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Chapter 1
Introduction

Matthew Holden

Understanding how populations grow, decline, amdigt is a central topic in theoretical
and conservation ecology. The first attempts atgupppulation dynamic models to answer these
guestions avoided complications of spatial configjon by assuming that all individuals are
homogeneously distributed throughout the landsdapality, many populations are
heterogeneously distributed in space, often asestsf individuals linked by dispersal.
Consequently, the connections between these segdegizbpopulations can influence
population growth. Experimental studies have shepatial processes can be essential for
understanding many species’ population dynamica$kial 999, Medina-Vogel et al. 2008). In
addition there is an increasing urgency for undeding the effect of a population’s spatial
structure on its survival because human activid@#inually fragment natural habitats,
potentially causing population extinctions. Therefan this thesis | will explore the effect of
spatial heterogeneity and habitat fragmentatiotherability for populations to persist in patchy
environments.

Models of population dynamics that incorporate sgar@sent a mathematical challenge
in that individuals are no longer assumed to bé meded. In this case, organisms do not
interact with each other at a local level in thensavay they interact with distant neighbors.
Hence the assumptions of “mass action” are violaad the population dynamics are not
explicitly dependant on global population size. iEfiere, descriptions of population density can
no longer be encapsulated by a simple ordinargudfitial or difference equation.

Early attempts at describing population growth tigio space used partial differential
equations. Skellam (1951) was one of the firstaplyaspatially explicit population modeling to
ecology by reinterpreting Fisher’s reaction-diffusiequation, which originally described the
propagation of an advantageous gene. In Skellaratdeinthe reaction term corresponds to
density dependant growth at the given location)enthie diffusion term corresponds to random
dispersal. Assuming the population exists in aerirdl on the real line with boundary conditions
of zero density at the end points, he developditsieexpression for the minimum habitat size
needed for population persistence. This condikoown as critical patch size, is especially
important for questions regarding habitat loss faagmentation, because it gives a bare
minimum size that must be preserved to save a ptpalfrom going extinct.

While I will develop expressions in the same sp@stthose first calculated using partial
differential equations, the rest of this thesid fatus on metapopulation and integrodifference
models. A metapopulation is a group of subpoputetiof the same species, existing in patches,
which interact through dispersal (Levins 1969). ibevdeveloped the simplest model for a
metapopulation by using a single ordinary diffef@rgquation to describe the proportion of
occupied and unoccupied patches. Discrete timeorey®f this equation have also been studied.
In these models persistence corresponds to a éwngositive proportion of occupied to
suitable patches. While the model was developek syatial structure in mind, the model itself
is not spatially explicit. Dynamics are describgdlie average patch extinction and colonization
rate in the system; the size and spacing of thehpatis ignored. Hanski modified this model to
include the effects of distance between patchegatuh size by creating a system of coupled
differential equations (Hanski 1997b), with eacliaen corresponding to the probability of a



particular patch being occupied. The colonizatiae of each patch is then a function of the
distance between the centers of the patches, anektinction term is a function of patch area. In
chapter (2) | will develop a discrete time modetigar to the Hanski’s, but will reinterpret the
state variable in terms of subpopulation abundame@pposed to patch occupancy. Since the
populations within vernal pools do not undergo frewt stochastic extinctions, the extinction
term of the classic Hanski model will be deletedill use two methods to model dispersal, both
involving a continuous dispersal kernel laid ovéwa dimensional landscape consisting of
unsuitable habitat and discrete occupied pools.

Discrete time metapopulation models are actuadiyrelification of integrodifference
equations. Integrodifference equations are sinhlanetapopulation equations except, like
PDEs, they are continuous in space. Thereforeadsté population growth being a function of
density within a particular patch, growth is a ftiog of the density at a particular point in space.
Dispersal then occurs from all other points. Howeilfeve imagine a metapopulation defined on
a lattice, in which local population dynamics aetesimined by the density of individuals
occupying each cell, as the grid becomes infinitefined the metapopulation model converges
to an integrodifference equation. Integrodifferergeations were first introduced to ecology by
Kot and Schaffer (1986) to explain the populatignamics of species with non-overlapping
generations. Similar to the techniques used byl&ke|1951), Kot and Schaffer were able to
formulate an expression for the minimum habita¢ sizeded for a population to persist,
assuming the population disperses its propagulesdiag to a Laplacian distribution. Here they
linearized their equation around the zero equilitbricorresponding to population extinction, and
converted the integral equation into a second cdtd®E boundary value problem. From this they
were able to derive an expression for when thestndtical bifurcation, where the stability of the
zero and non-zero equilibrium exchanges, occurfortimately, this can only be done for a
limited number of dispersal kernels. For even reddy simple kernels, such as a Gaussian
distribution, the critical habitat size can onlydggproximated numerically (Latore et al. 1998).

While Kot and Schaffer developed a variety of taghas to determine the critical patch
size for populations in homogeneous landscapeg didenot consider fragmented landscapes or
landscapes characterized by spatial heterogemeltghitat quality. However, Van Kirk and
Lewis extended this analysis to habitats that wayuality based on location (1997). They
specifically looked at populations in which grovetbuld be modeled as a periodic function in
space, where good quality habitat corresponded totensic growth rate parameter greater than
one and poor quality habitat corresponded to amsit growth rate parameter less than one.
The analysis showed that critical habitat size ddpd on a combination of dispersal distance
and landscape heterogeneity. Yet, the analysis diseabt extend to random landscapes. In
chapter (3) | prove that the integrodifference eiquagoverning the population dynamics in a
random patchy landscape converges to the staneégednistic integrodifference equation
multiplied by the proportion of suitable habitat,the limiting case where the landscape is
infinitely fragmented. Hence determining the catibabitat size is reduced to a problem which
can be solved using the techniques provide by KdtZchaffer (1986).



Chapter 2

The Population Dynamics of a Vernal Pool Plant: theffects of
habitat fragmentation, conservation, and restoratiom on population
persistence and abundance

Matthew Holden, Lauren Lui, Vivian Tang, Margot Wood, Motoki Wu, Shabnam Yekta,
Pak Kwong

keywords: habitat fragmentation, restoration, metapopulati@nmnal poolslasthenia

Introduction:

One of the greatest challenges in conservatiomgyois assessing the impacts of habitat
loss and fragmentation on population viability atdindance (Brigham, & Schwartz 2003). Loss
of suitable habitat not only reduces the populasiawailable resources, but also can increase
habitat fragmentation. It is conceivable that s@pecies well adapted to fragmented landscapes
may not be affected by further fragmentation. Hogvegreater fragmentation may impede
dispersal among subpopulations, which can be angakfor population persistence. While it is
possible to test empirically the effect of fragnatitn on the dispersal and population viability
of some species (Peacock & Smith 1997; Trenham&afder 2005), for others, this is
logistically unfeasible. In such cases, mathembtizadels can help to understand the effect of
habitat fragmentation on population viability amdguide conservation, restoration and
development of such habitat (Eliner & Guckenhei2@06).

Levins’ metapopulation theory (1969) provides oppraach to this problem. In the most
general sense, a metapopulation is a group of gullgions that exists in patches connected by
dispersal (Hanski & Gilpin 1997). The Levins modssumes there are an infinite number of
identical patches, in which the population is diésat by the presence or absence of the species
in each patch. Extinctions and colonizations ofghlepopulations in these patches define
population growth and decline. However, most natoaulations do not live in an infinite
landscape of homogeneously distributed patchegeldre, some theoretical ecologists have
developed alternative approaches to model metaptps. For example Huxel and Hastings
(1999) used lattice models to analyze the effectsagmentation on population growth.
Similarly, one could use the integrodifference noehdescribed by Kot and Schaffer (1986).
Unfortunately, these models are computationallyegspve for sites in which patches occupy a
small portion of the landscape’s total area (Had9€9). On the other hand, Hanski developed a
more economical adaptation of the lattice modelttnly spatially fragmented populations
(Hanski & Gyllenberg 1997; Hanski 2000; OvaskaigeHanski 2001). Instead of modeling the
proportion of sites occupied, Hanski and Gyllen@@p7) track the probability that each patch
will be occupied through time, with a patch’s egtion rate as a function of area, and its
colonization rate decreasing exponentially as disgdbetween patches increase. This model is
advantageous because it explicitly accounts fotahdscape’s spatial distribution, and thus can
be used to test the effect of habitat fragmentatiopopulation dynamics. While this method
may appear inappropriate for populations in whidorimation on extinction and colonization is
lacking, or populations that rarely go extinct (Hags 2006), the model can be reinterpreted in
terms of population density rather than the praiigimf a patch being occupied. Since this



interpretation no longer requires extinctions agxbtonizations, the Hanski and Gyllenberg
approach can be modified to understand the eftédiabitat fragmentation on the population
dynamics of species in many patchy systems.

One of these systems, California vernal pools, titoas a habitat type of particular
interest to conservation biologists because ibiméto many endemic species. Vernal pools are
ephemeral wetlands that fill with winter rains afebsiccate during hot, dry, summer months
(Zedler 1987; Keelely & Zedler 1998). Although tharyce occupied a large portion of the
California landscape, increasing development hasezhhabitat loss and fragmentation (Wier &
Bauder 1990). Pools separated by distances orcéhe af meters form complexes at a local
level; complexes are separated from one anoth&rggr distances (tens to hundreds of
kilometers). Pools at the local level are affedigdimilar rain patterns and are highly
synchronous within a complex; therefore, the subfain within each pool likely experience
correlated dynamics with the subpopulations in Imegging pools.

Vernal pool plants have annual life cycles with geaeration per year. During winter
rains, pools fill and seeds germinate. As the pbetsin to dry, the plants flower, disperse seeds,
and die (Bliss & Zedler 1997). Thus, unlike the tiamous time model described by Hanski &
Gyllenberg (1997), vernal pool plant populationsidd be modeled with discrete time
eqguations. In addition, many vernal pool plantpeise dormant seeds that may remain in a seed
bank for numerous years. In this case, it is ingarto model population density rather than
extinction and colonization because extinctionsusréely or difficult to detect since seeds may
continue to germinate from the seed bank afterrabuafavorable years (Zedler 1987). This is a
key feature of vernal pool plants, which is not@aetted for in the traditional Hanski and
Gyllenberg (1997) model.

While the characteristics of vernal pool speciemdbfit completely within assumptions
of the classic metapopulation approach, it is ingarto understand the effect of fragmentation
on vernal pool species’ population dynamics bec#us@ools are continuously destroyed
during agricultural and suburban development. Civagion efforts attempt to protect and to
restore these habitats; however, there is no tliearéramework to guide such efforts.

In this paper we developed a general discrete nr@@population model, with a seed
bank, similar in structure to the continuous timedel developed by Hanski & Gyllenberg
(1997) and used analytic techniques along withrdetestic simulations to examine the
population dynamics of a vernal pool plant spedies.first developed general persistence
conditions at the level of pools and complexestaed used the simulations to explore the effect
of pool spatial configuration on the plant specsr'sistence and abundance. We also used the
simulation to understand the implications of addang removing pools as a means of restoration
and development.

The simulations were parameterized using two spegithe genukasthenia (Family
Asteraceae), commonly known as goldfields. The genus coasi$21 species and subspecies
(Chan et al. 2001), many of which are endemic tii@aia vernal pools.Lasthenia has a
lifecycle typical of other vernal pool plants (fig.1).L. conjugens, the Contra Costa goldfield, is
currently federally listed as an endangered spetithsa distribution limited to the deltaic
Sacramento Valley and a few other California casm{Hickman 1993 closely related
congenerL. fremontii (Chan et al. 2001), while also endemic to Calif@rrernal pools, has a
broader geographic distribution, and can currelméiyound throughout the Sacramento and
Central valleys ranging from Shasta to Santa Bgid&DA 2008).



Methods:

Model Assumptions and Structure:

Our general model accounts for the effects of satygermination, dispersal, and the
size and spatial configuration of vernal poolsttoapopulation dynamics of a typical vernal
pool plant. We assume that the population coneisésseries of subpopulations confined to
individual vernal pools, with dynamics of the supplations interconnected by dispersal.
Because vernal pool plants have an annual lifeecyeé modeled the population using a system
of discrete time equations, with each equationesponding to the subpopulation size within a
pool. These equations are essentially the MacDeMé&ltkinson (1981) bottleneck model of
annual plant population growth with a seed bankgifrex to include dispersal within a patchy
landscape.

In our model, between—pool interactions can onguot¢hrough dispersal during the
adult stage. Therefore, we assumed that seetis seed bank are immobile and cannot directly
contribute to the population in other pools. Theswamption could be violated if animals disperse
seeds. While laboratory experiments show that vgmal plants can germinate from rabbit
pellets (Zedler & Black 1992), S. Collinge showexdavidence for rabbit dispersal lcdisthenia
conjugens in the field(personal communication} his assumption could also be violated if seeds
can float into neighboring pools that connect dyiyears with high rainfall. While some vernal
pool plant seeds develop structures that allow tteefioat, this is not true fdrasthenia.

Rather than modeling plants and seeds as septageedasses, we used the number of
seeds in poal at timet as a state variable. Biologically, this implieasgasing the population
after dispersal, when all individuals are seedss @Howed us to capture the same processes as a
model with separate seed and adult stage clastie®alf the number of equations.

We computed the number of seeds in paolyeart+1 as the sum of the number of seeds
that stay in pool or disperse into poolfrom other pools in yedr Specifically, we have:

seeds produced

Number of  _ : : seeds in podl that seeds produced in pojolhat

. = in pooli that + - di . ilat ti
seeds in pool stav in pool at do not germinate Isperse Into poalat timet.
i at timet+1 yinp at timet

timet

The population growth of plants is affected by digndependence at various stages of
the life cycle. Many plant populations experienegative density dependent survivorship
(Silander & Pacala 1985; Heithaus 1982). Afteranpkurvives to adulthood, positive density
dependence may affect plant fecundity depending tipe plant’s reproductive methods.
Specifically, the mating systems of vernal poohpdarange from obligate outcrossing, é.g.
conjugens andL. fremontii, to obligate selfing, e.d.. glaberrima (Ornduff 1963, 1966). If a
species reproduces via obligate selfing, the raprtooh of these plants will not be affected by
low density. Since some specied abthenia reproduce in this way and because there is no data
on density dependent seed sl .igonjugens or L. fremontii, we did not include positive density
dependent effects on fecundity.

There is no density dependent survival in the gtk because dormant seeds do not
compete for resources. For many plant speciesnstaat proportion of seeds in the seed bank



lose their ability to germinate each year (Cook@98o0 incorporate this type of survival in the
seed bank, we assumed that a constant proportioaldé seeds;, germinate each year. The
proportion of seeds which do not germinatey, survive in the seed bank with probability
Thus, there is a constant proportiongdl of seeds in the seed bank that lose the captacity
germinate every year. This means that the surfigation, ey, does not explicitly depend on the
age or density of the viable seeds. In contrasttuoival in the seed bank, seeds that germinate
must not only survive through a dormant stage duttie summer, but also a seedling stage after
germination. Survivorship during the seedling stagg/ be especially difficult considering early
showers can cause premature germination. We cortiise survivorship probabilities &s
Therefore, in terms of state variables and parametige equations become:

N;(t+1D = ggywpiifi(Ni(t)) + eq(L=7IN; (D) + zggywpijfj(Nj(t))i (2.1)
=1,j#i

where the state variab(t) is the number of seeds in poat yeait. A constant fractiory of

seeds germinate. The functidiNi(t)), describes the survival of germinating seedsoali,

indicating a seed’s successful maturation intopaa@ucing adult. Each adult producesiew

seeds. A seed produced in ppdisperses into poolwith a probabilityp;;. The contribution of

seeds to poalfrom poolj is then summed over allpools in the complex.

For the rest of this paper, we assume that thsityeshependent growth functiofi(Ni(t)),
in pooli is the product olN;(t) and the reciprocal yield function (Levin et ad84; Eliner 1985b;
Nilson et al. 1994; Mathias & Kisdi 2002). The gcical yield function gives compensatory
growth for germinating seeds (Van Kirk & Lewis 199%pecifically, we described the density
dependence in pooby

cAN, (1
£gYN, (0 +CA, '

f,(N; () = (2.2)

whereA is the area of pood| andc is the maximum number of germinating seeds that can
survive per unit area. Henag is the effective carrying capacity for the gerniimg seeds in
pooli, making the carrying capacity of a pool directtggortional to its area. Although Harper
(1977) points out that the reciprocal yield desaipmay be more accurate for density
dependent mechanisms that affect plasticity retrear mortality, Martin & Carnahan (1983)
found that this function fits survival data for mdiuals in some plant species.

Analytical Methods

Using linear stability analysis near the zero eftiim, we calculated a sufficient
persistence condition for a plant species livingmm pool system. We further calculated the
necessary persistence condition for a two patctesysising a method described by Hastings
(2006). In this paper, he uses Perron-Frobeniusrytte show that the persistence of a
fragmented population depends on a local subpapuolatself-replacement by dispersal to and
from all subpopulations in the complex. Furthermaeve developed an expression for the critical
pool size needed in order for the subpopulatica given pool to survive in isolation.

Simulation Methods
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We programmed in MATLAB to simulate the effect a§gkrsal on the persistence of a
vernal pool plant species. Because there is adadlata on the spatial pattern of seed dispersal
for vernal pool plants, and accurately measuring segubsal is difficult (Bullock and Clarke
2000), we used an analytical dispersal kernel sziileep;;. A dispersal kernel is a probability
density function that gives the distribution ofissed seeds in space as a function of the seeds’
location. While general dispersal kernels have lstedied theoretically, (i.e. Okubo & Levin
1989) little is known about the seed dispersaleshal pool plants. Therefore, we assumed that
each plant disperses its seeds according to thiadiap distribution. Not only is this one of the
simplest dispersal kernels for wind dispersing fd@kubo & Levin 1989), it is also
leptokurtic. Theoretical models of seed disperaghest that the majority of plants have
leptokurtic, as opposed to Gaussian, dispersakekef@kubo 1980, Howe & Westley 1986).
Thus, our dispersal kernel is

2
oy =Ll @Y

The functionk(x,y) gives the probability distribution of seeds dissel from a plant centered at
the origin, wherex andy are the coordinates of the dispersed seeds. Bed#uis the mean
dispersal distance, the plant disperses more sezuistself as increases.

Using this dispersal kernel, we took two approadbecalculating;: one in which we
assume plants disperse all seeds from the centke giource pool and one in which plants are
uniformly distributed in the pool before they dispetheir seeds. The first method is the
conventional one used in most metapopulation mdiel$ianski & Gyllenberg 1997).
However, assuming seeds are dispersed from theragfithe pool overestimates the number of
seeds dispersed back into the source pool and estdeates the number of seeds dispersed out
into other pools. On the other hand, assuming tipailation is uniformly distributed, before
dispersal, pushes more of the population out rreaetige of the pool. Hence, this method
underestimates the seeds that stay, and overessitiet seeds dispersed into other pools. The
most accurate approach would be using a latticetegrodifference model, which is too
computationally expensive to run simulations feg&landscapes. However, our two methods
will provide a lower and upper bound for survival@wv densities, equilibrium population
abundance, and critical pool size.

To calculate pwe assumed that a vernal pool complex is madd agiocular pools of
the same depth. Using the pool-centered approachltalate p we numerically integrated the
Laplacian distribution, centered at the centehefgource pool, over each of th&arget pools.
Using the uniformly distributed plant method, wengeted a sample of uniformly distributed
seeds in the source pool and numerically integreteth seed’s dispersal kernel over all the
target pools. We summed the results for all thels@ethe source pool and divided by the
number of seeds in the pool to obtain the desiredgbility.

In the simulation, we varied the area of the imlnal pools and the distance between
pools to see the effect on the population dynamii@vernal pool plant. Specifically, we used
data fromL. conjugens andL. fremontii to define a biologically realistic range of paraens for
the germination fractiop, maximum densitg, and fecundity of the plami. Distance is
measured in meters, thus g, andA; are scaled accordingly. A summary of the valuesi der
the simulation are listed in the table of paranse(@able 2). We also simulated the effects of
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pool removal and addition within a complex on plpapulation persistence to evaluate the
effects of habitat destruction and restoration.

In addition, we calculated the eigenvalue as a noreasf population persistence and
tested how the eigenvalue and the population amaedeesponded to habitat fragmentation,
assuming the total area of pool coverage is fik&dt we generated a landscape of non-
overlapping pools of equal radius. We started lokipg a location at random, putting a pool in
that location, and checking to make sure the pmbhdt overlap any other pools in the complex.
If the pool overlapped another pool, we discardeshd randomly selected a new location. We
repeated this until we reached the desired numiygoals for the complex. After generating the
complex, we calculated the dominant eigenvalueeandlibrium population density. We then
decreased the number of pools while simultaneanshgasing the radii of the remaining pools
so that the total area of pool coverage remainastifiThis process was repeated until we reach a
single pool complex. The purpose of this metham isompare the population growth at low
densities and the equilibrium population size wtiencomplex is made of many small pools,
fewer pools of intermediate size, and just a fexgdgoools.

Results:

The model has an equilibrium at zero. We focusgdaoalysis on this equilibrium
because of our interest in population persistevtdefine persistence of the population to
mean that at least one of the subpopulations icahgplex persists. After linearizing Equation
(2.1) around the zero equilibrium, we calculatesl dominant eigenvalue to determine
persistence conditions for the population. If tigervalue is greater than one, the zero
equilibrium is unstable. This means that when thyeutation is small, it always grows and
persists. If it is less than one, the equilibrimstable and the population decreases and goes
extinct. From this, the population persists if &ty pooli, the following condition is satisfied:

egYPio +e4(L-7) >1. (2.4)

This means a seed in paas replaced either by a dormant seed from pedeed bank or by a
seed dispersed by a plant in pobhack into pool. Condition (2.4) guarantees that the species
persists in poal without dispersal from other pools. Thus, if thsgopulation in at least one of
the pools can survive on its own, the populatiothencomplex persists. However, persistence
can still occur if equation (2.4) is not satisfied,long as dispersal from other pools allows for
the replacement of individuals. The actual anaitexpression for the eigenvalue gives a
necessary persistence condition, but it is nobigicklly interpretable. Note that since we
linearized our model, density dependence doesffeattdhe persistence conditions.

Hastings (2006) outlines a more interpretable domdusing results fronvl-matrices.
Assuming equation (2.4) is not satisfied for anglpblasting’s condition is equivalent to the
eigenvalue condition. Using his method for our madéh two pools, we get the necessary
condition

(8gY@p12)(ggY@pzl) > |(ggYCOp11 +e4(l-7) _1)(89Y03p22 +e4(1-7) _1)|- (2.5)

The expression on the left hand side representsaibes that disperse between pool one and pool
two. The right hand side is the product of how machdition (2.4) is not satisfied for each pool.
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Thus, condition (2.5) means that a pool must dspenough successful seeds to other pools that
will return home, making up for the lack of sucdakseeds it gets from within patch dispersal.

If this condition is satisfied, the number of seeda given pool will be greater than the number

of seeds in the pool during the previous yearhis tase, seeds in a particular pool replace
themselves by a combination of within patch displerseed bank germination, and dispersal of
propagules to another pool that will return to dniginal site in a later generation (Hastings

2006).

The Hastings condition becomes difficult to caddalfor a large number of pools
(Hastings 2006). Additionally, since the Hastingadition only holds for subpopulations that do
not persist in isolation, it is more appropriataige the eigenvalue condition for our simulations.
We cataloged these values to determine the persesta the populations farnumber of pools
with various spatial configurations.

We found that species with a short mean dispéistnce automatically persist,
regardless of pool configuration, because equdflal) is always satisfied. Specifically, with
germination and fecundity parameters fixed to magedthenia, a pool has a critical size in
relation to the mean dispersal distance of thetpleat guarantees subpopulation persistence. For
the pool centered dispersal kernel method of catmg pjj, if the pool's radius is greater than
times the mean dispersal distance, then the sulgtapuin that pool persists, whemeis given
by the equation

-m — 1-g,(1-7v)
E4Y® '

—m

1-me™-e (2.6)

If the radius is shorter than times the mean dispersal distance, isolated sulb@iigns go

extinct. For example, iff =0.7,64=0.1,e4 = 0.3, ando = 100,mis approximately 0.6245, and
therefore a pool must have a radius of at lea@4d®@imes the mean dispersal distance in order
for the subpopulation to persist without dispefsain other pools. This is a worst case scenario;
persistence can occur when this threshold sizetiset if there is enough dispersal between
pools. However, using a pool-centered dispersaléteo calculatgy; underestimates the number
of seeds dispersed out of the pool, and overestgrtae number of seeds that remain in the pool.
Therefore, then value given by equation (2.6) underestimatesrine ¢ritical pool size.

Using the method of calculating, where we assume seeds are uniformly distributed i
the pool before they disperse, we can also caketite relationship between mean dispersal
distance and critical radius size. Using this apphothere is no analytic expressionrgr
because calculating; involves randomly sampling seeds from a uniforstrddution. However,
we can calculatp; numerically for an array of mean dispersal distésnand pool radii,
substitute this into equation (2.4), and plot thlationship between mean dispersal distance and
pool radius, wheren is now the slope of a line fitted to this grapig.(2.1). For the parameter
values in the above example, the corresponnirgr the uniform method is 0.6814. This value
is likely an overestimate because assuming plaetsr@formly distributed before they disperse
their seeds pushes more plants closer to the ddgentould likely be expected. Hence, the
value corresponding to the uniform method proviaesipper bound for the critical pool radius,
but them given by equation (2.6) can be calculated as ekggstimate.

While a mean dispersal distance less tiiamwherer is pool radius, causes
subpopulations to persist in isolatiggmol radius and mean dispersal distance also dffect
eigenvalue for populations that do not initiallyrgist in isolation. We found that decreasing the
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distance between two pools led to an exponenttakase in the eigenvalue and eventually led to
species persistence. Also, starting with two ptitd$ are not persisting, increasing the radius of
one pool led to persistence in that pool and ealytpersistence in both pools. This occurs
because as the area of a pool increases, the jiitybat pool retains seeds increases.
Furthermore, increasing the area of a pool decsethgedistance between pools, hepgces

larger for allj in conditions (2.4) and (2.5).

Increasing the area of a pool increases the likelil of persistence, since this effectively
increases the area of suitable habitat. Howeveretis a stronger relationship between
increasing pool size and population persistence jilist the effect of increasing viable habitat
coverage. As we decreased the number of pools winileltaneously increasing pool area to
keep the total area of pool coverage constangitienvalue tended to increase (fig 2.2, fig. 2.4).
This suggests that fewer large pools may be bitte¢otal population persistence than many
small pools. This trend is strongest for larger meé@persal distances, but still holds for mean
dispersal distances small enough to guaranteespatse of all pools in isolation. However,
when the mean dispersal distance is more than @iee of magnitude less than the smallest
pool’s radius, pool size and the number of pootsobee less important for population
persistence. This is becaysgs approximately one arm is approximately zero for glki. In
this case the system has reached its maximumiigngigenvalue, which is the left hand side of
(2.4) withp;; = 1 andp;; = 0, basically meaning that the spatial configamranf vernal pools has
no affect on the population dynamics at low deesitlt is important to note that this is a scaling
issue. For very small mean dispersal distancesigenvalue is at its maximum even for very
fragmented landscapes. However, if we were to @serpool area and increase the number of
pools to an unrealistic level, the eigenvalue waudntually start to decrease. Yet, because
vernal pools are not the size of a coffee mug, areanly conclude that the fragmentation of a
vernal pool landscape decreases the likelihoosfigtence for plant’s with a mean dispersal
distance greater than an order of magnitude sntaerthe smallest pool’s radius. The trend
does hold true for smaller mean dispersal distarizéghe decrease in the eigenvalue only
occurs in the one hundreths place or further. Apglghe same methods only for population
abundance rather than the eigenvalue led to the gameral trend; increasing the number of
pools while decreasing pool size causes a decneggpulation abundance (fig 2.3). Like the
eigenvalue condition, this trend held true for $hene mean dispersal distances.

Assuming an infinite landscape, where the effettiispersing seeds outside of the
complex can be ignored, as the landscape becomesagingly fragmented, the limiting
persistence condition is

eglo+e,(1=y)>1, (2.7)

wherel is the proportion of the landscape covered byalgonols. The left hand side of (2.7) is
the limiting eigenvalue because as the landscapenibes more fragmented, the probability of

dispersing a seed into any pool approaches theoprop of the landscape occupied by vernal
pools. The idea that as fragmentation increasesiffgvalue decreases towards this limiting

eigenvalue is supported numerically by (fig. 2.4).

While increasing habitat fragmentation led to erdase in the dominant eigenvalue, this
does not mean that populations will go extinct wheals are removed. This is because the
pools are still larger than the critical pool sprevided by condition (2.6). However, eventhough
the population persists, fragmentation and poolonahalways decreased the equilibrium
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population abundance.

On the other hand, when generating a complex ofyrpanls that cannot persist in
isolation, destroying just a small number of pama lead to population extinction. Similarly,
adding pools to a declining population can leaddpulation persistence. Yet, these results
depend on the pools’ inability to survive in isadat In contrast, we have shown that species
with short mean dispersal distances persist regssdif the pools’ spatial configuration, when
Equation (2.4) is satisfied. Hence, it is morelijkdat short dispersing subpopulations persist
independently of one another. However if some Vgroal plants disperse even intermediate
distances fragmentation leads to a decrease igigleavalue, which corresponds to a greater
likelihood of extinction when facing different kiaaf disturbance. In other words, just because
the eigenvalue is always greater than one, regegdibthe spatial configuration, a bigger
eigenvalue is always better. Hence removing paossiil a bad idea, even if it does not lead to
population extinction in the deterministic modetchuse it decreases the dominant eigenvalue.

Discussion:

Our simulations show that fragmenting a vernall pexadscape by breaking up
subpopulations into multiple smaller subpopulatineser is beneficial for population
persistence, even if the area of lost habitatesgnved by adding smaller pools to the complex.
Fragmenting the landscape, while keeping the trt of suitable habitat constant, always
substantially decreased equilibrium population aamee and survival at low densities for
intermediate to long mean dispersal distancesntéan dispersal distances less than 0.2 meters
this trend also existed but was of inconsequentagnitude.

Because we only considered one species in podisithaot vary in shape and depth, the
results are most applicable to mitigation proje¢ltd attempt to establish or increase the
population size of a single target species. In¢hise, the model suggests that if artificial pool
complexes are built, the pools should be as lasgeoasible in order to increase population
abundance and the likelihood of persistence atdemsities. Using the uniformly distributed
method, we provided a conservative condition ferriinimum pool radius needed for
population persistence in an isolated pool, whijeation (2.6) gives an underestimate which can
be quickly calculated. In addition, the minimuitinat guarantees condition (2.7) is satisfied can
be used as a guideline for the minimum proportiothe landscape that must be covered by
vernal pools as long as the land set aside focahgplex is large enough that dispersal of seeds
outside the complex’s boarders is insignificantaAd manager could potentially use thialue
along with the value for critical pool size to gaatee population persistence at the complex
level.

While fragmentation of the landscape decreaseeéitfenvalue and population
abundance, the population did not go extinct, ag ks all the pools satisfied the critical radius
size in condition (2.6). In these cases, plantgadise the majority of their seeds within their own
pool so that the subpopulations persist in isotatibowever, if the plants disperse their seeds
long distances, our analytical results show thspelisal between the subpopulations can lead to
total population persistence, even if the poputetiare not able to survive in isolation.

Although there is some evidence for short distatispersal in vernal pool plants,
frequent long distance dispersal events have rest hded out. Seeds of vernal pool plants tend
to be small and free of hairs or hooks, suggestmyisible adaptations for long distance
dispersal (Baker 1972). Furthermore, Scheidling®81) inferred that populations Bbgogyne
abramsii may be to some extent dispersal-limited when nraagpopulation density in Kearny
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Mesa vernal pools located in San Diego country.l®&he expected population density would
be higher in particular locations if long distartigpersal were occurring, she did not provide
any direct evidence against long distance dispe®sairt distance dispersal may be favored by
natural selection due to the large amount of uabléthabitat surrounding the pools. However,
classical models, such as those developed by Hamalhd May (1977), show that dispersal can
be advantageous even when dispersed propagulesihawtremely high rate of mortality.
Although seed morphology suggests short distarsggedsal, no studies have verified this
dispersal pattern for vernal pool plants. Detadath on dispersal is essential to understand how
dispersal can affect persistence (Howe 1982). 8palty, our simulations show that mean
dispersal distance greatly affects subpopulatiosigpence.

Since there is virtually no data on the dispeo$adernal pool plants, we used a simple
Laplacian distribution to describe seed disperBa¢ simplest theoretical models based on wind
dispersal mechanisms can generate similar disioibsi{ Okubo & Levin 1989). However, this
kernel may not accurately describe the dispergédpaof vernal pool plants. At Travis Air
Force base, Collinge found that restored pools welanized by seeds from surrounding pools,
even after the restored pool's seed bank was destrgnersonal communication). This suggests
that long distance dispersal may occur more fretiyiman one would predict by looking at seed
morphology. Transportation by animals may be aleiaplanation for such events. Though
many vernal pool seeds do not exhibit featuresuligeiong distance dispersal, they may be
able to survive in the digestive tract of animalsdler (1992) found that rabbit pellets collected
from vernal pools contained plant seeds that cgalthinate under lab conditions. However,
Collinge found no evidence of seed germination frabbit pellets in the field (personal
communication). Rare yet strong winds can also petantial cause of colonizations in many
plants (Okubo 1989). Plants may disperse theirssaedording to a unimodal distribution the
majority of the time, but on rare occasions, stramgds and excessive rains can cause seeds to
disperse further away than predicted (Nathan 200@)s, more studies tracking seed dispersal
are needed to better understand its importanceoralvpool plant persistence.

While our model shows that dispersal can playgeldactor in determining plant
population persistence, dormancy may have a gradhleence on persistence in stochastic
environments. In the deterministic model, dormaahogs not prevent extinction. However, we
have started stochastic simulations, which do sthosmnancy can be beneficial for population
persistence if weather patterns very randomly. dofately, there are no studies that show how
germination, fecundity, survival rates and displedepend on whether. Collecting such data is
important because it can be incorporated with kengn weather data to generate a more realistic
model that can test the effect of dormancy on patmn persistence and abundance. For a
rigorous treatment of ESS strategies of dormancgugedispersal see Ellner (1985).

Our model can be used as a theoretical guidetinddvelopers and environmental
agencies aiming to restore or conserve vernal pdbiks results from removing and adding pools
as well as the simulation, where we increased aafvagmentation while keeping the area
constant, both suggest that building a large sedfasning pool may be more effective for
preserving single species populations as comparbdilding small pools close together.
However, because it may not be immediately cleatimr pools are self sustaining, population
size should be monitored for long periods of tith@ools are only monitored for a few years,
one may conclude that the population within thel p@eelf sustaining, when in fact the adult
plants are the result of seeds from the seed bagikally planted by the land manager, rather
than seeds produced by subsequent generationsfoffm®f long term monitoring has shown to
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be effective in determining general trends in hygétbchastic environments (Lovett et al. 2007)

While developing large pools may seem optimaldanserving a particular endemic plant
species or increasing the species’ population adee] it is important to note that a variety of
pool sizes may be more efficient in maintainingdiversity at the complex level. Specifically,
trade offs between competitive ability, dormanay dispersal may influence species
coexistence (Kneitel & Chase 2004). Hence, it ipontant to develop multi-species models to
determine the effect of vernal pool size and sgpoim biodiversity within a vernal pool
community. Our model shows that long distance dsgys can go extinct due to increased
fragmentation because their seeds do not landitabde habitat the majority of the time.
Additionally, when considering two species in cotitpen, a short distance disperser may have a
competitive advantage, and thus further add t@xtiection of the long distance disperser.

This model is applicable to more than just vep@il plants. The modification of
classical metapopulation theory to annual planth widormant stage provides a starting point
for studying the population dynamics of other anmlant species that exists in a patchy
environment. Because plant populations rarely akbibar extinctions and recolonizations,
many biologists have been hesitant to use classtapopulation theory (Freckleton &
Watkinson 2002). However, we have shown that théitional metapopulation models
developed by Hanski and Gyllenberg (1997) can lapiad to these systems. This is important
because modeling can be used as a tool for guadingervation decisions and can point out key
features of the system that must be studied expeataitly. Our model showed that habitat
fragmentation decreases abundance and the dongiggmyvalue corresponding to population
persistence, but that it does not likely cause fadjmun extinction if the majority of seeds are
dispersed close to their parent plant. If the galsperse their seeds long distances, habitat
fragmentation can cause extinction. Thereforerakalts suggest that vernal pool plant dispersal
must be studied experimentally in order to makedgoanservation decisions when managing
vernal pool systems.



Table 1: List of state variables and functions used indfiqun 1

Functions and state variablg Description
Ni(t) Number of seeds in pooht timet
Pii Probability of dispersal from popto pooli
f.(N) Survival of germinating seeds in paol
k(x,y) Probability that a plant centered at the orig

disperses a seed to the location (x,y)

17



18

Table 2: List of parameters, their biologically realistiata ranges, and the values used in the
simulations

Parameter Description Data ranges for Values used in simulation
typical Vernal Pool
Plants and Complexes
1/a Mean dispersal distance Unknown 0.05m-15m
)4 Germination fraction 0.7 - 0.8 fadr. conjugens | 0.7
&, Seed bank survival fraction Unknown 0.3
£ Germinating seed survival fraction|  Unknown 0.1
w Fecundity 0 - 200 fok.. fremontii 100
N Number of pools in system 1 - several hundred 1-75
A Area of pooli Less than 1A+ over 2 3.14nf-3,125 M
acres
c Max number of germinating seeds| 1000-1500 per frfrom 1200
that can survive per area quadrats folk. conjugens
at Travis air force base
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figure 2.1. Critical pool size for one pool in isolation. Theeen curve is using the uniformly
distributed seed method with individual plant disaé kernels. The blue curve corresponds to
the pool centered laplacian dispersal distributidre relationship between mean dispersal
distance and pool size is given by the slope ofitteem. Both axes are in meters, and the
parameters used were= 0.7,6g = 0.1,e4 = 0.3, = 100.
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figure 2.2. Fixing the total area of coverage to five peragra 250 meter by 250 meter
landscape, as the number of pools increased, andsihes decreased, the corresponding
eigenvalue tends to decrease as well. Mean didpissance is 5 meterg,= 0.7,6g = 0.1,64 =
0.3, = 100.
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figure 2.3. Fixing the total area of coverage, as the numbppols increase, and their sizes
decrease, the corresponding population abundands te decrease as well. Mean dispersal
distance is 5 meterg,= 0.7,6g = 0.1,e4 = 0.3, = 100.
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Figure 2.4.The effect of habitat fragmentation on a populatiéth various mean dispersal
distances. Note that for large enough mean disbéistance (in this plot 15.0 m) the eigenvalue
converges to 0.44 as expected. For all other mesgeidal distances it takes further
fragmentation to achieve this convergence.
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Chapter 3

Critical Patch Size for fragmented Populations in aRandom
Landscape

Matthew Holden

Many plant and animal populations with non-overiagpgenerations live in landscapes
fragmented by suburban sprawl. To reduce futureactgoon these natural populations, it is
critical to understand how this fragmentation afgmopulation growth. In chapter (2), | showed
that for annual plants in a two dimensional patieimgscape, population growth at low density
decreases with increased habitat fragmentatioaddiition, numerical simulations suggest that
as the population becomes increasingly fragmenibedgrowth rate at low population densities
approaches a limiting value. Since limiting valunesy be used to calculate the minimum
proportion of landscape needed to be set asidedipulation persistence, it is important to have
a solid theoretical foundation for calculating swelues. Unfortunately, the limiting value for
population growth at low densities, supported bgnatic simulations in chapter (2), is difficult
to prove analytically because pool locations wéresen at random and then discarded if they
overlapped other pools. However, it is possiblddave an expression for the population growth
at low densities for infinitely fragmented popudats in simpler random landscapes.

In this chapter, | will look at a more realistic ded of population dynamics, on a simple
one-dimensional landscape, and prove a conditidharsame spirit as condition (2.7) of chapter
(2). Although it is generally thought that one dimem®nal landscapes are a major simplification
of the two dimensional habitats that exist in natutrshould be noted that they can describe
some species ranges fairly accurately (HastingsBantsford 2006, Medina-Vogel et al.2008). In
general, integrodifference models are more realistthe sense that population growth at a
particular location is defined by the populatiomsi¢y at that location. In addition dispersal is no
longer modeled as a probability of moving from @agéch to another, but rather the probability
of dispersing from one exact location in spacenttlaer exact location. For the model presented
in chapter (2), either populations were assumetigperse all their propagules from the center of
the pool, or dispersal was determined by an averdgpersal kernel, assuming uniformly
distributed individuals within the pool. Neither thfese accurately model dispersal because
individuals that live on the edge of a pool wilsderse more of their propagules outside the
pool’s boundaries than individuals located in teater. For this reason, it was hypothesized in
chapter (2) that the uniform version of modelingpdirsal gave a lower bound for population
growth at low densities, and the pool centered oektiave an upper bound. However, an
intergrodifference model should produce a valusaldo the actual population growth at low
densities.

The Model:

Assume a population is contained in a one dimemsiandscape, and let this landscape
be the subset of the real line [0,1] divided intbiatervals characterized as suitable or unsuitable
habitat. There are many ways in which suitabletiadloan be distributed through out a
landscape. One could imagine an example wherebeiitebitat is densely packed in certain
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parts of the interval but separated by large obstras such as lakes or mountain ranges. Other
potential habitat configurations may include patcheenly spread or patches randomly
distributed throughout space. In all these casesatidscape can be represented by a general
functionL(y), where if locatiory denotes suitable habita{y) =1, and if the habitat is

unsuitable at locatiop, L(y) =0. Imagine a population of si2¢, in yeart, that inhabits such a
landscape and survives based on the local deriditpy@t according to the function
g(Nt(x)):[O,oo) - [0,00), and disperses propagules from locatida locationx according to a
continuous dispersal kernk(x, y) :[0,1]%[0,1] - [0,0). Hence, we can model the population as
the integrodifference equation:

N () = [ k(x, )a (N, (1) L(y)dy - (3.1)

For the rest of this paper | will consider L(y)lde a random function, in which patches of
length1/n are randomly chosen as suitable or unsuitablddtaSipecifically, equation (3.1)
now becomes:

N, (%) = [ k(x, Y)g (N (1) L, (v)dy (3.2)

Where L, is the landscape function corresponding to a habiithn patches, defined as:
Ui
L, (0 =2 Y 5,079, (3.3)
i=1

with Y1, Ya,..., Y, as a sequence of independent Bernoulli randoraias with P, = 1F o
and Pr{ = OF * p. The functionifis defined byf, (x) :1forxD{E,l—j and zero

n n
otherwise. This function essentially puts eXclialue on thé™ subinterval, and allows us to
define a random landscape in which itAsubinterval is unsuitable ¥ = 0 and suitable i¥; =

1.
Anaysis:
Assume for a givenr, that the functionk andg are continuous ig. Therefore combining

k andg into a single functiom(y), we have the dynamics at a particular point gcsgX,
governed by

N (9 = [ k6 A (N W)L,y = [[hL, (dy.  (3.4)

Now to understand how the dynamics behave as tlustape becomes infinitely fragmented we
have the following theorem.
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Theorem 1: J.:h(y)L,](y)dyD BN pJ';h(y)dy as,n - oo, with probability one, for alh(y)
continuous or{0,1] .
In the proof of this theorem, | will use the followy two lemmas:
Lemma 1: J': L,(y)dy O 3 p(b—a) asn — o with probability one for alfa, b]0 [0,1].

Proof: Let a',d be such thah<d < B< k, wherea and b’ lie exactly on one of the
divisions of thel/n subintervals, closest to a and b respectivelyrdfoee,

Ub L, (y)dy - p(b-a)| < jb L”(y)dy—j:' L, (y)dy|+

JoL, )y = plo-a)

=\ L (nay+ [ L (y)ay +

JoL, )y - p(o-2)

+

=[S [ fmaay+ 0 [ 0y

i=1

SV 1 ooy - plo-a)

@ -8 +[b-b]+

(b'—a')ﬁ%—p(b—a)

2 7Y
<—+|(b-a)) +-pb-a
p ( );,7 p(b-a)
Since,
, , n Y , , n Y , , . , n YI 2
(0 -a)y - p(b-a)|< (b ~2) [ - ol + plbf ~b| + plal ~a < (b ~a) [ -~ o[ + 2
= 17 =/ =/ i

7
and the Strong Law of Large Numbers implies tE’;u;\i converges with probability one
i=1

to p, it follows that

lim supU: L, (y)dy—,o(n—ai < IimZpT+2 =0,
with probability one. Clearly, since tHeninf “: L,(y) dy—-o(b-4a)| is non-negative as

well, we have:
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m“: L,(y)dy — p(b—a)| =0 with probability one.

Therefore,

J.: L,(y)dy U [ p(b-a), with probability one, ag — o for all [a, b][] [0,1].
QED

Lemma 2: There exists a dense countable subset of the sfitantinuous functions from
[0,1] > R.

Proof: To see this we construct one by definkhg for anyn =1, to be the piecewise
continuous functionk given byh(i / n) is rational for any = 0,...,n andh is linear on
the intervals[E ,I—

n n

countable and there are finitely many intervalseréfore, because a countable union of

} for 1<i <n. For eacm, H, is countable, since the rationals are

countable sets is countabld, = U H, is countable.
n=1
To prove thaH is dense in the set of all continuous functioos{0,1] - R, we
need to show that given an>0, and a continuoul :[0,1 R, there exists a

hOH such thaqh(x) - ﬁ(x)\ < ¢ for all x0[0,1].

Sinceh is continuous, choosesuch thafx-y| <% implies [h(x) = h(y)| <§ for

all x, yD[E,'—} , Where ki <n. In addition, because the rationals are dendaein t
n n

reals, there exists RCJH such that{h(i In)y=h(i/ n)‘ <§ for alli, 0<i<n. Therefore,

for xﬂ[ﬂ,'—] we have
n n

‘h(x) - ﬁ(x)‘ <|h(x) =h(i / n) +‘h(i /)= h(i /n)‘ +‘ﬁ(i /n) —ﬁ(x)‘

<2—5‘9+\ﬁ(i /n)—ﬁ(x)\

Sinceh is linear on[ﬂ,l—} , we knov*ﬁ(l—j—ﬁ(x) < and
n n

n

O8C

consequently,
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CRONORCIERE

Thus H is dense in the set of all continuous fumdifrom [0,1]- R

Ih(x) ~h(x)| <—+ +

QED

Proof of Theorem: Let 7 [JN be the number of intervals on the landscape wiélsi; .

Since all continuous functions on a closed intearaluniformly continuougy( y) is uniformly
continuous with respect to Therefore, gives >0, there exists & >0, such that for all

Y, ¥, 000,11, |y - yo| <, implies |h(y) = h(y,)| <% _

Choosem[N such thatl <0. By the triangle inequality we have,
m

"h(y)L, (Y)dy - pz ny,)

Jh)L, )dy- o] pji_ler)—pjj h(y)dy‘ (3.5)

The first term on the right hand side has the foilg upper bound:

‘j h(y)L, (y)dy - pZ ney,) <Z‘ ¥ 1)/m[h(y) h(y;) L(y)dy‘ (’/1)/ h(y,)L, (y)dy - o——= (y')
h(y;)
5 ZJ.(, -1)/m h(y’)j ~1ym Ly dy—pT‘
+Z‘ (yJ)‘ J.( ym (Y)dy_a‘

For the second term of the right hand side of hiegjuality (3.5), we have:

£,
).

‘pz ) -p|, h(y)dy‘ ‘pZL oyl 0V =P(Y) Jdly

Therefore, byemma 1and the fact thag@ <1, for any e >0,

“hy)L, 0 )Xy—pf hy)ly

E
<<,
3

for a measureable set off sequencesQ., such thatPr(Q, )= 1. Letting{en} =£, we have
n

Pr(ﬂ an] =1, since the intersection of countable sets wittbpbility one also has probability
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one.
Now we have a set of sequences that work for angieatinuous(y) for all €, call it

2 . . 1 1
Q, :Qan i.e. m“o h(y) L,Z(y)dy—pjoh(y)dy‘ =0 for all {Y} 0Q, . However, we need a set

of sequences that will not only satisfy the linat & particulah(y), but for all continuoug( y).
By lemma 2we have a countable set of continuous functiohsj £ 1,2,...}, that are dense in
the set of all continuous functions. By the abautt we have the inequality holding for a
particular set of sequences for eachlb find a set of sequenclghat work for allh( y) we

take the intersection of the sequenceé$ that work for each functioh;, i.e. Q :ﬂth . The

n=1
claim is that this set of sequences will satikkm‘]‘:h( y)L,(Y) dy—,oI:h( y) dy‘ =0 for any
[]ﬂOO

continuoush.

Since i} is dense in the set of all continuous functidies,all h, there exists & such

that|h (y) —h(y)| <§ for allyd[0,1]. By the triangle inequality we have,

<

[hL, )y~ of (y)ey

[*ney)L, (ay-[ (y)L,Z(y)dy‘
[, (dy=pf (y)dy‘

Pl h )y = o[,y

+

+

Applying the density property &, the right hand side becomes:

£
<+
3

(TR (L, (Vdy- [ h(y)dy

Ep
3

Taking the limit and by the definition d® , we get

<&

fimsupl [ (), (/) = h Xy

for all {Y} OQ. Sincee >0 was arbitrary we get
. 1 _ 1 ~
mjo h(y)L,(y)dy = pjoh(y)dy for all {Y} D Q.
QED

To determine whether the growth of the populat®pasitive or negative at low
densities, one cam find the eigenvalue of the fimed version of equation (3.1) around the zero
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equilibrium. This leads to the general eigenvalteblem:

M(¥) = [ k(% V)G O)L, (y)(y)dy (36)

Kot and Schaffer (1986) are able to derive an esgpo@ for the eigenvalue for the simplest
landscape functior,(y) = 1, and specifi&(x, y). However, the major difficulty in finding the
eigenvalue given by (3.6) is that the expressiotherright is the integral of a random function.
Yet, we showed in our theorem that the dynamicemgivy (3.2) as the number of patches
approaches infinity converges almost surely toraramdom integral for each From this new
eguation one can more easily calculate the eigaeuwading the methods outlined in (Kot and
Schaffer 1986). Specifically, by our Theorem, asldndscape becomes infinitely fragmented,
the population dynamics at a particular point iacsx, well approximated by

N...() = o k(y, )9 (N, (y))dy (3.8)

Thus, the general eigenvalue problem for this ranttmdscape, given by (3.6), turns into

Mu(x) = | h(y)(y)dy. (3.9)

The proof of our theorem can be extended from J@ &ny interval [-S/2, S/2] where S is the
length of the habitat. Hence, using the stepsrmedlin Kot and Schaffer, for a population with a
Laplacian dispersal kernel, given by equation (2:8h a mean dispersal distance ofrEnd a
Beverton-Holt growth function,

_ IN(y)
g(N(y))_—aN(y)+b (3.10)

analogous to the reciprocal yield law used in (A2)ere the parameters were cA, a= ¢y,
andb = cA, the critical patch size becomes:

St = ;tan‘1 1

or or
a,|~—+p-1 —+p-1
Vo P Vb P

Note that if p <1 the critical habitat size must be larger thamé kandscape is homogeneous.
As the proportion of the landscape occupied byablat habitat increases the critical habitat size
decreases exponentially (fig. 3.1). Interestinblre is also a critical fraction of habitat thatsnu
be occupied no matter how large the habitat isyder for the population to persist, defined by

(3.11)

== 3.12
P (3.12)
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The limit aslim S=o. If p< p* the critical patch size is a complex number witiegative
p-p

real component, which obviously can not be satisiienature, meaning the population always
goes extinct.

Discussion:

Although not analogous to finding the eigenvaluetf@ vernal pool plant
metapopulation in chapter (2), the analysis frorthlmodels produce a similar result. In chapter
(2) it was shown numerically that the limiting engalue, as the population became infinitely
fragmented, depended on the intrinsic growth ofpiyeulation determined by the life history
parameters of the plant, and the proportion ofahdscape occupied by vernal pools. The
integrodifference model shows that the limitingueablso depends on the growth rate of the
populationg’(0), but alsg, the probability of a patch being occupieémma 1 showed that in

the limiting case, where the number of patchesagres infinity, the proportion of landscape
occupied by suitable habitat convergep teith probability one. However, the difference
between these landscapes is great for a small mushipatches. In the one patch case for the
model in chapter (2) there is one vernal pool ttaupies a specified proportion of the
landscape. However, for the random landscape fumttithere is either one pool that occupies
the whole landscape with probabiliyor there is no suitable habitat at all with prababl-p.
Even forL,, the landscape is either completely suitable, suthble, or completely unsuitable.
Therefore, in these cases the proportion of thedeape occupied is not analogoug.to
However, one can create one dimensional lands¢hpemore closely match the two
dimensional configuration described in chapter i{2}his case we could lgp = p/q be a

rational number equal to the proportion of the Euaghe occupied by inhabitable patches. Then
divide the landscape intogintervals and choosgngintervals without replacement to deem as

suitable habitat. Unlike the last example, in thisdscape there is the limitation tias

restricted to rational numbers. However, this waubtl create problems in a practical sense,
because a land manager would only be using ratrmabers for measurements in the field.
This model has a more complicated probability spand hence may be more difficult to prove
a theorem similar to the one proved in this chaptethe future |1 would like to be able to prove
or disprove the convergence of the integral usngtandom landscape method. This will be a
step closer to understanding why the eigenvalwhapter (2) converges to a number
proportional to the amount of habitat occupied bynal pools as the population becomes
infinitely fragmented.



Figure 3.1.The critical habitat size vs

thatp* =0.5, as the theory predicts.
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