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Abstract
A characterization of unimodal, [321]-avoiding permutations and

an enumeration shall be given.There is a bijection between unimodal
[321]-avoiding permutations and v-unimodal permutations that ex-
poses similarities between their structures and pattern avoidance prop-
erties.

1 Introduction

A permutation is a rearrangement of objects. One example is scrambling a
word that consists of distinct letters such as ”math”.

Definition 1. A permutation is a bijection, a function that is both one-to-
one and onto, from a finite set onto itself.

Here, the set {1, 2, . . . n}, where n is a positive integer, will be consid-
ered. Whether or not the elements of the set being permuted are numbers, a
permutation may be denoted using two-line notation, where the elements of
the set are written on the first line and their images are below in the second
line. For example, let p be a permutation of {m, a, t, h}, in two-line notation:

p =

(
m a t h
a h m t

)
This means that p(m) = a, p(a) = h, p(t) = m, p(h) = t. In general, a
permutation, p, of a set {x1, x2, . . . xn} in two-line notation looks like:

p =

(
x1 x2 . . . xn

p(x1) p(x2) . . . p(xn)

)
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Permutations of {1, 2, . . . n} are considered because numbers have a total or-
dering. In other words, there is a notion of ”greater than” and ”less than”
and no possibility of confusion when comparing distinct numbers. In this
case, permutations can be written in one-line notation, where the permuta-
tion is denoted by the second line of the two-line notation keeping the order
in the first line fixed. For example, a permutation on {1, 2, 3, 4} could be
written:

p =

(
1 2 3 4
2 4 1 3

)
in two-line notation, and in one-line notation: [2413], which is the second line
of the permutation’s two-line notation. The element p(xi) will be denoted
by pxi

, so p can be written [px1px2 . . . pxn ] in one-line notation. The one-line
notation will be used throughout.

Permutations can be drawn as graphs in the plane. The picture can be
thought of as a matrix with a dot in the row corresponding to the image of
the column number in the permutation and blanks everywhere else (Figure
1).
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Figure 1: Graph of 2413

In several results, the number of elements in the set being permuted
relates to some properties of permutations.

Definition 2. Let S be a set, and p : S → S be a permutation. The size of
p is the number of elements in the set S.
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A permutation of size n shall be denoted p = [p1p2 . . . pn] in the one-line
notation throughout. Ordering makes it possible to define what it means for
a permutation to contain a smaller permutation.

Definition 3. Let p = [p1p2 . . . pn] and q = [q1q2 . . . qm] be permutations
in the one-line notation. A permutation p contains the permutation q (or
p has an instance of q) if there exist indices, i1, . . . , im such that the subse-
quence pi1pi2 . . . pim has the property pia < pib implies qa < qb and qa < qb

implies pia < pib. Furthermore, if the indices do not exist, then p avoids q.

Consider the permutation [123654] (Figure 2). It has an instance of [321]
which occurs as 654, and it has some instances of [132] as 264, 364, and 165.
It avoids [213] and [312]. For more information about permutation avoidance
and containment see [Bón04].
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Figure 2: The graph of [123654]. An instance of [132] appears as the points
(2, 2), (4, 6), (6, 4), corresponding to the occurrence 264. The graphs of [213]
and [312] do not appear at all.

There are various applications of the idea of avoidance. The problem
of avoiding permutations arose in computer scicence when the stack-sorting
algorithm was studied by Donald Knuth, see [Knu75]. The stack-sorting al-
gorithm sorts lists of numbers, putting them in increasing order. He proved
that a permutation can be sorted using the stack-sorting algorithm if and
only if the permutation is [231]-avoiding. For a proof see [Bón04], or for
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more information see [Bón03]. The stack sorting algorithm is as follows:

Let p = [p1p2 . . . pn] be a permutation of size n.

Step 1: Place the first entry, p1, in the stack, which is a box that holds
the numbers by stacking them on top of each other.

Step 2: Take the i-th entry pi and denote the top entry of the stack by
st. If pi < st or the stack is empty, then pi goes into the stack. If
pi > st or no entries are left in p, then st is placed in the leftmost
available space in the output permutation, [q1q2 . . . qn].

Step 3: If pi went into the stack, repeat Step 2 for pi+1. If st moved out
of the stack, repeat Step 2 for pi.

Step 4: Once all entries of p are exhausted, the stack’s remaining entries
are put at the end of the output list in the order they are in the
stack, starting from the top entry in the stack. The resulting
permutation should be [123 . . . n].

Here are two examples where a [231]-avoiding permutation and a permu-
tation containing [231] are stack-sorted:

To sort [2134] using stack sorting do the following:
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Step 1: 2 is the first element in the stack: 2 .

Step 2: 1 < 2, so 1 goes on top of 2 in the stack, so the stack looks like:
1
2

.

Step 3: 3 > 1 so 1 moves out of the stack and into the new permutation
[1 ].

Step 4: Now the stack is 2 .

Step 5: 3 > 2, so 2 moves out of the stack and into the new permutaion
[12 ].

Step 6: Since the stack is empty, 3 goes into the stack, so the stack is now
3

Step 7: 4 > 3, so 3 moves out of the stack and into the permutation, so
now it is [123 ].

Step 8: Now, 4 goes into the stack, and it is the only entry in the stack,
so 4 goes into the permutation, giving [1234].

When stack-sorting is applied to [4231], the algorithm produces a different
permutation.

Step 1: 4 is the first entry in the stack: 4 .

Step 2: 2 < 4, so 2 goes in the stack, so the stack looks like:
2
4

.

Step 3: 3 > 2 so 2 moves into the new permutation [2 ], so this does not
produce [1234].

Julian West developed a method for generating permutations using rooted
trees. The trees are called generating trees and they generate all permuta-
tions that avoid given patterns. They are rooted at the size 1 permutation,
[1]. The children are formed by placing the next entry of the permutation
in any space between entries or on the ends of the permutation as long as
the children avoid the patterns. Using the generating tree and the idea of
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succession rules, permutations can be counted. For more information see
[Wes96], and to see them used for counting [123]-avoiding permutations, and
others, see [Wes95].

My partner, Cameron Alston, wrote a program based on Julian West’s
generating tree axioms. It generates signed permutations, which are permu-
tations where entries can be negative. The program generates them avoiding
given signed patterns. More algorithms for generating permutations can be
found in [Knu05].

Here, the types of permutations that will be studied using permutation
avoidance are unimodal permutations.

Definition 4. A permutation p = [p1p2 . . . pn] is unimodal if and only if
there exists an index i such that p1 < p2 < · · · < pi > pi+1 > · · · > pn.

Unimodal permutations have a hill shape; they rise to the top and then
go down. For example, [1237654] and [346521] (Figure 3) are unimodal per-
mutations. Note that in the definition i has no restriction forcing 1 < i nor
i < n, so the identity permutation, which will be denoted e = [123 . . . n],
is a unimodal permutation (i = n). Also, [n(n − 1) . . . 321] is a unimodal
permutation (i = 1).
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Figure 3: The graph of the unimodal permutation [346521]
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Unimodal permutations share many properties with v-unimodal permu-
tations, which are defined in Section 3. There is a bijection relating their
structures. It will be shown that the number of unimodal permutations of
size n is 2n−1 (for more information see [Slo04]). Also, it will be proven that
the number of unimodal permutations of size n that avoid [m(m− 1) . . . 321]
with m ≥ 2 is

m∑
k=2

(
n− 1

k − 2

)
=

m−2∑
j=0

(
n− 1

j

)
.

The bijection proves the same for v-unimodal permutations.

2 Enumeration of {[321], [213], [312]}-avoiding Per-

mutations

Unimodal permutations that avoid [321] have a specific form.

Proposition 5. A unimodal [321]-avoiding permutation p = [p1p2 . . . pn] has
p1 < p2 < · · · < pn−1.

Proof. Let p = [p1p2 . . . pn] be a unimodal [321]-avoiding permutation with n
fixed. Then, p is [321]-avoiding, so p has no descending subsequence of size
larger than 2. Since n is the largest element of {1, . . . , n} and p is unimodal,
pn−1 = n or pn = n are the only possible positions for n. Therefore, a
unimodal [321]-avoiding permutation p = [p1p2 . . . pn] has p1 < p2 < · · · <
pn−1.

This specific form for unimodal [321]-avoiding permutations helps count
them.

Theorem 6. For every k ∈ {1, . . . , n} there is a unique unimodal [321]-
avoiding permutation p = [p1 . . . pn] such that pn = k.

Proof. Let n be fixed, k ∈ {1, . . . , n} and p = [p1p2 . . . pi . . . pn] be a unimodal
[321]-avoiding permutation with pn = k. Since p is unimodal and [321]-
avoiding, Proposition 5 implies the elements of {1, . . . , n}−{pn} are arranged
in increasing order in p1p2 . . . pn−1. Since the increasing order on {1, . . . , n}−
{pn} is unique, p is the unique unimodal [321]-avoiding permutation of size n
with pn = k. Therefore, for every k ∈ {1, . . . , n} there is a unique unimodal
[321]-avoiding permutation p = [p1 . . . pn] such that pn = k.
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This theorem implies the following corollary about the number of uni-
modal [321]-avoiding permutations.

Corollary 7. The number of unimodal [321]-avoiding permutations of size
n is n.

Proof. Let n be fixed. By Theorem 6, a unimodal [321]-avoiding permutation
is uniquely determined by pn ∈ {1, . . . , n}. Therefore, there are n unimodal,
[321]-avoiding permutations of size n.

The avoidance of permutations will be used to characterize unimodal
[321]-avoiding permutations in the following result.

Theorem 8. A permutation, p, is {[321], [213], [312]}-avoiding if and only if
p is [321]-avoiding and unimodal.

Proof. First, it will be shown that if p is {[321], [213], [312]}-avoiding, then p
is [321]-avoiding and unimodal. This result is clear for e, so let p 6= e. Let
p = [p1p2 . . . pi . . . pn] be a {[321], [213], [312]}-avoiding permutation of size n
that is not the identity. If for some i ∈ {1, . . . , n−2}, pi = n, then pi > pi+1,
and pi > pi+2. Since p is [321]-avoiding, pi+1 < pi+2, but this implies that
pipi+1pi+2 is a [312] instance, a contradiction to p avoiding [312]. If pn = n,
then it follows from p 6= e that p1p2 . . . pn−1 is not an increasing sequence.
Hence, there exist j and k with j < k ≤ n − 1 such that pj > pk. Since
pk < pj < pn, pjpkpn forms a [213] instance which contradicts p avoiding
[213]. Thus, pn−1 = n, and n > pn.

Suppose for a contradiction that p1p2 . . . pn−2 is not an increasing se-
quence. Then, there exist j and k with j < k ≤ n − 2 such that pj > pk.
Since pk < pj < pn−1, it follows pjpkpn−1 forms a [213] instance contrary
to p avoiding [213]. Hence, p1p2 . . . pn−2 is an increasing subsequence, so
p1 < p2 < . . . pn−2 < pn−1 = n > pi+1 > · · · > pn, which implies that p is
unimodal by definition. Furthermore, p is [321]-avoiding by assumption, so p
is a unimodal [321]-avoiding permutation. Thus, if p, is {[321], [213], [312]}-
avoiding, then p is a unimodal [321]-avoiding permutation.

Now consider when p is a unimodal [321]-avoiding permutation. Propo-
sition 5 implies p1 < p2 < · · · < pn−2 < pn−1. It follows from p1 < p2 < · · · <
pn−2 < pn−1 that no instances of [213] or [312] occur in p1p2 . . . pn−1. The in-
equality p1 < p2 < · · · < pn−2 < pn−1 implies any pattern in p containing two
entries in decreasing order will always end with pn and the pattern will be
a [123], [132], or [231] occurrence. Hence, p, is {[321], [213], [312]}-avoiding.
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Therefore, a permutation, p, is {[321], [213], [312]}-avoiding if and only if p
is [321]-avoiding and unimodal.

Theorems 7 and 8 lead to the main result of this section; the enumeration
of {[321], [213], [312]}-avoiding permutations using unimodal [321]-avoiding
permutations.

Theorem 9. The number of {[321], [213], [312]}-avoiding permutations of
size n is n.

Proof. By Theorem 8, a permutation that avoids [321], [213], and [312]
is unimodal and [321]-avoiding. Theorem 7 implies the number of size n
unimodal [321]-avoiding permutations is n. Hence, the number of size n
{[321], [213], [312]}-avoiding permutations is n.

3 V-unimodal Permutations and an Enumer-

ation of {[321], [231], [132]}-avoiding Permuta-

tions

There are similar results to the ones presented in section 2 for v-unimodal
permutations.

Definition 10. A permutation p = [p1p2 . . . pn] is v-unimodal if and only if
there exists an index i such that p1 > p2 > · · · > pi < pi+1 < · · · < pn.

V-unimodal permutations have a ”V” shape. They look like unimodal
permutations, except they have a valley instead of a peak. One example is
[642135] (Figure 4).

The permutations [213], and [312] are v-unimodal permutations, so The-
orem 8 can be restated as: ”A [321]-avoiding permutation is unimodal if and
only if it avoids non-identity, v-unimodal permutations of size 3.” Further-
more, there is a similar theorem for v-unimodal permutations. The theorems
will be proved using a bijection between the unimodal [321]-avoiding permu-
tations of size n and v-unimodal [321]-avoiding permutations of size n. Let
Un be the set of all unimodal [321]-avoiding permutations of size n and Vn

be the set of all v-unimodal [321]-avoiding permutations of size n.

Definition 11. Let f : Un → Vn be defined on p = [p1p2 . . . pn] by f(p) =
[pnp1p2 . . . pn−1].
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Figure 4: The graph of [642135]

Theorem 12. f : Un → Vn is a bijection.

Proof. Let p = [p1p2 . . . pn] ∈ Un, so f(p) = [pnp1p2 . . . pn−1]. By the uni-
modality of p and Proposition 5, p1 < p2 < · · · < pn−1. If p1 = 1, then
pn > p1 < p2 < · · · < pn−1, so f(p) ∈ Vn. If p1 6= 1, then unimodality and
Proposition 5 imply 1 < p1 < p2 < · · · < pn−1 = n, so pn = 1. Since pn = 1,
1 = pn < p1 < · · · < pn−1, so f(p) is the identity, implying f(p) ∈ Vn. Thus,
f(p) ∈ Vn.

Take a permutation q = [q1q2 . . . qn] in Vn. and move q1 to the end of the
permutation resulting in [q2q3 . . . qnq1]. The permutation [q2q3 . . . qnq1] ∈ Un

by definition because v-unimodality and [321]-avoiding imply q2 < q3 <
. . . qn > q1. Denote by f−1 the action of placing q1 in the last position.
Then, f−1 ◦ f(p) = f−1([pnp1p2 . . . pn−1]) = [p1p2 . . . pn−1pn] = idUn→Un

and f ◦ f−1(q) = f([q2q3 . . . qnq1]) = [q1q2 . . . qn−1qn] = idVn→Vn . Therefore,
f : Un → Vn is a bijection.

Theorem 13. The number of v-unimodal [321]-avoiding permutations of size
n is n.

This bijection takes the last entry of a unimodal [321]-avoiding permuta-
tion and moves it to the end of the permutation, and undoes that action by
taking the first entry of a v-unimodal [321]-avoiding permutation and moving
it to the beginning of the permutation. For example:
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[23451] 7→ [12345]

[13452] 7→ [21345]

[12453] 7→ [31245]

[12354] 7→ [41235]

[12345] 7→ [51234]

The bijection exposes the similarity between [321]-avoiding v-unimodal
permutations and [321]-avoiding unimodal permutations. Just as the [321]-
avoiding unimodal permutations are determined by their last element, the
[321]-avoiding v-unimodal permutations are determined by their first.

Proposition 14. If q = [q1 . . . qn] is a v-unimodal [321]-avoiding permuta-
tion, then it is uniquely determined by q1.

Proof. Let q = [q1 . . . qn] be a v-unimodal [321]-avoiding permutation. Then,
f−1(q) = [q2 . . . qnq1] is a [321]-avoiding unimodal permutation, and by Theo-
rem 6 it is uniquely determined by q1, so f◦f−1(q) = q is uniquely determined
by q1.

Proposition 15. A v-unimodal [321]-avoiding permutation q = [q1q2 . . . qn]
has q2 < q3 < · · · < qn.

Proof. Let q = [q1 . . . qn] be a v-unimodal [321]-avoiding permutation. Then,
f−1(q) = [q2 . . . qnq1] is a [321]-avoiding unimodal permutation, and [q2 . . . qnq1]
has q2 < q3 < · · · < qn by Proposition 5.

V-unimodal permutations avoid the size 3 non-identity unimodal [321]-
avoiding permutations.

Theorem 16. A permutation, p, is {[321], [231], [132]}-avoiding if and only
if p is [321]-avoiding and v-unimodal.

Proof. Suppose that p = [p1p2 . . . pn] is a [321]-avoiding permutation. First,
notice that if p2 < p3 < . . . pn, then p1 < p2 or p1 > p2, so in either case
p is v-unimodal by definition. Now, suppose p also avoids {[231], [132]}.
Also, suppose to the contrary that p is not v-unimodal. Then, there are
i, j ∈ {2, . . . , n}, i < j, such that qi > qj. Consider the pattern q1qiqj. Then,
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the pattern either has q1 < qi > qj which is a [231] or [132] occurrence, or
q1 > qi > qj which is a [321]-occurrence. Thus, p has p1 > p2 < p3 < . . . pn,
implying p is v-unimodal.

Now suppose p is a v-unimodal [321]-avoiding permutation. Then, Propo-
sition 15 implies p2 < p3 < . . . pn, so p2p3 . . . pn avoids [231] and [132]. Fur-
thermore, in p = f ◦ f−1(p), p1 > p2 < p3 < . . . pn or p1 < p2 < p3 < . . . pn,
so [231] nor [132] occur in p. Thus, p avoids [231] and [132]. Therefore, a per-
mutation, p, is {[321], [231], [132]}-avoiding if and only if p is [321]-avoiding
and v-unimodal.

4 A Generalization of Unimodal Permutations

that Avoid [321]

The total number of unimodal permutations of size n can be found by count-
ing how many avoid patterns of the type [m(m− 1 . . . 321)] for each m. The
structure of the [321]-avoiding unimodal permutations generalizes so it can
help count how many of them avoid [m(m− 1 . . . 321)] for each m. Knowing
how many unimodal permutations of size n avoid [m(m − 1) . . . 321] helps
count the total number of unimodal permutations of size n, which is 2n−1.

Definition 17. Let p = [p1p2 . . . pn] . The pi-decrease of p is the maximal
decreasing subsequence pipi+1pi+2 . . . pd.

For example, the 3-decrease of [123] is 3 and the 6-decrease of [632451]
is 632. The n-decrease of a unimodal permutation helps check if a unimodal
permutation contains an instance of [m(m− 1) . . . 321].

Proposition 18. Let p be a unimodal permutation of size n, and fix m ≤ n.
Then p avoids [m(m − 1) . . . 321] if and only if the n-decrease of p has size
less than m.

Proof. Let p = [p1p2 . . . pn] be a unimodal permutation of size n that has
an n-decrease of size l < m, with n ≥ m, and m fixed. The result is
clear for e, so let p 6= e. Since p is unimodal and p 6= e, the n-decrease
of p is n . . . pn by definition. Therefore, pn−l+1 = n. Hence, p1 < p2 <
· · · < pn−l+1 = n. It follows that a decreasing subsequence has at most one
element of {p1, . . . , pn−l+1}. By unimodality, n = pn−l+1 > pn−l+2 > · · · > pn,
so all other elements of a decreasing subsequence are in {pn−l+2, . . . , pn}.
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Furthermore, there are l − 1 elements in {pn−l+2, . . . , pn}, so a decreasing
subsequence in p has size at most l. Thus, p avoids [m(m− 1) . . . 321].

Suppose that p avoids [m(m − 1) . . . 321]. The definition of n-decrease
implies it is the maximal decreasing subsequence of p. Since [m(m−1) . . . 321]
is size m, p avoiding [m(m − 1) . . . 321] implies the n-decrease has size less
than m. Therefore, p avoids [m(m− 1) . . . 321] if and only if the n-decrease
of p has size less than m.

Theorem 19. Let n ≥ m. The number of unimodal permutations of size n
that have an n-decrease of size m is

(
n−1
m−1

)
.

Proof. Let n and m be fixed, n ≥ m, and p = [p1p2 . . . pn] be a unimodal
permutation of size n with an n-decrease of size m. Since the n-decrease
of p is n . . . pn and has size m it follows pn−m+1 = n, so m − 1 elements
of {1, . . . , n − 1} need to be chosen and arranged in decreasing order to
form pn−m+2 . . . pn. There are

(
n−1
m−1

)
ways to do so. The remaining n − m

elements must be arranged in increasing order to form p1p2 . . . pn−m. By the
construction, both p1p2 . . . pn−m and pn−m+2 . . . pn are unique. Therefore, the
number of unimodal permutations of size n that have an n-decrease of size
m is

(
n−1
m−1

)
.

Theorem 20. The number of unimodal permutations of size n that avoid
[m(m− 1) . . . 321] with m ≥ 2 is

m∑
k=2

(
n− 1

k − 2

)
=

m−2∑
j=0

(
n− 1

j

)
.

Proof. Fix n and m with m ≥ 2. Consider k with 2 ≤ k ≤ m. If
a permutation avoids [k . . . 21], Proposition 18 implies its n-decrease has
size less than k and k ≤ m, so Proposition 18 implies the permutation
also avoids [m(m − 1) . . . 321]. Hence, by Theorem 19, there are

(
n−1
k−2

)
uni-

modal, [m(m−1) . . . 321]-avoiding permutations with n-decrease of size k−1.
When k = 2, the permutation that avoids [21] is the identity permuta-
tion. Therefore, the number of unimodal permutations of size n that avoid
[m(m− 1) . . . 321] with m ≥ 2 is

m∑
k=2

(
n− 1

k − 2

)
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and by reindexing with j = k − 2,

m∑
k=2

(
n− 1

k − 2

)
=

m−2∑
j=0

(
n− 1

j

)
.

Corollary 21. The number of unimodal permutations of size n is 2n−1.

Proof. Theorem 20 implies the number of unimodal permutations of size n
that avoid [(n + 1)n . . . 321] is

n−1∑
j=0

(
n− 1

j

)
= 2n−1.

5 A Bijection from Unimodal Permutations

onto V-unimodal Permutations

Corollary 21 implies there is a bijection between unimodal permutations of
size n and the subsets of {1, . . . , n − 1}. There is also a bijection from
{2, . . . , n} onto v-unimodal permutations of size n.

Definition 22. Let Un be the set of all unimodal permutations of size n
and P({1, . . . , n − 1}) be the power set of {1, . . . , n − 1}. Define f : Un →
P({1, . . . , n−1}) as follows: If p is a unimodal permutation with n-decrease
npdpd+1 . . . pn, then f(p) = {pd, pd+1, . . . , pn}.

Definition 23. Let f1 : P({1, . . . , n− 1})→ Un be defined as follows: Let
S ∈ P({1, . . . , n − 1}), and denote the elements of S by pn−|S|+1, . . . , pn

so pn−|S|+1 > pn−|S|+2 > · · · > pn. Then, f1(S) = [p1p2 . . . npn−|S|+1 . . . pn]
where p1 < p2 < · · · < n, and {p1, p2, . . . , pn−|S|−1} = {1, . . . , n− 1} − S.

The function f is a bijection with f1 being f ’s inverse. This bijection takes
a unimodal permutation of size n to the subset of {1, . . . , n−1} consisting of
all entries in the permutation that are to the right of n. Also, given a subset
S of {1, . . . , n−1}, the bijection takes S to the unique unimodal permutation
of size n whose n-decrease consists of all elements in {n} ∪ S. For example:
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Unimodal → subsets of {1, 2, 3}

[1234] 7→ ∅

[2341] 7→ {1}

[1342] 7→ {2}

[1243] 7→ {3}

[3421] 7→ {2, 1}

[2431] 7→ {3, 1}

[1432] 7→ {3, 2}

[4321] 7→ {3, 2, 1}

Theorem 24. f : Un →P({1, . . . , n− 1}) is a bijection.

Proof. Let p ∈ Un, and npdpd+1 . . . pn be the n-decrease of p.

f1 ◦ f(p) = f1({pd, pd+1, . . . , pn}) (by definition of f)

= [p1 . . . pd−2npdpd+1 . . . pn] (by definition of f1)

= p (1)

because p is the only unimodal permutation with npdpd+1 . . . pn as its n-
decrease by the proof of Theorem 19.
Let S ∈P({1, . . . , n−1}). As in the definition of f1, S = {pn−|S|+1, . . . , pn},
so

f ◦ f1(S) = f([p1p2 . . . npn−|S|+1 . . . pn]) (by definition of f1)

= {pn−|S|+1, . . . , pn} (by definition of f)

= S (2)

Thus, f1 ◦ f = idUn→Un and f ◦ f1 = idP({1,...,n−1})→P({1,...,n−1}), so f1 = f−1.
Therefore, f is a bijection.
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There is a similar bijection for v-unimodal permutations. Note that
with v-unimodal permutations, the decrease taken from the first element
will be used. The definition of v-unimodal permutation implies that if
q = [q1q2 . . . 1 . . . qn] is a v-unimodal permutation then the q1-decrease is
q1q2 . . . 1.

Definition 25. Let Vn be the set of all v-unimodal permutations of size n and
P({2, . . . , n}) be the power set of {2, . . . , n}. Define g : Vn →P({2, . . . , n})
as follows: If q is a v-unimodal permutation with q1-decrease q1q2 . . . qd1, then
g(q) = {q1, q2, . . . , qd}.

Definition 26. Let
g1 : P({2, . . . , n}) → Vn be defined as follows: Let S ∈P({2, . . . , n}), and
arrange the elements of S in decreasing order, and in that order label them
q1, . . . , q|S| respectively, so q1 > q2 > · · · > q|S|. Then, S = {q1, . . . , q|S|}
and g1(S) = [q1q2 . . . q|S|1q|S|+2 . . . qn] where q|S|+2 < q|S|+3 < · · · < qn, and
{q|S|+2, . . . , qn} = {2, . . . , n} − S.

Lemma 27. If q is a v-unimodal permutation of size n, then q is the only
v-unimodal permutation with q1q2 . . . 1 as its q1-decrease.

Proof. Let q be a v-unimodal permutation of size n, with n fixed. Let qd = 1.
Then, d− 1 elements of {2, . . . , n} must be chosen and arranged in decreas-
ing order to form q1q2 . . . qd−1. Arrange the remaining n − d elements of
{2, . . . , n} in increasing order to form qd+1 . . . qn. The decreasing order on
{q1, q2, . . . qd−1, 1} is unique, and the increasing order on {qd+1, . . . , qn} is
unique, so by construction, q is unique. Therefore, if q is a v-unimodal per-
mutation of size n, then q is the only v-unimodal permutation with q1q2 . . . 1
as its q1-decrease.

The function g is a bijection which works similarly to f . The bijection,
g, takes a v-unimodal permutation of size n to the subset of {2, . . . , n} that
consists of all entries in the permutation that are to the left of 1. The proof
that g is a bijection uses arguments similar to the ones used in the proofs of
Theorem 24 and Lemma 27 except that instead of forming subsets using the
n-decrease, it forms them using the q1-decrease. For example:

V-unimodal → subsets of {2, 3, 4}

[1234] 7→ ∅
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[2134] 7→ {2}

[3124] 7→ {3}

[4123] 7→ {4}

[3214] 7→ {2, 3}

[4213] 7→ {2, 4}

[4312] 7→ {3, 4}

[4321] 7→ {4, 3, 2}

In order to give a bijection from Un onto Vn that corresponds the n-
decrease with the q1-decrease, a bijection from P({1, . . . , n−1}) onto P({2, . . . , n})
is needed. This bijection will give a bridge between P({1, . . . , n − 1}) and
P({2, . . . , n}), which helps relate f and g to form a bijection from Un onto
Vn.

Definition 28. Define t : P({1, . . . , n− 1})→P({2, . . . , n}) as follows:
If S ∈P({1, . . . , n− 1}) ∩P({2, . . . , n}), then t(S) = S
If 1 ∈ S ∈P({1, . . . , n− 1}), then t(S) = (S − {1}) ∪ {n}

The function t is also a bijection with an inverse that replaces 1 with n
and leaves the other elements in {2, . . . , n} alone. For example:

subsets of {1, 2, 3} → subsets of {2, 3, 4}

∅ 7→ ∅

{1} 7→ {4}

{2} 7→ {2}

{3} 7→ {3}

{2, 1} 7→ {2, 4}

{3, 1} 7→ {3, 4}
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{2, 3} 7→ {2, 3}

{1, 2, 3} 7→ {2, 3, 4}

It follows that g−1◦t◦f : Un → Vn is a composition of bijections, which is
a bijection from the size n unimodal permutations onto the size n v-unimodal
permutations. For example, the bijection g−1 ◦ t ◦ f does the following:

Unimodal 7→ subsets of {1, 2, 3} 7→ subsets of {2, 3, 4} 7→ V-unimodal

[1234] 7→ ∅ 7→ ∅ 7→ [1234]

[2341] 7→ {1} 7→ {4} 7→ [4123]

[1342] 7→ {2} 7→ {2} 7→ [2134]

[1243] 7→ {3} 7→ {3} 7→ [3124]

[3421] 7→ {2, 1} 7→ {4, 2} 7→ [4213]

[2431] 7→ {3, 1} 7→ {4, 3} 7→ [4312]

[1432] 7→ {3, 2} 7→ {3, 2} 7→ [3214]

[4321] 7→ {3, 2, 1} 7→ {4, 3, 2} 7→ [4321]

Since g−1 ◦ t ◦ f is a bijection, Corollary 21 implies,

Theorem 29. The number of v-unimodal permutations of size n is 2n−1.

Proof. By Corollary 21 the number of unimodal permutations of size n is
2n−1. Since g−1 ◦ t ◦ f : Un → Vn is a bijection from the unimodal permu-
tations of size n onto the v-unimodal permutations of size n, the number of
v-unimodal permutations of size n is 2n−1.

The bijection g−1 ◦ t ◦ f preserves some of the structure in unimodal per-
mutations that made it possible to count how many avoid [m(m−1) . . . 321].
Hence, the v-unimodal permutations have similar avoidance properties.

Lemma 30. Let Un,m be the set of all unimodal permutations of size n with
n-decrease of size m, and Vn,m be the set of all v-unimodal permutations
q = [q1 . . . qn] with q1-decrease of size m. Then, g−1 ◦ t ◦ f(Un,m) = Vn,m
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Proof. Let n and m be fixed. Let p ∈ Un,m, and q = g−1 ◦ t ◦ f(p). Then,
f(p) is the subset of {1, . . . , n− 1} consisting of the entries in p that are to
the right of n. Since the n-decrease has size m, the cardinality of f(p) is
m− 1. From the definition of t, it follows t ◦ f(p) also has cardinality m− 1.
Hence, the q1-decrease of q is also size m, so g−1 ◦ t ◦ f(Un,m) ⊆ Vn,m. The
proof that Vn,m ⊆ g−1 ◦ t ◦ f(Un,m) is a similar argument using the inverse of
g−1 ◦ t ◦ f). Therefore, g−1 ◦ t ◦ f(Un,m) ⊆ Vn,m and Vn,m ⊆ g−1 ◦ t ◦ f(Un,m)
imply g−1 ◦ t ◦ f(Un,m) = Vn,m.

Theorem 31. Let n ≥ m. The number of v-unimodal permutations, q =
[q1 . . . qn] of size n with q1 decrease of size m is

(
n−1
m−1

)
.

Proof. The result is implied by Lemma 30 and Theorem 19.

Proposition 32. Let q be a v-unimodal permutation of size n and fix m ≤ n.
Then q = [q1 . . . qn] avoids [m(m− 1) . . . 321] if and only if the q1-decrease of
q has size less than m.

Proof. The proof is similar to the proof of Proposition 18.

Theorem 33. The number of v-unimodal permutations of size n that avoid
[m(m− 1) . . . 321], m ≥ 2, is

m∑
k=2

(
n− 1

k − 2

)
=

m−2∑
j=0

(
n− 1

j

)
.

Proof. The proof is similar to the proof of Theorem 20.
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