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commutations of several differential geometry operators acting on tensor fields defined
on curved manifolds possessing a hypersurface-orthogonal conformal Killing vector.
We use this Killing vector to produce new interesting operators, and give their alge-
bra. We reinterpret these operators as a quantum mechanical model for a particle with
intrinsic structure, and explore the rigid symmetries of its classical antecedent system
using Noether’s theorem. We generalize to the full 05p(Q|2p + 2) Lie algebra with
the addition of orthosymplectic commuting and anticommuting variables, and present
the obstructions to our algebras due to curvature. We also review requisite background
material, including tensor calculus, variational calculus, Noether's theorem, and Lie
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1. Introduction

The techniques of tensor calculus, spurred by Riemann’s work in the mid-19th century
and brought to fruition by Ricci and Levi-Civita at the turn of the 20th century, are
an extremely useful tool in physics and other fields, particularly indispensable in Ein-
stein’s theory of gravity. We aim to study a set of operators important to tensor calculus,
and in particular how they behave under commutation. We also demonstrate the corre-
spondence between this operator algebra with both a quantum mechanical and classical
model for a particle.

In order to introduce four new tensor operators which complete an algebra already
studied in [1], we are forced to restrict the curved backgrounds under consideration.
Specifically, we require the existence of a hypersurface-orthogonal conformal Killing
vector, which yields manifolds equivalent, subject to a change of coordinates, to coni-
cal geometry over a base manifold [2]. We fully explain the geometric conditions just
introduced in Section 2.

Our operator algebras use an indexless notation by means of contraction over coor-
dinate differentials, encoded with the symmetry properties of a particular tensor’s index
structure. In Section 4.1 we discuss symmetric tensors in particular, and generalize to
arbitrary tensors in Section 5. The operators we present correspond to various com-
mon differential geometric operations, such as the gradient, divergence, and (curvature-
corrected) Laplacian. In particular, we generalize the results of {1] to include four new
operators, which correspond to the inner and outer product with a vector field, the co-
variant derivative along a vector field, and the multiplication by a scalar field. It is for
these operators that the homothety condition is necessary. Note that the representation
suffers from several obstructions due to curvature of the underlying manifold, which
we also present.

An equivalent representation of the algebra corresponding to these operators can be
obtained by interpreting them as quantized Noether charges of a quantum mechanical
model for a particle with intrinsic structure, and furthermore as the rigid symmetries
of the classical action which generates these quantum mechanical operators upon first
quantization. With the correspondence among these three algebras, we have a powerful
lexicon with which to equate differential geometry with an interesting particle model.
The latter two representations are presented in Sections 4.2 and 4.3. The algebras behind
all of the various representations in Section 4 is the symplectic Lie algebra sp(4), and
with the generalization in Section 5, the full orthosymplectic 0sp(Q|2p + 2).

Lastly, we present in Section 2 background material to the subjects we will be work-
ing with, including curved space treated using the affine and spin connections, varia-
tional calculus, Noether’s theorem, and Lie algebras.

2. Background

2.1. Curved Space. Our main results apply to general curved spaces, so here we briefly
introduce the basic mathematics of curved space. A more thorough treatment can be
found in, for example, [3]. First is the covariant derivative construction under the affine
connection, and then the Riemann curvature tensor.

Although some concepts may be lost or unrecognizably distorted in the transition
from flat to curved spaces, several important ideas persist. Most importantly, the idea of
parallel transport—taking a vector and moving it in such a way that it does not change
direction or length (now measured by the metric)—is still possible in curved space,
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but not as one might wish to define using the partial derivatives of its components. To
this end, it is necessary to define the covariant derivative, which is the operator against
which parallel transport is measured (no longer the partial derivative by itself), as

Vuv¥ = 0,vY + I;,v°, 1

where I';;, is the affine or Christoffel connection, symmetric in x and p, and defined as

v 1
I = 9)‘"'2‘ (Ougrp + Gpgur — OrGup) - )
In an equation, parallel transport of a vector v, is the statement that
Vv, =0. 3)

By construction of the covariant derivative using the Christoffel connection, the met-
ric always satisfies parallel transport:

Viugve = Voug"? = 0. @)

This is mandatory so that, when taking derivatives of tensor fields, any contribution
made by the change of the measurement device (the metric) is not considered. Each
separate index of a tensor on which the covariant derivative is applied receives its own
Christoffel contraction, where importantly contravariant (raised) indices, as in Equa-
tion (1), have Christoffel contraction added, whereas covariant (lowered) indices have
such a contraction subtracted; i.e.,

Vv = 0pvy, ~ I'5,v,. )
The reason for this is clear from the equation
YV, (0Yw,) = (Vur*)w, +v” (Vaw,)
= (8,0" + I'v°) wy +v* (Buwy ~ I}, we) (6)
=0y (vYw,),

since the covariant derivative of a scalar is just the partial derivative.!

Also relating to paralle] transport, and in effect measuring its failure around closed
simple curves, the Riemann curvature tensor Ruo° is defined by a commutator of
covariant derivatives, as

Rovp™Vo = [V VuJvp =2 (8, T, + T T x) Vs Q)
where |- -] denotes antisymmetrization with unit weight. From this relation it is clear

that the Riemann tensor is antisymmetric in its first two indices; it is likewise anti-
symmetric in its last two, and the first pair can be switched with the second pair. This
important tensor is a precise measure of the curvature of a space. One interpretation, in
the absence of torsion (the failure of parallelograms to close), follows the thought exper-
iment of the parallel transport (in accordance with the covariant derivative) of a vector
around a small (infinitesimal) closed loop, and then the measurement of the deviation
the vector experiences from its initial value upon completion of its orbit (Figure 1). In
this picture, the Riemann tensor’s first two indices measure the area of the loop (when
contracted with coordinate differentials), and its second two act as a rotation matrix
(hence why they’re antisymmetric) on the vector to determine the deviation.

! The fact that a minus sign goes with covariant indices and a plus sign with contravariant indices is simply

a matter of convention in the definition of the Christoffel symbol; the unavoidable feature is that they have
opposite signs.
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Figure 1. Diagram of a vector parallel-transported in a closed loop over the surface of a sphere, where a
deviation results between its initial and final directions. The Riemann tensor’s second pair of indices acts as a
rotation matrix to determine such a deviation when considering an infinitesimal loop, and its first two indices,
when contracted on coordinate differentials, account for the size of the loop.

2.2. The Spin Connection. An alternative to the mathematical description of curved
space we have just introduced (the affine/Christoffel connection) is to use the spin con-
nection. The idea is to introduce a tangent/flat space approximation at each point in a
manifold; it is of course necessary to make these tangent planes compatible when mov-
ing from point to point in order to discuss continuity and derivatives. This approach is
convenient for certain applications because it eliminates the metric tensor g,,, in favor
of the constant signature metric ™", which commutes with all differential operators
(unlike g,,,,). For this reason, we will use the spin connection extensively in Section 5.

The spin connection involves the use of vielbeine denoted e,™ or e#,, (each of
which is the inverse of the other), which constitute a local orthonormal frame field, or
in other words an orthogonal basis for the tangent space at each point which varies
smoothly across the manifold considered. Other common names for vielbein include
vierbein and tetrad (specific to the four-dimensional case). Contracting a “curved” ten-
sorial index (denoted with Greek letters p, v, etc., as we have been using already) with
the appropriate index of a vielbein in effect produces a “flattened” index (denoted m,
n, etc.), e.g.,

Um = e“mvu- (8)

The vielbeine satisfy
Nimn = guue”meu'm 9
Guv = nmneymeun- (10)

As such, contraction of two flattened tensorial indices is accomplished using ™" since,
considering for example the inner product of two vectors v* and w",

guuv”wu = nmneumeyn,vau
o an
= NMmaV W
It is important to keep curved and flattened indices separate, since their differentiation
is treated differently as we shall see momentarily. We warn the reader that we reserve
the Greek letters v, 8, . 6, and € to denote orthosymplectic superindices (appearing in
Section § and Appendices A and B).
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The covariant derivative can be defined for operation on vielbein-contracted flat in-
dices. Curved indices are contracted with the usual Christoffel terms, but the spin con-
nection w,™, instead contracts on flat indices. Given a vielbein set, the spin connection
is defined as

W =€y (Bue,™ — F:,,ep’") . (12)

Note that unlike the symmetric lower.indices of Christoffel symbols, the spin connec-
tion has antisymmetry in its second and third indices; this results from the fact that it
acts to quotient off a rotational invariance of the vielbeine, in loose terms, and these
last two indices are thus in effect an antisymmetric rotation matrix. Additionally, al-
though a Christoffel contraction on covariant indices is subtracted, while it is added for
contravariant indices, the spin connection is always added, with contraction on the last
index. For example,

Vutm? = 8utm” + I ptm” + Wum™vn”. (13)
The veilbeine then satisfy the veilbein postulate (which can alternatively be considered
as a defining relation for w,™, and the covariant derivative):

0=V,e"n=0ue"n+1,,n+ Wun'€ s (14)

This condition is essential, just like the parallel transport of the metric from Section 2.1,
so that any contribution to a derivative made by the change of our local tangent spaces
is disregarded.

The Riemann tensor can also be formed using the spin connection, and remarkably
is identical, up to flattening, to the affine Riemann tensor:

Rnr®vs = [V'my V'n] Ur

(15)
=2 (3[mwn]r‘g + w[mn]twtra =+ w[mrtwn]ts) Vs

with antisymmetrization applying to only m and n.

2.3. Variational Calculus. In Section 4.3 we consider a representation based on rigid
symmetries of an action for a particle; as such, here we will review variational calcu-
lus in curved space. This subject deals with the extremization of integrals subject to
unknown functions, just as ordinary differential calculus essays to extremize functions
with respect to unknown values. In physics, this most often corresponds to minimizing
an action to yield equations of motion.

As a preliminary, the canonical Lagrangian action principle in flat space is

.
S=/””“27c dt, (16)

where z# are the coordinates for a particle parameterized by t, with £# denoting the
derivative of z# with respect to t. Varying the above corresponds to requiring that .S
be extremized by z(t), so that adding any infinitesimal variation {6z to z and then
differentiating with respect to the parameter { must yield zero. This process itself is
often denoted by the variation 4:

0=6$=/iu6dc"dt=——/fé“6mudt, (17)
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resulting in the geodesic equation
=0 (18)

Upon turning our attention to curved space treated using the affine connection, it
is useful to work with covariant versions of the variation é or worldline derivative Z,
because the inner product between vectors is no longer constant—use of the fact that
V,.gvo = 0 affords us more compact calculations. To this end, using V,, we can define
the covariant variation D and covariant worldline derivative V/dt as

DoH = §vH + F,ﬁ‘péx"v" 19)
m
.‘ld’;_ O 20)

In the particular case that the vector (or tensor) is a function of the coordinates v* (z°),
the product rule then yields

Do# = §z°V vt 21
m
VZ; = 7V vk, (22)

We will presently list two useful curved-space identities. First, the relation between the
covariant variation and worldline derivative is:
Di* = 61" + Fﬂpz’:” éx?
\Y% (23)
= —dzt.

dt

Second, the variation of a scalar is the same as the covariant variation:
6 (vFwy) = (6v* + Tk sz vP)w, + v¥(dwy, — I'f, 6z w,) 24)

= D(viwy,).

Now we are prepared to consider variational calculus in general curved spaces with
the affine connection. The canonical Lagrangian action principle becomes

S = -;- / it g, Y dt; (25)

varying it with the covariant variation (which is equal to the normal variation, since the
action is a scalar), making use of Equation (23), produces

= / (Di*) gyt dt (26)
Vi+
=— X2t
/ Sz o dt
From this we can extract the geodesic equation
Vi#
- = 0. @27

This is the statement of parallel transport (see Section 2.1) of the tangent vector to a
path, clearly a necessary (and sufficient) condition for geodesic motion.
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2.4. Noether’s Theorem. This famous theorem gives the explicit correspondence be-
tween a rigid symmetry and a conserved charge, under a dynamical model formulated
with an action. For example, it equates temporal and spatial translation invariance with
energy and momentum conservation, and rotational invariance with angular momentum
conservation.

To prove a version of Noether’s theorem, we first start with an action

5= [ L. (28)
Applying arbitrary variations to it yields the field equations:
oL d 8L
o ~ @i og @

Suppose there is a rigid symmetry of the action in question. Mathematically this is
the statement that there exists a particular variational symmetry {6g", where £ is a
“small” time-independent linear parameter and 8¢* is an arbitrary function, such that
the variation of the action with respect to it is O (neglecting boundary terms):

_ oL . , oL d ., _ . .
88 = / <€8_ql‘6q +£8_q“dt(5q )> dt =0, without field equations.  (30)

Now we can temporarily pretend that the linear parameter £ does in fact depend on
time: £(t). (We must additionally require that £(t) strictly vanishes for t = o0, but
not necessarily the same for £(t).) Calculating the variation,

oL oL ; .
= H —_ ©
68 = / (aqﬂﬁq + Bar (£dq +€dq“)> dt

— ﬁl.’ 1 _QI_’ : 2!’_ i
”/[f(aqﬂ‘sq +aq~‘sq">+f(aqu‘sq )] dt

Now, 6g# is a rigid symmetry by assumption, so the coefficient of £ must have a total
time antiderivative, F, so that it can be integrated by parts to vanish:

@3N

dF 9L _,  OL ;u
T = 5,0 e
Proceeding,
5S = /g‘ (—F + g,%aqﬂ) dt
7 33)

el (po g
‘ﬁE@ w”)

Because S must vanish subject to any arbitrary variation, it must also vanish under
this particular symmetry. Moreover, at this point we can invoke the fact that E(t)isa
completely arbitrary function of ¢, so that the rest of the integrand must in fact separately
vanish. If we define

oL

(34)
oL t /oL oL _-
= e—fg* — ——Sa* —

B éq /0 (6(1” éq" + 53 6q“> dt,
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we find d
EZQ = 0. (35)

Q then does not change in time, which is another way of saying that it is a conserved
quantity. We refer to it as the Noether charge of the symmetry.

2.5. Poisson Brackets and Quantization. The interplay between a classical model for a
particle formulated with an action principle and its resultant (first-quantized) quantum
mechanical theory is central to the discussion in Sections 4.2 and 4.3, so we précis the
most important elements of first quantization here. We first remind the reader of the
definition for classical Poisson brackets '

(A, Blpg = oo 22 - 2222 (36)

where in fact z and p here can of course be taken to be any set of coordinates and their
momenta, respectively. Poisson brackets in particular can be used to determine time

evolution: A

{Hv A}PB = Et—’ (37)
where 4 is any dynamical quantity and H is a system’s Hamiltonian. For example, with
H =ptp,/2 and A = x°,

~p.g*py, T° = 10zf 8(ppy) _ 10(p*py) Oxf
2tHs P (g 28zv dp, 2 Oz¢ Op,
= 650,p"
=P,

(3%)

where we have used the first-order Hamiltonian field equation p, = Z,.

Under first quantization, going from a classical theory to a quantum mechanical one,
the most fundamental shift is that Poisson brackets become guantum commutators in
the following way:

{"'}PB_’%["']‘ (39)
All measurable quantities of a system are replaced instead by operators acting on a
Hilbert space, whose algebra is given by the algebra of the original classical Poisson
brackets. Many of the fundamental relations of quantum mechanics follow from this
principle.
_ The state of a system is given by an element of a Hilbert space |&). Given an operator
Q acting on a system’s Hilbert space, corresponding to an observable quantity Q, its

eigenvalues ); and eigenstate spectrum ¢; can be used to produce the probability that a
measurement of Q will yield a particular value:

P(Q = \i) = (&:]¥) . (40)
The expectation value of Q) is

Q) = (7]QP). )
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2.6. Lie Algebras. We now present an interlude on the mathematical theory of Lie al-
gebras, which applies to physics as the study of continuous symmetries. We will rely
heavily on this subject in later sections, so this section summarizes the germane points;
[4] gives a more thorough reference geared specifically towards physics.

A Lie group G is a group which depends smoothly on a set of continuous parameters,
i.e., a group which is also a manifold. Its corresponding Lie algebra g is the tangent
space to G at the identity, which is simply a vector space such that there is a bijective
continuous mapping from the g to G, which exchanges vector addition for the group
multiplication law. This is known as the exponential map:

(Gag)=exp(A€g), exp:g—G. 42)

Since a Lie algebra is a vector space, it can be spanned by an orthonormal basis. The
elements of such a basis are called generators of the Lie algebra. A Lie algebra must
also come equipped with a Lie bracket binary operation: -, -] : g x g — g. The Lie
bracket is motivated by commutators, and under representations of a Lie algebra the
bracket indeed becomes a commutator. A Lie bracket must be antisymmetric, linear,
and distributive, and must satisfy the Jacobi identity:

0=la, b cll +[b, [e, a]] + [c, [a, B 43)
2.6.1. The adjoint representation. Let X; be the ith generator of a particular Lie alge-

bra. The Lie bracket operation must produce another element of the Lie algebra, which
is spanned by the generators, so we can say

(Xi, X;] = fi;* Xk (44)
where f;; are constants, called the structure constants of the Lie algebra. If we define
(T3], * = fis*, (45)

where each T; is a matrix, these satisfy
[Ti, Tj] = fi;*Tx, 46)

so the T' matrices form a representation of the algebra, called the adjoint representation.

2.6.2. Roots and weights. Itis worthwhile to determine the maximum set of commuting
hermitian generators in a particular Lie algebra; we call these the Cartan generators
of a particular Lie algebra, labeled Hj, and the portion of the Lie algebra spanned by
these is called its Cartan subalgebra. In the adjoint representation, the Cartan generators
become 1 X n matrices, which can be thought of as operators acting on vectors. Since
they commute, they can be simultaneously diagonalized to yield a set of eigenvectors.
We define the roots, a;, of an eigenvector in this representation as its set of eigenvalues
with respect to the Cartan generators H;; a = (a;) is called a root vector. Each root
vector « itself has a corresponding generator in the Lie algebra, labeled e,, which
satisfies

[H,', ea] = i€qu- (47)

Another fundamental equation is

lea, €5 o {ea+g if o + 3 is a root vector “8)

0 if o + B is not a root vector,
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where 3 is another root vector. Finally, with a semisimple Lie algebra, given a generator
€4, there must exist another generator e_,. There exist subalgebras, however, that do
not satisfy this property.

Equation (47) allows us to grade the root vector generators e, by the Cartan genera-
tors, essentially telling us the “component” of each e, along each H; “axis”. A diagram
showing this grading is called a root lattice, which, using Equation (48), gives an ex-
ceedingly efficient way of classifying a Lie algebra and exhibiting all its salient features.
An example of a root lattice appears later in Figure 2.

3. Homothetic Conformal Geometry

Our results apply to general, curved, torsion-free, d-dimensional, (pseudo)Riemannian
manifolds. We will often specialize to spaces which possess a hypersurface-orthogonal
homothetic conformal Killing vector, i.e., a vector field £ satisfying

Guv = Vu{u- 49

Henceforth we refer to the important condition of Equation (49) as hyperhomothety.
Using &, a homothetic potential ¢ can be formed:

which then satisfies
Vud =&, (51)
and consequently
Guv = V,‘Vy¢- (52)

Under the conditions of hyperhomothety, the manifold admits coordinates (r, zt)
such that the metric is explicitly a light cone over some base manifold with metric h;;,
where in particular

2
r
o= (53)
That is, o
d32 = guud:l:“dil?u = d’f'2 + T2hijd.’l?1d1:]; (54)

see for instance [2]. Note that because the Riemann tensor is made up from two covari-
ant derivatives, a contraction of £ with Riemann must summarily vanish:

Rup’éo = [V, V,]E =0. (55)

The hyperhomothety condition has several interesting consequences. The most ele-
mentary flat space example is

ds? = nydatdas” = &4 =zh, (56)

where £ is the Euler vector field, which generates dilations. Spaces admitting such
vectors ¢ satisfying Equation (49) are thus very close to flat space.

Another condition with which to obtain spaces similar to flat space, in that they have
many symmetries, is the locally symmetric space condition, the requirement that the
covariant derivative of the Riemann tensor vanish:

ViaRuvpo = 0. (57
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This condition is explored in [1] to obtain models with symmetries subject to a maximal
parabolic subalgebra of 0sp(Q|2p + 2).

The two conditions discussed above—hyperhomothety from Equation (49), and lo-
cally symmetric space from Equation (57)—intersect only in flat space, and are other-
wise mutually exclusive. For, applying only Equation (49), we can obtain

Vo, [V Vil = ~2[V,, V.. (58)
However, if we selectively apply both Equations (49) and (57), we can instead obtain
[Eovcn [V/,n vv}] = O; (59)

hence, the Riemann tensor must be identically zero.
In the following sections we will use the geometric conditions just presented to ex-
plore elegant operator and symmetry algebras, focusing primarily on hyperhomothety.

4. sp(4) Conformal Quantum Mechanics

Here we will present a set of geometric operators on totally symmetric tensors which
form a representation of the sp(4) Lie algebra. We will then show that these operators
can instead be interpreted as quantized Noether charges of an action for a particle with
intrinsic structure, the rigid symmetries of which satisfy the same sp(4) algebra.

4.1. Symmetric Tensors. Totally symmetric tensors can be represented by completely
contracting all indices with commuting coordinate differentials dz#*. Given a rank-n
symmetric tensor field ¢, ,,.....,, introduce

&(z*, dz*) = Py uy..0,dx"*dx¥? - - - d¥m,

and hence interpret the original tensor ¢ instead as a function @ of the coordinates
and an analytic function of commuting coordinate differentials dz*; note that it is now
possible to add symmetric tensors of different ranks. In this indexless notation, one
can then define useful operators on such symmetric tensors. To this end, in addition
to coordinate differentials it is useful to introduce dual objects dz;,, which mutually
commute but obey the Heisenberg algebra

[dzL, d:c"] =4, (60)

Since we now consider coordinate differentials themselves as coordinates, we can rep-
resent these dual objects as dz}, = 0/8dz*.

Importantly, we can produce an operator equivalent to the covariant derivative when
acting on an indexless symmetric tensor, which we denote D,, (distinct from the ordi-
nary covariant derivative V, which acts on tensors with indices):

D, = 8, - I';, dz"dzy, 61)
where J,, denotes the partial derivative 8/8z*. That is to say,

D.® = (V,ibu,us..0,) dz¥ dz?? - - - dz¥. (62)
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We can also produce the Lorentz/rotation generators
MW = 2g”[”d:1:“]da:;,

which satisfy
[M#, MP) = 4MHqn¥P

(where the u-v and p-¢ antisymmetries are preserved in the result). Note that although
D,, and M*" are meant to act on tensors contracted with coordinate differentials, their
outputs possess indices. For this reason, they will not appear alone in the algebra we
will discuss, but only as part of larger composite objects.

At this point we will introduce a set of operators which map symmetric tensors to
symmetric tensors without appeal to indices. First, using just the operators dx and dz*,
we can construct three bilinears:

N = dz*dz}), g= gudztdz”, tr=g'"dz;dz;. (63)

Geometrically, these operators can be interpreted as: N determines tensor rank (and
returns the rank as its eigenvalue); g is a symmetrized outer product with the metric
tensor; and tr is the symmetrized trace or contraction with the metric tensor.

Next, adding our covariant derivative operator D,,, we can form another three bilin-
ears:

grad = dz#D,, div=g"dz,D,,
0= A+ 7 Ruvpo MH M, 64

where we are forced to add a quantum ordering term to form the Laplacian
A =g" (D,D, - Fﬁ,,D,,) )

and an additional curvature correction to A to make our operator (I (for symmetries rea-
sons soon to be evident). These operators can be interpreted as: grad is the symmetrized
gradient; div is the symmetrized divergence; and O is the Lichnerowicz wave opera-
tor [5], essentially a curvature-corrected Laplacian. The operators from Equations (63)
and (64) are discussed more thoroughly in [1].

Lastly, adding the hyperhomothetic Killing vector £, we can form four additional
bilinears:

od = —¢#D,, inner = ¢ dx},, outer=¢§,dz*, B=EHE,. (65)

These four operators can, of course, be defined whether or not the hyperhomothety
condition (49) holds; if it does not, € can then be any arbitrary vector field. Given this,
these operators can be interpreted as: ord functions as V¢, and, under hyperhomothety,
counts derivatives (and returns the count as its eigenvalue); inner and outer are the
symmetrized inner and outer products with a vector field, respectively; and M is the
multiplication by a scalar field (the homothetic potential 2¢ = £ - £). Another common
notation for inner is v¢, the symmetrized contraction of £ onto a tensor.

Thus far, we have simply introduced an operator notation for standard geometric
operations on symmetric tensors. Remarkably, subject to certain conditions stipulated
in Section 3, these operators constitute a deformed representation of the symplectic Lie
algebra sp(4). A general root lattice showing the identification of our operators with
sp(4) roots is displayed in Figure 2, and the various different subalgebras that we will
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N grading
(=]

2 -1 0 1 2
ord grading

Figure 2. Root lattice for the ten bilinear symmetric-tensor operators as a representation of sp(4), graded by
the Cartan generators N and ord. Their explicit commutation algebra is given in Appendix B.

Name Root Operator Interpretation
N Cartan dz*dz}, Counts tensor rank
g 0,2) guvdztdz? Metric outer product
tr (0,-2) g*¥dz; dz;, Trace
grad (1,1) dz# D, Gradient
div (1,-1) gtvdz}, Dy Divergence
0 (2,0) o (D" Dy = I Da) Lichnerowicz wave operator
+ R,Y % deHdz dzPdzxy,
ord Cartan —E# Dy Counts derivatives
inner | (—1,—-1) | &dz], Vector field inner product
outer (-1,1) guv€tdz? Vector field outer product
| ] (-2,0) guvlhEY Scalar field muitiplication

Table 1. List of geometric symmetric-tensor operators, complete with root vectors for their corresponding
sp(4) root lattice displayed in Figure 2.

currently discuss are exhibited in Figure 3. We additionally tabulate all possible com-
mutation relations in Appendix B. First we note that the operators from Equation (63)
form a representation of sp(2) in any background (Figure 3.i), with the index-counting
operator N as its Cartan generator, since

N, g] = 2g, [N, tr]=-2tr, [g,tr]=—4(N+d/2). (66)

Next, also in any background (and thus arbitrary vector field &) we have the operators
N, g, tr, inner, outer, and B forming a subalgebra of sp(4). To add ord, which is the
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Root lattice Conditions Algebra
8
i N Any background sp(2)
tr
outer &
Any background without
i | 'N[ Ofd] ord (& is then an arbitrary | Subalgebra of sp(4); max-
’ ! vector field); hyperhomo- | imal parabolic with ord
. thety with ord
inner
tr
& grad
i N Ll s i c Subalgebra of sp(4); ob-
’ ymmetric space struction given by (67)
div
tr
outer g grad
[ ] O sn(4): . :
. p(4); obstructions given
iv. N, ord Hyperhomothety by (67) and (68)
inner div
tr

Figure 3. Root lattices for potential subalgebras of sp(4), individually conditional upon application of hy-
perhomothety (49) or locally symmetric space (57) conditions.

other requisite Cartan generator, we need to invoke hyperhomothety, but we arrive with
a maximal parabolic subalgebra (Figure 3.ii).

Next, under locally symmetric space (57), we have N, g, tr, grad, div, and {J forming
a representation of a subalgebra of sp(4) (Figure 3.iii), with an obstruction given by

[div, grad] = 0O ~ %R“UPGM“"MW # 0 (67)

this computation was already performed in [1].

Lastly, our ultimate algebra requires hyperhomothety, and with all ten operators from
Equations (63)—(65) forms a complete representation of sp(4) (Figure 3.iv), up to ob-
structions given by Equation (67) together with

0, grad] = —% (VaRpupo) (MPdz* MP?) #0, 68)

as well as a similar result for [J with div. This result is new in this work, and a gen-
eralized version applying to arbitrary tensors and spinors is given in Section 5. Note
that Equation (68) importantly vanishes in symmetric space, and that indeed all of the
obstructions listed identically vanish together exclusively in flar space, where sp(4) is
fully realized; any relaxation of flat space to more general backgrounds immediately
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yields a deformation of sp(4). However, the obstruction in Equation (67) is in some
sense more accommodating than that from Equation (68), since it still allows [J to be
central among the operators with nonnegative ord grading (except ord and N), whereas
(68) does not, with repercussions to appear in following sections.

4.2. Quantum Mechanics. Next we would like to interpret the geometric system de-
scribed in Section 4.1 as a quantum mechanical one, with the symmetric tensors becom-
ing symmetric wavefunctions of a model for a particle possessing internal structure:

S(z*,dz*) — ). (69)

We moreover interpret the coordinate differentials dz and their duals dz* from the
preceding section as raising and lowering operators, respectively:

dz* — ol#, dz}, — a,.
In this way the wavefunctions |¥) can be written
]!I/) = 1/’!/; Vg...Vn (E#)ahll afllz tee atuﬂ ‘0) y (70)

where we have introduced the Fock vacuum state |0).
As expected, a' and a obey

[av, at*] = &%, 1)
similarly to the momentum p,, = —i0,, and position z*:
[Py, ] = —id,;. 72)

Also, just as the partial derivative is replaced by the canonical momentum, so too the
operator D,, from Equation (61) is replaced by the covariant canonical momentum

—iD, = my =pu +ilg,a"a,. (73)
An appropriate norm for this system is given by first forming dual bras
(@] =yrr2in (24) (0] avy 0y -+ Gus a4

where integration is implicitly assumed and * denotes complex conjugation, and then
using the normalization (0| 0) = 1 to produce

P = @10 = [ [ VET W g™ ) et )

Here dz is clearly the standard integral notation (not the coordinate differentials from
before), 1/Fg is the square root of the metric determinant, and + or — is chosen to
ensure the quantity beneath the radical is positive (depending on the signature of Guv)-

The symmetric-tensor operators from the previous section are manifest in this rep-
resentation as quantized Noether charge operators acting on wavefunctions, with the
appropriate replacements for dz, dz*, and D given above. The algebra satisfied by each
charge in this system is exactly identical to that of its geometric vis-a-vis from Sec-
tion 4.1. To gain further insight, we will next analyze the antecedent classical system
behind the quantized quanturn mechanical model just described.
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4.3. Classical Mechanics. We now work in a classical variational theory for a particle,
where we choose to interpret the coordinate differentials dz and their duals dz* from
the geometrical representation in Section 4.1, or alternatively the quantum mechanical
raising and lowering operators af, a from Section 4.2, as comprising a complex-valued
vector carried by the particle, i.e.,

d:c“/a’“‘ — EH dm;/au — 2. (76)

The quantum mechanical commutators, under “reverse quantization”, instead be-
come classical Poisson brackets:

{pu, 2"}pp =0, {2, 2}pp = —i67. n
Throughout this section we assume the hyperhomothety' condition (49). Since it is
central (up to obstructions), we take as our Hamiltonian H = —{0/2, dropping the

9" I}, Dy quantum ordering term for the classical system:
H= % (rPmy, — RLYp02%2,2°2,) . (78)

From (77) it is evident that we already have Darboux coordinates z and p, z and Z,
so we can perform a Legendre transformation to obtain a suitable action principle for
our particle:

S= / (%gwd:“:b" +i2ﬂ%’;—“ + %R#"paz“ 2 E"z,,) dt. (79)
The three terms in this Lagrangian all have interesting geometric interpretations. The
first is the usual energy integral, the extremization of which yields simple parametrized
geodesic motion. The second ensures parallel transport of the vector z,,. The third is in
effect a coupling between the first two; including it in our model results in many more
symmetries than with its omission, which we discuss below.

The ten operators forming our representation of sp(4) in Section 4.1, listed in Ta-
ble 1, correspond via Noether’s theorem to conserved quantities of the above action,
with explicit symmetries listed in Table 2. There are, however, three interesting caveats
to make. First, because there is an obstruction to the algebra between the U charge
and both the grad and div charges (Equation (68)), grad and div technically are not
conserved charges of our action—performing the grad variation, we find

88 =i | (VAR %2 542,572, ) dt subjectto Oz* =iz¥, Dz, =12,. (80)
uop [ 7

The result of this variation, which is exactly the classical equivalent of Equation (68),
shows the failure of the grad and div symmetries due to the curvature of the underlying
manifold.

Second, it is important to note that the symmetries corresponding to the hyper-
homothetic operators—ord, inner, outer, and l—do not commute with the Hamilto-
nian H; consequently, they are off-shell symmetries and moreover possess time de-
pendence. The procedure to take a quantized Noether charge and produce a (possibly
time-dependent) symmetry is as follows. First, given a quantized Noether charge op-
erator (g, its time dependence is determined using the system’s Hamiltonian operator

H: 0
= = [Qo, H], 81
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which can be integrated to yield Q(t). For example, to obtain the ord charge’s time
dependence,

ditord = [ord, H} =2H = ord(t) = ord + 2Ht, (82)

or for A,

%l =W, H]=20rd = B(t) =M+ 2ord)t+2Ht>. (83)

From here, the rigid symmetry corresponding to @Q for the coordinate g* is

do¢* = [Q(1), ¢]. (84)

Proceeding in this way one can obtain all the symmetries from Table 2. It is the conve-
nient algebra satisfied by these quantized charges which allows integrations of this kind
to be analytically evaluated.

Lastly, it is worthwhile to notice that there are actually two separate symmetries
which both correspond to the O Noether charge—the first is obtained using the proce-
dure just described, and is quoted in Table 2, and the second is

Szh = ¥, 6%¢ =3, Oz, =i, (85)

A variation of this kind corresponding to translation of the coordinates is in fact a
symmetry of any time-independent action, and always produces the Hamiltonian as
its Noether charge.

The geometric interpretations of the symmetries from Table 2 can be described as:
N increases the magnitude of z,, for a commensurate decrease in the magnitude of z¢,
or vice versa; g effects the admixture of 2, into 2%, and tr the opposite; grad and div are
couplings between the coordinates z# and the vector z,, effecting exchanges between
the two; O produces translations; ord produces dilations; inner and outer couple the
hyperhomothetic conformal Killing vector §, with z,,; and finally 8 produces worldline
conformal boosts.

5. 0sp(Q|2p + 2) Conformal Quantum Mechanics

We forthwith proceed to generalize the algebra from Section 4.1 to the general or-
thosymplectic Lie algebra 0sp(Q|2p + 2). This allows us to study tensors without the
restriction of total symmetry. We will always assume the hyperhomothety condition
from Equation (49) in this section, and will exclusively use vielbeine and the spin con-
nection wy,™y. In place of the coordinate differentials dz# and dzj, from before, we
now denote a general orthosymplectic generator by X, where v is a superindex taking
values 1 < & < 2p+ @ which can be thought of indexing the species of coordinate dif-
ferential X, corresponds to. For 1 < a < 2p, X, is a bosonic variable, and otherwise
it is fermionic. These Xs satisfy the following supercommutation relation:

[X;n» Xg} = "]"mJaﬁv (86)
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Name Symmetry Noether charge
N S2u = —2u Mz,
z# = z#
g 52y = g2 GuvZ* Y
tr 6zH = gHVz, g zuzy
dzH = izH )
grad iz,
Dz, =y
Sz = izH X
div ihzy
DzH = g+
bzt = gH
| Dzt = —iRo",52% 37 25 | ddrd, — AR.Y 72423020
Dz, = iR“ﬁ-y‘s 2527z
ord Szh = 2dH — £, EHE, — tEhE,
Szt = —itz# ,
inner THZ) — tEHz,
DzH = tiH — g#
sxH = itzH .
outer THZy —tikZ,
Dzp =tdy — &y
[ | S = t2gH 4 tEH EHE, — ATHE, + t2EHT,

Table 2. Symmetries and corresponding Noether charges of the action from (79). Unspecified variations are

zero.

where |-, - } is an anticommutator if both arguments are fermionic, and a commutator

otherwise. Here J,s is the orthosymplectic bilinear form, given by

(Jaﬁ) =

We denote the inverse of J,g by J#2, so that JagJ?? = §7 (while JP*J,5 =

see Appendix A).

We can now, using the orthosymplectic generators X,,, form the SO(d) rotation/Lorentz

generators

(

\

\

‘1p><p

Lpxp

"npxp

1P Xxp

]1q><q

Q = 2q even,
Igxq

]]‘qX(I

lgxgq Q =2g+1odd

1

M JﬂaXLng] — {an’ Mr.s] - 4Mmsnnr

(where the m-n and r-s antisymmetries are preserved in the result), as well as the spin

connection covariant derivative operator acting on X -contracted tensors:

Dy, =0, + WmneM™T,

where we employ the operator ordering 8, = e#,,0,.




Orthosymplectic Differential Geometric Operator Algebras with Conformal Symmetry 19

Now we will build geometric operators equivalent to those from Figure 2. First, from
the space of all possible orthosymplectic bilinears, we define

fap = nmnX(";XE], (90)

where (a/] denotes antisymmetrization if o and § are both fermionic indices, and oth-

erwise denotes symmetrization (with unit weight); we again refer the reader to Ap-

pendix A, where a computational scheme for working with such symmetrization is de-

tailed. The supermatrix fas subsumes N, g, and tr from Section 4.1, as detailed below.
Next we can define

Vo = XgT Dy, €20)]

which subsumes grad and div, and which can be viewed as a generalized Dirac operator.
We also clearly need the Lichnerowicz wave operator from before

0= A+ 3 Rmnrs M™"M™, 92)

where the Laplacian again requires an ordering term
A=D"Dy — W' Dn,. 93)

To complete our set, we presently add the hyperhomothetic operators. ord and B
remain unchanged, except of course that ord now uses the new covariant derivative
operator from Equation (89):

ord = ~£"Dp,, B=E"Em. (94)
Lastly, we produce the generalization of inner and outer:
Wa = EmXZL- (95)

The explicit correspondence between the 0sp(Q|2p + 2) operators fag, Vo, and wq
and their sp(4) equivalents is

o) = (4 £V 57) = (59). )= (Goner) - 9

This new set of geometric operators are meant to act on the equivalent of multiforms,
multispinors, and tensors with arbitrary combinations of symmetric and antisymmetric
indices, with each index contracted on the appropriate species of Xq; groups of sym-
metric or antisymmetric indices should all use the same « value. The potential algebras
which can be formed by our osp(Q|2p + 2) operator set are exactly analogous with
the sp(4) case (Figure 3), with sp(2) — o0sp(Q|2p) and sp(4) — osp(Qi2p + 2).
Specifically:

i. fap in and of itself forms 0sp(Q|2p) in any background;

ii. fap, Wa»and M form a subalgebra of osp(Q|2p-+2) in any background (arbitrary
vector field £), which becomes maximal and parabolic with the addition of ord
and the hyperhomothety condition, Equation (49);

ifi. fag» Va, and O form a subalgebra of 0sp(Q|2p + 2) under the locally symmetric
space condition, Equation (57), with an obstruction (97);

iv. all of fap, ord, Ve, O, wq, and B together form 0sp(Q|2p + 2), subject to ob-

structions (97) and (98).
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There are again two curvature obstructions to the complete osp(Q|2p + 2) algebra
otherwise formed by our operator set under hyperhomothety:

1

[va) vy} = Jay & + 5 Renars XTXTM™  # Joy D, ©97)
1

(0, va) = = (VeRumnra) (M™"XEM™) #0, 98)

with A as defined in Equation 93. These equations respectively generalize their sp(4)
counterparts in Equations (67) and (68). Note that (97) is again in some sense a much
less severe obstruction, since by itself it still allows [J to be central among v, and many
of the entries of the supermatrix f,s (those corresponding to the g and tr operators from
sp(4)), whereas (98) is an actual commutativity failure.

New in this work, Equation (98) is an exceedingly general result, showing the fail-
ure of arbitrary Lichnerowicz wave operators to commute with arbitrary generalized
Dirac/gradient/divergence operators. The remainder of the algebra satisfied by the op-
erator set is explicitly tabulated in Appendix B.

6. Conclusions

We used the condition of the existence of a hypersurface-orthogonal homothetic con-
formal Killing vector to present several interesting representations (up to obstructions)
of the sp(4) Lie algebra, corresponding to indexless differential geometric operators on
symmetric tensors (Section 4.1), the quantized Noether charges of a quantum mechan-
ical model (Section 4.2), and the rigid symmetries of a classical action principle for a
particle transporting a complex-valued vector (Section 4.3). We furthermore general-
ized the symmetric tensor operator algebra to more general osp(Q|2p+ 2), correspond-
ing to operators acting on multispinors, multiforms, and tensors with arbitrary index
symmetry structure (Section 5).

This project naturally suggests further investigation. In the quantum mechanical rep-
resentation, it would be a worthwhile task to consider the spectra of such operators, and
indeed to ascertain entirely the precise nature of such spectra; further restrictions on the
allowed curved backgrounds, so as to admit many symmetries, would likely be neces-
sary. From the perspective of the antecedent classical system, it would be interesting to
determine the trajectories of the action given in Equation 79, and in turn to investigate
whether determination of the classical system aids in the determination of the quantum
mechanical one, or vice versa. It is also possible to generalize our results from these
representations into the full osp(Q|2p + 2), in which case the anticommuting “flavors”
of coordinate differentials correspond classically to Grassmannian variables. Full deter-
mination of such models would likely be even more difficult, but likewise very general.
Furthermore, second quantization of the quantum mechanical model into a quantum
field theory is another feasible generalization.

We also wish to consider extending the homothety condition, which corresponds to
a scale symmetry or conformal structure, to complex or quaternionic structures. For
example, the Kihler condition imparts complex structure:

o 0 -
9 = 5;{53‘-05(2,2)- (99)

It is also worthwhile to consider manifolds with multiple hyperhomothetic vector fields
&;. Manifolds with such additional structures lend themselves to possessing many more
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interesting symmetries, and could produce exceedingly rich operator algebras from their
quantized Noether charges. Lastly, it is possible to search for a Fourier-Jacobi algebra
among the conformal operators introduced in this paper, as was done with the g, tr, and
N operators in [6]. All of these are viable avenues of future study.

A. Supercommutation Computation

A particularly convenient method of carrying out computations using supercommuta-
tors, and other such sometimes symmetric and sometimes antisymmetric objects, is to
define a tensor Tg;, similar to a four-index Kronecker delta, contraction over the § and
€ indices of which produces the desired sign depending on the values of the o and
[ indices. T provides the advantages of enabling one to use standard Einstein-notation
tensor calculus for otherwise ungainly symmetry/antisymmetry, and of being easily ma-
nipulated using a computer—many identities for T can easily be derived ad hoc.
Specifically, we define

0 ifa#dborf#e,
T ={ -1 if(a=06)>2p, (100)
+1 otherwise.
T can be used to produce a Leibniz rule for supercommutators (here we are working in

osp(Q|2p) with generators X, where indices are orthosymplectic superindices—see
Section 5):

[Xar XpXy} = [Xay Xp} Xy + TopXe [Xs, X5}, (101)
or even a Leibniz rule for supercommutators of bilinears:
[Aag, X4 X5} = [Aap, Xy} X + TEETET X [Apw, X5} (102)

It can also produce symmetry or antisymmetry in two orthosymplectic indices depend-
ing on their value:

1
AaBg) = 5 (AaBp + TopAcBs) (103)

T replaces the (—)qs symbol sometimes seen employed to similar effect, but without
any contraction implied on its indices.

T satisfies many identities, as well as interrelations with the orthosymplectic form
Jagp defined in Section 5. We list several here.

TEYTES = 6267, JagTElr = —Jya, T4 Jaw = ThaJums
ng‘]#" = —Jga, Jﬂa*]'vﬁ = ~Toys JﬁaJﬂv = 67,
TR TE T Sy = Ti Jpy,  TEETHS = 65, THT0 up = 0§ Jary.

B. Explicit Algebras

We present the explicit commutation algebras of the sp(4) operators from Sections 4.1
and the osp(Q|2p + 2) operators of Section 5 in Figures 4 and 5, respectively. Note that
the operators N and ord used here are shifted from the originals defined earlier in the
following way:

N=N+d/2, ord=ord~d/2,
where d represents the dimension of the manifold in question—we opt to absorb this
d/2 term into the operators, which is necessary algebraically.
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[+y:]] od | g tr grad div ] outer inner n
N 0 2g | —2tr | grad —div 0 outer ~—inner 0
ord 0 0 gradt divt 200t —outert | —innert -2mt
g —4N 0 —2grad 0 0 ~2outer 0
tr 2div 0 0 2inner 0 0
grad Eq. 67 Eq. 68 gt N +ordt | outert
div cf. Eq.68 | N — ord! trt 2innert
[} 2gradt 2divt —4ordt
outer -n 0
inner 0

Figure 4. Explicit commutation algebra of the operators from Section 4.1. All results apply to arbitrary
curved manifolds, except those labeled 1, which are contingent upon application of the hyperhomothety
condition from Equation (49). Commutators are of the form [left column, top row]. Note the definitions N =
N+ d/2, ord = ord — d/2.

[y} e ord Uy 0O Wy |
Jap | 4Jp(yfalg | O 2Y(aJply 0 2w(aJp)y 0
ord 0 0 vyt 200t —wyt ~2it
Vo 25 (4 V] —vat Eq.97 Eq. 98 | —Jayord+ faq! | 2wat

a 0 ~200t Eq. 98 [i] 20,1 —~dord!
we 2J4 (4 Ws) wet ~Ja~yord — fa.,f —2uet Joy 0

Figure 5. Explicit supercommutation algebra of the operators from Section 5. All results apply to arbitrary
curved manifolds, except those labeled ', which are contingent upon application of the hyperhomothety
condition from Equation (49). Supercommutators are of the form [left column, top row}. Note that the sym-

metrization on the result of
the definition ord = ord — d
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