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ABSTRACT. In this senior thesis, we study many different properties of spanning trees,
including the graph of tree exchanges. Using this graph, we then study multiobjective
optimization with regards to the edge costs. We implemented a program to enumerate
all spanning trees, in order to assess the accuracy of our optimization algorithms and
heuristics. We also studied the general case for matroids and wrote a program to estimate
the number of bases of matroid polytopes. We consider several fast heuristics that can
find the minimum spanning tree for a graph with respect to multiple sets of edge costs,
particularly finding the Pareto optima. Although these heuristics could potentially only
locate a local minimum, they locate the global minimum in almost every trial, and are
extremely efficient. The results of this undergraduate thesis were incorporated into the
research paper “Computation in Multicriteria Matroid Optimization [8],” coauthored by
Jesús De Loera, David Haws, Jon Lee, and myself, and the software package MOCHA [5],
where we discuss and experiment with multicriteria matroid optimization.
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CHAPTER 1

The Geometric Structure of Trees

1.1. Basic Definitions

In order to motivate the research in this senior thesis, we begin with some basic defini-
tions. For further detail and more explanation on properties of trees and graphs we refer
the reader to [12].

The central concept of the research presented here is that of a spanning tree. A spanning
tree of a graph G is a connected subgraph without cycles that includes every vertex of G,
assuming G is connected. Otherwise, G has spanning forests, which are maximal subgraphs
without cycles (so a forest is a subgraph without cycles). Here we will discuss spanning
trees since we are only concerned with connected graphs. Figure 1 gives an example of a
spanning tree of a graph. The subgraph on the right is a spanning tree of the graph on the
left.

Figure 1. A graph(left) and a spanning tree of the graph

While there are many interesting properties of the set of spanning trees of unweighted
graphs (some of which we will look at shortly), we are also very interested in properties
of the spanning trees of a weighted graph. Weighted graphs are used in many different
situations, where the weights can represent the costs of building a network of roads, the
length of the paths between each node, or some other measure of interest. When each edge
of a graph is given a cost, we can find the spanning tree with smallest cost. The minimum
spanning tree of G, the tree with the smallest cost, can be found by applying Kruskal’s
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2 1. THE GEOMETRIC STRUCTURE OF TREES

algorithm or Prim’s algorithm, both of which find solutions to the minimum spanning tree
problem [4]. The steps to these algorithms are as follows:

Kruskal’s Algorithm:
• Step 1: Sort the edges of the graph G such that c(e1) ≤ c(e2) ≤ . . . ≤ c(em).
• Step 2: Set T = (V (G), ∅).
• Step 3: For i = 1 to m: If T + ei contains no circuit then set T = T + ei.

Prim’s Algorithm:
• Step 1: Choose v ∈ V (G). Set T = ({v}, ∅).
• Step 2: While V (T ) 6= V (G) : Choose an edge e that has only one end in V (T ) of

minimum weight. Set T = T + e.

Below is an example of a weighted graph and the steps taken in both Kruskal’s and
Prim’s algorithms when finding the minimum spanning tree of this graph. Figure 2 gives an
example of a graph with edge-costs, Figure 3 demonstrates the steps of Kruskal’s Algorithm,
and Figure 4 demonstrates the steps of Prim’s Algorithm. Although they both reach the
same minimum spanning tree in this case because it is unique, it is possible for the two
algorithms to arrive at two different minimum spanning trees when it is the case that the
minimum spanning tree is not unique.

5

7 8

7

5

15

6

8
9

11

9

A

B

C

E

G
F

D

Figure 2. A graph with edge costs.

Furthermore, all spanning trees of G can be found by applying Kruskal’s (or Prim’s)
algorithm to G while all variations of edge costs are considered. This can easily be seen
due to the fact that the minimum spanning tree is determined by the edge costs, and if
these are varied, then the minimum spanning tree will be varied as well. Thus if we vary
the edge costs enough, we will find all spanning trees.

We are also interested in the number of spanning trees of a graph. In most cases there
is not a simple formula for the number of spanning trees of a graph, but in the case of
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Figure 3. The minimum spanning tree of the above graph found using Kruskal’s
algorithm.
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Figure 4. The minimum spanning tree of the above graph found using Prim’s
algorithm.

the complete graph we have a simple formula due to Cayley’s Theorem [9]. The complete
graph Kn is the graph on n nodes in which every pair of vertices forms an edge.

Theorem 1. (Cayley’s Theorem) The number of spanning trees of the complete graph
Kn is n(n−2).

The proof of Cayley’s Theorem presented here is due to Jim Pitman, who used clever
counting in two ways to prove the theorem[1]. Cayley’s theorem can also be proved using
the Matrix Tree Theorem[12] presented below, but here we give an alternate proof to show
a different way of proving the theorem. Before presenting the proof, we need to state a few
definitions. A rooted forest on the vertex set {1, . . . , n} is a forest together with a choice
of a root in each component tree. Additionally, a forest F is said to contain another forest
F ′ if F contains F ′ as a directed graph. Then clearly if F properly contains F ′, then F
has fewer components than F ′. And finally, let Fn,k be the set of all rooted forests that
consist of k rooted trees. Then we call a sequence F1, . . . , Fk of forests a refining sequence
if Fi ∈ Fn,i and Fi contains Fi+1, for all i. Now we can begin the proof.

Proof. First we notice that Fn,1 is the set of all rooted trees (since they only consist
of one component). Note that |Fn,1| = nTn, since in every tree there are n choices for the
root. We now regard Fn,k ∈ Fn,k as a directed graph with all of the edges directed away
from the roots.

Now let Fk be a fixed forest in Fn,k and denote by N(Fk) the number of rooted trees
containing Fk, and by N∗(Fk) the number of refining sequences ending in Fk.

We count N∗(Fk) in two ways, first by starting at a tree and secondly by starting at
Fk. Suppose F1 ∈ Fn,1 contains Fk. Since we may delete the k − 1 edges of F1 \ Fk in any
possible order to get a refining sequence from F1 to Fk, we find
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N∗(Fk) = N(Fk)(k − 1)!.

Let us now start at the other end. To produce from Fk an Fk−1 we have to add a directed
edge, from any vertex a, to any of the k− 1 roots of the trees that do not contain a. Thus
we have n(k − 1) choices. Similarly, for Fk−1 we may produce a directed edge from any
vertex b to any of the k − 2 roots of the trees not containing b. For this we have n(k − 2)
choices. Continuing this way, we arrive at

N∗(Fk) = nk−1(k − 1)!,

and thus we have that

N(Fk) = nk−1 for any Fk ∈ Fn,k.

For k = n, Fn consists of just n isolated vertices. Hence N(Fn) counts the number of all
rooted trees, thus |Fn,1| = nn−1, and thus Tn = (1/n)(|Fn,1|) = nn−2. �

For other graphs, such as the complete bipartite graph, we can enumerate all spanning
trees by finding each individually. The complete bipartite graph Kn,m is a graph in which
the vertex set can be partitioned into two independent sets of size n and m and every vertex
in each set is connected by an edge to every vertex in the other set. This enumeration of
spanning trees is shown in Figure 5, for K2,3.

Spanning Trees of K

K 2,3

2,3

1 2 3

7

9 10 11 12

65 8

4

Figure 5. All spanning trees of K2,3.

Another useful way to count the number of spanning trees of a graph is by the Matrix
Tree Theorem [12], of which Cayley’s Theorem is a generalization. Before stating the
theorem, we will state a few definitions that are important in the theorem and the proof.
In everything we have discussed so far and throughout the remainder of this senior thesis,
we assume we are only dealing with simple graphs, graphs without self-loops or multiple
edges between the same two vertices. The Matrix Tree Theorem also uses the adjacency
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matrix A of a graph, an n × n matrix where n is the number of nodes in the graph, and
Aij = 1 if there is an edge between nodes i and j and Aij = 0 otherwise. The proof uses
the incidence matrix M of a graph, an n ×m matrix where m is the number of edges of
G, with Mij = 1 if node i is an endpoint of edge j and Mij = 0 otherwise. If the graph is
directed, then Mij = 1 if i is the tail of edge j, Mij = −1 if i is the head of edge j, and
Mij = 0 otherwise. Now we can state the Matrix Tree Theorem:

Theorem 2. (Matrix Tree Theorem) Let A be the adjacency matrix of a graph G, let
D be a diagonal matrix with the diagonal entry in row i equal to the degree of vertex i, and
let Q = D−A. Then for any s, the number of spanning trees of G equals the determinant
of the matrix Q∗ obtained by deleting row s and column s of Q.

Proof. First, we show that if G′ is an orientation of G and M is the incidence matrix
of G′ then Q = MMT . Label the now directed edges by e1, . . . , em. By definition of the
incidence matrix, since every entry in the n by n matrix MMT is the dot product of rows
of M , diagonal entries in the product count vertex degrees and off-diagonal entries count
-1 for every edge of G between two vertices.

Now we want to show that if B is an (n− 1)× (n− 1) submatrix of M , then detB = 0
if the corresponding n − 1 edges contain a cycle, and detB = ±1 if they form a spanning
tree of G. If the edges corresponding to the columns contain a cycle C, then the columns
sum to the zero vector when weighted with +1 or −1 determined by whether the directed
edge is followed forward or backward when following the cycle. This column dependency
implies detB = 0.

For the other case, we use induction on n. For n = 1, by convention a 0× 0 matrix has
determinant 1. Now suppose n > 1, and let T be the spanning tree whose edges are the
columns of B. Since T has at least two leaves, B contains a row corresponding to a leaf
x of T . This row has only one nonzero entry in B. When computing the determinant by
expanding along that row, the only submatrix B′ given nonzero weight in the expansion
corresponds to the spanning subtree of G− x obtained by deleting x and its incident edge
from T . Since B′ is an (n−2)×(n−2) submatrix of the incidence matrix for an orientation
of G−x, the induction hypothesis implies that the determinant of B′ is ±1, and multiplying
it by ±1 gives the same result for B.

Finally, we need to compute detQ∗. Let M∗ be the matrix obtained by deleting row t of
M , so Q∗ = M∗(M∗)T . We may assume m ≥ n−1, else both sides have determinant 0 and
there are no spanning subtrees. The Binet-Cauchy formula expresses the determinant of
a product of matrices, not necessarily square, in terms of the determinants of submatrices
of the factors. In particular, if m ≥ p, A is a p ×m matrix, and B is an m × p matrix,
then detAB =

∑
S detASdetBS , where the summation runs over all S ⊆ [m] consisting

of p indices, AS is the submatrix of A having the columns indexed by S, and BS is the
submatrix of B having the rows indexed by S. When we apply the Binet-Cauchy formula
to Q∗ = M∗(M∗)T , the submatrix AS is an (n− 1)× (n− 1) submatrix of M as discussed
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before, and BS = AT
S . Hence the summation counts 1 = (±1)2 for each set of n− 1 edges

corresponding to a spanning tree and 0 for each other set of n− 1 edges. �

Example 1. Consider the graph in Figure 2. The adjacency matrix A for this graph
is the 7× 7 matrix 

0 1 0 1 0 0 0
1 0 1 1 1 0 0
0 1 0 0 1 0 0
1 1 0 0 1 1 0
0 1 1 1 0 1 1
0 0 0 1 1 0 1
0 0 0 0 1 1 0


And the diagonal matrix D is the 7× 7 matrix

2 0 0 0 0 0 0
0 4 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 4 0 0 0
0 0 0 0 5 0 0
0 0 0 0 0 3 0
0 0 0 0 0 0 2


Then the matrix Q = D −A is the 7× 7 matrix

2 −1 0 −1 0 0 0
−1 4 −1 −1 −1 0 0
0 −1 2 0 −1 0 0
−1 −1 0 4 −1 −1 0
0 −1 −1 −1 5 −1 −1
0 0 0 −1 −1 3 −1
0 0 0 0 −1 −1 2


Now let s = 3. By deleting the sth row and sth column of Q we have the 6× 6 matrix

2 −1 −1 0 0 0
−1 4 −1 −1 0 0
−1 −1 4 −1 0 0
0 −1 −1 5 −1 −1
0 0 −1 −1 3 −1
0 0 0 −1 −1 2
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The determinant of this matrix is 141. Thus the Matrix Tree Theorem states that the
number of spanning trees for this graph is 141. These computations were performed by
using MapleTM.

This theorem is used in MapleTM to quickly count the number of spanning trees of any
graph, which was used many times throughout the research in this senior thesis.

1.2. The Graph of Tree Exchanges

Consider now the case when a graph has more than one set of edge weights. This
situation occurs in numerous practical applications. The one that motivated this research
is as follows. Suppose that a new network of roads is to be built that will connect a certain
number of cities. We know all of the possible connections that can be built, but we just
want a network of roads so that it is possible to reach any city from any other. In other
words, we want a spanning tree. The government is interested in building the cheapest
network of roads possible, so they let each edge weight equal the cost of building that
road segment. But on the other hand, an environmental organization is concerned with
the environmental impact of building each road. So they have a completely different set
of edge costs. Now, given these two conflicting sets of edge weights, we need to find a
spanning tree that satisfies both parties. This situation is illustrated in Figure 6.
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Figure 6. Two different sets of edge weights.

We can see from the figure that we have a problem. There is a different minimum
spanning tree for each set of edge weights. We need one spanning tree that is optimal or
close to optimal for both sets of edge weights. In this case, we can no longer use Prim’s
or Kruskal’s algorithms since we need to simultaneously optimize the edge costs of both
parties. We can also see that if we continue to add more edge weights, like a third party
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in the example above, the problem will only get worse. Thus we need some way to find
the best possible spanning tree with respect to all of the edge weights. In order to improve
the efficiency of this task, we will use a graph called the Graph of Tree Exchanges, which
we explain now. In the next chapter, we will explain the basic notions of multiobjective
optimization.

Definition 1. The graph of tree exchanges, T (Γ) for a graph Γ, has the set of nodes
N = {nt ∈ ST}, where ST is the set of spanning trees of Γ, and two nodes ni and nj are
adjacent if the spanning trees ni and nj have only one differing edge in a common cycle.

Figure 7 gives an example of two nodes that would be adjacent and two nodes that
would not be adjacent in the graph of tree exchanges for the complete bipartite graph K2,3.

only one differing edge − connected

two differing edges − not connected

T(K
2,3

) where K   = 
2,3

Figure 7. Example of connected and unconnected nodes in T (K2,3)

Figure 8 is an example of the graph of tree exchanges for the complete graph K4.
The graph itself is shown in the upper left corner, and the spanning tree that each node
represents is next to the node. Even for a graph this small, it can be seen that the graph
of tree exchanges has many connections, thus it appears to be a dense graph.

We are interested in the graph of tree exchanges not only for multiobjective optimiza-
tion, but also because we can determine interesting properties of the set of all spanning trees
by investigating this graph. Thus in the next section we will investigate some properties
of the graph of tree exchanges.

1.3. Properties of the Graph of Tree Exchanges

In this section we will investigate some properties and characteristics of the graph of
tree exchanges. We first look at the connection between the graph of tree exchanges and
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4T(K  )

Figure 8. The graph of tree exchanges of the complete graph K4

linear programming, then define some properties of graphs that we will investigate for the
graph of tree exchanges, and finally, in the next section, we will give the results from our
investigations.

There is an interesting connection between spanning trees and linear programming.
Namely, for the following linear program every minimum spanning tree provides an optimal
solution with respect to the edges costs c [4]:

Minimize cTx
subject to∑
xij = |N | − 1,∑

i,j∈S

xij ≤ |S| − 1, S ⊆ V (Γ),

xij ≥ 0.
The following theorem is a result of closely examining the above linear program:
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Theorem 3. Let x0 be the characteristic vector of a minimum spanning tree with respect
to costs c. Then x0 is an optimal solution of the linear program above. Furthermore, the
characteristic vectors of all spanning trees are feasible solutions to the linear program [4].

From this theorem we can conclude that if the edge costs are varied, we can find all
of the spanning trees of a graph by repeatedly solving this linear program. Additionally,
from this theorem we have the following corollary:

Corollary 1. T (Γ) is the graph of a polytope, which is the convex hull of the char-
acteristic vectors of the spanning trees of Γ[4].

We investigated several properties of the Graph of Tree Exchanges, all of which are de-
fined here. We give examples of each of the properties on a simple graph of tree exchanges,
that for the graph K2,3. This graph is shown in Figure 9, where the numbers next to the
vertices correspond to the numbers next to the spanning trees in Figure 5 of Chapter 1.
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Figure 9. The graph of tree exchanges for K2,3.

Definition 2. A graph is Hamiltonian if it contains a cycle that visits every vertex of
the graph exactly once.
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Example 2. Figure 10 shows a Hamiltonian cycle of the graph above. The hamiltonian
cycle is outlined in red.

Figure 10. Hamiltonian cycle of a graph.

Definition 3. A graph is Eulerian if it contains a cycle that visits every edge of the
graph exactly once.

Example 3. Figure 11 shows an Eulerian cycle of the graph above. The cycle starts
at the vertex labeled Start and cycles through the edges by number.

Definition 4. The diameter of a graph is defined as the maximum of the set of all
shortest walks joining any two vertices.

Example 4. The diameter of the graph above is 2. This is because for any vertex not
directly connected to another, there is a path of length two connecting the two. By looking
at the graph, it can be seen that this is true.

Definition 5. The Maximum Independent Set of a graph is the maximum subset of
vertices where no two of the vertices define an edge in the graph.

Example 5. The maximum independent set of the graph above is 3. This is a difficult
number to compute (it is known to be NP-complete to find the maximum independent set
of a graph[12]) and was determined by examining all possible independent sets.



12 1. THE GEOMETRIC STRUCTURE OF TREES

Start

8
3

7

6

2

1

10

11

13

9

14 5

4
15

16

18

19

20

23

24

25

26

29

33

22

28

36

21
12

34

35

17

27

31

32

30

Figure 11. Eulerian cycle of a graph.

Definition 6. A graph contains a Perfect Matching if it has a set of pairwise disjoint
edges where every node belongs to one of the edges.

Example 6. Figure 12 shows a perfect matching of the graph above. The blue edges
are those that define the matching.

Figure 12. A perfect matching of a graph.
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1.4. Results

With the assistance of MapleTM, we were able to determine the above properties of
various graphs of tree exchanges: the diameter, the maximum independent set, and the
existence of a Hamiltonian cycle, an Eulerian cycle, or a perfect matching. We have
collected the results in Tables 1 and 2.

The left most column gives the graph that was studied, i.e. T (K4) is the graph of tree
exchanges for the complete graph on 4 nodes. The notation for the degree sequence is as
follows: [64, 712] means the graph has 4 nodes of degree 6 and 12 nodes of degree 7. All of
the values for the maximum independent set are not included in the table since we did not
obtain all of them, due to the problem being NP-complete, as mentioned earlier. The last
four graphs, Γ1,Γ2,Γ3, and Γ4 are shown in Figure 13.

Table 1. Number of nodes, degree sequence, and diameter of each graph of tree
exchanges.

T (Γ) Num. of nodes Degree Sequence Diameter
T (K2,3) 12 [612] 2
T (K2,4) 32 [932] 3
T (K2,5) 80 [1280] 4
T (K3,3) 81 [1245, 1436] 4
T (K4) 16 [64, 712] 3
T (K5) 125 [125, 1460, 1660] 4
T (Γ1) 15 [69, 86] 2
T (Γ2) 21 [64, 712, 8, 94] 3
T (Γ3) 56 [918, 1130, 132, 156] 3
T (Γ4) 55 [84, 920, 1013, 1112, 122, 144] 4

1Γ Γ2= = Γ3 = =Γ4

Figure 13. The four special graphs considered above.

With these results, we independently made the conjecture that any graph of tree ex-
changes is Hamiltonian and thus will have a perfect matching if the number of spanning
trees is even. This is due to the fact that you can just take every other edge in the Hamil-
tonian cycle to form the perfect matching. This result was also discovered by Takahiko
Kamae in [7] and stated in the following theorem.
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Table 2. Existence of a Hamiltonian cycle, existence of an eulerian cycle, the
maximum independent set, and existence of a perfect matching for each graph of
tree exchanges.

T (Γ) Hamiltonian Eulerian Max. Ind. Set Per. Mat.
T (K2,3) Y es Y es 3 Y es

T (K2,4) Y es No 6 Y es

T (K2,5) Y es Y es Y es

T (K3,3) Y es Y es No

T (K4) Y es No 4 Y es

T (K5) Y es Y es No

T (Γ1) Y es Y es 3 No

T (Γ2) Y es No 5 No

T (Γ3) Y es No Y es

T (Γ4) Y es No No

Theorem 4. Let e (or v) be the number of edges (or vertices) in a given graph. Let t1
and t2 be adjacent trees. Then the tree graph associated with any graph with e ≥ 3 has a
Hamiltonian cycle with respect to t1 and t2 (a Hamiltonian cycle in which trees t1 and t2
are adjacently connected).

Through my extensive computational experiments, I also made the following conjecture:

Conjecture 1. The diameter of the graph of tree exchanges for the complete graph
on n nodes is (n − 1) and the diameter of the graph of tree exchanges for the complete
bipartite graph K2,m is also (n− 1).

I did not discover a proof for this conjecture, but it holds for each of the graphs that
I studied. Through these results we were able to learn more about the graph of tree
exchanges to better understand its use in multiobjective optimization. In the next chapter
we will investigate multiobjective optimization while still focusing on spanning trees and
using the graph of tree exchanges.



CHAPTER 2

Enumeration of Trees and Bases and Applications to

Multiobjective Optimization

2.1. Introduction

In this chapter, we will focus on multiobjective optimization while discussing spanning
trees, as well as enumeration of spanning trees. I will also make the connection between
graphs, spanning trees, and matroids while introducing enumeration of matroid bases.
While the focus of this senior thesis is on ideas relating to spanning trees, more general
results are in the paper [8]. I will begin by introducing the basic notions and definitions
needed for multiobjective optimization.

The multiobjective optimization methods used in [8] use the adjacency structure in-
herent in the graph of tree exchanges to pivot to feasible solutions which may or may not
be optimal. The paper [8] presents a modified breadth-first-search heuristic that uses tree
adjacency to enumerate a subset of feasible solutions, other heuristics, and computational
evidence supporting these new techniques. We implemented all of our algorithms in the
software package MOCHA [5]. In this senior thesis, I will just discuss the method of finding
the Pareto optima.

Here is the setup for multiobjective optimization: We consider the case where we give
d weightings w1, ..., wd ∈ Rn to the n edges of the graph. That is, every wi assigns a real-
value to each element of [n]. We let W ∈ Rd×n be the matrix with rows w1, ..., wd. For each
spanning tree S of the graph, we define the incidence vector of S as eS :=

∑
i∈S ei ∈ Rn.

Thus by taking the inner product of any weighting vector and the incidence vector of a
spanning tree we can find the cost of that spanning tree with respect to one of the edge
weightings. In order to clarify this idea, the following is a simple example.

Example 7. Consider the graph with two sets of edge weights introduced in Chapter
1. In this case d = 2, and n = 11 since the graph has 11 edges.

Let us order the edges (AB,AD,BC,BD,BE,CE,DE,DF,EF,EG,FG). Then the
first weighting w1 is (4, 7, 4, 6, 6, 7, 13, 10, 2, 1, 2) and the second weighting w2 is
(4, 7, 8, 9, 2, 8, 5, 3, 10, 5, 2). So the matrix W is this case is 2× 11 matrix

(
4 7 4 6 6 7 13 10 2 1 2
4 7 8 9 2 8 5 3 10 5 2

)
15
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Figure 1. An example of a graph with two sets of edge weights.

The incidence vector for the minimum spanning tree on the left, S1, is
eS1 = (1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0), and the incidence vector for the minimum spanning tree
on the right, S2, is eS2 = (1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1). Thus the cost of S1 with respect to
the weighting w1 is the dot product of eS1 and w1, eS1

• w1 = 23. Similarly, the cost of S1

with respect to w2 is eS1
• w2 = 38, the cost of S2 with respect to w1 is eS2

• w1 = 39, and
the cost of S2 with respect to w2 is eS2

• w2 = 24.

Now, let the set of all spanning trees of the graph be SM . We also define PM :=
conv(eS |S ∈ SM ) ⊆ Rn, thus PM is the polytope previously discussed formed from all of
the incidence vectors of the spanning trees. And then using the d weightings, we can define
WPM := {WeS |S ∈ SM} ⊆ Rd, which is the polytope PM projected to dimension d. As
discussed in Chapter 1 for the figure above, one can think of the rows of W as the set of
criteria that (possibly conflicting) parties may bring to a discussion.

There are many different techniques to select the optimal spanning tree or set of opti-
mal spanning trees using different tie-breaking criteria. In the next section we will discuss
Pareto optimization, which is one of these possible techniques. It is necessary to use some
tie-breaking criteria because given the different weightings, a different spanning tree might
be best for each edge weighting. This is the problem discovered in Chapter 1 while looking
at the example with just two different weightings.

In the following sections I will introduce Pareto optimization, an algorithm for enumer-
ating all spanning trees of a graph which we use to check our calculations, and an algorithm
for estimating the number of bases of a matrix.

2.2. Pareto Optimum

The definition of Pareto Multi-criteria Optimization for graphs is as follows.
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Pareto Multi-criteria Graphical Optimization: Given a graph G with n edges
and set of spanning trees SM , W ∈ Rd×n, find all spanning trees S ∈ SM such that
S = argminPareto((WeS′)|S′ ∈ SM ).

In this statement, minPareto is understood in the sense of Pareto optimality for prob-
lems with multiple objective functions, namely, we adopt the convention that for vectors
a, b ∈ Rd, we have a ≤ b if and only if ai ≤ bi for all entries of the vectors. Furthermore, we
say that a < b if a ≤ b and a 6= b. The Pareto multi-criteria matroid optimization problem
has been studied by several authors before. For example, Ehrgott [6] investigated two
optimization problems for matroids with multiple objective functions, and he pioneered a
study of Pareto bases via the base-exchange property of matroids.

Example 8. Consider the following simple graph:

A

B

C

D

Figure 2. A simple graph.

Let the edges be ordered (AB,AC,AD,BC,CD). There are eight spanning trees,
{S1, S2, . . . , S8}, with incidence vectors eS1 = (1, 1, 1, 0, 0), eS2 = (1, 1, 0, 0, 1), eS3 =
(1, 0, 1, 1, 0), eS4 = (1, 0, 1, 0, 1), eS5 = (1, 0, 0, 1, 1), eS6 = (0, 1, 1, 1, 0), eS7 = (0, 1, 0, 1, 1),
and eS8 = (0, 0, 1, 1, 1). If we let two edge weightings be w1 = (1, 3, 1, 2, 1) and w2 =
(3, 1, 1, 1, 2), and let cSi be the cost vector for spanning tree Si where the first entry is the
cost of spanning tree Si with respect to w1 and the second entry is the cost of Si with re-
spect to w2, then we have the following cost vectors: cS1 = (5, 5), cS2 = (5, 6), cS3 = (4, 5),
cS4 = (3, 6), cS5 = (4, 6), cS6 = (6, 3), cS7 = (6, 4), and cS8 = (4, 4). Now we can plot these
points in 2 dimensions, as shown in Figure 3.

Each point is marked with the spanning tree that it corresponds to. The Pareto optima
are those where at least one of the coordinates is less than the corresponding coordinate
for all other points. Thus from the graph we can see that the Pareto optima are S4, S6,
and S8.
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Figure 3. A simple example of Pareto Optima. The points marked with blue
circles are the Pareto Optima.

We wanted to implement the Pareto optima optimization because it is a widely used
method for finding the optimal spanning tree in regards to multiobjective optimization.
The points that are Pareto optima points have the smallest cost in regards to at least one
of the weights. Thus they are all optimal in some way. By finding the set of Pareto optima,
we are limiting the spanning trees that need to be considered. This could be very helpful
in practical applications. For example, suppose that we go back to our example discussed
in Section 1.2. Instead of the government and environmental agency having to consider
all possible spanning trees, we could find all the Pareto optima and we know that the one
they choose will be among these spanning trees.

In our software package, I implemented a Pareto optimum code that when given a set
of points, the Pareto optima are found. The code is in Appendix A.
Figure 4 gives an example of the output with our code.

The black dots are all of the projected points, and the points marked with blue circles
signify the ones that are Pareto optima. Thus it can be seen that even in a simple case
the number of Pareto optima is a very small percentage of the total number of projected
points.

2.3. Enumerating All Spanning Trees of a Graph

One of the reasons that we developed our software package is because enumerating all
the spanning trees of a graph is not efficient. We wanted to find a method that could enable
us to perform multiobjective optimization without having to enumerate all spanning trees.
But even though we did not want to enumerate all spanning trees in all cases, we needed
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Figure 4. An Example of Pareto Optima.

some way to check our methods for correctness.
We ran tests of our heuristics on several different graphs, and in order to test for

correctness, we compare the number of projected spanning trees found using our methods
versus the real total number of projected spanning trees.

We used an algorithm for generating all of the spanning trees in undirected graphs
presented by Matsui [10]. Matsui proves the following regarding the running time of his
algorithm.

Theorem 5. The algorithm requires O(n+m+ τn) time when the given graph has n
vertices, m edges, and τ spanning trees. For outputting all of the spanning trees explicitly,
this time complexity is optimal.
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The algorithm generates all the spanning trees by traversing a tree structure on the
graph of tree exchanges. The algorithm can also generate all of the spanning trees in
nondecreasing order of weight when a weighted graph is given.

This algorithm requires an important pre-procedure, which we will explain in detail
here. Before explaining the pre-procedure, we need to establish some notation. Assume we
assign a linear ordering on the edge-set E by setting E = {e1, e2, ..., em}, where |E| = m.
Then for any edge ej , we say that the index of the edge ej is j, and we denote the index
of an edge e by index(e). Ultimately, this pre-procedure partitions all of the edges into a
specialized set of forests, which satisfies the following condition:

Assumption 1. There exists a sequence of integers (j0, j1, . . . , jr) satisfying that (1)0 =
j0 < j1 < . . . < jr = m, and (2) the edge partition (F1, F2, . . . , Fr),
where Fs = {ejs−1+1, ejs−1+2, . . . , ejs}, satisfies the conditions that F1 is a maximal forest
of G and:

∀s ∈ {2, . . . , r}, Fs is a maximal forest of the graph (V,E \ (F1 ∪ F2 ∪ . . . ∪ Fs−1)).

This partitioning is done by employing the algorithm proposed by Nagamochi and
Ibaraki [11] for generating a sparse k-connected graph. In the paper describing this algo-
rithm, “A Linear-Time Algorithm for Finding a Sparse k-Connected Spanning Subgraph
of a k-Connected Graph,” Nagamochi and Ibaraki claim that by using their algorithm as
preprocessing, the time complexity of algorithms for solving other graph problems can be
improved, which is what Matsui does with his algorithm[10]. Based on this set of forests,
Matsui’s algorithm is able to decide the order of edges to exchange. In order to use our
implementation of Matsui’s algorithm, I implemented the partitioning algorithm[11]. This
procedure requires the following property:

Lemma 1. For a graph G = (V,E), simple or multiple, let Fi = (V,Ei) be a maximal
spanning forest in G−E1 ∪E2 ∪ ...∪Ei−1, for i = 1, 2, ..., |E|, where possibly Ei = Ei+1 =
... = E|E| = ∅ for some i. Then each spanning subgraph Gi = (V,E1∪E2∪ ...∪Ei) satisfies

λ(x, y;Gi) ≥ min{λ(x, y;G), i} for all x, y ∈ V ,
where λ(x, y;H) denotes the local edge-connectivity between x and y in graph H.

This lemma shows that Gk = (V,E′), where E′ = E1∪E2∪...∪Ek, is k-edge- connected
if k ≤ the edge-connectivity λ(G). Also, Gk satisfies |E′| ≤ k(|V | − 1) since |Ei| ≤ |V | − 1
for all i. Thus it is easy to see that Gk can be obtained in O(k(|V |+ |E|)) time by repeat-
ing the graph search procedure k times. However, this time complexity can be reduced to
O(|V |+ |E|) by constructing all E1, E2, ..., E|E| in a single scan. During the graph search
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we compute, for each edge e being scanned, the i satisfying e ∈ Ei. Such i can be defined
to be the smallest i such that Ei ∪ {e} does not contain a cycle, where these Ei denote
the edge sets constructed so far. In general, checking whether Ei ∪ {e} contains a cycle
requires O(|Ei|) time, but to reduce this to O(1), we always chose an unscanned edge e
that is adjacent to an edge e′ ∈ Ei with the largest i. This graph search procedure is
described as follows[11]:

Procedure FOREST; { input: G(V,E), output: E1, E2, ..., E|E|}
{ Let r(v) := i denote that v has been reached by an edge of the forest
Fi = (V,Ei).}
begin

1 E1 := E2 := ... := E|E| := ∅
2 Label all nodes v ∈ V and all edges e ∈ E ”unscanned”;
3 r(v) := 0 for all v ∈ V ;
4 while there exist ”unscanned” nodes do

begin
5 Choose an ”unscanned” node x ∈ V with the largest r;
6 for each ”unscanned” edge e incident to x do

begin
7 Er(y)+1 := Er(y)+1 ∪ {e} {y is the other end node ( 6= x) of e}
8 if r(x) = r(y) then r(x) := r(x) + 1;
9 r(y) := r(y) + 1;
10 Mark e ”scanned”

end;
11 Mark x ”scanned”

end;
end.

Figure 5 and Figure 6 show an example of the above procedure on a simple graph.
Figure 5 shows the graph, and Figure 6 shows the partitioning of the edges. The edges in
different partitions have different line types, thus there are four edge partitions, E1, E2, E3

and E4. In Figure 6 all of the edges and vertices are labeled, where xi represents the ith
node scanned by FOREST, and ej represents the jth edge scanned by FOREST. The edges
are directed to show the path that FOREST takes.

In our implementation of this procedure, we need some way to find an unscanned node
x with the largest r(x) efficiently. To do this we prepare |V | buckets such that each un-
scanned node v is contained in the r(v)th bucket. All of the nonempty buckets are doubly
linked by pointers so that an unscanned node x with the largest r(x) can be found in O(1)
time and the link update after increasing the label r of a node by one can also be done
in O(1) time. The entire time required to update bucket links is therefore O(|V | + |E|)
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Figure 5. A simple graph.
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Figure 6. An example of the partitioning algorithm on the previous graph.

because labels are changed O(|E|) times. This shows that the time complexity of FOREST
is O(|V |+ |E|). The code for our implementation of the FOREST procedure can be found
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in Appendix A.

As previously mentioned, with the set of forests produced by the procedure FOR-
EST, Matsui’s algorithm is able to efficiently decide the order of edges to exchange. Thus
Matsui’s algorithm can be seen as an application of the above partitioning technique of
Nagamochi and Ibaraki. In Matsui’s paper, he makes the assumption that the edges are
partitioned in the way achieved by the FOREST procedure. With this assumption, he is
able to prove a critical lemma, which is described below.

First we need to establish a necessary property achieved from the FOREST procedure.
For any edge e in the edge set E that connects vertices u and v in the vertex set V , denote
e by {u, v}. Additionally, as before we denote the ith edge partition by Ei. Then the
FOREST procedure directly implies the following property:

Claim: For any edge {u, v} ∈ Ei, the vertices u and v are connected in the graph
(V,Ei−1).

Given an edge-subset E′ ⊆ E, the edge in E′ with the smallest index is called the top
edge of E′. Similarly, we call the edge in E′ with the largest index the bottom edge of E′.
Also, for a spanning tree T , we let φ(T ) denote the spanning tree (T \ {f}) ∪ {g} where
f is the bottom edge of T and g is the top edge of the cut-set of T when f is deleted.
Then for any spanning tree T , we say that T is a child of φ(T ) and φ(T ) is the parent of
T. Furthermore, we say that an edge f is a pivot edge of T if there exists a child T ′ of
T such that T ′ \T = {f}. Then from the claim above, Matsui proves the following Lemma:

Lemma 2. Let T be a spanning tree of the graph G and let k be the index of the bottom
edge of T . For any pivot edge f of T , either index(f) ≤ k + 2n− 3 or there exists a pivot
edge f ′ satisfying the condition that index(f)− 2n+ 3 ≤ index(f ′) < index(f).

This lemma gives an algorithm for finding all of the pivot edges efficiently. Then with
an algorithm for finding all of the children of a spanning tree (described in the paper by
Matsui), the algorithm for enumerating all of the spanning trees is able to be constructed.

This implementation was necessary because our first goal was to perform experiments
on matroids for which we can compute all bases in order to better understand our heuris-
tics and algorithms. We generated fifteen connected random graphs: gn9e18, gn9e27,
gn10e22, gn10e28, gn10e33, gn11e13, gn11e20, gn11e27, gn11e41, gn12e16, gn12e24,
gn12e33, gn13e19, gn13e29, gn13e39 which we will refer to as our calibration set. The
names of our graphs follow the simple nomenclature gn[#nodes]e[#edges]. We consider
two, three and five criteria, i.e. number of weightings. We further consider three different
ranges of integral weights for each criteria. For the calibration set we adopt the following
nomenclature
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gn[#nodes]e[#edges]d[#criteria]w[low weight]w[high weight]
where we generated random integral weightings between [low weight] and [high weight].
First we simply compare the number of spanning trees of our calibration set to the number
of projected spanning trees.

• Table 1 shows the calibration set with two weightings (criteria) and integral
weights 0− 20, 0− 100, and 0− 1000.
• Table 2 shows the calibration set with three weightings (criteria) and integral

weights 0− 20, 0− 100, and 0− 1000.
• Table 3 contains the calibration set with five weightings (criteria) and integral

weights 0− 1, 0− 2, and 0− 5.
We give the exact number of projected spanning trees and compare versus the exact num-
ber of spanning trees.
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Table 1. Calibration test set: Exact #Spanning trees vs. #projected spanning
trees in 2 criteria.
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gn9e18d2w0w20 9 18 0− 20 2, 981 1, 742 58.44
gn9e27d2w0w20 9 27 0− 20 372, 320 6, 346 01.70

gn10e22d2w0w20 10 22 0− 20 53, 357 3, 957 07.42
gn10e28d2w0w20 10 28 0− 20 800, 948 7, 131 00.89
gn10e33d2w0w20 10 33 0− 20 3, 584, 016 10, 833 00.30
gn11e13d2w0w20 11 13 0− 20 41 41 100.00
gn11e20d2w0w20 11 20 0− 20 6, 939 2, 173 31.32
gn11e27d2w0w20 11 27 0− 20 284, 730 7, 515 02.64
gn11e41d2w0w20 11 41 0− 20 90, 922, 271 16, 457 00.02
gn12e16d2w0w20 12 16 0− 20 162 154 95.06
gn12e24d2w0w20 12 24 0− 20 208, 380 5, 647 02.71
gn12e33d2w0w20 12 33 0− 20 4, 741, 624 9, 364 00.20
gn13e19d2w0w20 13 19 0− 20 3, 401 1, 608 47.28
gn13e29d2w0w20 13 29 0− 20 1, 543, 340 8, 474 00.55
gn13e39d2w0w20 13 39 0− 20 131, 807, 934 18, 468 00.01
gn9e18d2w0w100 9 18 0− 100 2, 981 2, 858 95.87
gn9e27d2w0w100 9 27 0− 100 372, 320 89, 092 23.93

gn10e22d2w0w100 10 22 0− 100 53, 357 37, 204 69.73
gn10e28d2w0w100 10 28 0− 100 800, 948 101, 334 12.65
gn10e33d2w0w100 10 33 0− 100 3, 584, 016 166, 427 04.64
gn11e13d2w0w100 11 13 0− 100 41 41 100.00
gn11e20d2w0w100 11 20 0− 100 6, 939 6, 580 94.83
gn11e27d2w0w100 11 27 0− 100 284, 730 81, 803 28.73
gn11e41d2w0w100 11 41 0− 100 90, 922, 271 309, 961 00.34
gn12e16d2w0w100 12 16 0− 100 162 162 100.00
gn12e24d2w0w100 12 24 0− 100 208, 380 92, 813 44.54
gn12e33d2w0w100 12 33 0− 100 4, 741, 624 192, 122 04.05
gn13e19d2w0w100 13 19 0− 100 3, 401 3, 255 95.71
gn13e29d2w0w100 13 29 0− 100 1, 543, 340 164, 617 10.67
gn13e39d2w0w100 13 39 0− 100 131, 807, 934 315, 881 00.24

gn9e18d2w0w1000 9 18 0− 1000 2, 981 2, 981 100.00
gn9e27d2w0w1000 9 27 0− 1000 372, 320 364, 382 97.87

gn10e22d2w0w1000 10 22 0− 1000 53, 357 52, 990 99.31
gn10e28d2w0w1000 10 28 0− 1000 800, 948 756, 013 94.39
gn10e33d2w0w1000 10 33 0− 1000 3, 584, 016 2, 726, 287 76.07
gn11e13d2w0w1000 11 13 0− 1000 41 41 100.00
gn11e20d2w0w1000 11 20 0− 1000 6, 939 6, 921 99.74
gn11e27d2w0w1000 11 27 0− 1000 284, 730 279, 308 98.10
gn11e41d2w0w1000 11 41 0− 1000 90, 922, 271 13, 884, 793 15.27
gn12e16d2w0w1000 12 16 0− 1000 162 162 100.00
gn12e24d2w0w1000 12 24 0− 1000 208, 380 205, 690 98.71
gn12e33d2w0w1000 12 33 0− 1000 4, 741, 624 3, 680, 313 77.62
gn13e19d2w0w1000 13 19 0− 1000 3, 401 3, 401 100.00
gn13e29d2w0w1000 13 29 0− 1000 1, 543, 340 1, 396, 180 90.46
gn13e39d2w0w1000 13 39 0− 1000 131, 807, 934 15, 037, 589 11.41
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Table 2. Calibration test set: Exact #Spanning trees vs. #projected spanning
trees in 3 criteria.
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gn9e18d3w0w20 9 18 0− 20 2, 981 2, 905 97.45
gn9e27d3w0w20 9 27 0− 20 372, 320 134, 039 36.00

gn10e22d3w0w20 10 22 0− 20 53, 357 42, 887 80.38
gn10e28d3w0w20 10 28 0− 20 800, 948 238, 529 29.78
gn10e33d3w0w20 10 33 0− 20 3, 584, 016 411, 730 11.49
gn11e13d3w0w20 11 13 0− 20 41 41 100.00
gn11e20d3w0w20 11 20 0− 20 6, 939 6, 603 95.16
gn11e27d3w0w20 11 27 0− 20 284, 730 146, 672 51.51
gn11e41d3w0w20 11 41 0− 20 90, 922, 271 959, 469 01.06
gn12e16d3w0w20 12 16 0− 20 162 162 100.00
gn12e24d3w0w20 12 24 0− 20 208, 380 111, 201 53.36
gn12e33d3w0w20 12 33 0− 20 4, 741, 624 470, 609 09.93
gn13e19d3w0w20 13 19 0− 20 3, 401 3, 358 98.74
gn13e29d3w0w20 13 29 0− 20 1, 543, 340 264, 949 17.18
gn13e39d3w0w20 13 39 0− 20 131, 807, 934 930, 322 00.71
gn9e18d3w0w100 9 18 0− 100 2, 981 2, 981 100.00
gn9e27d3w0w100 9 27 0− 100 372, 320 367, 313 98.66

gn10e22d3w0w100 10 22 0− 100 53, 357 53, 289 99.87
gn10e28d3w0w100 10 28 0− 100 800, 948 786, 781 98.23
gn10e33d3w0w100 10 33 0− 100 3, 584, 016 3, 351, 096 93.01
gn11e13d3w0w100 11 13 0− 100 41 41 100.00
gn11e20d3w0w100 11 20 0− 100 6, 939 6, 939 100.00
gn11e27d3w0w100 11 27 0− 100 284, 730 281, 303 98.80
gn11e41d3w0w100 11 41 0− 100 90, 922, 271 35, 943, 327 39.53
gn12e16d3w0w100 12 16 0− 100 162 162 100.00
gn12e24d3w0w100 12 24 0− 100 208, 380 207, 143 99.41
gn12e33d3w0w100 12 33 0− 100 4, 741, 624 4, 740, 880 99.98
gn13e19d3w0w100 13 19 0− 100 3, 401 3, 401 100.00
gn13e29d3w0w100 13 29 0− 100 1, 543, 340 1, 484, 719 96.20
gn13e39d3w0w100 13 39 0− 100 131, 807, 934 44, 757, 592 33.96
gn9e18d3w0w1000 9 18 0− 1000 2, 981 2, 981 100.00
gn9e27d3w0w1000 9 27 0− 1000 372, 320 372, 320 100.00

gn10e22d3w0w1000 10 22 0− 1000 53, 357 53, 357 100.00
gn10e28d3w0w1000 10 28 0− 1000 800, 948 800, 946 99.99
gn10e33d3w0w1000 10 33 0− 1000 3, 584, 016 3, 583, 757 99.99
gn11e13d3w0w1000 11 13 0− 1000 41 41 100.00
gn11e20d3w0w1000 11 20 0− 1000 6, 939 6, 939 100.00
gn11e27d3w0w1000 11 27 0− 1000 284, 730 284, 730 100.00
gn11e41d3w0w1000 11 41 0− 1000 90, 922, 271 90, 699, 181 99.75
gn12e16d3w0w1000 12 16 0− 1000 162 162 100.00
gn12e24d3w0w1000 12 24 0− 1000 208, 380 208, 356 99.99
gn12e33d3w0w1000 12 33 0− 1000 4, 741, 624 4, 740, 880 99.98
gn13e19d3w0w1000 13 19 0− 1000 3, 401 3, 401 100.00
gn13e29d3w0w1000 13 29 0− 1000 1, 543, 340 1, 543, 304 99.99
gn13e39d3w0w1000 13 39 0− 1000 131, 807, 934 131, 464, 478 99.74
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Table 3. Calibration test set: Exact #Spanning trees vs. #projected spanning
trees in 5 criteria.
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gn9e18d5w0w1 9 18 0− 1 2, 981 1, 099 36.87
gn9e27d5w0w1 9 27 0− 1 372, 320 8, 205 2.20

gn10e22d5w0w1 10 22 0− 1 53, 357 4, 746 8.89
gn10e28d5w0w1 10 28 0− 1 800, 948 10, 898 1.36
gn10e33d5w0w1 10 33 0− 1 3, 584, 016 15, 482 0.43
gn11e13d5w0w1 11 13 0− 1 41 27 65.85
gn11e20d5w0w1 11 20 0− 1 6, 939 1, 866 26.89
gn11e27d5w0w1 11 27 0− 1 284, 730 5, 828 2.05
gn11e41d5w0w1 11 41 0− 1 90, 922, 271 36, 847 0.04
gn12e16d5w0w1 12 16 0− 1 162 116 71.61
gn12e24d5w0w1 12 24 0− 1 208, 380 6, 738 3.23
gn12e33d5w0w1 12 33 0− 1 4, 741, 624 20, 857 0.44
gn13e19d5w0w1 13 19 0− 1 3, 401 1, 149 33.78
gn13e29d5w0w1 13 29 0− 1 1, 543, 340 111, 116 7.20
gn13e39d5w0w1 13 39 0− 1 131, 807, 934 34, 392 0.03
gn9e18d5w0w2 9 18 0− 2 2, 981 2, 276 76.35
gn9e27d5w0w2 9 27 0− 2 372, 320 43, 029 11.56

gn10e22d5w0w2 10 22 0− 2 53, 357 14, 623 27.41
gn10e28d5w0w2 10 28 0− 2 800, 948 66, 190 8.26
gn10e33d5w0w2 10 33 0− 2 3, 584, 016 105, 309 2.94
gn11e13d5w0w2 11 13 0− 2 41 41 100.00
gn11e20d5w0w2 11 20 0− 2 6, 939 3, 761 54.20
gn11e27d5w0w2 11 27 0− 2 284, 730 39, 292 13.80
gn11e41d5w0w2 11 41 0− 2 90, 922, 271 290, 555 0.32
gn12e16d5w0w2 12 16 0− 2 162 160 98.77
gn12e24d5w0w2 12 24 0− 2 208, 380 34, 057 16.34
gn12e33d5w0w2 12 33 0− 2 4, 741, 624 120, 211 2.54
gn13e19d5w0w2 13 19 0− 2 3, 401 2, 613 76.83
gn13e29d5w0w2 13 29 0− 2 1, 543, 340 98, 285 6.37
gn13e39d5w0w2 13 39 0− 2 131, 807, 934 348, 703 0.26
gn9e18d5w0w5 9 18 0− 5 2, 981 2, 960 99.30
gn9e27d5w0w5 9 27 0− 5 372, 320 271, 048 72.80

gn10e22d5w0w5 10 22 0− 5 53, 357 49, 463 92.70
gn10e28d5w0w5 10 28 0− 5 800, 948 493, 565 61.62
gn10e33d5w0w5 10 33 0− 5 3, 584, 016 1, 294, 875 36.13
gn11e13d5w0w5 11 13 0− 5 41 41 100.00
gn11e20d5w0w5 11 20 0− 5 6, 939 5, 975 86.11
gn11e27d5w0w5 11 27 0− 5 284, 730 222, 974 78.31
gn11e41d5w0w5 11 41 0− 5 90, 922, 271 4, 711, 354 5.18
gn12e16d5w0w5 12 16 0− 5 162 162 100.00
gn12e24d5w0w5 12 24 0− 5 208, 380 177, 845 85.35
gn12e33d5w0w5 12 33 0− 5 4, 741, 624 1, 489, 751 31.42
gn13e19d5w0w5 13 19 0− 5 3, 401 3, 381 99.41
gn13e29d5w0w5 13 29 0− 5 1, 543, 340 787, 196 51.01
gn13e39d5w0w5 13 39 0− 5 131, 807, 934 7, 737, 684 5.87
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2.4. Estimation of Bases

In this section we will give a short explanation of matroids, and then introduce a
method for enumerating all bases of a matroid. We begin with one of the many equivalent
definitions of a matroid.

Definition 7. A non-empty collection B of subsets of [n] := 1, ..., n is the set of bases
of a matroid M if and only if

• If B1, B2 ∈ B and x ∈ B1 \B2,∃y ∈ B2 \B1 such that (B1 ∪ y) \ x ∈ B.

From this definition we can conclude that in a graphical matroid, which are the ones
that we have been looking at throughout this senior thesis, the set [n] is the set of all edges
of the graph, and a subset of [n] is in B if it is a spanning tree.

To enumerate all bases of a matroid, we implemented the asymptotic 0\1 polytope
vertex-estimation presented in [3]. This gives us the ability to estimate the number of
bases of matroid polytopes in order to better understand the ratio of bases to projected
bases for problems where full enumeration is intractable. In this section, I will introduce
the ideas presented by Barvinok and Samorodnitsky in [2] and [3].

In [2] Barvinok and Samorodnitsky develop general methods to obtain fast (polyno-
mial time) estimates of the cardinality of a combinatorially defined set via solving some
randomly generated optimization problems on the set. A general problem of combinatorial
counting can be stated as follows: given a family F ⊂ 2X of subsets of the ground set X,
compute or estimate the cardinality |F | of the family. To clarify what “given” means, since
in most interesting cases |F | is exponentially large in the cardinality of |X|, we assume
that the family is defined by its Optimization Oracle:

Optimization Oracle defining a family F ⊂ 2X

Input: A set of integer weights γx : x ∈ X.
Output: The number min

∑
x∈Y γx over all Y ∈ F .

That is, for any given integer weighting {γx} on the set X, we should be able to produce
the minimum weight of a subset Y ∈ F . The main motivation of Barvinok and Samorod-
nitsky was the example of finding perfect matchings in a graph, and they give several other
examples. Here, I will discuss the example of bases in matroids given in [3], since this is
the problem we are concerned with.

Example 9. (Bases in Matroids) Let A be a k×n matrix of rank k over a field F. We
assume that k < n. Let X = X(A) be the set of all k-subsets x of {1, ..., n} such that the
columns of A indexed by the elements of x are linearly independent. Thus X is the set of all
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non-zero k× k minors of A, or, in other words, the set of bases of the matroid represented
by A. According to Barvinok and Samorodnitsky it is an interesting and apparently hard
problem to compute or to approximate the cardinality of X. On the contrary, it is easy
to construct the Optimization Oracle for X. Given real weights γ1, ..., γn, we construct a
linearly independent set ai1 , ..., aik of columns of the largest total weight one-by-one: first
we choose ai1 to be a non-zero column of A with the largest possible weight γi1 , then
we choose ai2 to be a column of the maximum possible weight such that ai1 and ai2 are
linearly independent, etc. Particular cases of this problem include counting forests and
spanning subgraphs in a given graph. It should also be noted that this is a generalization
of Kruskal’s algorithm.

The algorithms given by Barvinok and Samorodnitsky are randomized, that is the out-
come is a random variable, which, with high probability satisfies the desired properties.
They are able to make the probability of success arbitrarily close to 1 by running the al-
gorithm several times and averaging the outcomes.

In [3], they start by fixing a Borel probability measure µ in R. They require µ to be
symmetric, that is, µ(A) = µ(−A) for any Borel set A ⊂ R, and to have finite variance.
They relate two quantities associated with X: the cardinality, |X|, of X, and Γ(X,µ),
which is defined as follows. Let us fix a measure µ as above and let γ1, ..., γn be independent
random variables having the distribution µ. Then

Γ(X,µ) = E max
∑

i∈x γi over all x ∈ X.

In other words, we sample weights of 1, ..., n independently at random from the distribution
µ, define the weight of a subset x ∈ X as the sum of the weights of its elements and let
Γ(X,µ) be the expected maximum weight of a subset from X. In a sense, Γ(X,µ) measures
how large X is, and in some respects, Γ(X,µ) behaves rather like ln|X|. Then the goal of
[3] is stated as follows:

Goal: Find a measure µ for which Γ(X,µ) gives the best estimate of ln|X|.

The value of Γ(X,µ) can be efficiently computed through the averaging of several
sample maxima for randomly chosen weights γ1, ..., γn. Counting the elements in X can be
a hard and interesting problem, thus Γ(X,µ) provides a quick estimate for ln|X|. One of
the main results of [3] is that there are measures µ for which Γ(X,µ) gives an asymptotically
tight estimate for ln|X| provided ln|X| grows faster than a linear function of k, where k
is the number of elements in the subsets that X is composed of. The best estimates are
obtained when µ is the logistic distribution. The approach to the combinatorial counting
problem by Barvinok and Samorodnitsky provides very crude bounds, but it is insensitive
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to the varied structure of the family of subsets, so it is ready to handle a broad class of
problems.

To implement this code, I used the function GreedyAlgorithmMax() in MOCHA [5]
and I also used the logarithmic distribution functions created by Alexander Yong on the
webpage “C++ codes for estimating permanents, hafnians and the number of forests in a
graph [13].” The code used in this implementation is included in Appendix A.



APPENDIX A

Selected Pieces of Our Code in the Package MOCHA

Pareto Optimum
The following code is a simple program to find the Pareto optima when given a set of
points inputPoints in Rn. This code can be found in the file mathprog.cpp in the software
package MOCHA [5].

set<Matrix, ltcolvec> ProjBalMatroidOpt::ParetoOptimum( set<Matrix, ltcolvec>&inputPoints)
{

// This is the set of pareto optimum we will calculate.
// This is a set structure from the standard library which
// holds Matrix classes that we defined. ltcolvec is a bool
// function that compares two Matrix classes with one column.

set <Matrix, ltcolvec> popt = inputPoints;

// Perform some error checking
if (inputPoints.empty())
{

return popt;
}

// An iterator to go through all inputPoints.
set <Matrix, ltcolvec>::iterator msetit = popt.begin();

//An iterator to go in front of points so when we erase we can get back to where we
//started
set <Matrix, ltcolvec>::iterator msetit2 = popt.begin();
msetit2++;

//An iterator to compare to
set <Matrix, ltcolvec>::iterator stepit = popt.begin();

31
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int counter = 0;

for( ; msetit != popt.end(); msetit++)
{

// Set this temp matrix to the current matrix msetit is refering to
Matrix tempM = *msetit;
for(stepit = popt.begin(); stepit != popt.end(); stepit++)
{

if (stepit != msetit)
{

counter = 0;
Matrix tempM2 = *stepit;
for(int i = 0; i < tempM.rows; i++)
{

//if all coordinates are larger than another point
if(tempM(i,0) ≤ tempM2(i,0))

counter++;
}
if(counter == tempM.rows)
{

popt.erase(msetit);
msetit = msetit2;
msetit−−;
break;

}
}

}
msetit2++;

}

return popt;
}
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FOREST Implementation
The following code implements the algorithm presented by Nagamochi and Ibaraki in [11].
This code can be found in the file graph.cpp in the software package MOCHA [5].

list <set <unsigned>> Graph::NagIbar ()
{

//declare list of edge partitions to be returned
set <unsigned> emptySet;
list <set <unsigned>> edgePartitions(numEdges, emptySet);

//matrix to know whether edges are scanned or not
int Unscanned[numNodes][numNodes];

//initialize the matrix to say none of the edges are scanned
int i, j;
for(i = 0; i < numNodes; i++)
for(j = 0; j < numNodes; j++)
{

if(j == i)
Unscanned[i][j] = 0;

else
Unscanned[i][j] = adjMatrix(i,j);

}

//make buckets and put all vertex numbers in 0th bucket
VertexBucket allVertices(0);
for(i = 0; i < numNodes; i++)

allVertices.vertices.push front(i);
list <VertexBucket> Buckets(1, allVertices);

//array to hold r-values for each vertex
int rvalues[numNodes];

//initialize each r-value to 0
for(i = 0; i < numNodes; i++)

rvalues[i] = 0;

int v, r, node;
list <set <unsigned>>::iterator lsit;
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lsit = edgePartitions.begin();
list <VertexBucket>::iterator lsit2;
lsit2 = Buckets.begin();
list <VertexBucket>::iterator lsit3;
lsit3 = Buckets.begin();
set <unsigned> itrSet;

//as long as we still have a vertex in a bucket
while(!Buckets.empty())
{

lsit2 = Buckets.begin();
v = (*lsit2).vertices.front();
(*lsit2).vertices.pop front();
if((*lsit2).vertices.empty())

Buckets.erase(lsit2);
for(node = 0; node < numNodes; node++)
{

if(Unscanned[v][node] == 1)
{

r = rvalues[node] + 1;
lsit = edgePartitions.begin();
advance(lsit, r-1);
(*lsit).insert(edgeNumber(v,node));
if(rvalues[v] == rvalues[node])

rvalues[v] += 1;
rvalues[node] += 1;
//move vertex node to new bucket
lsit3 = Buckets.begin();
for( ; (∗lsit3).r != rvalues[node] && lsit3 != Buckets.end() ; lsit3++);

if((*lsit3).r == rvalues[node] && lsit3 != Buckets.end())
{

(*lsit3).vertices.push front(node);
++lsit3;
(*lsit3).vertices.remove(node);
if((*lsit3).vertices.empty())

Buckets.erase(lsit3);
}
else
{

lsit3 = Buckets.begin();
for( ; (*lsit3).r > rvalues[node]; lsit3++);
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VertexBucket newVertexBucket(rvalues[node]);
newVertexBucket.vertices.push front(node);
Buckets.insert(lsit3, newVertexBucket);
(*lsit3).vertices.remove(node);
if((*lsit3).vertices.empty())

Buckets.erase(lsit3);
}
Unscanned[v][node] = 0;
Unscanned[node][v] = 0;

}
}

}
return edgePartitions;

}
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Barvinok’s Estimation
The following code implements the algorithm for estimating the number of bases for ma-
triods in [3]. This code can be found in the file estimatebases.cpp in the software package
MOCHA [5].

int main (int argc, char *argv[])
{

int m, num rows, num cols, i, j, k, max weight;
float upper bound, lower bound, GAMMA, avg GAMMA;
string filename;
string matroidType;
ifstream inFile;
set <unsigned> max weight basis;

cout << ”argc = ” << argc << endl;

cout << ”This program estimates the number of bases of a matrix by assigning\n”;
cout << ”random weights to each column of the matrix and finding the maximal\n”;
cout << ”weight basis. This is done m times and the resulting average estimates\n”;
cout << ”the function GAMMA. Then upper and lower bounds for the number of
bases\n”;
cout << ”are calculated.\n\n”;
if (argc > 1)
{

sscanf(argv[1],”%d”,&m);
cout << ”m = ” << m << endl;

}
else
{

cout << ”Enter the number of times m to sample: \n”;
cin >> m;
cout << ”\n”;

}
if (m <= 0)
{

cout << ”m <= 0 exiting” << endl;
exit(0);

}
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Matroid *M;

if (argc > 2)
{

filename = argv[2];
}
else
{

cout << ”Enter the name of the input file:\n”;
cin >> filename;

}

inFile.open(filename.c str(), ios::in);

while(!inFile)
{

cout << ”File open error: ’” << filename << ”’ ”;
cout << ”Try again.\n”;
inFile.close();
cout << ”Enter the name of the input file:\n”;
cin >> filename;
inFile.open(filename.c str(), ios::in);

}
if (argc > 3)
{

matroidType = argv[3];
}
else
{

cout << ”Matroid type (1) Vector, (2) Graphical: ”;
cin >> matroidType;

}
if (matroidType == ”1”)
{

M = new VectorMatroid(inFile);
}
else if (matroidType == ”2”)
{

M = new GraphicalMatroid(inFile);
}
cout << *M;
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num rows = M->getNumElements();
Matrix weights(num rows,1);

GAMMA=0;
srand((unsigned)time(NULL));

int ten percent = floor(m*0.10);
ten percent = (int)max((double)1,(double)ten percent);
cout << ”ten percent = ” << ten percent << endl;
for(k=0; k<m; k++)
{

if (k % ten percent == 0 && k != 0)
{

cout << ” ” << (k/ten percent)*10 << ”%” << endl;
}
max weight basis.clear();

for(i = 0; i < num rows; i++){
weights(i,0)=0;

}

for(i = 0; i < num rows; i++){
weights(i,0)=M->random weight logistic((float) ((rand() % 99999) + 1) / 100000);

}

max weight basis = M− >GreedyAlgorithmMax(weights);

set<unsigned>::iterator it;
max weight = 0;

for(it = max weight basis.begin(); it != max weight basis.end(); it++)
{

max weight += weights(*it,0);
}
GAMMA=GAMMA+max weight;

}
cout << ” 100%” << endl;

//compute upper and lower estimates
avg GAMMA = (float)GAMMA/m;
upper bound = M->upper logistic(avg GAMMA, num rows);
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lower bound = M->lower logistic(avg GAMMA, num rows);

//Output results
cout << ”\n”;
cout << ”\n”;
cout << ”Bounds for Log(X) are:\n”;
cout << ”Upper bound:\n”;
printf(”%f\n”,upper bound);
cout << ”Lower bound:\n”;
printf(”%f\n”,lower bound);
cout << ”GAMMA(X):\n”;
printf(”%f\n”,avg GAMMA);

}
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