two vectors
$correlating to the highest irreducible representation.

u=zeros (dim(1l) *dim(2),1); u(l)=1;

v=zeros (dim(2) *dim(3),1); v(l)=1;

%Creates the projectors by sending to a projector making function.

Pl2=projector(dim(1l)+dim(2)-1, u, S12);
P23=projector(dim(2)+dim(3) -1, v, S23);
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%P is the sum of the two projectors, which acts on the whole Hilbert space.
$The zero eigenvectors of this operator are used to create G13, which
tprojects onto the intersection of the kernel of these two projections.

P=kron (P12, eye(dim(3)))+kron(eye(dim(1l)), P23); QO=null(P);
G13=QxQ’;

$Creates the projection onto the null space of the projectors of the
%$highest irreps.

Gl2=eye(dim(1l)*dim(2) xdim(3))-kron (P12, eye(dim(3)));
G23=eye(dim(1l) xdim(2) xdim(3) ) -kron(eye(dim(1)), P23);

%The final operator G_23E_2, and the matrix Al.
G23E2=G23xG12-G13; Al=G23E2’' *xG23E2;

%$swap(eig(G23E2))
Snorm(G23E2)
%swap(eig(Al))
$norm(Al)

enval=eig(Al);
%$enval=eig (G23E2);

enval=swap (enval);

%$The next protion of code determines the spins associated with the
$irreducible representations for the given system of three particles.

k=0; for s=A(1)+A(2):-1:abs(A(1)-A(2))
k=k+1;
irrepsl2(k,1l)=s;

end %$final k is the final number of rows.

1=0; for s=irrepsl2(1,1)+A(3):-1l:abs(irrepsl2(1l,1)-A(3))
1=1+1;
I(1,1)=s;

end $final 1 is the final number of cols.

for i=2:k
3=0;
for s=irrepsl2(i,l1)+A(3):~1l:abs(irrepsl2(i,1l)~-A(3))
I=3+1;
I(i,3)=s;
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end

if j<1
for m=9+1:1
I(i,m)=-1; %Since I know -1 will not be a size of an irrep,
%I use this to fill in space to complete the matrix.
%$Once I have the matrix filled in, I will read off
%the values that are not -1 into an array for the
%$final irrep vector.
end
end

end

%Creating final irrep vector by throwing out -1 entries in the matrix.
m=0; for i=1l:k
for j=1:1
if I(4i,3) " =-1
m=m+1;
irreps(m)=I(i, J);
end
end
end

%Sorting the irrep vector into descending order like the enval vector.
irreps=irreps’; irreps=swap(irreps); irreps=irreps’;

%The next functions create the Projectors for the program.

function P=projector(n, w, S)
%n=number of vectors in largest irrep
Sw=initial vector in largest irrep
%$S=lowering operator used to create other vectors.
%$Sends back the projector P.

P=wxw’;

for i=2:n
w=S*w;
w=w/norm(w) ;
P=P+wxw’;

end

end
function v=swap (u)
%$Takes in a vector u.

%Sends back vector with its entries ordered from largest to smallest
%$in value.
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v=-u;
v=sortrows (v) ;

v=-Vv;
end
end
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