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ABSTRACT.

In this senior thesis, we study different applications of linear programming. We first look
at different concepts in linear programming. Then we give a study on some properties of
polytopes. Afterwards we investigate in the Hirsch Conjecture and explore the properties of
Santos’ counterexample as well as a perturbation of this prismatoid. We also give a short survey
on some attempts in finding more counterexamples using different mathematical tools. Lastly
we present an application of linear programming: the assignment problem. We attempt to
solve this assignment problem using the Hungarian Algorithm and the Gale-Shapley Algorithm.
Along with the algorithms we also give some properties of the Birkhoff Polytope. The results in
this thesis are obtained collaboratively with Jonathan Gonzalez, Karla Lanzas, Irene Ramirez,
Jing Lin, and Nancy Tafolla.
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CHAPTER 1

Introduction to Linear Programming

1.1. Definitions and Motivations

Optimization is a mathematical way to solve for the best solution to a problem. Its appli-
cations arise in many different areas is real life. For example, you want to minimize the labor
cost in a business or to maximize the profit of a product. Or in an airline company, you want to
minimize the flight time of a plane or the fuel cost. In simple words, in an optimization problem,
you want to either minimize or maximize the outcome (called the objective/cost function). Of
course, you cannot always optimize a situation without some specific constraints. For example,
while producing a product, each material might cost a specific value, and you might only have
a limited amount of money to purchase them; or during the production process, it will take an
amount of time for a worker to finish a specific part, and each worker will only work for this
many hours during his contract. Mathematically speaking, giving a set of constraints, we would
like to find the solution in the set that either maximize or minimize a respective cost function.

Since optimization plays such a big role in many industries, finding a method that solves
them accurately is one of the biggest research topics in mathematics, namely operational re-
search. Imagine, the simple conditions above can be solved using very basic mathematics, but
when it comes to multinational companies that need to make decisions involving many variables,
a sight mistake in the mathematics can lead to a loss in millions of dollars.

There are many types of optimization problems. We can have constraints that only involve
linear inequalities, which we call it linear programming. This we have quite a few useful and
accurate algorithms in which I will slightly touch on them later. If we require the solutions
to be integers as well, we have the integer linear programming. This is then very difficult to
solve, and till now we still do not have an exact algorithm that can solve them efficiently. In
this thesis I will focus on linear programming and some of its useful applications. One of its
useful applications comes from the study of convex geometry, when we translate these linear
inequalities into a mathematical objects called polytopes. But before I get into it, let me provide
a brief example of a linear programming problem.

Here is the general form of a linear program:

max/min z = cTx
subject to Ax ≤ b,x ≥ 0

with c = (c1, ..., cn), b = (b1, ..., bm), x ∈ Rn and A ∈ Rm×n.

Example: Suppose your want to make two handcrafts A and B for sell. Both take an hour
to make. A costs $10 to produce and B costs $20 to produce. You only have 5 hours in your
hand and $60 in your pocket. You are going to sell A for $20 while B for $30. How many of
each should you make so you can maximize your profit?

1



2 1. INTRODUCTION TO LINEAR PROGRAMMING

We can translate this problem into a linear programming problem (in fact, this is an integer
programming problem since you cannot have half a product). Writing them in mathematical
notations, we have

max 2x1 + 3x2 = z
s.t. x1 + x2 ≤ 5

x1 + 2x2 ≤ 6

There are many ways to solve this problem. We will go for the simplest way now: using the
geometric representation of the inequalities.

Figure 1. The geometric representation of the linear inequalities

First notice that the linear inequalities graph out a polygon. In convex geometry this is
called a 2-dimensional polytope. This is our first step towards the study of polytopes, which
I will give great detail later. Before I explain how to solve this problem, I will first state a
theorem that will automatically tells us the answer, but I will not prove it here, since it will
require a bit more background knowledge and that is not the main focus here.

Theorem 1.1. The solution to an optimization problem is always a vertex of the polytope
represented by the linear inequalities.

The vertices are (0,3), (4,1) and (5,0). The solution is (4,1) since it maximizes the profit.

1.2. Methods for Solving Linear Programs

We cannot finish off the discussion of linear programming without giving some common
methods on solving them. Among all the algorithms that solve linear programs, the Simplex
Method, Interior Point Method, Cutting Plane Method, and the Ellipsoid Method are the most
commonly used ones. Each of them solves linear programs differently, having its own strength
and weakness.

Simplex Method:
For visual learners, the Simplex Method works as follow. First note that the set of inequalities
defines a polytope (to be mentioned in details later). We start the Simplex Method by first
picking a vertex, then we look at the neighbors of this vertex; if there is a neighbor that gives a
better solution with respect to the objective function (max/min), we pivot to that new vertex.
We follow this procedure until we reach a vertex that none of its neighboring vertices will give
a better solution. There we have reached the optimal solution.

Before I provide the algorithm of the Simplex Method, I will first define a few terms, as
well as some equations necessary for the understanding of the algorithm. I will also provide a
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Figure 2. A geometric presentation on how the Simplex Method works. (picture from [sim])

running example along with the steps of the algorithm.

The Simplex Method solves linear programs written in standard forms, this means that the
constraints will be in equalities instead of inequalities. To achieve this we simply add in slack
variables to the linear inequalities. These slack variables do not affect the cost function. Below
is an example of a linear program and it’s standard form.

Example [IGS09]:
min z = x1 - 2x2

s.t. -2x1 + x2 ≤ 2
-x1 + 2x2 ≤ 7

x1 ≤ 3
x1, x2 ≥ 0

Now we add in slack variables to translate the program into standard form:
min z =x1 - 2x2

s.t. -2x1 + x2 + x3 = 2
-x1 + 2x2 + x4 = 7

x1 + x5 = 3
x1, x2, x3, x4, x5 ≥ 0

As we can see, x3, x4, x5 are slack variables, and they do not play any role in the objective
function z.

Now let us denote the cost function by z = cTx and the constraints by Ax = b, so that we
have the following:

min z = cTx
s.t. Ax = b

x ≥ 0

We denote the basic variables as xB: these are the variables with a value assigned to it (see
example below), and non-basic variables as xN : these are the variables with a 0 to it. We can
then write the objective function as

z = cTBxB + cTNxN .

We can also write the constraints as

BxB +NxN = b,

which can be rewritten as
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xB = B−1b−B−1NxN .

Note that we are setting xN = 0. Substituting this into the objective function and xB, we
get

z = cTBB
−1b and xB = B−1b.

The steps of the algorithm are as follow:

(1) Compute ĉTN = cTN − cTBB−1N . If ĉTN ≥ 0, then the current basis is optimal, otherwise
select xt such that ct < 0 as the entering variable, where ct = min{ct′ < 0}.

(2) Compute Ât = B−1At. Find the index s such that

b̂s
âs,t

= min1≤i≤m{ b̂i
âi,t

: âi,t > 0}.
This ratio test determines the leaving variable and the pivot entry ˆas,t. If âi,t ≤ 0 for
all i, then the problem is unbounded.

(3) Update the basis matrix B and the vector of basic variables xB.

The following is an example on how we apply the Simplex Method to solve a linear program
(taken from Griva, Nash, Sofer [IGS09]):

A =

 −2 1 1 0 0
−1 2 0 1 0
1 0 0 0 1

 b =

 2
7
3

 c =


−1
−2
0
0
0


To make things simple, we usually use the slack variables as the initial basis. We have

xB = (x3, x4, x5)T , xN = (x1, x2)T , which means B = I = B−1, cTB = (0, 0, 0), cTN = (−1,−2),
and

N =

 −2 1
−1 2
1 0

 .

Using the formulas above, we have xB = b̂ = B−1b = (2, 7, 3)T and ĉTN = cTN − cTBB−1N =
(−1,−2). Since both components of ĉTN are negative, we pick the more negative one, which
corresponds to x2, as the entering variable. From the ratio test, we get

Â2 = B−1A2 =

 1
2
0


and

b̂1
â1,2

= 2 and b̂2
â2,2

= 7
2 .

The first ratio is smaller, so x3 is the leaving variable from basis.

In the second iteration we replace x3 with x2 in the basis, so xB is now (x2, x4, x5)T , and
xN = (x1, x3)T , and the rest are

B =

 1 0 0
2 1 0
0 0 1

, B−1 =

 1 0 0
−2 1 0
0 0 1

, N =

 −2 1
−1 0
1 0

 ,

with cTB = (−2, 0, 0) and cTN = (−1, 0). The rest gives

xB = b̂ = B−1b = (2, 3, 3)T ,
ĉTN = cTN − cTBB−1N = (−5, 2).
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The first component in ĉTN is the only negative component, which corresponds to x1, thus
x1 is the new entering variable. The entering column is

Â1 = B−1A1 =

 −2
3
1


and the ratio test gives b̂2/â2,1 = 1 and b̂3/â3,1 = 3, so that x4 is the leaving variable.
At the third iteration we have xB = (x2, x1, x5)T , xN = (x3, x4)T , and

B =

 1 −2 0
2 −1 0
0 1 1

, B−1 =

 1/3 2/3 0
−2/3 1/3 0
2/3 −1/3 1

, N =

 1 0
0 1
0 0

 ,

with cTB = (−2,−1, 0) and cTN = (0, 0), and

xB = b̂ = B−1b = (4, 1, 2)T ,
ĉTN = cTN − cTBB−1N = (−4

3 ,
5
3).

x3 is the leaving basis in this case. The entering column is

Â3 = B−1A3 =

 −1
3
−2

3
2
3


and the only ratio we have is b̂3/ ˆa3,1 = 3, thus x5 is the leaving variable.

At the fourth iteration, we have xB = (x2, x1, x3)T , xN = (x5, x4)T , and

B =

 1 −2 1
2 −1 0
0 1 0

, B−1 =

 0 1/2 1/2
0 0 1
1 −1/2 3/2

, N =

 0 0
0 1
1 0

 ,

with cTB = (−2,−1, 0) and cTN = (0, 0), and

xB = b̂ = B−1b = (5, 3, 3)T ,
ĉTN = cTN − cTBB−1N = (1, 2).

Since all components in ĉTN are non-negative, this basis is optimal.

Until now we have only considered the bounded case. But life is not always as good. There
are many times we have to deal with unbounded cases, and the algorithm described above will
not work properly in those cases.

Example: In step 2 of the algorithm, it is possible that we encounter the unbounded
problem. If âi,t ≤ 0 for all i, then none of the basic variables will decrease as xt increases,
implying that xt can increase without bound. The objective function will then change by any
amount equal to ĉtxt as xt increases. The following program illustrates this problem:

min z = −x1 − 2x2

s.t. −x1 + x2 ≤ 2
−2x1 + x2 ≤ 1
x1, x2 ≥ 0

After a couple iterations, we get the basis xB = (x1, x2)T and xN = (x3, x4)T ,

B =

(
−1 1
−2 1

)
and B−1 =

(
1 −1
2 −1

)
.

Here we have xB = (1, 3)T and ĉTN = (5,−3), so it is not optimal, and let x4 be the entering
variable. The entering column is
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Â4 =

(
−1
−1

)
.

Figure 3. Unbounded Linear Program.

Note that both components are less than 0, so there is no candidate. This implies that this
problem is unbounded, and x4 can increase without bound. In this case, we can find a direction
of unboundedness and include that into our solution. The feasible solution is (x1, x2, x3, x4)T =
(1, 3, 0, 0)T . Looking at figure 3 we see that at point (1, 3), the direction (1, 1) is a direction of
unboundedness. Thus the solution becomes

x1

x2

x3

x4

 =


1
3
0
0

 +


1
1
0
1

x4.

Remark: For a m× n constraint matrix A, the simplex method typically requires at most
2m to 3m pivots (iterations) to attain optimality.

Remark: The way we travel along edges depends on the pivot rule we use (a pivot rule is
a decision rule on how to travel along the polytope). In our example we move to our nearest
neighbor which decreases the objective value the most. But there are many other pivot rules out
there that are more useful in certain situations: there are the steepest-edge rule, best-neighbor
rule, etc. Each rule has its own advantage and is preferred in certain situation. For example, the
steepest-edge algorithm takes fewer iterations than other methods, but each iteration takes an
excessive amount of time [Too02]. Bland’s rule solves feasible linear programs without cycling,
but it is computationally complex.

Ellipsoid Method:
The ellipsoid method was first developed by David B. Yudin and Arkady Nemirovski [YN76] and
Naum Shor [Sho77] for convex nonlinear programming, and later studied by Leonid Khachiyan
for solving linear programming problems with rational data. For problems with n inequalities
and integral data with total bit size L, the method generates approximate solution from which
an exact solution can easily be obtained in O(n2L) iterations, requiring O(n4L) arithmetic op-
erations on numbers with O(L) digits [Kha80]. However, the performance is typically very
close to its worst-case bound, thus the method is not competitive for linear programming.
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The basic idea behind the ellipsoid method can be easily understood. At each iteration
an ellipsoid is constructed so that it contains all optimal points. A hyperplane is then con-
structed such all points lie on one side. Then a new ellipsoid is constructed to contain all the
solutions and the correct side. The algorithm (as well as the mathematical formulas) is as
follow:

Require: x0 (a feasible point), A0 (an initial ellipsoid that contains the minimizers), ε ≥ 0
(accuracy);
k ← 0;
repeat
k ← k + 1;
evaluate φ(xk) and compute any gk ∈ δφ(xk);

g̃ ← gk/
√
gTk Akgk;

xk+1 ← xk −Akg̃/(n+ 1);

Ak+1 ← n2

n2−1
(Ak − 2

n−1Akg̃g̃
TAk);

until
√
gTk Akgk ≤ ε.

Figure 4. 6 steps of the ellipsoid method, from k = 0 to k = 5 [ell]

Remark: The Ellipsoid Method is extremely impractical when solving linear programs
because of the computation cost at each step. However, its theoretical properties are used in
many proofs related to linear programming.
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Interior Point Methods (IPM):
Instead of traveling along the edges of the convex region, we can travel within the interior of
the region to search for an optimal solution. This is called the interior-point methods. It was
first implemented by Narendra Karmarkar in 1984, and the complexity bound is slightly better
than the one of the ellipsoid methods. The interior-point method requires O(n3.5L) arithmetic
operations on a problem with n inequalities and integer data of total bit length L. However,
this method is not very practical: at each iteration a projective transformation is used to bring
the current iterate into the center of the feasible region. This transformation is to bring the
current iterate to a point far from the constraints so that a steepest descent step will give a
good decrease. The following theorem is required to show how the interior point methods work.

Theorem 1.2. The optimal solutions of primal and dual programs x* and y* must be the
solutions of the following system of equations and inequalities:

• Ax = b
• AT y − s = c
• xisi = 0
• xi, si ≥ 0

The IPM works by relaxing the constraint xisi = 0, and this will not satisfied until the very
end. The set of equations and inequalities to solve now becomes

• Ax = b
• AT y − s = c
• xisi = λ,whereλ > 0
• xi, si ≥ 0

We start off at the analytic center by setting λ =∞. Then for each λ, we get a solution to
the system above, and the set of all real solutions form the central path.

Theorem 1.3. For all λ > 0, the system above has a unique real solution (x∗(λ), y∗(λ), s∗(λ))
such that

• x*(λ) is an optimal solution to max(cT +
∑n

i=1 λlogxi) with Ax = b and x ≥ 0.
• The limit point (x*(0),y*(0),s*(0)) is an optimal solution of the primal problem.

Finding the exactly central path requires a lot of computational efforts, thus most researchers
use approximations of the curve when dealing with IPM. The exact equation for dimension 2
can be found in [JADL10]. For more information on interior-point method, readers can refer
to [Too02].

1.3. Diameter and Pivot Bound

Diameter is defined as the largest number of edges in a shortest path joining two of its
furthest vertices. Let 4(d, n) be the largest diameter of a d-dimensional polyhedron with n
facets, then this represents the worst number of iterations needed for such polyhedra in a linear
program. In 1957, W. M. Hirsch conjectured that 4(d, n) ≤ n − d. In May 2010, Professor
Francisco Santos disproved this conjecture using a prismatoid. More about this will be discussed
in Chapter II.

The best bounds available now are 4(d, n) ≤ 2d−3n by Larman [Lar70], and 4(d, n) ≤
n1+logd by Kalai and Kleitman [KK92].

We also want to look at the number of iterations needed for any pivot rules. Kalai, Ma-
tousek, Sharir, and Welzl found a randomized pivot rule with the expected number of pivots
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being exp(K
√
dlogn) [JMW96]. Instead of looking at randomized pivot rule, we can look

at the expected behavior of a deterministic rule on a random linear programming problem.
Borgwardt [Bor99] was the first to obtain such polynomial bound. He found the bound to be

O(m3n1/(m−1)) for the expected total number of iterations of a dimension by dimension simplex
method for the dual problem. On the other hand, Adler and Megiddo [AM85], Adler, Karp,
and Shamir [IAS87], and Todd [Tod86] showed a bound of O(min{d2,m2}) on the expected
total number of iterations to show infeasibility, show unboundedness, or attain optimality for a
lexicographic parametric method.

1.4. Polytopes

Without further ado, let us talk about our main subject of this paper: polytope. First I will
describe mathematically what polytopes are, provide some examples, then briefly talk about
some special polytopes and related theorems.

A polyhedron is defined by the intersection of a finite set of half space, and a polytope is a
bounded polyhedron. This representation of a polytope is called a H-representation. Each half
space is defined by a linear inequality, which geometrically represents a hyperplane. We can
write the set of linear inequalities as a system of inequalities as follow:

a11x1 + a12x2 + . . . + a1nxn ≤ b1
a21x1 + a22x2 + . . . + a2nxn ≤ b2

...
am1x1 + am2x2 + . . . + amnxn ≤ bm

The polyhedron can then be written in the matrix form x ∈ Rn : Ax ≤ b.

We have another way to define a polytope: the convex hull of a set of finite points. A convex
combination of a set of points is of the form λ1x1 +λ2x2 + ...+λnxn, where λ1 +λ2 + ...+λn = 1.
So the convex hull of a set of points S will be all the possible convex combinations of the points,
expressed as

conv(S) = {
∑n

k=1 λkxk|xk ∈ X,λk ≥ 0,
∑n

k=1 λk = 1}.
We call this the V-representation of a polytope. In dimension two, we can visualize this as
placing a rubber band over a set of points on the plane. When we release the rubber band, it
wraps around the points tightly, and that is the convex hull of the points.

Elements of a polytope have different names. The 0-dimensional elements are called vertices;
1-dimensional elements are called edges; and the (n− 1)-dimensional elements are called facets.
In Chapter II I will give a discussion on the Hirsch Conjecture, which relates to the number of
facets of a polytope and it’s dimension.

1.4.1. Special Types of Polytopes. There are many different special types of polytopes
out there. Each of them has a unique structure. The following are some examples of these
polytopes, and some will reappear in the later sections as running examples:

(1) The Platonic Solids.
A platonic solid is a convex polyhedron that is regular, meaning that each facet is of

the same shape and size. There are 5 of these platonic solids, namely the tetrahedron,
cube, octahedron, dodecahedron, and icosahedron.

Theorem 1.4. There are exactly 5 platonic solids.
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Figure 5. Dodecahedron, a

platonic solid

Figure 6. Icosahedron, an-

other platonic solid

(2) Transportation Polytopes.
A (p× q)-transportation polytope is the set of matrices with pre-described integer

row and column sums, which can be written as

Tp,q(a, b) := {x ∈ Rp×q|
∑

j xij = ai,
∑

i xij = bj , xij ≥ 0},
where a is the vector for row sums and b is the vector for column sums. A special type
of transportation polytope is the Birkhoff polytope, where the vertices are permutation
matrices. Birkhoff polytopes will be the main character in Chapter III when I discuss
about the assignment problem in optimization.

Theorem 1.5. (Hurkens) The diameter of any p × q transportation polytope is at
most 3(p+q-1).

(3) Prismatoid.
A prismatoid is a polytope having two parallel facets that contain all vertices. The

diameter of a prismatoid is the number of steps it takes to go from one of these facets
to the other. A cube and a prism are simple examples of prismatoids.

Why are we interested in prismatoid? It is because Santos used a specially con-
structed prismatoid to disprove the Hirsch Conjecture.

(4) Of course there are many more other polytopes, such as the 0− 1 polytopes, which are
convex hull of subsets of {0, 1}d, the vertices of a d-cube. There is also the network-flow
polytopes, which is defined by an arbitrary directed graph G = (V,E) with weights
given to its vertices. Kim and Santos’ survey [EK10] provides a detailed discussion on
more results of different polytopes.



CHAPTER 2

Hirsch Conjecture and Santos’ Prismatoid

2.1. Introduction

In this chapter, we will focus on a famous conjecture in convex geometry: the Hirsch Con-
jecture. This conjecture was first stated in a letter by Warren M. Hirsch to George B. Dantzig
in 1957. For 53 years, many mathematicians have tried to either prove or disproved this conjec-
ture, yet no one has succeeded. In May 2010, Professor Francisco Santos from the University
of Cantabria disproved this conjecture, putting an end to this 53 years long run.

Conjecture 1. (The Hirsch Conjecture) For any d-dimensional polytope with n facets, the
diameter is no more than n− d.

The conjecture never stated whether the inequality holds for bounded or unbounded poly-
topes. The unbounded case was disproved by Klee and Walkup [KW67] in 1967 with the
construction of a polyhedron of dimension 4 with 8 facets and diameter 5. They also proved
the following theorem in the same paper:

Theorem 2.1. (Klee-Walkup [KW67])The following statements are equivalent

• Every d-polytope with d + m facets has diameter at most m (The Hirsch Conjecture)
• Every m-polytope with 2m facets has diameter at most m (The d-step Conjecture)

That is, the Hirsch Conjecture holds if and only if the d-step Conjecture holds.

We can look at the Hirsch Conjecture as saying that if we want to go from vertex u to
vertex v, we do not expect to have to enter and leave the same facet several times. This implies
another conjecture:

Conjecture 2. (The Non-revisiting Conjecture) Let P be a simple polytope. Let u and v
be two arbitrary vertices of P. Then, there is a path from u to v which at every step enters a
different facet of P.

And proven by Klee and Walkup, we have

Theorem 2.2. (Klee-Walkup [KW67]) The Non-revisiting Conjecture holds iff the d-step
Conjecture holds.

Definition 2.3. A d-polytope with n facets is called Hirsch-sharp if it meets the Hirsch
Conjecture with equality, which means the diameter is exactly n− d.

Let us look at some Hirsch-sharp polytopes [Kim10]:

• Cubes. The d-dimensional cube has 2d facets. The distance between any pair of
vertices is the number of different coordinates (called the Hamming distance). Thus
the diameter is d = 2d− d.
• Products of polytopes. The product of two Hirsch-sharp polytopes P × Q is also

Hirsch-sharp. To see why this holds, first notice that the dimension and number of
facets of P ×Q are the sum of those of P and Q. The diameter of the product is the

11
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sum of the diameters: if we want to go from vertex (u1, v1) to vertex (u2, v2), we can
do this by going from (u1, v1) to (u2, v1) along P ×{v1}, and to (u2, v2) along {u2}×Q.
• Products of simplices. Any product of simplices of any dimension satisfies the Hirsch

Conjecture with equality.

The first non-trivial Hirsch-sharp polytope was constructed by Klee and Walkup [KW67]

in 1967. This polytope, called Q4, has 9 facets with diameter 5. The polar Q44 has the following
coordinates:

a := (-3,3,1,2)
b := (3,-3,1,2)
c := (2,-1,1,3)
d := (-2,1,1,3)

e := (3,3,-1,2)
f := (-3,-3,-1,2)
g := (-1,-2,-1,3)
h := (1,2,-1,3)

w := (0,0,0,-2)

Readers can use softwares such as POLYMAKE [pol] to verify the properties of Q4 using
these coordinates.

Next I will describe two operations one can apply on polytopes. They are called wedging
and one-point suspension (notice that wedging is the dual version of one-point suspension).

Wedging:
Suppose you have a d-polytope P . Pick a facet F . A wedge over F can be thought as stretching
all the facets except F into one dimension higher. More formally speaking, let F be a facet of
a polytope P , and let f(x) ≤ b be the set of inequalities corresponding to F. The wedge of P
over F is the polytope

WF (P ) = P × [0, inf) ∩ {(x, t) ∈ Rd × R : f(x) + t ≤ b}.

Lemma 2.4. Let P be a d-polytope with n facets. Let WF (P ) be its wedge on a certain facet
F. Then, WF (P ) has dimension d+1, n+1 facets, and

diam(WF (P )) ≥ diam(P )

Figure 1. A wedge of the 5-gon over F (picture from [Kim10]).

One-point suspension:
Pick a vertex v in a d-polytope P . A one-point suspension over v is to take the convex hull of
all the original points plus a ’raised’ and ’lowered’ point of v. In mathematical notation, the
one-point suspension of a d-polytope P at vertex v is the polytope

Sw(P ) = conv((P × {0}) ∪ ({w} × {−1,+1})) ⊂ Rd+1.
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Lemma 2.5. Let P be a d-polytope with n vertices. Let Sw(P ) be its one-point suspension
on a certain vertex w. Then Sw(P ) is a (d+1)-dimensional polytope with n+1 vertices, and the
diameter of the polar graph G4(Sw(P )) of Sw(P ) is at least the diameter of the polar graph of
P.

Figure 2. One-point suspension of w. w1 and w2 are the raised and lowered points of

w (picture from [Kim10]).

Remark: The wedge of a simple polytope produces a simple polytope, and the one-point
suspension of a simplicial polytope is a simplicial polytope.

Professor Santos disproved this conjecture using a special polytope called the prismatoid.
In this section, I will briefly discuss some backgrounds about prismatoid, then provide some
properties of this counterexample (as well as a perturbed version of this prismatoid), and lastly
I will discuss some of the ways we have looked at in order to find more counterexamples to this
conjecture.

2.2. Prismatoid and Santos’ Counterexample

Definition 2.6. A prismatoid is a polytope Q having two parallel facets Q+ and Q− that
contain all vertices. We call Q+ and Q− the base facets of Q. The width (diameter) of a
prismatoid is the minimum number of (dual) steps needed to go from Q+ to Q−. [San10]

A cube and a prism are examples of prismatoid in dimension 3. We won’t consider a pyramid
a prismatoid because, even though all vertices are contained within two facets, the top node is
not a facet itself. A dual version of a prismatoid is called a spindle.

Definition 2.7. A d-spindle is a d-polytope P having two distinguished vertices u and v
such that every facet of P contains exactly one of them.

The proof that there exists a counterexample relies on the following theorem:

Theorem 2.8. (Generalized d-step Theorem [Kim10]) If Q is a prismatoid of dimension
d with n vertices and width l, then there is another prismatoid Q’ of dimension n - d, with 2n
- 2d vertices and width at least l + n - 2d. In particular, if l > d, then Q’ violates the d-step
conjecture, and also the Hirsch Conjecture.

Theorem 2.9. There exists a 5-dimensional prismatoid P (with 48 vertices and 322 facets)
of width 6.

Throughout this paper we will call this prismatoid Santos’ prismatoid. This prismatoid has
the following vertices:
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18 0 0 0 1
−18 0 0 0 1

0 18 0 0 1
0 −18 0 0 1
0 0 45 0 1
0 0 −45 0 1
0 0 0 45 1
0 0 0 −45 1
15 15 0 0 1
−15 15 0 0 1
15 −15 0 0 1
−15 −15 0 0 1

0 0 30 30 1
0 0 −30 30 1
0 0 30 −30 1
0 0 −30 −30 1
0 10 40 0 1
0 −10 40 0 1
0 10 −40 0 1
0 −10 −40 0 1
10 0 0 40 1
−10 0 0 40 1
10 0 0 −40 1
−10 0 0 −40 1





0 0 18 0 −1
0 0 −18 0 −1
0 0 0 18 −1
0 0 0 −18 −1
45 0 0 0 −1
−45 0 0 0 −1

0 45 0 0 −1
0 −45 0 0 −1
0 0 15 15 −1
0 0 −15 15 −1
0 0 15 −15 −1
0 0 −15 −15 −1
30 30 0 0 −1
−30 30 0 0 −1
30 −30 0 0 −1
−30 −30 0 0 −1
40 0 10 0 −1
40 0 −10 0 −1
−40 0 10 0 −1
−40 0 −10 0 −1

0 40 0 10 −1
0 40 0 −10 −1
0 −40 0 10 −1
0 −40 0 −10 −1


Remarks:

• The vertices on the left and the vertices on the right span two facets of P , denote as
P+ and P−. They lie in the hyperplanes {x5 = 1} and {x5 = −1}, so P is indeed a
prismatoid.
• The matrix on the right is obtained from the one on the left by right multiplication by

the following orthogonal matrix:
0 0 0 1 0
0 0 1 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 −1

 .

• P+ and P− are themselves invariant under any of the following 32 orthogonal trans-
formations: 

±1 0 0 0 0
0 ±1 0 0 0
0 0 ±1 0 0
0 0 0 ±1 0
0 0 0 0 1

 ,


0 ±1 0 0 0
±1 0 0 0 0
0 0 0 ±1 0
0 0 ±1 0 0
0 0 0 0 1

 .

Using the Generalized d-step Theorem, we can conclude that there exists a prismatoid of
dimension 43 with 86 vertices and width 44.

Remark: We can only prove the existence of this prismatoid using the Generalized d-step
Theorem. We cannot find the explicit coordinates of the 86-dimension prismatoid yet because
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at each operation (one-point suspension) we are more or less doubling the total number of ver-
tices and at the same time multiplies four or five times the computation time. Julian Pfeifle, a
mathematician that helped verify Santos’ prismatoid, approximated that the final prismatoid
will have about 240 vertices.

The d-step property says that for any prismatoid, the distance between the two base facets
is at most d, and if a prismatoid violates this property, this implies there exist a prismatoid of
equal or higher dimension that violates the Hirsch Conjecture. Santos provided two proofs to
show that his prismatoid violates the d-step property: one involves looking at the inequalities
of the facets, while the other involves the study of geodesic maps. The second proof also gives
an insight on how Santos’ prismatoid is being constructed.

2.3. Properties of Santos’ Prismatoid

What makes Santos’ prismatoid so special? Does its graph contain any special features?
Is there a combinatorial pattern in its F -vector? In this section we will explore the graph of
Santos’ prismatoid. Also, as we will see later, not all facets of this prismatoid are simplices, so
we perturbed this prismatoid slightly and look at the ’simple’ version as well.

The Hirsch Conjecture suggests that we either travel from vertex to vertex or from facet to
facet when counting the diameter (width). Santos’ prismatoid comes in vertex notation, this
implies that when counting the distance, we will be traveling along facets, which also means
that we are interested in the connectivity of the facets more than the vertices. For this purpose,
we take the polar of Santos’ prismatoid and look at its properties.

Figure 3. The graph of Santos’ spindle

We cannot draw out the 5-dimensional spindle, thus we draw out the graph instead. Fig 3
shows the graph of this 5-spindle. We can see that the center of the graph is packed with lines
connecting to one vertex. In the dual setting, this vertex corresponds to either the facet Q+

or Q−. We can also see that this graph is symmetric along a diagonal line slanted at about 23
degree.
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Before continuing, we should label the vertices of this graph to make calculation easier.
https://spreadsheets.google.com/ccc?key=0Apy5kusjeMBkdE11Ni1rVDl4T3ZWWDZYNkpXZVFuc2c&hl=

en contains a spreadsheet of facets and paths, along with some other information on Santos’
prismatoid. The vertices in the second column are labeled in the order shown in the above ma-
trix starting at position 0. The facet Q+ is numbered as 147 and the facet Q− is numbered as
321. The table also contains the eigenvalues of the adjacency matrix (with respect to the facets)
as well as the eigenvalues of the Laplacian matrix. These eigenvalues were used to calculate
chromatic numbers.

Figure 4. A screen shot of the webpage.

Sheet 2 and sheet 3 contains all the paths going from Q− to Q+. Below each path shows
the vertices contained in each respective facet. Readers can refer back to the table in sheet 1
for details.

Now that we have the numberings, we can look at more details. The first thing that came
to our mind was: is this prismatoid, excluding the two base facets, simple? This means that
each vertex has degree d for a d-polytope. In our case, we want to see if each vertex has degree
5 or not. Using Mathematica we have the following list:

Degree sequence: 32, 32, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5}.

We see that about 1/3 of the vertices (which in the actual prismatoid, facets) have degree
6. This shows that not all the facets are simplices.

Next we looked at the maximal independent edge set and maximal independent vertex set.
Recall that an independent vertex set is a set S such that every edge of the graph has at least
one endpoint not in S and every vertex not in S has at least one neighbor in S (an independent
edge set is defined in the similar way). Please keep in mind that the following numbers are
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1 more than the numberings in the spreadsheet. This is because Mathematica’s index system
starts at 1 while POLYMAKE ’s index system starts at 0.

Maximal Independent Edge Set: {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}, {13,
17}, {14, 16}, {15, 29}, {18, 19}, {20, 21}, {22, 23}, {24, 35}, {25, 26}, {27, 28}, {30, 112},
{31, 32}, {33, 34}, {36, 119}, {37, 38}, {39, 40}, {41, 43}, {42, 45}, {44, 46}, {47, 57}, {48,
50}, {49, 65}, {51, 52}, {53, 54}, {55, 63}, {56, 58}, {59, 60}, {61, 62}, {64, 66}, {67, 68}, {69,
70}, {71, 72}, {73, 80}, {74, 87}, {75, 210}, {76, 77}, {78, 81}, {79, 83}, {82, 85}, {84, 86},
{88, 91}, {89, 133}, {90, 132}, {92, 99}, {93, 94}, {95, 96}, {97, 102}, {100, 101}, {103, 104},
{105, 106}, {107, 108}, {109, 110}, {111, 113}, {114, 148}, {115, 116}, {117, 122}, {118, 123},
{120, 121}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {134, 135}, {136, 137}, {138, 139},
{140, 141}, {142, 145}, {143, 144}, {146, 147}, {149, 150}, {151, 163}, {152, 159}, {153, 156},
{154, 186}, {155, 162}, {157, 158}, {160, 161}, {164, 165}, {167, 168}, {169, 246}, {170, 171},
{172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183}, {184, 189}, {185, 192},
{187, 188}, {190, 191}, {193, 198}, {194, 196}, {195, 202}, {197, 222}, {199, 201}, {200, 203},
{204, 207}, {205, 209}, {206, 297}, {211, 212}, {214, 215}, {216, 218}, {217, 220}, {219, 221},
{223, 225}, {224, 226}, {227, 242}, {228, 229}, {230, 231}, {232, 233}, {234, 235}, {236, 237},
{239, 240}, {241, 245}, {243, 244}, {247, 272}, {248, 249}, {250, 255}, {251, 252}, {253, 254},
{256, 257}, {258, 259}, {260, 261}, {262, 263}, {264, 265}, {266, 267}, {268, 269}, {270, 271},
{273, 274}, {275, 276}, {278, 286}, {279, 280}, {281, 287}, {282, 283}, {284, 285}, {288, 289},
{290, 291}, {292, 300}, {293, 294}, {295, 302}, {296, 301}, {303, 304}, {305, 307}, {306, 308},
{309, 310}, {311, 312}, {313, 315}, {314, 316}, {317, 321}, {318, 319}, {320, 322}}.

Maximal Independent Vertex Set: {1, 3, 6, 8, 9, 11, 13, 16, 19, 20, 22, 27, 30, 35, 37, 40,
41, 44, 50, 51, 53, 56, 59, 62, 65, 66, 71, 73, 75, 76, 82, 83, 86, 88, 94, 97, 98, 99, 100, 104, 107,
113, 116, 117, 118, 119, 124, 127, 136, 140, 145, 149, 153, 159, 161, 163, 166, 168, 170, 173, 175,
176, 178, 180, 184, 188, 190, 192, 193, 194, 195, 200, 204, 205, 208, 214, 216, 217, 221, 226, 228,
231, 232, 236, 240, 242, 243, 246, 248, 252, 254, 261, 265, 267, 272, 278, 279, 282, 284, 288, 290,
302, 304, 310, 314, 320}.

Figure 5. Independent Edge

Set (blue lines)

Figure 6. Independent Ver-

tex Set (blue dots)
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We also calculated the characteristic polynomial using MATHEMATICA. To those who
are not familiar with linear algebra, a characteristic polynomial of a matrix A is defined by
pA(t) = det(A− tI), where I denotes the n-by-n identity matrix. Due to the fact that this is a
polynomial of degree 322, I will only list out the first few terms that are of interest:

Characteristic Polynomial: χ = x322 − 896x320 − 448x319 + 394880x318 + 388480x317 − ...

From algebraic graph theory, we have the following theorem:

Theorem 2.10. [Big74] Suppose the characteristic polynomial of a graph G is

χ(G) = xn + c1x
n−1 + c2x

n−2 + c3x
n−3 + ...+ cn

then we have

• c1 = 0;
• −c2 is the number of edges of G;
• −c3 is twice the number of triangles in G.

From this theorem, we found that Santos’ graph has 896 edges and 224 triangles.

Lastly we looked at the chromatic number for this graph. We cannot calculate the exact
number for this graph because of the huge size, thus we find a bound for the chromatic number
c.

Proposition 2.11. The chromatic number c of a graph G is bounded below by the following
inequality:

|V (G)| ≤ |maximal independent vertex set| × c

where |V (G)| denotes the size of the vertex set of G.

Thus c is bounded below by 4. Also, from algebraic graph theory, we have the following
theorem:

Theorem 2.12. (Wilf 1967 [Wil67] ) For any graph G, we have

c ≤ 1 + λmax(G)

where λmax is the largest eigenvalue of the adjacency matrix.

Looking back at our table, λmax(G) = 7.6527, so c is bounded above by 8. So our bound
for c is 4 ≤ c ≤ 8.

2.4. A Perturbed Version of Santos’ Prismatoid

We like to work with simplices, because they have nice properties that are easy to work
with, thus we slightly perturbed Santo’s prismatoid. In this perturbed prismatoid, all the facets
(except the base facets) are 4-dimensional simplices.

We perturbed the prismatoid in the following manner. The coordinates are as follows: We
first multiply each coordinate by 1000 (except for x5), then we randomly add/subtract 1 to 3
to the multiplied coordinates. We also add/subtract 1 to 3 to some of the 0 coordinates. The
coordinates are as follow:
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18002 0 0 0 1
−17999 0 0 0 1

0 18003 0 0 1
0 −17997 0 0 1
0 0 45000 0 1
0 0 −45003 0 1
0 0 0 45002 1
0 0 0 −45000 1

15002 15000 1 −1 1
−15000 15002 −1 1 1
14998 −15001 0 0 1
−15002 −14999 0 0 1

1 0 30000 30000 1
0 −1 −30000 30000 1
0 0 30001 −29999 1
−1 0 −30000 −30002 1
0 10002 40000 −1 1
0 −10000 40002 1 1
2 10000 −40000 −1 1
0 −9998 −40001 0 1

10002 −1 3 39998 1
−9999 2 −1 40001 1
10000 0 0 −40002 1
−10001 0 −2 −40000 1





1 −1 17999 0 −1
−2 −1 −18001 1 −1
1 0 0 18003 −1
0 0 0 −17998 −1

45002 0 −1 0 −1
−44998 1 0 1 −1
−1 45002 1 0 −1
−2 −45001 0 3 −1
−1 −1 15003 14999 −1
2 2 −14999 14998 −1
1 −2 15002 −14997 −1
−1 2 −14998 −15003 −1

30000 30000 0 0 −1
−30000 30000 0 0 −1
30000 −30000 0 0 −1
−30000 −30000 0 0 −1
40000 0 10000 0 −1
40000 0 −10000 0 −1
−40000 0 10000 0 −1
−40000 0 −10000 0 −1

0 40000 0 10000 −1
0 40000 0 −10000 −1
0 −40000 0 10000 −1
0 −40000 0 −10000 −1


Readers can again use POLYMAKE to verify that this perturbed polytope is indeed still a

prismatoid and still has width 6.

We see from Figure 7 that the graph is less symmetric now.

Again, we take the dual graph of this prismatoid. To show that all the facets are simplices,
we look at the degree sequence:

Degree Sequence: {110, 105, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5}.
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Figure 7. Perturbed Santos’ Prismatoid

We see every entry is a 5 (except the first two, which are the top and bottom facets). This
proves that every facet is a simplex. Next, using the same labeling method we used above (also
recorded in sheet 4 of the link), we can obtain a maximal independent edge set and a maximal
independent vertex set.

Maximal Independent Edge Set: {{1, 3}, {2, 8}, {4, 5}, {6, 7}, {9, 10}, {11, 12}, {13, 15},
{14, 16}, {17, 18}, {19, 20}, {21, 402}, {22, 23}, {24, 25}, {26, 27}, {28, 34}, {29, 30}, {31,
32}, {33, 36}, {35, 51}, {37, 38}, {39, 40}, {41, 43}, {42, 44}, {45, 46}, {47, 96}, {48, 49}, {50,
156}, {52, 53}, {54, 55}, {56, 58}, {57, 297}, {59, 61}, {60, 62}, {63, 87}, {64, 70}, {65, 67},
{66, 79}, {68, 69}, {71, 239}, {72, 73}, {74, 75}, {76, 85}, {77, 78}, {80, 82}, {81, 222}, {83,
84}, {86, 282}, {88, 89}, {90, 91}, {92, 94}, {93, 284}, {95, 98}, {97, 100}, {99, 168}, {101,
285}, {102, 103}, {104, 105}, {106, 110}, {107, 108}, {109, 112}, {111, 113}, {114, 115}, {116,
117}, {118, 119}, {120, 122}, {121, 123}, {124, 126}, {125, 128}, {127, 130}, {129, 216}, {131,
132}, {133, 134}, {135, 144}, {136, 137}, {138, 140}, {139, 141}, {142, 143}, {145, 146}, {147,
275}, {148, 149}, {152, 165}, {153, 154}, {155, 159}, {157, 158}, {160, 173}, {161, 162}, {163,
164}, {166, 167}, {169, 170}, {171, 174}, {172, 183}, {175, 176}, {177, 178}, {179, 180}, {181,
182}, {184, 187}, {185, 186}, {188, 195}, {189, 190}, {191, 409}, {192, 194}, {193, 197}, {198,
442}, {199, 211}, {200, 201}, {202, 203}, {204, 207}, {205, 206}, {208, 209}, {210, 295}, {212,
213}, {214, 215}, {217, 256}, {218, 219}, {220, 221}, {223, 224}, {225, 226}, {227, 228}, {229,
230}, {231, 232}, {233, 236}, {235, 251}, {237, 238}, {240, 250}, {241, 242}, {243, 246}, {244,
245}, {247, 248}, {252, 253}, {254, 255}, {257, 258}, {259, 260}, {261, 262}, {263, 264}, {267,
387}, {268, 271}, {269, 274}, {270, 462}, {272, 273}, {276, 331}, {277, 329}, {278, 281}, {279,
280}, {283, 324}, {286, 342}, {287, 288}, {289, 291}, {290, 441}, {292, 298}, {293, 294}, {296,
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299}, {301, 303}, {302, 305}, {304, 308}, {306, 307}, {309, 312}, {310, 311}, {313, 314}, {315,
316}, {317, 319}, {318, 320}, {321, 322}, {323, 340}, {325, 334}, {326, 327}, {328, 345}, {330,
468}, {332, 339}, {333, 346}, {335, 336}, {338, 343}, {341, 500}, {344, 347}, {348, 355}, {349,
353}, {350, 363}, {351, 367}, {352, 359}, {354, 356}, {357, 481}, {358, 365}, {360, 362}, {361,
364}, {366, 479}, {368, 369}, {370, 374}, {371, 372}, {373, 383}, {375, 482}, {376, 420}, {377,
379}, {378, 382}, {380, 381}, {384, 401}, {385, 386}, {388, 452}, {389, 392}, {390, 391}, {393,
400}, {394, 399}, {395, 396}, {397, 398}, {403, 405}, {404, 412}, {406, 407}, {408, 410}, {411,
413}, {414, 443}, {415, 416}, {417, 418}, {419, 537}, {421, 422}, {423, 424}, {425, 426}, {427,
433}, {428, 429}, {430, 431}, {432, 434}, {436, 460}, {437, 438}, {439, 440}, {444, 445}, {446,
461}, {447, 448}, {449, 455}, {450, 458}, {451, 453}, {456, 457}, {463, 467}, {464, 465}, {466,
485}, {469, 470}, {471, 472}, {473, 474}, {475, 476}, {477, 486}, {478, 480}, {483, 484}, {488,
489}, {490, 491}, {492, 497}, {493, 496}, {494, 495}, {499, 501}, {502, 503}, {504, 506}, {505,
507}, {508, 509}, {510, 511}, {512, 513}, {514, 515}, {516, 517}, {518, 520}, {519, 529}, {521,
522}, {523, 525}, {524, 528}, {526, 527}, {530, 531}, {532, 533}, {534, 535}}.

Maximal Independent Vertex Set: {1, 2, 4, 6, 10, 14, 18, 22, 24, 27, 28, 29, 31, 33, 37, 40,
43, 52, 55, 59, 60, 66, 67, 68, 71, 72, 75, 77, 83, 85, 87, 89, 91, 96, 97, 101, 102, 104, 106, 107, 109,
111, 114, 117, 118, 122, 124, 127, 128, 131, 133, 136, 139, 140, 143, 144, 145, 149, 152, 153, 155,
157, 166, 168, 170, 172, 175, 177, 179, 181, 186, 187, 191, 192, 193, 199, 200, 203, 206, 212, 215,
218, 221, 222, 223, 225, 231, 234, 237, 242, 243, 245, 249, 253, 256, 259, 264, 268, 273, 274, 277,
280, 281, 282, 284, 289, 292, 295, 299, 301, 302, 304, 306, 309, 310, 314, 316, 319, 322, 326, 331,
337, 339, 340, 342, 345, 348, 353, 360, 361, 365, 373, 377, 378, 384, 385, 387, 390, 395, 399, 403,
408, 412, 413, 422, 426, 429, 430, 435, 439, 441, 443, 449, 451, 454, 458, 462, 464, 468, 469, 471,
475, 478, 482, 484, 486, 488, 495, 499, 502, 507, 511, 514, 517, 520, 525, 527, 529, 531, 532, 535}.

Figure 8. Perturbed Inde-

pendent Edge Set (blue lines)
Figure 9. Perturbed Inde-

pendent Vertex Set (blue dots)

We attempt to calculate the characteristic polynomial, but now the adjacency matrix has
increased by a lot. Using POLYMAKE, we calculated the F -vector as (48, 471, 1333, 1445,
537). Notice that we used to have only 322 facets, but now we have 537. We can still obtain a
bound for the chromatic number though. The upper bound is 1 + 12.1762 ≈ 13, and the lower
bound is 537/181 ≈ 4, so the chromatic number bound is 4 ≤ c ≤ 13.
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2.5. A Search for Counterexamples

It took 53 years for us to find one counterexample for the Hirsch Conjecture. Can we find
more? Santos’ prismatoid is good, but computationally it is not. As discussed above, we still
cannot enumerate all 86 vertices due to the large dimension and computation cost needed, thus
we wish to search for a ’smaller’ counterexample so we can actually attempt to calculate all the
vertices in the final polytope. In addition, Santos’ prismatoid lies in dimension 5. We know
that all polytopes in dimension 3 have diameter at most 3 (one can prove this easily), but
does a counterexample exist in dimension 4? In this section we will discuss some methods on
attempting to search for another counterexample.

Cayley Embedding (via POLYMAKE software)
Our first attempt to create prismatoids is to use the build-in command cayley-embedding in
POLYMAKE. We first create two (d − 1)-dimensional polytopes, then use the command to
create a d-dimensional prismatoid. POLYMAKE uses the two (d−1)-polytopes as the two base
facets, thus the constructions of these two polytopes are critical. We defined the vertices of the
(d− 1)-polytopes in the following ways:

• Random process
• Trigonometric functions
• Cyclic polytopes
• Using preset or modified polytopes within Polymake

Figure 10. Here we show an example of a triangle (left) Cayley Embedded with a

square (middle), to form the 3-dimensional prismatoid shown above (right). The top

and bottom facets are the square and triangle respectively.

”Kiwi” method
A visual method we used in dimensions less than 6 to help construct prismatoids that violate
the Hirsch Conjecture that rely on the d-step property as stated in Santos’ paper. Within our
investigations we applied this technique for the case when the dimension is equal to 4 for then
we only had to deal with the construction of the 2-dimensional geodesic maps of the top and
bottom facets of our prismatoid. What this essentially entailed was looking back at Santos
example, taking the fundamental shape that violated the d-step property, and then attempting
to tile the 2-sphere with this piece. See Fig 11.

To this end, it was necessary, but not sufficient, that each geodesic map on the 2-sphere rep-
resented the normal mapping of a 3-polytope, namely each mapping had to abide by Steinitzs
theorem. However, quite soon there after we were notified by Professor De Loera that Professor



2.5. A SEARCH FOR COUNTEREXAMPLES 23

Figure 11. On the left is the map Santos constructed that violates the d-step property.

On the right is the fundamental kiwi shape taken from Santos map that we used in

attempting to construct a prismatoid in dimension 4.

Santos had given a sketch of a proof of the impossibility of a 4-dimensional prismatoid that
violates the d-step property.

Graph Theoretic Approach
We took a step back and ask ourselves the question, what makes Santos counter-example so
special? With this question in mind we set out to see whether the basic graph of Santos original
prismatoid had any notable characteristics, e.g. what is the clique number, what is the chro-
matic number, what are the eigenvalues of the adjacency matrix, what is the degree sequence,
etc. The results are listed above in the previous section.

Kissing Numbers
As we can see in Santos’ prismatoid’s graph, the distribution of the facets are very symmetric,
thus we turn our direction into looking at kissing numbers. The ”kissing number problem”
asks for the maximal number of spheres that can touch a center sphere of the same size in
n-dimensional space [Mus04]. For our problem, we looked at the arrangement of the two set
of vertices from the two base facets projecting onto the same surface (this is equivalent to the
Minkovski-Sum of the to base facets). But very soon we switch our direction.

Abstract Polytope
If we cannot explicitly find another counterexample, can we at least classify them abstractly?
We invested our time into the study of abstraction and connected layer families, hoping to come
up with some conditions that match with Santos’ prismatoid and classify a class of abstract
polytopes that violates the Hirsch Conjecture.

Despite of having all these powerful methods to construct polytopes, we are still hunting
for a smaller counterexample. Does another smaller example exist in dimension 5 or higher?
Can we construct another prismatoid following Santos’ approach? Can we have some other
polytope other than prismatoid that also violates the Hirsch Conjecture? All these questions
remain open until now, and this will be the next step in the investment of the Hirsch Conjecture.
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Finally, Santos (December 2010) has announced a smaller example in dimensional 5. Un-
fortunately this counterexample is again too large that we still cannot recover a direct Hirsch
counterexample.



CHAPTER 3

An Application of Linear Programming: The Assignment

Problem

3.1. Introduction

Suppose you are the manager of a small company, and there is a list of tasks you need to
assign to your workers. Each person can only get one job, and each job can only be assigned
to one person. You also know the efficiency of each worker for each task (call it the cost of the
task). Your job is to assign these tasks to the workers such that the total cost of the assignment
is minimized. In other words, you want to assign these jobs to workers so that the efficiency of
the overall performance is maximized.

This is called an assignment problem. It is a fundamental combinatorial optimization prob-
lem in operational research or in optimization. In general, workers are called agents and jobs
are called tasks. If the number of agents and jobs is equal, and the total cost of the tasks is
equal to the total cost of the agents, we call this the Linear Assignment Problem.

3.2. Mathematical Theory

Let us discuss the mathematics behind this problem. In Chapter I I slightly mentioned a
special type of polytope: the Birkhoff polytope (denoted as Bn). We also call it the assignment
polytope, the polytope of doubly stochastic matrices, or the perfect matching polytope of Kn,n.

Definition 3.1. A doubly stochastic matrix is an n×n matrix whose entries are non-negative
real numbers and whose rows and columns each sum to 1. The Birkhoff polytope Bn is a convex

polytope in Rn2
whose points are doubly stochastic matrices.

Theorem 3.2. (Birkhoff von Neumann Theorem) The extreme points of the Birkhoff poly-
tope are permutation matrices.

Proposition 3.3. [RBM09] Any doubly stochastic matrix can be written as a convex com-
bination of at most n2 − 2n+ 2 permutation matrices.

Example: Consider the doubly stochastic matrix

X =

 1/2 1/3 1/6
1/3 1/3 1/3
1/6 1/3 1/2

 .

We choose the first permutation matrix as

P1 =

 1 0 0
0 1 0
0 0 1


and λ1 such that λ1 = min(1/2, 1/3, 1/2) = 1/3 to multiply with P1, we get

X − λ1P1 =

 1/6 1/3 1/6
1/3 0 1/3
1/6 1/3 1/6

 .

25
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Next we choose

P2 =

 1 0 0
0 0 1
0 1 0


and the corresponding λ2 = min(1/6, 1/3, 1/3) to get

X − λ1P1 − λ2P2 =

 0 1/3 1/6
1/3 0 1/6
1/6 1/6 1/6

 ,

which can be decomposed into

1/6

 0 1 0
1 0 0
0 0 1

 + 1/6

 0 1 0
0 0 1
1 0 0

 + 1/6

 0 0 1
1 0 0
0 1 0

 .

So X = 1/3P1 + 1/6P2 + 1/6P3 + 1/6P4 + 1/6P5.

In mathematical expression, we can express Bn ∈ Rn2
as

Bn =
{
x ∈ Rn2

:
∑n

j=1 xij = 1;
∑n

i=1 xij = 1;x ≥ 0
}

and it has coefficient matrix

A =



1 1 ... 1
1 1 ... 1

...
1 1 ... 1

1 1 1
1 1 1

... ... ... ...
1 1 1


.

The coefficient matrix A is the incidence matrix of a complete bipartite graph Kn,n. It
is totally unimodular, meaning that every regular k × k submatrix has determinant 1 or -1.
If the right-hand side vector b of an equation system Ax = b is integer valued and the regu-
lar matrix A is unimodular, then Cramer’s rule implies immediately that the solution x of this
equation system is also integer valued. This is a very important note in our assignment problem.

One interesting point to note is that the diameter of Bn is 2 for n ≥ 4.

Theorem 3.4. [RBM09] dim P = d - rank(A), where d = n2. The assignment polytope
has rank 2n - 1, so the dimension is (n− 1)2.

One of the problems in convex geometry is to find the volume of Bn. A combinatorial
formula for all n was given in 2007 by De Loera, Liu, and Yoshida [JADLY07]. An asymptotic
formula was found by Rodney Canfield and Brendan Mckay [CM07]:

vol(Bn) = exp(−(n− 1)2lnn+ n2 − (n− 1/2)ln(2π) + 1/3 +O(1)).

Enough of the theory behind this problem, now let us get to the main point of this section.
A matching is defined when the set of agents is matched to the set of tasks. A problem can have
many matchings (or solutions), depending on the criteria we have for our optimal match. For
some problems, we might want to have an optimal matching, which means the cost is minimized,
but for some problems, we might want to have a stable matching, meaning that switching two
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Figure 1. Adjacent vertices.

tasks between two agents will not improve the current solution. This has less involvement in
linear programming, but finding a stable match is a very big problem in the stable marriage
problem.

In the theorem stated above, the vertices of Bn are permutation matrices, and in Chapter
I I said that the solutions to a linear program is actually the vertices of the polytope defined
by the linear inequalities. This implies that a matching corresponds to a permutation matrix
(and by theorem 3.2, for each n, we have n! feasible solutions). This is not hard to imagine:
suppose we have the rows as agents and columns as tasks. If we have a 1 in the ijth spot, that
means there is an assignment between that agent and that task, and otherwise if there is a 0.
Obviously we cannot have anything other than 0 and 1, because we cannot assign a fraction
of a task to an agent and vice versa. We call the solution a perfect matching if the number of
agent equals to the number of tasks. Similar idea applies in the case where we have unequal
numbers, except we will not have a square matrix anymore.

Theorem 3.5. [RBM09] Two distinct vertices X and Y of the assignment polytope are
adjacent if and only if the edges of Mx ∪My contain only one cycle, where Mx and My are
perfect matchings of X and Y respectively.

To visualize this, let us pick X and Y as

X =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 Y =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


and X ′ and Y ′ as

X ′ =


0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

 Y ′ =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

In the last graph of Figure 1, note that we only have one cycle, thus X and Y are adjacent,
and in Figure 2, we see there are two cycles in the last graph. Thus X and Y are nonadjacent.

Proposition 3.6. [RBM09] Every vertex of the assignment polytope has∑n−2
k=0

(
n
k

)
(n− k − 1)!
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Figure 2. Non adjacent vertices.

neighbors.

Now back to linear programming. Our problem here is a special type of linear program,
called the integer program. It has the form

min
∑n

i,j=1 cijxij
s.t.

∑n
i=1 xij = 1∑n
j=1 xij = 1

xij ∈ 0, 1

where xij = 1 means the agent takes the job, and xij = 0 otherwise. Solving this is equiva-
lent to finding a permutation matrix that minimized the cost function.

As mentioned above, there are many ways to solve this problem, depending on what type of
solution we want. I will describe the two algorithms that we used during our research project for
the mathematics department here: the Hungarian Algorithm and the Gale-Shapley Algorithm
[SMP10].

3.3. Our project and the Hungarian Algorithm

In summer 2009, the office of mathematics department at UC Davis requested the mathe-
matics department to come up with a better way to assign graduate students to teach discussion
sections. By better here I mean a more efficient and optimal way compared to the old method
used by the staff. We found out that the staff used to do the assignment by hand, thus taking
a very long time and might create possible errors, such as the need to swap already assigned
students because of conflicts, or the students not satisfied with their assignment. Our job was
to come up with a computer program that incorporates some mathematical algorithms to help
solve this assignment problem in a more efficient way with a more optimal solution.

To solve the problem, we have the following initial setups:

• Each graduate student supplies a (strict) preference ordering of at most 10 classes to
teach, i.e. rating of 10 classes with 1-10 with 1 being most like;
• The staff also supplies a (strict) preference ordering of each graduate students who

applies to the same class, i.e. rating of 1-5 with 1 being the most suitable.

We require both parties to supply a list for the following reason: We need to know what
classes the graduate students like to teach, which is equivalent to the efficiency of different tasks
mentioned above. We require the staff to supply a list as well, and this is equivalent to the
manager knowing which workers excel in each particular job.
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The Hungarian Algorithm solves the assignment problem by returning an optimal assign-
ment. In our problem, the cost will be the preference, and finding the minimized cost is
essentially minimizing the overall preference, thus creating the ’happiest’ solution. I will first
provide some remarks to it, then describe the algorithm. I will also give an example on how it
works, and followed by some theorems related to it.

Algorithm 1 The Hungarian Algorithm

Input: An n× n matrix (cij)
Output: An optimal assignment (xij)
Step 1. (Initialization)

Step 1.1: For each i, let pi be the minimum element in the ith row of (cij).
Step 1.2: Let (c′ij) be computed from (cij) by subtracting pi from each element of the ith

row (for all i).
Step 1.3: For each j, let qj be the minimum element in the jth column of (c′ij).

Step 1.4: Let (c̄ij) be computed from (c′ij) by subtracting qj from each element of the jth

column (for all j).
Step 2.

Step 2.1: Find a minimum collection of lines covering all the 0’s of (c̄ij).
Step 2.2: If this collection of lines has fewer than n elements, go to step 3. Otherwise, go to

step 4.
Step 3. (Modification of Reduced Matrix)

Step 3.1: Using the covering obtained in Step 2.1, let p be the smallest uncovered element in
(c̄ij).

Step 3.2: Change the reduced matrix (c̄ij) by subtracting p from each uncovered element
and adding p to each twice-covered element. Return to Step 2.
Step 4.

Step 4.1: Find a set of n independent 0’s in (c̄ij).
Step 4.2: Let xij be 1 if the i, j entry of (c̄ij) is one of the independent 0’s, and let xij be 0

otherwise. Output this solution (xij) and stop.

Remarks:

• In the input, the matrix (cij) is the n× n cost value matrix. The ijth entry represents
the cost for i to complete j.
• In step 1, despite the change of matrices, we are still minimizing the same objective

function:

min
∑

i,j c
′
ijxij = min

∑
i,j cijxij − pk

∑
j xkj = min

∑
i,j cijxij − pk.

This implies that the assignment xij that minimizes
∑

i,j cijxij also minimizes
∑

i,j c
′
ijxij .

• In step 2, to find a minimum collection of lines covering the 0’s means to find a set of
lines that covers all the 0’s in the matrix using the least number of lines.
• In step 4.1, we want to find a set of 0’s such that no two zeros lie on the same row or

column.
• The Hungarian Algorithm can be implemented in O(n3) time [Law76].

Example: Let us now see an example on how this algorithm works. Suppose n = 4 with

(cij) =


12 14 15 14
9 6 11 8
10 9 16 14
12 13 13 10

 .
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Then p1 = 12, p2 = 6, p3 = 9, p4 = 10, and

(
c′ij

)
=


0 2 3 2
3 0 5 2
1 0 7 5
2 3 3 0

 .

Now q1 = 0, q2 = 0, q3 = 3, q4 = 0, so

(c̄ij) =


0 2 0 2
3 0 2 2
1 0 4 5
2 3 0 0

 .

Note that (c̄ij) always has nonnegative entries. For step 2, we get

(c̄ij) =


0/ 2/ 0/ 2/

3 0/ 2 2

1 0/ 4 5

2/ 3/ 0/ 0/

 .

Since we only have 3 lines (and n = 4), we need to go to step three. Here p = 1, so we get

(c̄ij) =


0 3 0 2
2 0 1 1
0 0 3 4
2 4 0 0

 .

Now it is easy to see that we need 4 lines to cover all the 0’s, so we can go to step 4. We
can now find an optimal solution by letting x13 = 1, x22 = 1, x31 = 1, x44 = 1, and the rest of
xij be 0.

Theorem 3.7. [Rob03] If all the cij are integers, the Hungarian Algorithm gives an optimal
assignment.

Notice that the Hungarian Algorithm only takes into account of the preference of one side,
thus in our project we have to generate two solutions optimizing each side, and let the office
picks its choice.

3.4. Gale-Shapley Algorithm

The stable marriage problem can be stated as follow: Given n men and n women, where
each person has ranked all members of the opposite sex with a unique number between 1 and
n in order of preference, marry the men and women together such that there are no two people
of opposite sex who would both rather have each other than their current partners. If there are
no such people, all the marriages are ”stable”.

In 1962, David Gale and Lloyd Shapley presented an algorithm that guarantees a stable
solution with everyone married. We call it the Gale-Shapley Algorithm [SMP10].

The main idea of the algorithm is as follow: One side will do the ”proposing”, while the other
side either accepts or rejects the proposal, and the algorithm creates a stable solution favoring
the proposing side. We do not use the word ”optimal” to describe the solution, because both
side may not be as happy as they want, but at least switching up the solution will not make
the situation better.
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Definition 3.8. Male-Optimal: A stable matching in which each man is paired with the
highest ranked woman possible.

Theorem 3.9. The Gale-Shapley Algorithm generates either the male-optimal solution or
the female-optimal solution.

The algorithm is as follow:

Algorithm 2 Gale-Shapley Algorithm

Input: Preference list of both parties.
Output: A stable match between the two parties.
(In our algorithm we let the males to do the proposals to the females.)
Step 1: Each male proposes to his most desired woman in order.
Step 2: If the woman is not yet matched, she will accept the proposal. If the woman is already
matched, she will decide whether to break the engagement and accept the new proposal, or
reject the new proposal according to her preference list.
Step 3: If the male is being rejected, he will propose to his next most desired woman on his
list.
Step 4: The algorithm terminates when everyone is matched, and this matching is stable.

Definition 3.10. A blocking pair exists if there exists a male and a female who are not
assigned as a pair during the matching, and each prefers the other over their respective matched
partner. A matching is stable if there does not exist any blocking pair.

Remarks:

• The complexity of this algorithm is O(n2).
• This algorithm generates a solution that favors only one party. Even though the solution

is stable, it is not necessary optimal. Thus in our project we generate two solutions,
having each side ”propose” once.

3.5. Results of the project

We implemented the Hungarian Algorithm and the Gale-Shapley Algorithm into Matlab.
Our program takes in as input a preference matrix from an excel file and returns the optimal
and stable solutions.

We have three codes for this project: assignment, optimal, and GS.

• Assignment: First we require each graduate student to rate 10 classes. Then we
ask each of them to provide a time sheet for time conflicts, i.e. the times when they
cannot teach a class for varies reasons. Lastly we obtain a spreadsheet with times of
the discussion sections on it. The assignment code takes in these three spreadsheets,
apply some matrix multiplications, and output a new spreadsheet with the graduate
students’ preferences for classes with time conflicts taken into account. This step is
necessary because the graduate students do not know when are classes being offered,
thus they might have signed up for a class that they cannot teach because of time
conflicts.
• Optimal: This code runs the Hungarian algorithm. It takes in the preference ma-

trix generated by assignment, as well as the preference list from the office as input.
We generate two optimal solutions by running the program twice, one optimizing the
students’ preferences, the other optimizing Mathematics department’s preferences.
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Figure 3. Sample Result From our Project.

• GS: This code runs the Gale-Shapley algorithm. Since the algorithm considers both
preference matrices as input, it suffices to produce only one table, though a second
table favoring the other side might be necessary for comparison by running the code
again with the input in reversed order.

As you can see in Figure 3, the two results generated by the Hungarian Algorithm are not
necessary the same. Also note that the results from the Hungarian Algorithm and the Gale-
Shapley are different for some entries. If you look close enough, you will see a blank space under
Gale-Shapley. This is because we do not require the graduate students to rate all the classes,
thus there is only a limited number of class choices for each graduate student. If all the classes
that the graduate student proposes to are filled, then an unmatched student will appear. In
this case hand-made justification is necessary to guarantee that every class is being matched
with a graduate student.

The research on the Stable Marriage Problem is still on going. In October 2010, Ashlagi,
Braverman and Hassidim presented a new algorithm that solves a special type of the matching
problem. For more information, please refer to [IAH10].
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