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ABSTRACT.
Permutation polytopes are polytopes whose vertices are determined by a representation

of a permutation group, such as the cyclic group on n elements or the dihedral group on
n elements. These polytopes appear in many different applications, yet little research has
been done on any save the Birkhoff polytope, the permutation polytope whose vertices
are based on the symmetric group on n elements. Our research focuses on determining
the volume of some of these less-studied permutation polytopes. These volumes can be
determined by finding the Ehrhart polynomial of a given polytope, a polynomial in t which
counts the number of integer points contained within the tth dilation of the polytope. We
also consider the polytopes associated to the automorphism groups of trees and rigid graphs.
Our results include Ehrhart polynomials and volumes of the polytopes corresponding to
cyclic and dihedral groups, a method of calculating the Ehrhart polynomial of the set of
permutations of a given binary tree, a formula for the normalized volume of polytopes
of Frobenius groups, a proof that the polytopes of Frobenius groups are two-level, and a
proof that the polytopes associated to the even permutation groups on n elements are not
two-level for n greater than five, thus characterizing the complexity of the polytopes of
Frobenius groups and even permutations.
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CHAPTER 1

Convex Polytopes

Some basic knowledge of convex polytopes and group theory is required when research-
ing permutation polytopes. This chapter briefly reviews the information needed from the
study of convex polyhedra, while the next chapter deals with the group theory used in the
research, and the final introductory chapter covers the graph theory concepts that were
used. This chapter is largely paraphrased from the book Actually Doing It by Jesús de
Loera; see [5] for a much more detailed treatment of the subject.

Definition 1.0.1. A set S ⊂ Rn is called convex if and only if for every s1 and s2 ∈ S,
the segment joining s1 to s2 is completely contained in S. In other words, S is convex if
and only if for s1 and s2 ∈ S, 0 ≤ λ ≤ 1, λs1 + (1− λ)s2 ∈ S for all choices of λ.

The definition of convexity leads to the definition of a convex hull:

Definition 1.0.2. The convex hull of a set S, conv(S), is the intersection of all convex
sets containing S; equivalently, it is the smallest convex set which contains S.

The convex hull of a set is thus the set itself combined with the interior of the set,
so that a line segment joining any two points in the convex hull is completely contained
within it. This is easily seen in Figure 1. The affine hull of a set S, aff(S), is very similar.

Definition 1.0.3. A set S ⊂ Rn is called affine if and only if for every s1 and s2 ∈ S,
the line passing through s1 and S − 2 is completely contained in S. In other words, S is
affine if and only if for s1 and s2 ∈ S, α ∈ R, αs1 + (1 − α)s2 ∈ S for all choices of α.
The affine hull of a set S, aff(S), is the smallest affine set containing S.

Definition 1.0.4. A polytope is the convex hull of a finite set of points in Rn.

A wide variety of objects fit this definition. conv(S) in Figure 1 is a polytope. A cube
is a polytope, as is a tetrahedron or a dodecahedron. It is important to note the limitation
on the size of the set - requiring the set of points to be finite does rule out curved objects,
such as ovals or cylinders, from the set of polytopes.

The research presented in the later chapters of this thesis is focused on the Ehrhart
polynomials associated to various polytopes. The definition of an Ehrhart polynomial relies
on the definition of a lattice point.
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2 1. CONVEX POLYTOPES

Figure 1. A set S on the left and its convex hull, conv(S), on the right.

Definition 1.0.5. A lattice point of a polytope is an integer point contained in the
polytope. A lattice polytope is a polytope whose vertices are all integer points.

If a polytope is a lattice polytope, each vertex is a lattice point, as well as any other
integer points inside the polytope or along its edges. For a two-dimensional polytope placed
on a grid, such as the polytope in Figure 2, the lattice points are the corners of the grid
included in or on the edge of the polytope.

Figure 2. A polytope with lattice points marked in black.

It is possible to divide a d-dimensional grid into d-dimensional unit cubes, each one
centered on a lattice point. Then the number of lattice points contained in a polytope
becomes an estimate of the volume of the polytope. Of course, if the grid is made finer,
this estimate becomes more and more precise. This process is very similar to the thinning
of rectangles used to estimate area in Riemann integration.

The volume of a polytope is of great interest, so the number of lattice points within a
given polytope is also important. Refining the grid is equivalent to dilating the polytope
in relation to its grid. The Ehrhart polynomial assocated to a d-dimensional polytope is
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a polynomial of degree d which takes as input a dilation of the polytope and produces as
output the number of lattice points contained in that dilation. So if we dilate a polytope
by a factor of four, the associated Ehrhart polynomial takes four as an input and outputs
the number of lattice points contained in the polytope when dilated by a factor of four.
The Ehrhart polynomial has another highly useful property.

Theorem 1.0.6. The leading coefficient of the Ehrhart polynomial corresponds to the
volume of the original polytope.

So if we are able to find the Ehrhart polynomial of a polytope, we immediately know
the volume, as well as the number of lattice points of any given dilation. Unfortunately,
finding the Ehrhart polynomial of a polytope is not always easy, and some polytopes do
not have proper Ehrhart polynomials at all, so we require a different approach to finding
volume.

This alternate approach uses a method called triangulation. The idea is to split a given
polytope into simplices (d-dimensional polytopes with d + 1 vertices) and then calculate
the volume of those, as there are several formulas for finding the volume of a simplex, even
a high-dimensional one. The sum of the simplices is the same as the volume of the original
polytope.

Figure 3. A two-dimensional triangulation.

These triangulations are an extremely important tool, and there is a great deal of
research that has been done to further characterize various types of triangulations. A
definition arising from this research regards the unimodularity of triangulations.

Definition 1.0.7. A lattice simplex S with vertices v1, . . . , vm is unimodular if the
vectors vm−v1, vm−1−v1, . . . , v2−v1 form a basis for the lattice aff(S)∩Zd. A triangulation
of a lattice polytope is a unimodular triangulation if all its maximal dimensional simplices
are unimodular.

This definition comes directly from [9], a graduate text devoted to various methods
of triangulation. There is a much more in-depth look at unimodularity in that text, but
the basic definition is sufficient for the research presented in this thesis. The idea of
unimodularity is that one vertex (v1 in the definition) is fixed as the origin. Then the
remaining vertices are recalculated using v1 as the new origin, producing the vectors vm−
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v1, vm−1 − v1, . . . , v2 − v1. If these vectors form a basis for the lattice, then the simplex is
unimodular. A lattice simplex is just a simplex with integer vertices.

Triangulations and Ehrhart polynomials are different approachs to finding the volume
of a polytope, but they are actually very closely related, as the following theorem (also
from [9]) demonstrates.

Theorem 1.0.8. If a convex d-dimensional lattice polytope P has a unimodular triangu-
lation T with f-vector (f0, . . . , fd), where fi indicates the number of i-dimensional simplices
in the triangulation, then the Ehrhart polynomial iP (t), with t ∈ Z the dilation factor, is
given by

∑d
k=0

(
t−1
k

)
fk.

This theorem makes it possible to calculate the Ehrhart polynomial of a polytope with
just its unimodular triangulation, which greatly simplifies the process. It also makes it
very easy to find the volume of unimodular simplices, since the simplex itself is its own
unimodular triangulation. We use this theorem later in this thesis to find the volumes of
a series of high-dimensional unimodular simplices.

The proofs of Theorem 1.0.8 can be found in [9], along with a much more detailed look
at the process of triangulation.

There is an unfortunate complication to these volume calculations; volumes are depen-
dent on the lattice in which they originate. A polytope may have a certain volume in the
lattice spanned by the standard unit vectors and a different volume in a different lattice,
in particular the lattice spanned by its vertices. Figure 4 shows an example of this.

In order to deal with this discrepancy, we specify the lattice we use to calculate the
volumes of our polytopes. Since the differences hinge upon the use of different lattices,
the type of volume found through the Ehrhart polynomial or by finding a unimodular
triangulation depends on the lattice used in the Ehrhart polynomial or the one used to
determine unimodularity. If we find the volume of a polytope in the lattice generated by
its own vertices, we refer to it as the polytope’s normalized volume. If instead we use
the standard lattice to calculate the volume, we refer to the result as the volume of the
polytope, as that is the more standard definition of volume.

Figure 4. A polytope with volume 4 in the standard lattice and volume 1 in its
own lattice.
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Some of the convex polytopes studied in this thesis proved to be extremely complex.
Rather than determining a specific Ehrhart polynomial for these polytopes, we have results
relating to their complexity. One of the ways to describe the complexity of a polytope is
to determine whether it is two-level or not.

Definition 1.0.9. A polytope is two-level if all of its vertices can be contained within
two translations of a plane. In other words, P is two-level if all of its vertices are contained
in {x : a · x− b = 0} ∪ {x : a · x− c = 0}.

If a polytope is two-level, there are several methods that can approximate it and be
used to gain an idea of its structure. If it is not, then these methods are not available, and
its structure is often much more difficult to determine.





CHAPTER 2

Group Theory

The research work collected in this thesis requires the information on convexity in the
previous chapter, but it also involves a working knowledge of group theory, as covered in
this chapter.

Group theory is the study of groups, which are defined below. For a more thorough
discussion of the topic, see [10].

Definition 2.0.10. A group G is a set with some operation ◦ such that:
i. There exists some element I ∈ G such that, for any other g ∈ G, I ◦g = g◦I = g.
ii. For every g ∈ G, there is some other element g−1 ∈ G such that g ◦ g−1 =
g−1 ◦ g = I.

iii. For any two elements g ∈ G and h ∈ G, h ◦ g ∈ G and g ◦ h ∈ G.

The operator ◦ can be almost anything, although it is most commonly addition, mul-
tiplication, or, in the case where G is a set of functions, composition. All that is required
is that once an operation is determined, the set meets the three requirements above. The
first requirement is the “identity” requirement. Note that the actual value of I is based on
the operation ◦. For example, if ◦ is addition, I is 0. If ◦ is multiplication, I is 1, and if ◦
denotes function composition, I is f(x) = x.

The second and third requirements allow an entire group to be produced from a single
element or a set of elements, known as the generator or generators of the group. If a single
element g and a group operation ◦ are given, the group must include an identity element
and gn for all n, since g ◦g is a composition within the group. Once those are included, the
inverse of every power of g must be added, which is the same as adding the powers of g−1.
If g has finite order - that is, if gn = I for some finite n - then the resulting group is finite.
If not, the group is infinite. If more than one element is given, the inverse and powers of
every element must be included, as well as the composition of elements with each other
and the inverses of those compositions.

In order to complete the presentation of our research, we need to include a description
of subgroups as well.

Definition 2.0.11. A subgroup of a group G is a set H ⊂ G such that H is itself a
group.

7



8 2. GROUP THEORY

Every group contains the trivial subgroup {I}, where I is the group’s identity element.
Every group is also a subgroup of itself. If a group has a subgroup that is not one of these
trivial cases, it is called a proper subgroup.

Subgroups can be used with their group to produce other sets.

Definition 2.0.12. A conjugate of a subgroup H of a group G is a set of the form
gHg−1, where g ∈ G. A normal subgroup is a subgroup such that gHg−1 = H for all
g ∈ G.

Definition 2.0.13. A permutation group is a group G such that every g ∈ G is a
permutation.

Permutation groups could be permutations of anything, but they are generally writ-
ten as permutations on the numbers 1 through n, with n the number of elements being
permuted. The set of all permutations of n elements, Sn, is a permutation group.

All permutations can be written in cycle notation. Take some given permutation g. g
can then be written as (x1 x2 . . . xm)(xm+1 . . . xn)(. . .), where g takes x1 to x2, x2 to x3,
..., xm−1 to xm, xm to x1, and so on. Disjoint cycle notation is the standard form of cycle
notation, where a permutation g is written as the product of cycles that do not overlap -
that is, that are disjoint. g = (1 2)(2 3) is not written in disjoint cycles, but g = (1 3)(2 4)
is.

Permutations can also be written in matrix notation. This consists of creating an n×n
matrix and numbering the rows and columns 1 through n. Every entry is either a 1 or a 0,
and each row and column has exactly one 1 and n− 1 0’s. The first column has a 1 in the
ith row - that indicates that 1 is mapped to i. The second column’s 1 determines where 2
goes, and so on. This notation is the form used to prove some of our results. Matrix form
can also be easily converted into vector notation, which consists of converting the matrix
into a vector by writing each row of the matrix in order, so V = (R1 R2 . . . Rn). This
form was used in several of the programs we used to collect our data, and it is essential to
the concept of permutation polytopes.

Definition 2.0.14. A permutation polytope is a polytope associated to some permu-
tation group, where the vertices of the polytope are the elements of the permutation group
in vector notation.

These polytopes are precisely the objects we have focused our research on.
Groups can be combined by taking various sorts of group products. We use three of

these products in our research: the direct product, the semidirect product, and the wreath
product.

Definition 2.0.15. The direct product of two groups G and H is the group G×H =
{(g, h) : g ∈ G, h ∈ H}, with (g1, h1) ◦ (g2, h2) = (g1 ◦ g2, h1 ◦ h2) for g1 and g2 in G, h1

and h2 in H.
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For example, consider the two groups G = {1,−1} and H = {(), (1, 2)}, with group
composition multiplication on G and permutation composition on H. Then G × H =
{(1, ()), (1, (1 2)), (−1, ()), (−1, (1 2))}, with (g1, h2) ◦ (g2, h2) = (g1 · g2, h1 ◦ h2) and group
identity (1, ()).

In order to define the semidirect product of groups, we must introduce the idea of a
group homomorphism.

Definition 2.0.16. A group homomorphism is a function Φ mapping a group H onto
a group G such that Φ(h1 ◦ h2) = Φ(h1) ◦ Φ(h2) for all h1 and h2 in H.

We can define a group homomorphism between our earlier groups H = {(), (1 2)} and
G = {1,−1} by declaring Φ(()) = 1 and Φ((1 2)) = −1. Then we have Φ(() ◦ (1 2)) =
Φ((1 2)) = −1 = 1 · −1 = Φ(()) · Φ((1 2)).

Definition 2.0.17. Consider some group homomorphism Φ from a group H to a group
G. The semidirect product of G by H is the group GoH = {(g, h) : g ∈ G, h ∈ H} with
group composition defined as (g1, h1) ◦ (g2, h2) = (g1 ◦ Φ(h1) ◦ g2, h1 ◦ h2).

So for our example homomorphism Φ and our groups G and H, G o H = G × H,
but whereas in G × H (1, (1 2)) ◦ (−1, ()) = (1 · −1, (1 2) ◦ ()) = (−1, (1 2)), in G o H
(1, (1 2)) ◦ (−1, ()) = (1 · Φ((1 2)) · −1, (1 2) ◦ ()) = (1, (1 2)).

Definition 2.0.18. Consider a permutation group H on n elements. The wreath prod-
uct G oH of a group G by H is defined as the semidirect product of the direct product of n
copies of G by H; that is, (G×G× . . .×G) oH.

Again consider our groups G and H with the group homomorphism Φ from H onto G.
The wreath product ofG byH is then (G×G)oH, which is {(1, 1), (1,−1), (−1, 1), (−1,−1)}
oH.

Every permutation can be decomposed into transpositions, which are permutations that
exchange exactly two terms. The permutation that takes 1 to 5 and vice versa ((1 5)) is a
transposition, as is the permutation (4 17). These transpositions (and any permutations)
can be composed, so the transposition (1 2), which takes 1 to 2 and 2 to 1, composed with
the transposition (2 3), which takes 2 to 3 and 3 to 2, produces (1 3 2), which takes 1 to
3, 2 to 1, and 3 to 2.

Definition 2.0.19. The set of all even permutations on n elements, An, is the set of
permutations that are products of an even number of transpositions.

We used An for part of our research, but there are three other very famous permutation
groups that are central to the research for this thesis: the cyclic group, the dihedral group,
and Frobenius groups.

Definition 2.0.20. The cyclic group on n elements is the group generated by the
permutation (1 2 . . . n). It can be thought of as the set of clockwise rotations of a regular
n-gon with vertices numbered 1 through n clockwise.
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Definition 2.0.21. The dihedral group on n elements is the group generated by (1 2 . . . n)
together with (1 n)(2 n− 1)(. . .)(bn+1

2 c d
n+1

2 e). It can be thought of as the set of clockwise
rotations of a regular n-gon with vertices numbered 1 through n clockwise together with the
reflections of that n-gon onto itself across axes through the n-gon. There is an axis through
each vertex of the n-gon and one through the center of each side.

Figure 1. The axes of reflection of a pentagon on the left and a hexagon on the right.

There are two important concepts used when researching permutation groups - the fix
of a permutation, and its support.

Definition 2.0.22. The fix of a permutation g, denoted fix(g), is the set of val-
ues fixed by g. For example, if g is the permutation on n elements (3 6 8), fix(g) =
{1, 2, 4, 5, 7, 9, . . . , n}.

Definition 2.0.23. The support of a permutation g, denoted supp(g), is the set of
values that are not fixed by g. For example, if g is the permutation on n elements (3 6 8),
supp(g) = {3, 6, 8}. The support is the complement of the fix, so {1, 2, . . . , n}/fix(g) =supp(g),
and {1, 2, . . . , n}/supp(g) =fix(g).

With these definitions, we can now define Frobenius groups.

Definition 2.0.24. A Frobenius group G is a permutation group on n elements con-
taining a subgroup H such that for all g ∈ G H, H ∩ gHg−1 = I. The subgroup H is
called the Frobenius complement, and the identity element together with all g ∈ G such
that fix(g) = {} form a normal subgroup, the Frobenius kernal. This second subgroup is
denoted by N . Furthermore, G is the direct product of H and N .

The last definition relating to group theory is a term introduced in [1]; it became
important as we began to more closely analyze the permutation polytopes of the groups
we researched.
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Definition 2.0.25. Let g = z1 ◦ z2 ◦ · · · ◦ zr be the disjoint cycle decomposition of
g ∈ Gn. h is a subelement of g if there is a subset I ⊆ {1, 2, . . . , r} such that h = Πi∈Izi.
If the only subelements of g are I and g itself, g is called indecomposable.

In the process of proving one of our results, we also used the following theorem. The
proof relies on the definition of indecomposability, the definition of a group, and the defi-
nition of the fix and the support of an element.

Theorem 2.0.26. If an element g in some permutation group G is decomposable into
two group elements h and h′, then I+g = h+h′, where + denotes addition of the associated
permutation matrices.

Proof. Let g = z1◦z2◦· · ·◦zm, with zi disjoint cycles. If g is decomposable into h and
h′, then without loss of generality h = z1◦z2◦· · ·◦zk and h′ = zk+1◦zk+2◦· · · zm. Consider
the support of g. supp(h) and supp(h′) must be included in supp(g), but since h and h′ are
by definition disjoint, supp(h) and supp(h′) must be disjoint as well. Thus, the points fixed
by h are either fixed by g as well or in supp(h′), and vice versa. So fix(h)∩fix(h′) = fix(g),
and similarly fix(h)∪ fix(h′) = fix(I) = G. Then h+ h′ includes all of g, but also a copy of
I, since h fixes the support of h′ and vice versa. �





CHAPTER 3

Graph Automorphisms

In the course of our research, we spent some time collecting data on graph automor-
phisms, which are also related to our later work on permutation polytopes. These are very
specific types of permutations of specific types of graphs, as described in this chapter. For
more information on graph theory, see [2] and [11].

Definition 3.0.27. A graph is a collection of points, called vertices, and edges, which
connect vertices to each other or to themselves. A simple graph is a graph with no loops
or double edges between any two vertices.

Figure 1. A simple graph on the left and two non-simple graphs to the right.

Definition 3.0.28. A path is a set of n vertices connected one to another in a line by
n− 1 edges. The nodes at either end are the endpoints of the path.

Definition 3.0.29. A cycle is a path in which the endpoints are the same.

We focused our research exclusively on simple graphs, and our work on permutation
polytopes is centered on a particular type of simple graph known as a tree.

Definition 3.0.30. A tree is a simple graph such that every vertex is connected to
every other vertex by a path and there are no closed cycles formed by edges.

13



14 3. GRAPH AUTOMORPHISMS

Figure 2. A tree on the left and a non-tree on the right, with its closed cycle marked.

Figure 3. A tree on the left, redrawn on the right to highlight the parent-child structure.

Trees can be drawn such that one vertex, or node, is at the top, with all edges going
down and each subsequent node below the previous one. This allows us to refer to child
and parent nodes, where a child is the node directly below its parent.

This definition of parent and child nodes allows us to add another definition relating
to trees.

Definition 3.0.31. A binary tree is a tree where each node has at most two children.

Graphs are a rather simple concept, but there are all sorts of interesting ideas associated
to them, such as the notion of a graph automorphism.

Definition 3.0.32. A graph automorphism is a permutation of the vertices of a graph
that takes the graph to itself. A rigid graph is a graph with no automorphisms beyond the
trivial permutation I.

The set of automorphisms of any graph is a group, since applying multiple automor-
phisms maps the graph onto itself, if two vertices can be switched, they can be switched
back, and the trivial automorphism does not change the graph and so acts as the identity.

The automorphisms of non-trees are often difficult to fully determine, but the auto-
morphisms of binary spanning trees turn out to be quite easy to enumerate. If a tree is
rooted at a given vertex, its automorphisms can be fully determined by considering the
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Figure 4. A binary tree on the left and a non-binary tree on the right.

Figure 5. A graph pre-automorphism on the left and post-automorphism on the right.

degree of the nodes on a given level and taking direct products and wreath products of
permutation groups. For example, consider the tree shown in Figure 6.

Figure 6. A binary tree with nodes labeled.
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Start at the lowest level. Nodes 7 and 8 can clearly be mapped to each other, so we
can consider the sets of automorphisms switching those two nodes as S2. Similarly, we can
switch 9 and 10 or 11 and 12. So the automorphism groups of the trees rooted at 4, 5, and
6, say Aut(T4), Aut(T5), and Aut(T6), are all S2. Node 4 cannot be interchanged with any
of the other nodes on its level, so the automorphism group of T2 is just S1×S2, but 5 and
6 can be switched in addition to the permutations on their children. To represent this, we
take a wreath product of permutation groups, The set of automorphisms of the tree rooted
at 3 is exactly Aut(T5)oS2 = S2 o S2. Since T2 cannot be interchanged with T3, the final
set of automorphisms Aut(T1) = (S1 × S2)× (S2 o S2). We used this method of describing
the automorphisms of a binary tree to determine the Ehrhart polynomial of the polytope
associated to the automorphism group of a binary tree.

In order to describe the research done on graph automorphisms, the following two
definitions are necessary as well.

Definition 3.0.33. The valence of a vertex is the number of edges that point is a part
of. A regular graph is a graph where every vertex has the same valence.

Figure 7. A regular graph on the left and and irregular graph on the right.

We collected a great deal of data on rigid graphs with the help of Courtney Dostie
and Mohamed Omar; we also relied on the help of Peter Malkin to work out changes in
the programs we used. One of these programs was nauty (see [12]), which is short for no
automorphisms, yes? This program enabled us to check simple graphs for rigidity. nauty
can also provide the automorphisms of a given graph; however, our focus meant we did not
use this functionality much at all.

Once we had a graph that we knew was rigid, we ran it through a pair of programs,
isomorphism and nulla. The algorithm used in both these programs is explained in [8].
The first of these, isomorphism, produced a series of equations that every non-trivial
automorphism of the graph must satisfy.
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Any automorphism of a given graph is a permutation, since it permutes the vertices of
the graph. The definition of a permutation matrix requires that all entries be either 1 or 0,
and that there be exactly one 1 in each row and each column. These requirements can be
written as a series of equations using the entries of the automorphism permutation matrix
P . P 2

ij − Pij = 0 ensures that every entry is 1 or 0, while
∑n

i=1 Pij = 1 requires that the
jth column sum to 1, and

∑n
j=1 Pij = 1 requires the ith row to sum to 1. These equations

guarantee that the matrix is, in fact, a permutation matrix.
In order for a permutation to be an automorphism of a graph, all edges between vertices

must be preserved. But the permutation matrix contains no information about edges - in
order to code this information in equations, another matrix must be introduced.

Definition 3.0.34. The adjacency matrix A of a graph with n vertices is an n × n
matrix, where Aij = 1 if and only if the vertices i and j share an edge. If i and j do share
such an edge, then Aij = Aji = 1, so A is by necessity symmetric.

Th equation PA = AP forces the permutation matrix to maintain edges between ver-
tices. This equation generates n2 equations, one for each entry in the multiplied matrices.
But this one equation can also generate several other equations.

Theorem 3.0.35. PA = AP implies P kAk = AkP k.

Proof. By assumption, PA = AP . Consider P 2A2. P 2A2 = P (PA)A = P (AP )A =
(PA)(PA) = (AP )(AP ) = A(PA)P = A(AP )P = A2P 2. Larger values of k follow
inductively. �

Finally, since we were most interested in rigid graphs, we wanted to remove the trivial
automorphism from the possible permutation matrices. We checked for this by producing
several different sets of equations, with Pii = 0 for each possible value of i in each set.

After isomorphism produced these sets of equations, we ran the resulting equations
through the second of the pair of programs, nulla. This program produces a certificate
of infeasibility - this certificate proves that the system of equations has no solution. Of
course, this only works for equations produced from rigid graphs, since otherwise there is
a non-trivial solution to those equations; any automorphism produces such a solution.

The certificate of infeasibility is known as a Nullstellensatz certificate. The idea is to
take a system of equations, f1 = f2 = fn = 0, and attempt to find a set of polynomials
{α1, α2, . . . , αn} such that α1f1 + α2f2 + . . . + αnfn = 1. If such polynomials exist, there
is no solution to the original system. The degree of the Nullstellensatz certificate is given
by the maximal degree of αi and corresponds to how difficult the certificate is to obtain.

This work on automorphisms is not directly related to all permutation polytopes, but
it is closely linked to the polytopes associated to spanning trees. Rigid trees, which are
a subset of the rigid graphs we researched, have a permutation polytope of dimension 0,
since they have no automorphisms other than the trivial. Similarly, those of dimension 1
have exactly one automorphism aside from the trivial. With more vertices, the dimension
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becomes much more difficult to predict, but those trees with few automorphisms are closely
related to the rigid graphs we studied with nauty and nulla.



CHAPTER 4

Results

4.1. Cyclic Permutations

The polytopes of the cyclic groups Cn are exactly the permutation polytopes we are
interested in, and they have the advantage of being rather simple objects with a nice
structure. Here we show that all polytopes of cyclic groups have the same structure and
provide a formula for the volume of said polytopes.

Theorem 4.1.1. The polytope of the cyclic group Cn is an (n−1)-dimensional simplex
for all n. Furthermore, the lattice associated to the vertices of this simplex is exactly the
standard lattice.

Proof. To prove that P (Cn) is an (n− 1)-dimensional simplex, it is sufficient to show
that Cn produces exactly n− 1 linearly independent vectors. The group is generated by a
single element, so for each c ∈ Cn, the entire term c is determined by the first column of
the associated permutation matrix. This means that every term must send 1 to a different
value, 1 through n. Now consider each element as a vector, [R1, R2, . . . , Rn], with Ri

the ith row of the matrix. Set one of the elements as the origin - I is the easiest choice
for this. To adjust for this assignment, subtract I from the remaining n− 1 vectors - since
none of these take 1 to 1, this introduces only −1’s. Since each vector takes 1 to a different
term, each one takes a different term to 1 as well - this means that R1 is different for every
element, although it always starts with a −1, contains a single 1, and has 0’s elsewhere.
Since the 1 is in a different place for each element, there is no way to cancel it with a scalar
multiple of a different element, so the coefficients for λ1c1 + λ2c2 + . . .+ λn−1cn−1 = 0 are
all 0. Therefore, there are n− 1 linearly independent vectors in our polytope, and so it is
a simplex.

We now show that the lattice associated to the vertices of the simplex is the standard
lattice. Since the vertices are integral, it is sufficient to show that there are no integer
points strictly inside the polytope P (Cn). Consider a convex combination of the vertices of
P (Cn), λ1(c1)+λ2(c2)+ . . . λn(cn), and assume that this combination is integral. Consider
the first term in this combination. Since each vertex is completely determined by the
location of a single 1 in its first row, the first term of this combination is either 1 or 0, as

19
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there is only one term with a 1 in the first term. If the term is 1, the coefficient of the
identity element must be 1, which forces all the other terms to be 0. If it is 0, the coefficient
of the identity element must be 0. Since our combination is convex, at least one of the
coefficients must be non-zero, and the argument used for the identity element applies to
every other vertex as well. Thus any integral convex combination of the vertices of P (Cn)
is exactly one of the vertices itself, so P (Cn) has no strictly interior integer points. �

The indecomposable elements of a group, as defined in 2.0.25, are at the very least an
interesting subset of the group. However, they are also very closely related to the process
of triangulation mentioned in Chapter 1. The indecomposable elements of a permutation
group are exactly those vertices that share an edge with the origin; this is a direct result
of Theorem 2.0.26, since any decomposable element can be seen as the product of two ele-
ments, and is therefore at least two edges away from the origin. These elements that share
an edge with the origin are highly useful for determining a triangulation of the polytope;
see [6] for more details on this process. As a result of this, identifying the indecompos-
able elements of a permutation group can be a useful initial step towards determining the
volume.

Theorem 4.1.2. Every element in Cn is indecomposable.

Proof. Cn is by definition a group generated by a single element, so where 1 is mapped
to by an element in Cn fully determines that element. Therefore, it is enough to consider
the disjoint cycle of each element that contains 1. If an element g was decomposable in
Cn, there would have to exist another element in Cn that contained the same disjoint cycle
containing 1. But that cycle determines what 1 is mapped to, which in turn determines
exactly one element; that is, exactly the g that was originally chosen. Thus, all elements
of Cn are indecomposable. �

The theorems in Chapter 1 allow us to directly calculate the volume of the associated
polytopes of Cn for all n, as the next theorem demonstrates.

Theorem 4.1.3. The volume of P (Cn) is 1
(n−1)! .

Proof. We prove that P (Cn) is unimodular in the standard lattice directly. Since
the vertices of P (Cn) span exactly the standard lattice, unimodularity will apply to the
standard lattice as well to that associated to P (Cn). Let v1 be the vertex associated to
the identity element of Cn, and then consider vi − v1 for all i from 2 to n − 1. Each vi

has a 1 in a different position in its first n entries, so each vi is linearly independent of
the others. Subtracting v1 does not affect this linear independence, so we end up with
n − 1 linearly independent vectors. Since vi is a lattice point for i between 1 and n − 1
and dim(P (Cn))= n − 1, these vectors form a basis for the intersection of aff(Cn) and
Zn. Thus P (Cn) is unimodular, so in the unimodular triangulation T , fn−1 = 1. If
we then apply the formula given in Theorem 1.0.8, we get iP (Cn)(t) =

∑n−1
k=0

(
t−1
k

)
fk =
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t−1

0

)
f0 +

(
t−1

1

)
f1 + . . .+

(
t−1
n−1

)
fn−1 = (t−1)!

(t−1)!f0 + (t−1)!
(t−2)!f1 + . . .+ (t−1)!

(n−1)!(t−n−2)!fn−1. Although
the expansion of each of these terms is involved, the dimension of each expansion is easy to
see, and the polynomial associated to fn−1 clearly has the greatest dimension. This means
that the leading term of the Ehrhart polynomial is (t−1)!

(n−1)!(t−n−2)! , which has a coefficient
of 1

n−1! ; that is, exactly the volume of the simplex. �

The fact that P (Cn) is a simplex can be used to determine the Ehrhart polynomial of
P (Cn).

Theorem 4.1.4. The Ehrhart polynomial of P (Cn) is
(
t+n−1
n−1

)
.

The proof of this last theorem was found in conjunction with Mohammed Omar and
Jesús de Loera, and can be found in [4].

4.2. Dihedral Permutations

The polytopes associated to the cyclic permutations, while interesting, are almost too
simple to provide a great deal of insight. After charactizing those polytopes, the next step
is to move on to the dihedral permutations, which contain the cyclic groups as subsets.
This produces a slightly more complex polytope, but one that is still small enough to easily
investigate.

Theorem 4.2.1. The dimension of the polytope P (Dn) is (n+ 1) mod 2 + 4bn−1
2 c.

This was proved in[13].
As with the cyclic permutation, a possible entrance into volume is through the in-

decomposable elements, so the first step is to determine the indecomposable elements of
Dn.

Theorem 4.2.2. Every element in Dn for n 6= 4 is indecomposable.

Proof. First consider the case where n > 4. Take any element g in Dn. If g is
decomposable, then I + g = h + h′ for h, h′ ∈ Dn. Now consider the fixed points of any
element in Dn. Other than the identity, every element can be considered as a rotation or a
reflection. Rotations do not fix any points, while reflections fix zero, one, or two, depending
on the axis of reflection and the parity of n. Note also that I + g, in matrix notation, has
at least 1 at every diagonal entry. The diagonal 1’s in the matrix of h are exactly those
elements fixed by h, and the same applies to h′. Therefore, h has at most two 1’s along its
diagonal. But h+h′ must produce at least n 1’s along its diagonal, since I contributes n 1’s
to I+g. h+h′ can have at most 4 diagonal 1’s, so for n > 4, there is no such decomposable
g. Finally, it is easy to see that no element in D3 = {(), (1 2), (2 3), (1 3), (1 2 3), (1 3 2)}
is decomposable into any other elements in the group. �
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D4 turned out to be a strange case - the odd dihedral groups were always fully inde-
composable, as were the even groups of larger size. But the even number of vertices in
D4’s associated square, as well as the small number of them, created a single decomposable
element in the terms.

Theorem 4.2.3. Every element in D4 except (1 3)(2 4) is indecomposable.

Proof. As with D3, this group is small enough that an exhaustive check is easy.
D4 = {(), (1 2 3 4), (1 3)(2 4), (1 4 3 2), (1 3), (2 4), (1 4)(2 3), (1 2)(3 4)}. Clearly
(1 3)(2 4) decomposes into (1 3) and (2 4). Everything else is either one cycle or the
product of disjoint cycles not included in D4. �

We next moved on to examine the Ehrhart polynomial of Dn. This polynomial, as was
mentioned in Chapter 1, provides the volume of the polytope and the surface area, as well
as the number of lattice points contained within a dilation of the polytope by some integer
factor n. We worked on this with Jesús de Loera and Mohamed Omar, and we developed
several results, culminating in the complete classification of the Ehrhart polynomial in the
standard lattice.

Theorem 4.2.4. Let n be an odd positive integer. Then iP (Dn)(t) =

n−2∑
k=0

(
2n
k + 1

)(
t− 1
k

)
+

2n−2∑
k=n−1

((
2n
k + 1

)
−
(

n

k − n+ 1

))(
t− 1
k

)
.

Let n = 2m be an even positive integer. Then iP (Dn)(t) =

m−2∑
k=0

(
2n
k + 1

)(
t− 1
k

)
−

2m−2∑
k=m−1

((
2n
k + 1

)
− 2
(

2n−m
k + 1−m

))(
t− 1
k

)
+

4m−3∑
k=2m−1

((
2n
k + 1

)
− 2
(

2n−m
k + 1−m

)
+
(

2n− 2m
k + 1− 2m

))(
t− 1
k

)
.

The proof of this theorem, as well as the propositions and work leading up to it, can
be found in [4].

This formula for the Ehrhart polynomial also provides the volume of the polytope.

Corollary 4.2.5. The volume of P (Dn) is n if n is odd and n2

4 if n is even.

4.3. Even Permutations

Theorem 4.3.1. For n ≥ 4, dim(P (An)) = dim(P (Sn)) = (n− 1)2.
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This result is due to the work of Brualdi and Liu, which can be found in [3]. As
mentioned earlier, characterizing the indecomposable elements of An is an entry point into
determining the volume of the P (An). This was thus exactly where we started.

Theorem 4.3.2. A matrix A ∈ An is indecomposable if and only if A = [c1][c2], with
c1 and c2 disjoint cycles of length l1 and l2 with l1, l2 ≡ 0 mod 2, or A = [c1], with [c1] of
length l1 ≡ 1 mod 2.

Proof. This theorem was first proved in [3]; this proof relies on the definition of
indecomposability as given in Definition 2.0.25.

Assume A ∈ An is indecomposable and has more than 2 disjoint cycles, so A =
[c1][c2] . . . [cs] with s > 2 and cycle [ci] of length li. Since A ∈ An,

∑
li− s ≡ 0 mod 2, and

since A is irreducible, no subset of the cycles can be included in An; that is,
∑
lj − j ≡ 1

mod 2 for j < s. Specifically, this means that l1 − 1 ≡ 1 mod 2, l2 − 1 ≡ 1 mod 2, and
l1 + l2 − 2 ≡ 1 mod 2. But l1 − 1 + l2 − 1 = l1 + l2 − 2 ≡ 0 mod 2, contradicting our
assumptions. So s ≤ 2, so if A ∈ An is indecomposable, then A = [c1][c2] with l1, l2 ≡ 0
mod 2 (otherwise [c1] An and c2] ∈ An and A would be decomposable), or A = [c1] with
l1 ≡ 1 mod 2 (since A ∈ An itself).

Now assume A = [c1][c2], with [c1] of length l1, [c2] of length l2, and l1, l2 ≡ 0 mod 2.
Since l1 ≡ 0 mod 2, [c1] /∈ An, and similarly [c2] /∈ An, so A is indecomposable in An. If
A = [c1], then A is trivially indecomposable, since it consists of a single cycle. �

Once the form of the indecomposable elements was determined, it became a combina-
torics problem to find out how many of these elements the group contained.

Theorem 4.3.3. There are
dn

2
−1e∑

l=1

(
n

2l + 1

)
(2l)! +

1
2

bn−2
2
c∑

k=1

bn−2k
2
c∑

j=1

n!
2k(2j)(n− 2j − 2k)!)

non-trivial indecomposable elements in An.

Proof. From Theorem 4.3.2, finding the number of indecomposable elements in An is
just a matter of counting the possibilities. Consider the indecomposable elements contain-
ing a single cycle of length 2l+1. There are dn2 e possible lengths for these cycles, but one of
these is 1, which is just the identity, so we really want to consider dn2 −1e lengths. Assume
without loss of generality that every cycle starts with the smallest element, so there are
(2l)! ways to arrange the remaining terms. Finally, there are

(
n

2l+1

)
different sets of 2l + 1

elements. So there are
dn

2
−1e∑

l=1

(
n

2l + 1

)
(2l)!

non-trivial indecomposable elements in An with a single cycle.
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Now consider the even permutations that consist of a pair of cycles of even length.
Say that the first of these cycles, c1, has length 2k. There are n possible choices for the
lengths in this cycle, so there are

(
n
2k

)
possible sets of elements and

(
n
2k

)
(2k − 1)! unique

arrangements of elements. The second cycle, c2, also has even length - say 2j. There
are n − 2k choices for this cycle, and (2j − 1)! ways to arange those choices, so there are(
n−2k

2j

)
(2j − 1)! unique cycles. However, any pair of cycles can be reordered, and since

the two are disjoint, the rearrangement does not change the permutation. Thus the total
number of unique cycles must be divided by 2 to remove this repetition. So we have

1
2

(
n

2k

)(
n− 2k

2j

)
(2j − 1)!(2k − 1)! =

1
2

(
n!

(2k!)(n− 2k)!
)(

(n− 2k)!
(2j!)(n− 2k − 2j)!

)(2j − 1)!(2k − 1)! =

1
2

(
n!(n− 2k)!

2k(2j)(n− 2k)!(n− 2k − 2j)!
) =

1
2

(
n!

2k(2j)(n− 2k − 2j)!
)

permutations of this type. Since c1 is a cycle of even length, k must be an integer, so k
can vary from 1 to bn2 c. However, there must be enough elements remaining to produce
another cycle of even length, so k actually varies from 1 to bn−2

2 c. Similarly, j varies from
1 to bn−2k

2 c, so all together we have

1
2

bn−2
2
c∑

k=1

bn−2k
2
c∑

j=1

n!
2k(2j)(n− 2j − 2k)!

.

Summed with the other type of indecomposable even permutations, we have

dn
2
−1e∑

l=1

(
n

2l + 1

)
(2l)! +

1
2

bn−2
2
c∑

k=1

bn−2k
2
c∑

j=1

n!
2k(2j)(n− 2j − 2k)!

as the total number of indecomposable elements in An. �

The goal is to eventually determine the volume of this polytope; however, the complex-
ity and high dimension of this type made it extremely difficult to gather more information.
However, we were able to determine a result relating to the complexity of P (An), specifi-
cally through determining two-levelness.

Theorem 4.3.4. The polytope P (An) is two-level if and only if n ≤ 4. Moreover, for
n ≥ 8, P (An) is at least (bn4 c+ 1)-level.

The proof of this can be found in [4].
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4.4. Frobenius Groups

Frobenius groups, along with general group theory terms, are defined in Chapter 2.
This work was once again done with Mohamed Omar and Jesús de Loera. The following
theorem describes the normalized volume of Frobenius groups in terms of the size of the
Frobenius kernal and Frobenius complement; the proof of the theorem can be found in [4].

Theorem 4.4.1. Let G be a Frobenius group with Frobenius complement H and Frobe-
nius kernel N . Let |N | be the size of N and let |H| be the size of H. The normalized
volume of P (G) in the sublattice of Zn×n spanned by its vertices is

1
(|H||N | − |H|)!

b |H|(|N|−1)−1
|N| c∑
`=0

(
(|H| − `)|N |

(|H| − `)|N | − |H|+ 1

)(
|H| − 1

`

)
(−1)`.

This result is incredibly wide-reaching, as it applies to all Frobenius groups. These
groups include A4 and Dn for n odd, so this theorem provides a description of the normal-
ized volume for Dn with n odd. In addition, it gives us the normalized volume for one of
the even permutations, which we do not yet have any formula for.

4.5. Spanning Trees

Our research focused on the polytopes of subgroups of Sn, but this was not limited to
the groups mentioned above. Another way to approach these subgroups is to consider the
set of automorphisms of a given graph. An automorphism gives a map from a graph onto
itself - that is, a permutation of the vertices. The set of all such permutations is the set
of automorphisms, as well as a subgroup of the set of all permutations on the number of
vertices. Once these permutations are found, the process of converting to a polytope is the
same as with any other subgroup, including those above.

Graphs, as defined in Chapter 3, are quite interesting on their own, but for the purposes
of our research, we decided to focus on spanning trees. Trees are also defined in Chapter
3; they are graphs without any closed cycles in which every vertex is connected to every
other. As with the previous subgroups, the goal was to find some formula for the Ehrhart
polynomial of the polytopes of these graphs. While we have not yet found a formula for all
spanning trees, the following method allows for the calculation of the Ehrhart polynomials
of binary trees. Once again, this research was done with Jesús de Loera and Mohamed
Omar.

Theorem 4.5.1. Let G ≤ Sn, and G oS2 be the wreath product of G with the symmetric
group S2. Then

i(P (G o S2), t) =
t∑

k=0

i2(P (G), k) · i2(P (G), t− k)
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for any integer t ≥ 2.

The proof of this theorem and the work leading up to it can again be found in [4].
Using this theorem, we can calculate the Ehrhart polynomial of any binary tree. First,

given a rooted binary tree T , we compute the automorphism group Aut(T ) as a sequence of
direct products and wreath products. Then we read the group Aut(T ) from left to right. If
we encounter a direct product, we compute the Ehrhart polynomials of the corresponding
groups and take the product of the polynomials. If we encounter a wreath product, we
apply Theorem 4.5.1. This produces the Ehrhart polynomial of the permutation polytope
associated to the tree T .

4.6. Graph Automorphisms

The research in this section was done with Mohamed Omar and Courtney Dostie.
While the other research we did focused on polytopes associated to groups or graphs

(and hence graphs with non-trivial automorphisms), the work we did using the programs
nauty, isomorphism, and nulla focused on rigid graphs - that is, graphs with only the
trivial permutation as an automorphism. The goal was to determine whether a graph was
rigid or not in the shortest amount of time.

As described in Chapter 3, the program nauty can determine whether a graph is rigid
or not; however, although it has thus far run quite quickly, there is no bound on how long
it could take. As a result, our goal was to shorten the runtime of nulla, which can not only
prove the rigidity of a graph, but also provides a Nullstellensatz certificate as verification.

While nulla is an excellent program, producing a certificate of infeasibility is incredibly
difficult for certificates of degree greater than one. In order to produce the certificate, the
program must run operations on a series of functions, and as the degree of those functions
increases, the entire program slows significantly. This means that, while nulla produces
certificates of degree zero easily, degree one takes a noticable amount of time, and producing
a degree two certificate is almost impossible in a reasonable amount of time. The research
we did was therefore calculated to lower the degree of certificates with degree higher than
one. To achieve this, we added a series of equations to those generated by isomorphism.
The equations already generated suffice to determine all automorphisms - however, we
hoped to lower the runtime and the certificate degree by adding redundant equations.

The first of these equations were PijPik = 0 and PjiPki = 0. Since all permutation
matrices must have row and column sum 0 and entries of 0 or 1, the multiplication of
any two entries in the same row or column must equal 0. We hoped this would decrease
the runtime for larger graphs - while this information was already provided to nulla in
a different form, the redundancy might have shortened runtime. Unfortunately, while
runtime on regular graphs decreased, runtime actually increased on irregular graphs, as
the program had many more equations to deal with. This addition was thus determined
to be ineffective.
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We considered adding a series of equations of the form P kAk = AkP k, with P our
permutation matrix and A the adjacency matrix associated to the graph. As mentioned in
Chapter 3, the equation PA = AP included by isomorphism ensures that a permutation
maintains the edge connections between points. P kAk = AkP k forces the permutation to
maintain the edge connections between neighbor points as well, out to k edges away from
the orginal point. In this case, program conflicts prevented us from implementing these
equations - while a program was produced that provided the required equations, the format
was incompatable with nulla, and we were unable to actually test the effectiveness of the
equations.

The second approach we used was to run the program nulla over fields other than R.
ismorphism includes a quadratic equation, P 2

ij − Pij = 0, to force all entries in P to be
1 or 0. This quadratic equation is a problem, as it is the only non-linear equation given
to nulla and greatly increases the complexity of the equation set. To avoid this, we ran
graphs over the field F2. Since this field only provides 0 and 1 as possible results, the
quadratic equation can be removed entirely. While this greatly simplifies the system of
equations for nulla to solve, it also weakens the resulting certificate, since the results from
F2 do not necessarily carry over to R.

As mentioned in Chapter 3, in order to remove the trivial automorphism from our
permutations, we ran each set of equations once for each vertex, where that vertex was
the one chosen by Pii = 0 to not map to itself. When the equations associated to a vertex
“passed” (that is, received a certificate of infeasibility), we refer to that vertex as passing
as well. When we ran graphs over F2 while looking for a certificate of degree 0, we received
a certificate of infeasibility for at most two vertices, regardless of how many passed over R.
Every one of the graphs we ran received a degree one certificate of infeasibility for every
vertex in F2. The graphs we ran over R had a similar degree one certification, but we were
unable to run all graphs, as even a degree one certificate over R takes a prohibitively long
time to produce for larger graphs.

To conclude our work on rigid automorphisms, we returned to adding equations to the
system given to nulla. This time, we looked at the valences of various vertices. Since a
vertex cannot map to a vertex with a different number of edges, we determined the valence
of each vertex. By comparing these valences via the adjacency matrix, we were able to fill
in the permutation matrix with appropriate zeros for vertices that could not be mapped
to each other. For two points i and j in our graph with different valences, Pij = Pji = 0.

These added equations provided turned out to be quite helpful, as vertex valence was
not directly encoded in any of the equations nulla dealt with (although it was indirectly
included in the edge connections, the PA = AP equations). These additions succeeded in
decreasing runtime on all the irregular graphs; since all vertices in regular graphs have the
same valence, regular graphs were unaffected by this change. It also greatly increased the
number of degree 0 certificates that were produced over both R and F2. By adding these
equations, nearly all vertices we tested passed at degree 0 over R and F2, while previously
most vertices failed over F2 and many failed in R.





CHAPTER 5

Data

In the process of developing the theorems presented in the previous chapter, we collected
a great deal of data on a wide variety of groups. That information is presented here, starting
in Section 5.1 with the Ehrhart polynomials for the first several cyclic and dihedral groups.
These polynomials were calculated using the program lattE (see [7]), which can produce a
great deal of information related to the triangulations of a given polytope.

The subgroups of Sn are interesting in and of themselves, but for n greater than 5,
the number of subgroups and complexity of said groups is too large for an exhaustive
study. For n from 3 to 5, however, there are few subgroups, and nearly all are small
enough to produce results. These groups, along with the dimension of their associated
permutation polytopes and most of their Ehrhart polynomials, are presented in Section
5.2. Beyond the polynomials associated to these, the limitations on group size prevented
us from determining any particular results related to these groups. In these tables, GA(1, 5)
indicates the general affine group of degree one over the field of five elements. This group
is generated by taking the semidirect product of the additive and multiplicative groups of
the field of five elements. We used the information on subgroups found on the webpages
[14], [15], and [16] as the basis for these computations.

We also collected information on spanning trees during our research. Although we
only developed a theorem for binary trees, the tables in Section 5.3 collect our research
on spanning trees. We found the dimension and Ehrhart polynomials of the polytopes
associated to all spanning trees from four to seven vertices, as well as the dimension of the
polytope associated to all spanning trees of eight, nine, or ten vertices.

Finally, the rigid graphs shown in Section 5.4 are color-coded regarding which vertices
passed or failed over R or F2. Blue vertices passed over both R and F2 with certificates of
degree 0 and the original series of equations. Black vertices passed over R with degree 0
but failed over F2 degree 0, again with the original equations. Red vertices failed over both
R and F2 degree 0 with the original equations, but passed with the addition of the valence
equations. Purple vertices failed over R degree 0 but passed over F2 degree 0, and passed
over both with the addition of the valence equations. Green vertices failed over both fields
originally, then passed over R degree 0 and failed over F2 degree 0 with the added valence
equations. The vertices colored yellow are the rare cases that passed over R and failed

29
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over F2 both with and without the valence additions. Finally, orange vertices failed over
R degree 0 and passed over F2 degree 0 with the added valence equations.

5.1. Cyclic and Dihedral Permutations

Cyclic Groups
Group Dim Ehrhart Polynomial
C2 1 t+ 1
C3 2 1

2 t
2 + 3

2 t+ 1
C4 3 1

6 t
3 + t2 + 11

6 t+ 1
C5 4 1

24 t
4 + 5

12 t
3 + 35

24 t
2 + 25

12 t+ 1
C6 5 1

120 t
5 + 1

8 t
4 + 17

24 t
3 + 15

8 t
2 + 137

60 t+ 1
C7 6 1

720 t
6 + 7

240 t
5 + 35

144 t
4 + 49

48 t
3 + 203

90 t
2 + 49

20 + 1
C8 7 1

5040
t7 + 1

180
t6 + 23

360
t5 + 7

18
t4 + 967

720
t3 + 469

180
t2 + 363

140
t + 1

C9 8 1
40320 t8 + 1

1120 t7 + 13
960 t6 + 9

80 t5 + 1069
1920 t4 + 267

160 t3 + 29531
10080 t2 + 761

280 t + 1

C10 9 1
362880 t9+ 1

8064 t8+ 29
12096 t7+ 5

192 t6+ 3013
17280 t5+ 95

128 t4+ 4523
2268 t3+ 6515

2016 t2+ 7129
2520 t+1

C11 10 1
3628800 t10 + 11

725760 t9 + 11
30240 t8 + 121

24192 t7 + 7513
172800 t6 + 8591

34560 t5 + 341693
362880 t4 +

84095
36288 t3 + 177133

50400 t2 + 7381
2520 t + 1

C12 11 1
39916800 t11 + 1

604800 t10 + 1
20736 t9 + 11

13440 t8 + 10831
1209600 t7 + 1903

28800 t6 + 242537
725760 t5 +

139381
120960 t4 + 341747

129600 t3 + 190553
50400 t2 + 83711

27720 t + 1

Dihedral Groups
D3 4 1

8 t
4 + 3

4 t
3 + 15

8 t
2 + 9

4 t+ 1
D4 5 1

30 t
5 + 1

3 t
4 + 4

3 t
3 + 8

3 t
2 + 79

30 t+ 1
D5 8 1

8064 t8 + 5
2016 t7 + 5

192 t6 + 25
144 t5 + 95

128 t4 + 575
288 t3 + 6515

2016 t2 + 475
168 t + 1

D6 9 1
40320 t9 + 3

4480 t8 + 19
2240 t7 + 21

320 t6 + 43
128 t5 + 741

640 t4 + 6653
2520 t3 + 4229

1120 t2 + 2533
840 t +1

D7 12 1
68428800 t12 + 7

11404800 t11 + 91
6220800 t10 + 49

207360 t9 + 5551
2073600 t8 + 833

38400 t7 +
790153
6220800 t6 + 111083

207360 t5 + 2486939
1555200 t4 + 845593

259200 t3 + 63427
14850 t2 + 12593

3960 t + 1

D8 13 1
389188800 t13 + 1

7484400 t12 + 13
3742200 t11 + 1

17010 t10 + 107
151200 t9 + 713

113400 t8 +
7117

170100 t7 + 355
1701 t6 + 2100947

2721600 t5 + 1408031
680400 t4 + 1205899

311850 t3 + 49018
10395 t2 + 597941

180180 t + 1

D9 16 1
2324754432000 t16 + 1

32288256000 t15 + 17
12915302400 t14 + 1

25625600 t13 +
3587

4257792000 t12 + 269
19712000 t11 + 137581

812851200 t10 + 18343
11289600 t9 + 7292813

602112000 t8 +
250617
3584000 t7 + 13195009

42577920 t6 + 1022521
985600 t5 + 371446039969

145297152000 t4 + 8983049989
2018016000 t3 +

344499373
67267200 t2 + 275439

80080 t + 1

D10 17 1
14227497123840 t17 + 1

167382319104 t16 + 1
3804143616 t15 + 25

3218890752 t14 +
2017

11955879936 t13 + 235
83607552 t12 + 39409

1072963584 t11 + 111385
292626432 t10 + 3675491

1170505728 t9 +
24092095

1170505728 t8 + 12241087
114960384 t7 + 98775715

229920768 t6 + 6310439063
4755179520 t5 + 10646456155

3487131648 t4 +
242916085
48432384 t3 + 930775

169344 t2 + 43467323
12252240 t + 1

Note that the results found for these groups correspond with the formulas for their
Ehrhart polynomials presented in Chapter 4.
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5.2. Subgroups of S3, S4, and S5

Subgroups of S3

Order Generators Dim Ehrhart Polynomial
1 < () >∼= I 0 1
2 < (1 2) >∼= C2 1 t+ 1
3 < (1 2 3) >∼= C3 2 1

2 t
2 + 3

2 t+ 1
6 < (1 2), (1 3), (2 3) >∼= S3 4 1

8 t
4 + 3

4 t
3 + 15

8 t
2 + 9

4 t+ 1
Subgroups of S4

Order Group Dim Ehrhart Polynomial
1 < () >∼= I 0 1
2 < (1 2) >∼= C2 1 t+ 1
2 < (1 2)(3 4) >∼= C2 1 t+ 1
3 < (1 2 3) >∼= C3 2 1

2 t
2 + 3

2 t+ 1
4 < (1 2), (3 4) >∼= C2 × C2 2 t2 + 2t+ 1
4 < (1 2)(3 4), (1 3)(2 4) >∼= C2 × C2 3 1

6 t
3 + t2 + 11

6 t+ 1
4 < (1 2 3 4) >∼= C4 3 1

6 t
3 + t2 + 11

6 t+ 1
6 < (1 2), (1 3), (2 3) >∼= S3 4 1

8 t
4 + 3

4 t
3 + 15

8 t
2 + 9

4 t+ 1
8 < (1 2 3 4), (1 2)(3 4) >∼= D4 5 1

30 t
5 + 1

3 t
4 + 4

3 t
3 + 8

3 t
2 + 79

30 t+ 1
12 < (1 2 3), (1 2 4), (1 3 4), (2 3 4) >∼= A4 9 1

5670 t9 + 1
504 t8 + 23

1890 t7 + 1
15 t6 + 173

540 t5 + 9
8 t4 + 29797

11340 t3 + 1199
315 t2 + 383

126 t +1

24 < (1 2), (1 3), (1 4), (2 3), (2 4), (3 4) >∼= S4 9 11
11340 t9 + 11

630 t8 + 19
135 t7 2

3 t6 + 1109
540 t5 + 43

10 t4 + 35117
5670 t3 + 379

63 t2 + 65
18 t + 1

Subgroups of S5

Order Generators Dim Ehrhart Polynomial
1 < () >∼= I 0 1
2 < (1 2) >∼= C2 1 t+ 1
2 < (1 2)(3 4) >∼= C2 1 t+ 1
3 < (1 2 3) >∼= C3 2 1

2 t
2 + 3

2 t+ 1
4 < (1 2), (3 4) >∼= C2 × C2 2 t2 + 2t+ 1
4 < (1 2)(3 4), (1 3)(2 4) >∼= C2 × C2 3 1

6 t
3 + t2 + 11

6 t+ 1
4 < (1 2 3 4) >∼= C4 3 1

6 t
3 + t2 + 11

6 t+ 1
5 < (1 2 3 4 5) >∼= C5 4 1

24 t
4 + 5

12 t
3 + 35

24 t
2 + 25

12 t+ 1
6 < (1 2 3)(4 5) >∼= C6 3 1

2 t
3 + 2t2 + 5

2 t+ 1
6 < (1 2), (2 3), (1 3) >∼= S3 4 1

8 t
4 + 3

4 t
3 + 15

8 t
2 + 9

4 t+ 1
6 < (1 2)(4 5), (1 3)(4 5), (2 3)(4 5) >∼= S3 5 1

40 t
5 + 1

8 t
4 + 5

8 t
3 + 15

8 t
2 + 47

20 t+ 1
8 < (1 2 3 4), (1 2)(3 4) >∼= D4 5 1

30 t
5 + 1

3 t
4 + 4

3 t
3 + 8

3 t
2 + 79

30 t+ 1
10 < (1 2 3 4 5), (2 5)(3 4) >∼= D5 8 1

8064 t8 + 5
2016 t7 + 5

192 t6 + 25
144 t5 + 95

128 t4 + 575
288 t3 + 6515

2016 t2 + 475
168 t + 1

12 < (1 2 3)(4 5), (1 2)(4 5) >∼= D6 5 1
8 t

5 + 7
8 t

4 + 21
8 t

3 + 33
8 t

2 + 13
4 t+ 1

12 < (1 2 3), (1 2 4), (1 3 4), (2 3 4) >∼= A4 9 1
5670 t9 + 1

504 t8 + 23
1890 t7 + 1

15 t6 + 173
540 t5 + 9

8 t4 + 29797
11340 t3 + 1199

315 t2 + 383
126 t +1

20 < (1 2 3 4 5), (1 2 4 3) >∼= GA(1, 5) 9 Too large to compute; volume= 19
6538371840

24 < (1 2), (1 3), (1 4), (2 3), (2 4), (3 4) >∼= S4 9 11
11340 t9 + 11

630 t8 + 19
135 t7 + 2

3 t6 + 1109
540 t5 + 43

10 t4 + 35117
5670 t3 + 379

63 t2 + 65
18 t + 1

60 < (1 2 3), (1 2 4), (1 2 5), (1 3 4), (1 3 5), (1 4 5), 16 Too large to compute
(2 3 4), (2 3 5), (2 4 5), (3 4 5) >∼= A5

120 < (1 2), (1 3), (1 4), (1 5), (2 3), (2 4), (2 5), (3 4), 16 188723
836911595520 t16 + 188723

20922789888 t15 + 1008757
5977939968 t14 + 112655

57480192 t13+

(3 5), (4 5) >∼= S5
72750523

4598415360 t12 + 984101
10450944 t11 + 125188639

292626432 t10 + 55426325
36578304 t9+

3541860299
836075520 t8 + 196563587

20901888 t7 + 3812839477
229920768 t6 + 664118435

28740096 t5+

438177965089
17435658240 t4 + 3028287247

145297152 t3 + 6229735
494208 t2 + 725

144 t1 + 1
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5.3. Spanning Trees

Tree
Dim

Ehrhart Polynomial

ST4.1 ST5.3 ST6.4
1 9 4

t+ 1 11
11340 t9 + 11

630 t8 + 19
135 t7 + 2

3 t6+ 1
8 t4 + 3

4 t3 + 15
8 t2 + 9

4 t + 1

1
30 t5 + 1

3 t4 + 4
3 t3 + 8

3 t2 + 79
30 t + 1

ST4.2 ST6.1 ST6.5
4 1 16

1
8 t4 + 3

4 t3 + 15
8 t2 + 9

4 t + 1 t+ 1 188723
836911595520 t16 + 188723

20922789888 t15+

1008757
5977939968 t14 + 112655

57480192 t13+

72750523
4598415360 t12 + 984101

10450944 t11+

125188639
292626432 t10 + 55426325

36578304 t9+

3541860299
836075520 t8 + 196563587

20901888 t7+

3812839477
229920768 t6 + 664118435

28740096 t5+

438177965089
17435658240 t4 + 3028287247

145297152 t3+

6229735
494208 t2 + 725

144 t + 1

ST5.1 ST6.2 ST6.6
1 1 5

t+ 1 t+ 1 1109
540 t5 + 43

10 t4 + 35117
5670 t3+

379
63 t2 + 65

18 t + 1

ST5.2 ST6.3 ST7.1
1 1 1

t+ 1 t+ 1 t+ 1
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Tree
Dim

Ehrhart Polynomial

ST7.2 ST7.6 ST7.10
1 2 1

t+ 1 t2 + 2t+ 1 t+ 1

ST7.3 ST7.7 ST7.11
0 9 5
1 11

11340 t9 + 11
630 t8 + 19

135 t7 + 2
3 t6 + 1109

540 t5+ 1
8 t5 + 7

8 t4 + 21
8 t3 + 33

8 t2 + 13
4 t + 1

43
10 t4 + 35117

5670 t3 + 379
63 t2 + 65

18 t + 1

ST7.4 ST7.8
4 25

1
8 t4 + 3

4 t3 + 15
8 t2 + 9

4 t + 1 9700106723
10258736801144832000000 t25 + 9700106723

136783157348597760000 t24+

158824242127
62444484876533760000 t23 + 4394656999

75690284698828800 t22+

853529939221
901074817843200000 t21 + 141248912237

12014330904576000 t20+

2462417656967
21341245685760000 t19 + 18674864899

20324995891200 t18+

1062348478211833
175751435059200000 t17 + 77984295979769

2343352467456000 t16+

1424745952102609
9206027550720000 t15 + 8346012436199

13638559334400 t14+

570713692223620411
276180826521600000 t13 + 2000221303490489

334764638208000 t12+

16265048187290869
1098446469120000 t11 + 736591080322991

23433524674560 t10+

253578194011961479
4446092851200000 t9 + 232132948167689

2634721689600 t8+

243245111626317349
2111894104320000 t7 + 14226886368398551

112634352230400 t6+

155498465793777230567
1355132050272000000 t5 + 382955230861099213

4517106834240000 t4+

12246206617138789
247365374256000 t3 + 46584105377

2141691552 t2 + 3899
600 t + 1

ST7.5 ST7.9
4 5

1
8 t4 + 3

4 t3 + 15
8 t2 + 9

4 t + 1 1
30 t5 + 1

3 t4 + 4
3 t3 + 8

3 t2 + 79
30 t + 1
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Tree
Dim

ST8.1 ST8.7 ST8.13 ST8.19 ST9.2
1 1 5 2 1

ST8.2 ST8.8 ST8.14 ST8.20 ST9.3
1 4 1 4 0

ST8.3 ST8.9 ST8.15 ST8.21 ST9.4
0 9 2 10 0

ST8.4 ST8.10 ST8.16 ST8.22 ST9.5
1 5 1 17 1

ST8.5 ST8.11 ST8.17 ST8.23 ST9.6
1 16 1 5 1

ST8.6 ST8.12 ST8.18 ST9.1 ST9.7
4 36 5 1 4
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Tree
Dim

ST9.8 ST9.14 ST9.20 ST9.26 ST9.32 ST9.38
1 5 1 0 2 1

ST9.9 ST9.15 ST9.21 ST9.27 ST9.33 ST9. 39
2 16 2 1 17 5

ST9.10 ST9.16 ST9.22 ST9.28 ST9.34 ST9.40
1 10 1 5 17 4

ST9.11 ST9.17 ST9.23 ST9.29 ST9.35 ST9.41
9 25 1 2 9 5

ST9.12 ST9.18 ST9.24 ST8.30 ST9.36 ST9.42
9 49 1 4 5 13

ST9.13 ST9.19 ST9.25 ST9.31 ST9.37 ST9.43
4 5 1 2 10 1
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Tree
Dim

ST9.44 ST10.3 ST10.9 ST10.15 ST10.21
2 0 4 9 9

ST9.45 ST10.4 ST10.10 ST10.16 ST10.22
5 0 1 4 8

ST9.46 ST10.5 ST10.11 ST10.17 ST10.23
5 1 1 5 25

ST9.47 ST10.6 ST10.12 ST10.18 ST10.24
6 1 1 2 17

ST10.1 ST10.7 ST10.13 ST10.19 ST10.25
1 0 1 9 36

ST10.2 ST10.8 ST10.14 ST10.20 ST10.26
1 4 4 16 64
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Tree
Dim

ST10.27 ST10.33 ST10.39 ST10.45 ST10.51 ST10.57
5 1 2 4 5 2

ST10.28 ST10.34 ST10.40 ST10.46 ST10.52 ST10. 58
1 0 1 2 4 1

ST10.29 ST10.35 ST10.41 ST10.47 ST10.53 ST10.59
2 1 0 4 2 1

ST10.30 ST10.36 ST10.42 ST10.48 ST10.54 ST10.60
1 1 1 2 4 5

ST10.31 ST10.37 ST10.43 ST10.49 ST10.55 ST10.61
1 1 5 5 1 10

ST10.32 ST10.38 ST10.44 ST10.50 ST10.56 ST10.62
1 0 5 1 1 9
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Tree
Dim

ST10.63 ST10.69 ST10.75 ST10.81 ST10.87
5 10 5 20 1

ST10.64 ST10.70 ST10.76 ST10.82 ST10.88
9 16 5 37 2

ST10.65 ST10.71 ST10.77 ST10.83 ST10.89
5 10 5 5 1

ST10.66 ST10.72 ST10.78 ST10.84 ST10.90
10 26 13 1 1

ST10.67 ST10.73 ST10.79 ST10.85 ST10.91
4 17 10 1 2

ST10.68 ST10.74 ST10.80 ST10.86 ST10.92
3 5 8 2 5
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Tree
Dim

ST10.93 ST10.96 ST10.99 ST10.102 ST10.105
5 5 5 17 5

ST10.94 ST10.97 ST10.100 ST10.103 ST10.106
2 2 5 6 10

ST10.95 ST10.98 ST10.101 ST10.104
3 4 9 13

5.4. Graph Automorphisms

This section includes the results relating to proofs of infeasiblity described in Chapter
4. This includes results for all rigid graphs with 6 and 7 vertices, as well as several rigid
graphs with 10, 15, and 17 vertices. In addition, there are results for a handful of famous
rigid graphs with a variety of vertex numbers.
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GV6.1 GV6.3 GV6.5 GV6.7

GV6.2 GV6.4 GV6.6 GV6.8
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GV7.1 GV7.8 GV7.15 GV7.22 GV7.29

GV7.2 GV7.9 GV7.16 GV7.23 GV7.30

GV7.3 GV7.10 GV7.17 GV7.24 GV7.31

GV7.4 GV7.11 GV7.18 GV7.25 GV7.32

GV7.5 GV7.12 GV7.19 GV7.26 GV7.33

GV7.6 GV7.13 GV7.20 GV7.27 GV7.34

GV7.7 GV7.14 GV7.21 GV7.28 GV7.35
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GV7.36 GV7.43 GV7.50 GV7.57 GV7.64 GV7.71

GV7.37 GV7.44 GV7.51 GV7.58 GV7.65 GV7.72

GV7.38 GV7.45 GV7.52 GV7.59 GV7.66 GV7.73

GV7.39 GV7.46 GV7.53 GV7.60 GV7.67 GV7.74

GV7.40 GV7.47 GV7.54 GV7.61 GV7.68 GV7.75

GV7.41 GV7.48 GV7.55 GV7.62 GV7.69 GV7.76

GV7.42 GV7.49 GV7.56 GV7.63 GV7.70 GV7.77
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GV7.78 GV7.85 GV7.92 GV7.99 GV7.106

GV7.79 GV7.86 GV7.93 GV7.100 GV7.107

GV7.80 GV7.87 GV7.94 GV7.101 GV7.108

GV7.81 GV7.88 GV7.95 GV7.102 GV7.109

GV7.82 GV7.89 GV7.96 GV7.103 GV7.110

GV7.83 GV7.90 GV7.97 GV7.104 GV7.111

GV7.84 GV7.91 GV7.98 GV7.105 GV7.112
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GV7.113 GV7.120 GV7.127 GV7.134 GV7.141 GV7.148

GV7.114 GV7.121 GV7.128 GV7.135 GV7.142 GV7.149

GV7.115 GV7.122 GV7.129 GV7.136 GV7.143 GV7.150

GV7.116 GV7.123 GV7.130 GV7.137 GV7.144 GV7.151

GV7.117 GV7.124 GV7.131 GV7.138 GV7.145 GV7.152

GV7.118 GV7.125 GV7.132 GV7.139 GV7.146

GV7.119 GV7.126 GV7.133 GV7.140 GV7.147
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GV10E12.1 GV10E13.9 GV10E13.15 GV10E13.21

GV10E13.1 GV10E13.10 GV10E13.16 GV10E13.22

GV10E13.2 GV10E13.11 GV10E13.17 GV10E13.23

GV10E13.6 GV10E13.12 GV10E13.18 GV10E13.24

GV10E13.8 GV10E13.14 GV10E13.20 GV10E13.25
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GV10E13.26 GV15E15.2 GV15E16.6 GV15E16.11

GV10E13.27 GV15E16.2 GV15E16.7 GV15E16.12

GV10E13.29 GV15E16.3 GV15E16.8 GV15E16.14

GV10E13.30 GV15E16.4 GV15E16.9 GV15E16.16

GV10E13.32 GV15E16.5 GV15E16.10 GV15E16.17
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GV15E16.18 GV15E16.23 GV15E16.30 GV15E17.1

GV15E16.19 GV15E16.26 GV15E16.31 GV15E17.2

GV15E16.20 GV15E16.27 GV15E16.32 GV15E17.3

GV15E16.21 GV15E16.28 GV15E16.33 GV15E17.4

GV15E16.22 GV15E16.29 GV15E16.34 GV15E17.5
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GV15E17.6 GV15E17.9 GV15E18.1 GV17E21.1

GV15E17.7 GV15E17.10 GV15E23.1

GV15E17.8 GV15E17.11 GV15E26.1

Incidence Graph 20 Snark 3 Walther Graph

20 Snark 2 Kittel Graph 52-Cubic Non-Hamiltonian Graph
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5.5. Conclusions

While we were able to develop a formula for the Ehrhart polynomials of Cn, Dn, and the
automorphism groups of binary trees, several questions remain open. We were unable to
find a formula for the Ehrhart polynomials of Frobenius groups, and our volume formula
is for the normalized volume of Frobenius polytopes rather than the standard volume.
We collected a great deal of data on spanning trees, in particular the dimensions of the
polytopes associated to automorphism groups of all trees with up to 10 vertices, but we
still lack a formula for the dimension of these polytopes, and we do not have results for the
Ehrhart polynomials of automorphisms of non-binary trees. We also have a great deal of
information regarding the difficulty of proving the rigidity of graphs, but we have not yet
been able to implement the P kAk = AkP k formula into the sets of equations restricting
the automorphisms of our graphs.
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