
A New Proof of the Ellipsoid Algorithm

By

SAMANTHA CAPOZZO

SENIOR THESIS

Submitted in partial satisfaction of the requirements for Highest Honors for the degree of

BACHELOR OF SCIENCE

in

MATHEMATICS

in the

COLLEGE OF LETTERS AND SCIENCE

of the

UNIVERSITY OF CALIFORNIA,

DAVIS

Approved:

Jesús A. De Loera

June 2011

i

iv

ABSTRACT.

Linear programming is described by Howard Karloff as “the process of minimizing
a linear objective function, subject to a finite number of linear equality and inequality
constraints”. Linear optimization is one of the main tools used in applied mathematics
and economics. It finds applications in fields ranging from image processing to logistic
distribution of goods. The first algorithm that was used to solve linear programs was
the Simplex Method. Other popular algorithms are the Interior Point Methods. In 1979,
Leonid Khachiyan invented the first ever polynomial-time algorithm to solve linear pro-
grams, the Ellipsoid Algorithm (see [13] for the first appearance). The algorithm is based
on the geometry of ellipsoids and how a sequence of progressively smaller ellipsoids contains
convex sets. Its ability to run in polynomial-time makes the Ellipsoid Algorithm an impor-
tant theoretical tool that can be used as the basis of many other algorithmic applications
in various fields.

In my senior thesis, I will present the details of the Ellipsoid Algorithm and my work
with Professor Jesus De Loera on simplifying the steps of the algorithm and presenting a
clear and concise proof that will be accessible to undergraduates.

Contents

Chapter 1. Preliminaries 1
1.1. Linear Programming 1
1.2. The History of the Ellipsoid Algorithm 1
1.3. Motivation 2
1.4. Outline 2
1.5. Definitions 3

Chapter 2. The Ellipsoid Algorithm 5
2.1. Ellipsoids 5
2.2. Ellipsoid Algorithm 6
2.3. Basic Construction (1) 8
2.4. Basic Construction (2) 13
2.5. Basic Construction (3) 14
2.6. Key Matrix Theory Lemmas 15
2.7. Prototypical Iteration for Arbitrary Ellipsoids 17
2.8. Two Important Theorems 18
2.9. Conclusions and Consequences of the Ellipsoid Algorithm 24

Chapter 3. Recent Applications and Developments of the Ellipsoid Algorithm 27
3.1. Applications and Developments 28

Bibliography 31

v

CHAPTER 1

Preliminaries

1.1. Linear Programming

Linear programming can be described by the following (primal) optimization problem:

min cTx

subject to Ax = b

x ≥ 0

which can be described in words as “the process of minimizing a linear objective function,
subject to a finite number of linear equality and inequality constraints” [11]. Although
this may sound technical and complicated, it is used frequently in our every day lives, as
we will discuss in detail in Chapter 3. In Chapter 2, we will formally present the linear
programming algorithm known as the Ellipsoid Algorithm, along with a detailed proof.
First, we will begin with a historical background on the algorithm, followed by several
definitions that are needed to understand the algorithm and its proof.

1.2. The History of the Ellipsoid Algorithm

The Simplex Method, developed by George Dantzig in 1947, was the algorithm that
sparked an interest in optimization and laid the foundation for further research and devel-
opment. According to [19], optimization developed rapidly during the 1950’s and 1960’s. It
was applicable in many fields, including engineering, science, and industry, which inspired
researchers to pursue studies surrounding optimization and linear programming. This re-
search led to the development of several other algorithms, including the Ellipsoid Algorithm
(an alternative to the well-known Simplex Method), which was originally developed by N.

Z. Shor, D. B. Yudin, and A. S. Nemirovskĭi in the 1970’s.
In 1979, Leonid Khachiyan showed that an adapted version of the algorithm was “the

first polynomial-time linear programming algorithm” [11]. By doing so, Khachiyan had
successfully solved a very important open theoretical problem. [9]

1

2 1. PRELIMINARIES

Figure 1. A photo of Leonid Khachiyan.

As described by [19], the Ellipsoid Algorithm

“is related to the following geometric fact: if an ellipsoid in a d-space is
cut in half by a hyperplane through its center, each half-ellipsoid can be
enclosed in a new ellipsoid whose volume is smaller than the original...the
new ellipsoid can be represented by parameters that are easily computed
from those for the original ellipsoid and those describing the hyperplane”.

1.3. Motivation

The Ellipsoid Algorithm turned out to be lacking computationally (in practice) but
theoretically beautiful; for practical uses, the Simplex Method has proved to be superior,
but for theoretical purposes, the Ellipsoid Algorithm is a valuable tool for “analyzing the
complexity of optimization problems, particularly those arising in combinatorics” [19]. Its
appeal comes from the fact that it solves problems for convex bodies, not just polytopes.
Further, has a very strong theoretical base, which makes it useful to mathematicians for
reasons that go beyond the application of the algorithm itself; see Chapter 3. Therefore,
a proof of a theoretical tool such as the Ellipsoid Algorithm is incredibly useful, hence,
the motivation of my thesis. My goal is to present a thorough and complete proof of the
Ellipsoid Algorithm, based on the original proof given by Khachiyan.

1.4. Outline

The following is a general outline of the paper:

(1) In Chapter 1, we will begin with the definitions that will be useful throughout the
rest of the paper.

(2) In Chapter 2, we will review the basics of ellipsoids and present the simplified
Ellipsoid Algorithm, along with a complete proof.

(3) We will establish several theorems as consequences of the proof in the final sections
of Chapter 2.

(4) We will conclude with examples, applications and developments in Chapter 3.

1.5. DEFINITIONS 3

1.5. Definitions

From basic geometry, one may recall the formula for an ellipse:

x2

a2
+
y2

b2
= 1.

This ellipse is a 2-dimensional ellipsoid. Ellipsoids will be the fundamental geometric
object of our investigation. Before we move into higher dimensions, we need to review
several definitions that we will refer to frequently.

The following review of concepts and definitions are found in the book [2]:
The norm of x ∈ Rn is

‖x‖ =

(
n∑

i=1

x2
i

) 1
2

.

Note the following useful properties of the norm:

(1) ‖x‖ ≥ 0 and ‖x‖ = 0⇔ x = 0.
(2) ‖λx‖ = ‖λ‖‖x‖ for all λ ∈ R,x ∈ Rn.
(3) ‖x + y‖ ≤ ‖x‖+ ‖y‖.

Recall that the vectors x1, . . . ,xk are linearly independent if

k∑
i=1

λixi = 0 for λ1, . . . , λk ∈ R⇒ λ1 = . . . = λk = 0.

Otherwise, they are said to be linearly dependent.
Also recall the idea of open and closed sets:

(1) A set S ⊆ Rn is said to be an open set if and only if for each x ∈ S there exists
some ball centered at x completely contained in S.

(2) A set S is said to be a closed set if and only if SC = {x ∈ Rn | x /∈ S}, the
complement of S, is open.

A set S is said to be bounded if and only if it is contained in some ball.

Definition 1. A set K ⊂ Rn is convex if and only if whenever x1,x2 ∈ K then
(1− λ)x1 + λx2 ∈ K for all 0 ≤ λ ≤ 1.

Following from the above definition, the convex hull of A ⊂ Rn is defined as

conv(A) = {λ1x1 + . . .+ λkxk | k is a positive integer, x1, . . . ,xk ∈ A,
k∑

i=1

λi = 1 and λi ≥ 0 for i = 1, . . . , k}.

Another useful definition stemming from convexity is the notion of a convex polytope,
which is the convex hull of a finite set of points. In R2, a convex polytope is called a convex
polygon.

4 1. PRELIMINARIES

Definition 2. Let x0 ∈ Rn and ‖u‖ = 1. Then the set

H = {x ∈ Rn | 〈x− x0,u〉 = 0}
is a hyperplane passing through x0 and having unit normal u.

We can use the definition of the hyperplane to define open and closed halfspaces:

Definition 3. The closed halfspaces defined by the hyperplane H in Definition 2 are

H+ = {x ∈ Rn | 〈x− x0,u〉 ≥ 0}
H− = {x ∈ Rn | 〈x− x0,u〉 ≤ 0}.

The open halfspaces are

H+ = {x ∈ Rn | 〈x− x0,u〉 > 0}
H− = {x ∈ Rn | 〈x− x0,u〉 < 0}.

We can also use the definition of a hyperplane to define a polyhedron and a polytope,
found in book [11]:

Definition 4. A polyhedron is the intersection of finitely many halfspaces. A bounded,
nonempty polyhedron is called a polytope.

The following definitions are found in the book [18]:

Definition 5. A matrix M is positive semidefinite if xMxT ≥ 0 for all x ∈ Rn.

For our purposes, a positive semidefinite matrix M will also be symmetric, that is,
M = MT .

Definition 6. A vector space S in Rn is a nonempty subset of Rn closed under vector
addition and scalar multiplication. The dimension dim(S) of a vector space S is the
maximum number of linearly independent vectors in S.

Now that we have presented the necessary foundation, we are ready to examine the
Ellipsoid Algorithm.

CHAPTER 2

The Ellipsoid Algorithm

2.1. Ellipsoids

First, we will define a general dimension ellipsoid.

Definition 7. Let M be a (symmetric) positive semidefinite n × n matrix and let
z ∈ Rn. Then

EM,z := {x | (x− z)TM(x− z) ≤ 1}
denotes an ellipsoid centered at z.

Note that M is invertible and acts as the “stretch” that turns B(0, 1), the unit sphere
centered at the origin, into an ellipsoid. Also, note that

x ∈ EM,z ⇐⇒ ‖M
1
2 (x− z)‖ ≤ 1 (by the Cholesky Factorization)

where M
1
2 is a lower triangular matrix with positive diagonal elements. Recall from

linear algebra that the Cholesky Factorization is the decomposition of a symmetric, positive
semidefinite matrix into a lower triangular matrix and its conjugate transpose [16]. We

use M
1
2 since M is invertible and positive semidefinite, and so that we can perform the

following operation, using properties of linear algebra:

(x− z)TM(x− z) =⇒ (x− z)T (M
1
2)TM

1
2 (x− z)

=⇒ ((x− z)M
1
2)TM

1
2 (x− z)

=⇒ ‖M
1
2 (x− z)‖.

Now we let u = M
1
2 (x− z), and we multiply both sides of the equation by the inverse

of M
1
2 , which, by abuse of notation, we will denote by M−

1
2 :

(M−
1
2)u = (M−

1
2)M

1
2 (x− z)

(M−
1
2)u = x− z

x = z +M−
1
2 u,

for all u ∈ B(0, 1) where ‖u‖ ≤ 1.
Therefore

(2.1) EM,z = {x = z +M−
1
2 u | uTu ≤ 1}.

5

6 2. THE ELLIPSOID ALGORITHM

Thus, EM,z = z +M−
1
2B(0, 1). In words, this equation tells us that an ellipsoid is the

image of a ball under a linear map (M
1
2) plus a translation (z).

The volume of B(0, 1) is given by

v(n) =
π

n
2

Γ(n2 + 1)
,

as seen in calculus, and since

det(M−
1
2) =

1

det(M
1
2)

=
1√

det(M)

by the Jacobian identity for volumes, the volume of EM,z is given by

(2.2) volume(EM,z) =
v(n)√
det(M)

.

Hence,

ln(volume(EM,z)) = ln(v(n))− 1

2
ln(det(M)).

2.2. Ellipsoid Algorithm

We will now introduce the formal statement of the Ellipsoid Algorithm. In our presen-
tation of the algorithm, we have simplified the steps to make the formal statement more
precise.

Algorithm 1 Ellipsoid Algorithm

Require: A set S with volume(S) > 0 is bounded and convex with a separation oracle,
and EM,z is given such that S ⊆ EM,z.

Ensure: s ∈ S or S is empty.
1: for k = 0; Mk = M ; zk = z do
2: If zk ∈ S, STOP; otherwise
3: Find a nonzero vector a such that aTx ≤ aT zk, for all x ∈ S (separating hyperplane);
4: Construct the smaller volume ellipsoid that contains

EM,z ∩ {x ∈ Rn | aT (x− zk) ≤ 0}.
Let this ellipsoid have matrix Mk+1 and center zk+1.

5: k = k + 1;
6: Go back to Step 2.
7: end for

For a visual representation of the Ellipsoid Algorithm in dimension two, see Figure 1
on the following page. Note that each quadrant of the figure represents another iteration
of the algorithm, and the progression within Figure 1 moves clockwise, starting with the
image on the top left.

2.2. ELLIPSOID ALGORITHM 7

S S

S S

Figure 1. Four iterations of the Ellipsoid Algorithm for n = 2.

8 2. THE ELLIPSOID ALGORITHM

2.3. Basic Construction (1)

We will first discuss the special case of the Ellipsoid Algorithm where the ellipsoid
is conveniently B(0, 1) and the separating hyperplane is x1 ≥ 0. We will prove that
the Ellipsoid Algorithm works for this special case in the following three sections, Basic
Construction (1) through Basic Construction (3). This special case will give us a better
understanding of the algorithm and how it works mathematically. Then, we will generalize
it to make the algorithm applicable to any ellipsoid.

We wish to find m = (z, 0, . . . , 0), M = diag(a1, a2, . . . , an), such that the ellipsoid

EM,m = {x ∈ Rn | (x−m)TM(x−m) ≤ 1}

contains B(0, 1) ∩ {x | x1 ≥ 0} and has minimal volume. Note that

(x−m)TM(x−m) = a1(x1 − z)2 +
n∑

i=2

aix
2
i ,

which follows directly from the matrix M .
The unit vectors e1,±e2, . . . ,±en are on the boundary of B(0, 1) ∩ {x | x1 ≥ 1}.
We require them to lie on the boundary of the ellipsoid. This gives

a1(1− z)2 = 1

a1z
2 + ai = 1,

for 2 ≤ i ≤ n. From this we obtain

a1 =
1

(1− z)2
,

ai = 1− a1z
2 = 1− z2

(1− z)2
=

1− 2z

(1− z)2
, i ≥ 2.

Recall from Equation 2.2 that volume(EM,z) is minimal if det(M) is maximal. Since

det(M) = det(a1 · a2 · · · an) =
1

(1− z)2
· 1− 2z

(1− z)2
· · · 1− 2z

(1− z)2︸ ︷︷ ︸
n− 1 times

=
(1− 2z)n−1

(1− z)2n
,

which is obtained using calculus, we will verify that this occurs if z = 1
n+1 . To do

so, we will take the derivative of det(M) = (1−2z)n−1

(1−z)2n
and show that when z = 1

n+1 =⇒
d
dz (det(M)) = 0.

2.3. BASIC CONSTRUCTION (1) 9

d

dz
(det(M)) =

d

dz

(
(1− 2z)n−1

(1− z)2n

)
=

(
−2(n− 1)(1− z)2n(1− 2z)n−2 − (−1)(2n)(1− 2z)n−1(1− z)2n−1

[(1− z)2n]2

)
=

(
(−2n+ 2)(1− z)2n(1− 2z)n−2 + 2n(1− 2z)n−1(1− z)2n−1

(1− z)4n

)
=

(
(1− z)2n−1(1− 2z)n−2 [(−2n+ 2)(1− z) + 2n(1− 2z)]

(1− z)4n

)
Now, we will plug in z = 1

n+1 :

d(det(M))

dz

(
1

n+ 1

)
=


(

1− 1
n+1

)2n−1 (
1− 2 1

n+1

)n−2 [
(−2n+ 2)

(
1− 1

n+1

)
+ 2n

(
1− 2 1

n+1

)]
(

1− 1
n+1

)4n


=


(
n+1−1
n+1

)2n−1 (
n+1−2
n+1

)n−2 [
(−2n+ 2)

(
n+1−1
n+1

)
+ 2n

(
n+1−2
n+1

)]
(
n+1−1
n+1

)4n


=


(

n
n+1

)2n−1 (
n−1
n+1

)n−2 [
(−2n+ 2)

(
n

n+1

)
+ 2n

(
n−1
n+1

)]
(

n
n+1

)4n


=


(

n
n+1

)2n−1 (
n−1
n+1

)n−2 [(−2n2+2n
n+1

)
+
(

2n2−2n
n+1

)]
(

n
n+1

)4n


=


(

n
n+1

)2n−1 (
n−1
n+1

)n−2
[0](

n
n+1

)4n


= 0.

Thus, we have verified that there is an inflection point at z = 1
n+1 . Now we must check

that the second derivative,

d2

dz2
(det(M)) =

d2

dz2

(
(1− z)2n−1(1− 2z)n−2 [(−2n+ 2)(1− z) + 2n(1− 2z)]

(1− z)4n

)
,

is negative in order to verify that det(M) is maximal at z = 1
n+1 . Using the quotient rule(

BT ′−TB′

B2

)
, we will examine the second derivative in pieces:

10 2. THE ELLIPSOID ALGORITHM

BT ′ = (1− z)4n
(
(2n− 1)(1− z)2n−2(n− 2)(1− 2z)n−3 [(−2n+ 2)(−1) + 2n(−2)]

)
= (2n− 1)(n− 2)(1− z)6n−2(1− 2z)n−3 [(2n− 2)− 4n]

= (2n− 1)(n− 2)(−2n− 2)(1− z)6n−2(1− 2z)n−3

= (2n2 − 5n+ 2)(−2n− 2)(1− z)6n−2(1− 2z)n−3

= (−4n3 + 6n2 + 6n− 4)(1− z)6n−2(1− 2z)n−3.

TB′ = 4n(1− z)4n−1
(
(1− z)2n−1(1− 2z)n−2 [(−2n+ 2)(1− z) + 2n(1− 2z)]

)
= 4n(1− z)6n−2(1− 2z)n−2 [(−2n+ 2)(1− z) + 2n(1− 2z)]

= (1− z)6n−2(1− 2z)n−2
[
4n(−2n+ 2)(1− z) + 8n2(1− 2z)

]
.

B2 =
[
(1− z)4n

]2
= (1− z)8n.

Putting the numerator (BT ′ − TB′) back together, we obtain:

BT ′ − TB′ = (−4n3 + 6n2 + 6n− 4)(1− z)6n−2(1− 2z)n−3

− 4n(1− z)6n−2(1− 2z)n−2 [(−2n+ 2)(1− z) + 2n(1− 2z)]

= (1− z)6n−2(1− 2z)n−3
[
(−4n3 + 6n2 + 6n− 4)

−4n(1− 2z) [(−2n+ 2)(1− z) + 2n(1− 2z)]]

= (1− z)6n−2(1− 2z)n−3
[
(−4n3 + 6n2 + 6n− 4)

−
[
4n(−2n+ 2)(1− z)(1− 2z) + 8n2(1− 2z)2

]]
= (1− z)6n−2(1− 2z)n−3

[
(−4n3 + 6n2 + 6n− 4)

−
[
(−8n2 + 8)(1− z)(1− 2z) + 8n2(1− 2z)2

]]
.

We will now plug in z = 1
n+1 :

2.3. BASIC CONSTRUCTION (1) 11

BT ′ − TB′
∣∣

1
n+1

=

(
1− 1

n+ 1

)6n−2(
1− 2

n+ 1

)n−3
[

(−4n3 + 6n2 + 6n− 4)

−

[
(−8n2 + 8)

(
1− 1

n+ 1

)(
1− 2

n+ 1

)
+ 8n2

(
1− 2

n+ 1

)2
]]

=

(
n

n+ 1

)6n−2(n− 1

n+ 1

)n−3
[

(−4n3 + 6n2 + 6n− 4)

−

[
(−8n2 + 8)

(
n

n+ 1

)(
n− 1

n+ 1

)
+ 8n2

(
n− 1

n+ 1

)2
]]

=

(
n

n+ 1

)6n−2(n− 1

n+ 1

)n−3
[

(−4n3 + 6n2 + 6n− 4)

−
[(

(−8n2 + 8)(n)(n− 1)

(n+ 1)2

)
+

(
8n2(n− 1)2

(n+ 1)2

)]]

=

(
n

n+ 1

)6n−2(n− 1

n+ 1

)n−3
[

(−4n3 + 6n2 + 6n− 4)

−
[(

(−8n3 + 8n)(n− 1)

(n+ 1)2

)
+

(
(8n3 − 8n2)(n− 1)

(n+ 1)2

)]]

=

(
n

n+ 1

)6n−2(n− 1

n+ 1

)n−3
[

(−4n3 + 6n2 + 6n− 4)

−
(

(−8n3 + 8n)(n− 1) + (8n3 − 8n2)(n− 1)

(n+ 1)2

)]

=

(
n

n+ 1

)6n−2(n− 1

n+ 1

)n−3
[

(−4n3 + 6n2 + 6n− 4)

−
(

(n− 1)[−8n3 + 8n+ 8n3 − 8n2]

(n+ 1)2

)]

=

(
n

n+ 1

)6n−2(n− 1

n+ 1

)n−3 [
(−4n3 + 6n2 + 6n− 4)−

(
(n− 1)[8n− 8n2]

(n+ 1)2

)]
=

(
n

n+ 1

)6n−2(n− 1

n+ 1

)n−3 [
(−4n3 + 6n2 + 6n− 4)−

(
(n− 1)(−8n)(n+ 1)

(n+ 1)2

)]
=

(
n

n+ 1

)6n−2(n− 1

n+ 1

)n−3 [
(−4n3 + 6n2 + 6n− 4)−

(
(n− 1)(−8n)

n+ 1

)]
.

12 2. THE ELLIPSOID ALGORITHM

We can find a common denominator:

(
n

n+ 1

)6n−2(n− 1

n+ 1

)n−3 [(−4n3 + 6n2 + 6n− 4)(n+ 1)

n+ 1
− −8n2 + 8n

n+ 1

]
=

(
n

n+ 1

)6n−2(n− 1

n+ 1

)n−3 [−4n4 + 2n3 + 12n2 + 10n+ 4

n+ 1
− −8n2 + 8n

n+ 1

]
=

(
n

n+ 1

)6n−2(n− 1

n+ 1

)n−3 [−4n4 + 2n3 + 20n2 + 2n+ 4

n+ 1

]
=

(
n

n+ 1

)6n−2(n− 1

n+ 1

)n−3(1

n+ 1

)[
−4n4 + 2n3 + 20n2 + 2n+ 4

]
.

Thus, we can put the fraction together:

d2(det(M))

dz2

(
1

n+ 1

)
=

(
n

n+1

)6n−2 (
n−1
n+1

)n−3 (
1

n+1

) [
−4n4 + 2n3 + 20n2 + 2n+ 4

]
(1− z)8n

=

(
n

n+1

)6n−2 (
n−1
n+1

)n−3 (
1

n+1

) [
−4n4 + 2n3 + 20n2 + 2n+ 4

]
(

n
n+1

)8n

=

(
n−1
n+1

)n−3 (
1

n+1

) [
−4n4 + 2n3 + 20n2 + 2n+ 4

]
(

n
n+1

)2n+2 .

=

(
n−1
n+1

)n−3 (
1

n+1

) [
−2(n+ 2)(2n3 − 5n2 − 1)

]
(

n
n+1

)2n+2 .

Since we know 2 < n ∈ N, the polynomial 2n3 − 5n2 − 1 will always be positive, and
because we are multiplying this polynomial by −2(n+ 2), we know that −2(n+ 2)(2n3 −
5n2 − 1) will always be negative. By Descartes’ Rule of Signs, there is only one root
of 2n3 − 5n2 − 1 from zero to infinity, and using a Sturm sequence, we know that this
root lies between 0 and 2.6. That means for 2 < n, the second derivative will always be
negative. Thus, we have verified that when z = 1

n+1 , det(M) is maximal. This means we

2.4. BASIC CONSTRUCTION (2) 13

can substitute z = 1
n+1 into our equations for a1 and ai and simplify to obtain:

a1 =
1

(1− z)2
=

1(
1− 1

n+1

)2 =
1(

n+1−1
n+1

)2 =
1(
n

n+1

)2 =

(
n+ 1

n

)2

ai =
1− 2z

(1− z)2
=

1− 2
(

1
n+1

)
(

1− 1
n+1

)2 =
n+1−2
n+1(

n+1−1
n+1

)2 =
n−1
n+1(
n

n+1

)2 =
(n− 1)(n+ 1)2

(n+ 1)(n2)

=
(n− 1)(n+ 1)

n2
=
n2 − 1

n2
for i ≥ 2.

Now we know the coordinates of the ellipsoid that contains half of the ball. In the next
section, we will see all desired properties are true for this special case.

2.4. Basic Construction (2)

We let

a1 :=
(n+ 1)2

n2
, ai :=

n2 − 1

n2
for i ≥ 2, B := {y | yTy ≤ 1}, H := {y | y1 ≥ 0},

M̄ :=
n2 − 1

n2

(
I +

2

n− 1
e1e

T
1

)
, z̄ :=

1

n+ 1
e1, E := EM̄,z̄.

Theorem 1. (B ∩H) ⊆ E.

Proof. One has y ∈ E if and only if

(y − z̄)T M̄(y − z̄) =

(
y − 1

n+ 1
e1

)T (n2 − 1

n2

(
I +

2

n− 1
e1e

T
1

))(
y − 1

n+ 1
e1

)
≤ 1.

This is equivalent to

n2 − 1

n2

n∑
i=1

y2
i +

1

n2
+ y1(y1 − 1)

(
2n+ 2

n2

)
≤ 1.

Now let y ∈ B ∩ H. Then 0 ≤ y1 ≤ 1 implies that y1(y1 − 1) ≤ 0. We also know that∑n
i=1 y

2
i ≤ 1 because y ∈ B. Since

n2 − 1

n2
+

1

n2
= 1,

we obtain y ∈ E.
�

14 2. THE ELLIPSOID ALGORITHM

2.5. Basic Construction (3)

Recall the following variables from Basic Construction (2), Section 2.4:

M̄ :=
n2 − 1

n2

(
I +

2

n− 1
e1e

T
1

)
where e1e

T
1 is a diagonal matrix,

B := {y | yTy ≤ 1},
E := EM̄,z̄.

Theorem 2. volume(E) < volume(B) e
−1

2(n+1) .

Proof. One has

volume(E)

volume(B)
=

√
det(I)√

det(M̄)
=

1√
det(M̄)

.

Moreover,

det(M̄) =

(
n2 − 1

n2

)n(
1 +

2

n− 1

)
=

(
n2 − 1

n2

)n−1(
n2 − 1

n2

)(
n− 1 + 2

n− 1

)
=

(
n2 − 1

n2

)n−1(
n2 − 1

n2
· n+ 1

n− 1

)
=

(
n2 − 1

n2

)n−1(
(n+ 1)(n− 1)(n+ 1)

n2(n− 1)

)
=

(
n2 − 1

n2

)n−1(
(n+ 1)2

n2

)
=

(
n2 − 1

n2

)n−1(
n+ 1

n

)2

.

Recall from calculus that 1 + x ≤ ex. (To check this fact, write 0 ≤ ex−x− 1 and take
the first derivative to obtain 0 ≤ ex−1 =⇒ ex = 1 =⇒ x = 0, which satisfies 1 + x ≤ ex,
but we must make sure that x = 0 is a minimum in order for the claim to hold for all x.
To do so, we take the second derivative and obtain 0 ≤ ex =⇒ x = 0, so x is indeed a
minimum. Therefore the claim holds for all x.)

2.6. KEY MATRIX THEORY LEMMAS 15

Now, using 1 + x ≤ ex, we can compute

1

det(M̄)
=

1

(n
2−1
n2)n−1(n+1

n)2

=

(
n2

n2 − 1

)n−1(
n

n+ 1

)2

=

(
n2

n2
+

1

n2 − 1

)n−1(
n

n
− 1

n+ 1

)2

=

(
1 +

1

n2 − 1

)n−1(
1− 1

n+ 1

)2

≤ e
1

n2−1
(n−1)

e
−1
n+1

(2)

= e
n−1

(n+1)(n−1) e
−2
n+1

= e
1

n+1 e
−2
n+1 = e

−1
n+1 .

Putting our equations together, we see that

volume(E)

volume(B)
=

1√
det(M̄)

≤
√

e
−1
n+1 =

(
e
−1
n+1

) 1
2

= e
−1

2(n+1)

which can then be written

volume(E) ≤ volume(B) e
−1

2(n+1) =⇒ volume(E) < volume(B) e
−1

2(n+1) .

�

Thus, we have proved in Sections 2.3 - 2.5, Basic Construction (1) through Basic
Construction (3), that the Ellipsoid Algorithm works for the special case when the ellipsoid
is B(0, 1) and the supporting hyperplane is x1 ≥ 0. Next we will see that this is much
more general.

2.6. Key Matrix Theory Lemmas

In this section, we will review some basic matrix manipulation that will be helpful for
the rest of the chapter.

Lemma 1. Let U be such that QU = R. Then I + STU is invertible.

Proof. Suppose w ∈ Rk satisfies (I + STU)w = 0. Then

(Q+RST)Uw = QUw +RSTUw

= (QU)w +R(STU)w

= Rw +R(−w)

= Rw −Rw = 0.

16 2. THE ELLIPSOID ALGORITHM

Q+RST being nonsingular gives Uw = 0. Since rank(U) = k, and U is a n×k matrix,
that implies that k columns of U are linearly independent. Therefore, we must have w = 0.
Hence, I + STU is invertible.

�

Theorem 3. If Qx0 = q and (I + STU)y = STx0 then x = x0 − Uy satisfies (Q +
RST)x = q.

Proof.

(Q+RST)x = (Q+RST)(x0 − Uy)

= Qx0 +RSTx0 −QUy −RSTUy

= q +R(STx0)− (QU)y −RSTUy

= q +R(I + STU)y −Ry −RSTUy

= q +R(Iy + STUy)−Ry −RSTUy

= q +Ry +RSTUy −Ry −RSTUy

= q.

�

We now present the Sherman-Morrison Formula in the following theorem:

Theorem 4. Let Q, R and S be matrices such that Q and Q+RST are nonsingular,
and R and S are n× k matrices of rank(k) ≤ n. Then

(Q+RST)−1 = Q−1 −Q−1R(I + STQ−1R)−1STQ−1.

Proof. Recall Qx0 = q and (I + STU)y = STx0, as stated in Theorem 3, and
QU = R, as stated in Lemma 1. Then, using the manipulations x0 = Q−1q, U = Q−1R,
and y = (I + STU)−1STx0, the solution x of (Q+RST)x = q is given by

x = x0 − Uy

= Q−1q−Q−1R(I + STU)−1STx0

= Q−1q−Q−1R(I + STU)−1ST [Q−1q]

= Q−1q−Q−1R(I + ST (Q−1R))−1STQ−1q

= (Q−1 −Q−1R(I + STQ−1R)−1STQ−1)q.

Since Theorem 3 holds for all q ∈ Rn and by the uniqueness of inverses, that implies

(Q+RST)−1 = Q−1 −Q−1R(I + STQ−1R)−1STQ−1

(that is, the Sherman-Morrison Formula holds).
�

2.7. PROTOTYPICAL ITERATION FOR ARBITRARY ELLIPSOIDS 17

2.7. Prototypical Iteration for Arbitrary Ellipsoids

Before we continue with our more general case of the Ellipsoid Algorithm, note that in
Sections 2.3 - 2.5, we use M and M̄ , which are different from, but correspond to, Ṁ and
M̃ , respectively, that will appear in the following sections. These new representations, Ṁ
and M̃ , are more general as well.

We let Ṁ be an arbitrary positive semidefinite matrix,

EṀ,z := {x | (x− z)T Ṁ(x− z) ≤ 1} = z + Ṁ−
1
2B(0, 1),

since we now wish to work with arbitrary ellipsoids. We know Ṁ, z and a nonzero
vector a (a separating hyperplane). Define

(2.3) M̃ :=
n2 − 1

n2

(
Ṁ +

2

n− 1

aaT

aT Ṁ−1a

)
and z̄ := z +

1

n+ 1

Ṁ−1a√
aT Ṁ−1a

.

Using the Sherman-Morrison Formula from Theorem 4, we have that

M̃−1

=

(
n2 − 1

n2

)−1
(
Ṁ−1 − Ṁ−1 2

(n− 1)aT Ṁ−1a
a

(
1 + aT Ṁ−1 2

(n− 1)aT Ṁ−1a
a

)−1

aT Ṁ−1

)

=
n2

n2 − 1

(
Ṁ−1 − 2

(n− 1)aT Ṁ−1a
Ṁ−1a

(
1 +

2

(n− 1)aT Ṁ−1a
aT Ṁ−1a

)−1

aT Ṁ−1

)

=
n2

n2 − 1

(
Ṁ−1 − 2

(n− 1)aT Ṁ−1a
Ṁ−1a

(
1 +

2

n− 1

)−1

aT Ṁ−1

)

=
n2

n2 − 1

(
Ṁ−1 − 2

(n− 1)aT Ṁ−1a
Ṁ−1a

(
n+ 1

n− 1

)−1

aT Ṁ−1

)

=
n2

n2 − 1

(
Ṁ−1 − 2

(n− 1)aT Ṁ−1a

(
n− 1

n+ 1

)
Ṁ−1aaT Ṁ−1

)
=

n2

n2 − 1

(
Ṁ−1 − 2(n− 1)Ṁ−1aaT Ṁ−1

(n+ 1)(n− 1)aT Ṁ−1a

)

=
n2

n2 − 1

(
Ṁ−1 − 2Ṁ−1aaT Ṁ−1

(n+ 1)aT Ṁ−1a

)

=
n2

n2 − 1

(
Ṁ−1 − 2

n+ 1

Ṁ−1aaT Ṁ−1

aT Ṁ−1a

)
.

18 2. THE ELLIPSOID ALGORITHM

Therefore, we have shown that

(2.4) M̃−1 =
n2

n2 − 1

(
Ṁ−1 − 2

n+ 1

Ṁ−1aaT Ṁ−1

aT Ṁ−1a

)
.

Thus, by using Equation 2.3 and Equation 2.4, we obtain a direct formula for a new
ellipsoid that will follow M̃ right after we find a separating hyperplane. Note that this is
also related to Equation 2.1.

2.8. Two Important Theorems

The following two theorems are almost duplicates to Theorems 1 and Theorem 2, but
are valid for arbitrary configurations.

Theorem 5. EṀ,z ∩ {x | a
Tx ≤ aT z} ⊆ EM̃,z̄.

Proof. Let u := Ṁ−
1
2 a, b := ‖u‖e1, and R := 2(u+b)(u+b)T

‖u+b‖2 − I. Then we have that

RT = R, Ru = b, and R2 = I. Before we use these three properties, we will check that
they hold:

(1) RT = R.

RT =

(
2(u + b)(u + b)T

‖u + b‖2
− I
)T

=
2((u + b)(u + b)T)T

‖u + b‖2
− IT

=
2((u + b)T)T (u + b)T

‖u + b‖2
− I

=
2(u + b)(u + b)T

‖u + b‖2
− I

= R.

2.8. TWO IMPORTANT THEOREMS 19

(2) Ru = b. First we check that ‖Ru‖ = ‖u‖.

Ru =

(
2(u + b)(u + b)T

‖u + b‖2
− I
)

u

=
2(u + b)(u + b)Tu

‖u + b‖2
− u

=
2(u + b)(u + b)Tu

‖u + b‖2
− ‖u + b‖2u
‖u + b‖2

=
2(u + b)(u + b)Tu− ‖u + b‖2u

‖u + b‖2

=
2(u + b)(u + b)Tu− (u + b)T (u + b)u

‖u + b‖2
.

We want ‖Ru‖, so we take the norm of this fraction, which we will do in two
separate pieces.
(a) First, the numerator:

‖2(u + b)(u + b)Tu− (u + b)T (u + b)u‖2

=
[
2(u + b)(u + b)Tu− (u + b)T (u + b)u

]T [
2(u + b)(u + b)Tu− (u + b)T (u + b)u

]
=
[
(2(u + b)(u + b)Tu)T − ((u + b)T (u + b)u)T

] [
2(u + b)(u + b)Tu− (u + b)T (u + b)u

]
=
[
2uT (u + b)(u + b)T − uT (u + b)T (u + b)

] [
2(u + b)(u + b)Tu− (u + b)T (u + b)u

]
= 4uT (u + b)(u + b)T (u + b)(u + b)Tu− 2uT (u + b)T (u + b)(u + b)(u + b)Tu

− 2uT (u + b)(u + b)T (u + b)T (u + b)u + uT (u + b)T (u + b)(u + b)T (u + b)u

= 4‖u + b‖2uT (u + b)(u + b)Tu− 2‖u + b‖2uT (u + b)(u + b)Tu

− 2‖u + b‖2uT (u + b)(u + b)Tu + ‖u + b‖4‖u‖2

= ‖u + b‖4‖u‖2.

(b) And now, the denominator:(
‖u + b‖2

)2
= ‖u + b‖4.

Putting the numerator and denominator back together, we obtain:

‖Ru‖2 =
‖u + b‖4‖u‖2

‖u + b‖4
= ‖u‖2

=⇒ ‖Ru‖ = ‖u‖, as desired.

20 2. THE ELLIPSOID ALGORITHM

Now we claim that Ru
‖u‖ = e1. If this claim holds, then eT1

(
Ru
‖u‖

)
= eT1 e1 = 1. We

can check by plugging the equation we found for Ru into eT1

(
Ru
‖u‖

)
:

eT1

(
2(u + b)(u + b)Tu− (u + b)T (u + b)u

‖u‖‖u + b‖2

)
.

We will simplify the numerator using b = ‖u‖e1:

eT1

[
2 (u + b) (u + b)T u− (u + b)T (u + b) u

]
= eT1

[
2 (u + b)

(
uT + bT

)
u−

(
uT + bT

)
(u + b) u

]
= eT1

[
2
(
uuT + buT + ubT + bbT

)
u−

(
uTu + bTu + uTb + bTb

)
u
]

= eT1
[
2
(
uuTu + buTu + ubTu + bbTu

)
−
(
uTuu + bTuu + uTbu + bTbu

)]
= eT1

[
2uuTu + 2buTu + 2ubTu + 2bbTu− uTuu− buTu− uTbu− bTbu

]
= 2eT1 uuTu + 2eT1 buTu + 2eT1 ubTu + 2eT1 bbTu− eT1 uTuu− eT1 bTuu

− eT1 uTbu− eT1 bTbu

= 2eT1 u
(
‖u‖2

)
+ 2eT1 (‖u‖e1)

(
‖u‖2

)
+ 2eT1 u

(
‖u‖eT1

)
u + 2eT1 (‖u‖e1)

(
‖u‖eT1

)
u

− eT1
(
‖u‖2

)
u− eT1

(
‖u‖eT1

)
uu− eT1

(
bTu

)
u− eT1

(
‖u‖eT1

)
(‖u‖e1) u

= 2‖u‖2eT1 u + 2‖u‖3
(
eT1 e1

)
+ 2‖u‖(eT1 u)2 + 2‖u‖2

(
eT1 e1

) (
eT1 u

)
− ‖u‖2eT1 u

− ‖u‖(eT1 u)2 − eT1
(
‖u‖eT1 u

)
u− ‖u‖2eT1

(
eT1 e1

)
u

= 2‖u‖2eT1 u + 2‖u‖3 + 2‖u‖(eT1 u)2 + 2‖u‖2
(
eT1 u

)
− ‖u‖2eT1 u− ‖u‖(eT1 u)2

− ‖u‖(eT1 u)2 − ‖u‖2eT1 u

= 2‖u‖2eT1 u + 2‖u‖3.

Now placing the simplified numerator back into the fraction:

2‖u‖3 + 2‖u‖2eT1 u

‖u‖‖u + b‖2
=

2‖u‖2 + 2‖u‖eT1 u

‖u + b‖2
=

2uTu + 2bTu

‖u + b‖2
=

2(uT + bT)u

‖u + b‖2
.

We want to show that this fraction is equal to 1. Using Laws of Cosines (see Figure
2), we can rewrite this fraction as:

2‖u + b‖‖u‖ cos(u + b,u)

‖u + b‖2
=

2‖u‖ cos(u + b,u)

‖u + b‖
=

2‖u‖
‖u + b‖

‖u + b‖
2‖u‖

= 1.

Thus, we have shown that Ru = b.

2.8. TWO IMPORTANT THEOREMS 21

cos(a)

(u+b) ||u||

1||u||e

Figure 2. The Law of Cosines for the Proof of Theorem 5.

(3) R2 = I.

R2 =

(
2(u + b)(u + b)T

‖u + b‖2
− I
)2

=

(
2(u + b)(u + b)T

‖u + b‖2
− I
)(

2(u + b)(u + b)T

‖u + b‖2
− I
)

=
4(u + b)(u + b)T (u + b)(u + b)T

‖u + b‖2‖u + b‖2
− 4(u + b)(u + b)T

‖u + b‖2
+ I

=
4(u + b)‖u + b‖2(u + b)T

‖u + b‖2‖u + b‖2
− 4(u + b)(u + b)T

‖u + b‖2
+ I

=
4(u + b)(u + b)T

‖u + b‖2
− 4(u + b)(u + b)T

‖u + b‖2
+ I

= I.

Now we can use RT = R, Ru = b, and R2 = I to prove the stated theorem!

Suppose (x− z)T Ṁ(x− z) ≤ 1 and aTx ≥ aT z.

Recall u := Ṁ−
1
2 a, Ru = b = ‖u‖e1, y := RṀ

1
2 (x− z). Then

yTy =
(
RṀ

1
2 (x− z)

)T (
RṀ

1
2 (x− z)

)
=
(

(x− z)T Ṁ
1
2RT

)(
RṀ

1
2 (x− z)

)
= (x− z)T Ṁ

1
2RTRṀ

1
2 (x− z)

= (x− z)T Ṁ
1
2R2Ṁ

1
2 (x− z)

= (x− z)T Ṁ(x− z)

≤ 1.

22 2. THE ELLIPSOID ALGORITHM

Moreover,

‖u‖y1 = ‖u‖eT1 y = bTy = uTRy =
(
aT Ṁ−

1
2

)
R
(
RṀ

1
2 (x− z)

)
= aT Ṁ−

1
2RRṀ

1
2 (x− z)

= aT (x− z)

≥ 0.

Now we will show

(x− z̄)T M̃(x− z̄)

=

(
x−

[
z +

1

n+ 1

Ṁ−1a√
aT Ṁ−1a

])T

M̃

(
x−

[
z +

1

n+ 1

Ṁ−1a√
aT Ṁ−1a

])

=

(
x− z− 1

n+ 1

Ṁ−1a√
aT Ṁ−1a

)T

M̃
1
2 M̃

1
2

(
x− z− 1

n+ 1

Ṁ−1a√
aT Ṁ−1a

)

=

(
(x− z)− 1

n+ 1

Ṁ−1a√
aT Ṁ−1a

)T

Ṁ
1
2RM̄RṀ

1
2

(
(x− z)− 1

n+ 1

Ṁ−1a√
aT Ṁ−1a

)

Recall that M̄ := n2−1
n2

(
I + 2

n−1e1e
T
1

)
. We can substitute this value into our equation and

simplify:(
y − 1

n+ 1

Ṁ−1a√
aT Ṁ−1a

)T

Ṁ
1
2R

(
n2 − 1

n2

)(
I +

2

n− 1
e1e

T
1

)

RṀ
1
2

(
y − 1

n+ 1

Ṁ−1a√
aT Ṁ−1a

)

=

(
y − 1

n+ 1

Ṁ−
1
2 Ṁ−

1
2 a√

aT Ṁ−
1
2 Ṁ−

1
2 a

)T

Ṁ
1
2R

(
n2 − 1

n2

)(
I +

2

n− 1
e1e

T
1

)

RṀ
1
2

(
y − 1

n+ 1

Ṁ−
1
2 Ṁ−

1
2 a√

aT Ṁ−
1
2 Ṁ−

1
2 a

)

=

(
y − 1

n+ 1

Ṁ−
1
2 u√

uTu

)T

Ṁ
1
2R

(
n2 − 1

n2

)(
I +

2

n− 1
e1e

T
1

)
RṀ

1
2

(
y − 1

n+ 1

Ṁ−
1
2 u√

uTu

)

≤
(

y − 1

n+ 1

‖u‖e1

‖u‖

)T (
I +

2

n− 1
e1e

T
1

)(
y − 1

n+ 1

‖u‖e1

‖u‖

)
≤ 1.

2.8. TWO IMPORTANT THEOREMS 23

The inequality follows just as in the proof of Theorem 1, since yTy ≤ 1 and y1 ≥ 0.
�

Theorem 6. volume(EM̃,z̄) < volume(EṀ,z) e
−1

2(n+1) .

Proof.

M̃ =
n2 − 1

n2

(
Ṁ +

2

n− 1

aaT

aT Ṁ−1a

)
=
n2 − 1

n2
Ṁ

1
2

(
I +

2

n− 1

Ṁ−
1
2 aaT Ṁ−

1
2

aT Ṁ−1a

)
Ṁ

1
2

=
n2 − 1

n2
Ṁ

1
2R

(
I +

2

n− 1

RṀ−
1
2 aaT Ṁ−

1
2R

aT Ṁ−1a

)
RṀ

1
2

=
n2 − 1

n2
Ṁ

1
2R

(
I +

2

n− 1

RṀ−
1
2 aaT Ṁ−

1
2R

aT Ṁ−
1
2RRṀ−

1
2 a

)
RṀ

1
2

=
n2 − 1

n2
Ṁ

1
2R

I +
2

n− 1

R
[
Ṁ−

1
2 a
] [

aT Ṁ−
1
2

]
R[

aT Ṁ−
1
2

]
RR

[
Ṁ−

1
2 a
]
RṀ

1
2

=
n2 − 1

n2
Ṁ

1
2R

(
I +

2

n− 1

RuuTRT

uTRTRu

)
RṀ

1
2

=
n2 − 1

n2
Ṁ

1
2R

(
I +

2

n− 1

Ru(Ru)T

(Ru)TRu

)
RṀ

1
2

=
n2 − 1

n2
Ṁ

1
2R

(
I +

2

n− 1

‖u‖2e1e
T
1

‖Ru‖2

)
RṀ

1
2

=
n2 − 1

n2
Ṁ

1
2R

(
I +

2

n− 1

‖u‖2e1e
T
1

‖u‖2

)
RṀ

1
2

=
n2 − 1

n2
Ṁ

1
2R

(
I +

2

n− 1
e1e

T
1

)
RṀ

1
2 .

Therefore,

det(M̃) =

(
n2 − 1

n2

)n

det(Ṁ)(det(R))2 det

(
I +

2

n− 1
e1e

T
1

)
=

(
n2 − 1

n2

)n(
1 +

2

n− 1

)
det(Ṁ),

which can be written

det(M̃)

det(Ṁ)
=

(
n2 − 1

n2

)n(
1 +

2

n− 1

)
> e

1
n+1 .

24 2. THE ELLIPSOID ALGORITHM

Hence

volume(EM̃,z̄)

volume(EṀ,z)
=

√
det(Ṁ)√
det(M̃)

< e
−1

2(n+1) =⇒ volume(EM̃,z̄) < volume(EṀ,z) e
−1

2(n+1) .

�

2.9. Conclusions and Consequences of the Ellipsoid Algorithm

In this section, we will consider several consequences of the Ellipsoid Algorithm. In
particular, we will consider how long it will take the algorithm to terminate.

Theorems 7 and 8 discuss the results using the special case that we examined in Sections
2.3 - 2.5.

Theorem 7. Suppose we want to find a point in the set S, with S ⊆ EM0,z0 and
volume(S) > 0. Then the algorithm will find a point in S after at most⌊

2(n+ 1) ln

(
volume(EM0,z0)

volume(S)

)⌋
iterations.

Proof. After k iterations, we have

volume(EMk,zk) ≤ volume(EM0,z0) e
−k

2(n+1) .

Since S ⊆ EMk,zk for each k we obtain volume(S) ≤ volume(EM0,z0) e
−k

2(n+1) . Taking
the natural logarithm of both sides,

ln(volume(S)) ≤ ln(volume(EM0,z0))− k

2(n+ 1)
.

By rearranging terms, k
2(n+1) + ln(volume(S)) ≤ ln(volume(EM0,z0)), which implies

k
2(n+1) ≤ ln

(
volume(EM0,z0)

volume(S)

)
. Therefore

k ≤ 2(n+ 1) ln

(
volume(EM0,z0)

volume(S)

)
.

This proves the theorem.
�

Now let B(c, δ) := {x | ‖x− c‖ ≤ δ}.

Theorem 8. Suppose we know R such that S ⊆ B(0, R) and that S contains a ball
B(x̂, r) for some x̂ and r > 0. Then the algorithm will find a point in S after at most⌊

2n(n+ 1) ln

(
R

r

)⌋
iterations.

2.9. CONCLUSIONS AND CONSEQUENCES OF THE ELLIPSOID ALGORITHM 25

Proof. After k iterations, we have

volume(B(x̂, r)) ≤ volume(S) ≤ volume(B(0, R)) e
−k

2(n+1) .

Taking logarithms again we get

ln(volume(B(x̂, r))) ≤ ln(volume(B(0, R)))− k

2(n+ 1)
.

By rearranging terms,

k

2(n+ 1)
+ ln(volume(B(x̂, r))) ≤ ln(volume(B(0, R))),

which implies
k

2(n+ 1)
≤ ln

(
volume(B(0, R))

volume(B(x̂, r))

)
.

Therefore

k ≤ 2(n+ 1) ln

(
volume(B(0, R))

volume(B(x̂, r))

)
= 2(n+ 1) ln

(
v(n)Rn

v(n)rn

)
= 2(n+ 1) ln

(
R

r

)n

= 2n(n+ 1) ln

(
R

r

)
,

where v(n) is the volume of B(0, 1) as seen in Section 2.1. This proves the theorem.
�

We can improve the previous two results a lot in terms of generality. The following
two theorems, Theorem 9 and Theorem 10, are more general versions of Theorem 7 and
Theorem 8, respectively. Notice that the proofs are almost identical to the special case
described above, but with a much more general result.

Theorem 9. Suppose volume(S ∩ EM0,z0) > 0. Then the algorithm will find a point
in S after at most ⌊

2(n+ 1) ln

(
volume(EM0,z0)

volume(S ∩ EM0,z0)

)⌋
iterations.

Proof. Similarly to the Proof of Theorem 7, after k iterations, we have

volume(S ∩ EM0,z0) ≤ volume(EM0,z0) e
−k

2(n+1) .

Taking logarithms again we get

ln(volume(S ∩ EM0,z0)) ≤ ln(volume(EM0,z0))− k

2(n+ 1)
.

26 2. THE ELLIPSOID ALGORITHM

By rearranging terms,

k

2(n+ 1)
+ ln(volume(S ∩ EM0,z0)) ≤ ln(volume(EM0,z0)),

which implies
k

2(n+ 1)
≤ ln

(
volume(EM0,z0)

volume(S ∩ EM0,z0)

)
.

Therefore

k ≤ 2(n+ 1) ln

(
volume(EM0,z0)

volume(S ∩ EM0,z0)

)
.

This proves the theorem.
�

Theorem 10. Suppose we know R and that S ∩ B(0, R) contains a ball B(x̂, r) for
some x̂ and r > 0. Then the algorithm will find a point in S after at most⌊

2n(n+ 1) ln

(
R

r

)⌋
iterations.

Proof. Similarly to the Proof of Theorem 8, after k iterations, we have

volume(B(x̂, r)) ≤ volume(S ∩B(0, R)) ≤ volume(B(0, R)) e
−k

2(n+1) .

Taking logarithms again we get

ln(volume(B(x̂, r))) ≤ ln(volume(B(0, R)))− k

2(n+ 1)
.

By rearranging terms,

k

2(n+ 1)
+ ln(volume(B(x̂, r))) ≤ ln(volume(B(0, R))),

which implies
k

2(n+ 1)
≤ ln

(
volume(B(0, R))

volume(B(x̂, r))

)
.

Therefore

k ≤ 2(n+ 1) ln

(
volume(B(0, R))

volume(B(x̂, r))

)
= 2(n+ 1) ln

(
v(n)Rn

v(n)rn

)
= 2(n+ 1) ln

(
R

r

)n

= 2n(n+ 1) ln

(
R

r

)
,

where v(n) is the volume of B(0, 1) as seen in Section 2.1. This proves the theorem.
�

CHAPTER 3

Recent Applications and Developments of the Ellipsoid

Algorithm

There are many applications of the Ellipsoid Algorithm, and as more research sur-
rounding the algorithm has been conducted, there have been many new developments
since Khachiyan’s development of the algorithm in 1979. Although there has been a de-
cent amount of research surrounding the algorithm, but there is still much research left
to be done. For our purposes, we will consider articles with applications and/or develop-
ments that took place after 1990, mostly due to the fact the serious research surrounding
the Ellipsoid Algorithm took place from 1990 to the present. In particular, we will focus
our attention on two specific examples.

Example 1. Design Problems obtained by Cost Minimization Problems
Design problems are “the class of max-min and min-max optimization problems subject
to a global budget constraint”, as discussed in the paper [3]. Recent developments have
shown that these problems are as easy to solve as their corresponding optimization prob-
lems, and that this holds for a large class of optimization problems. This is significant
because optimization problems are a very important tool, and are relatively easy to solve.
Specifically,

• The large class of optimization problems are:
– minimization problems with concave objective functions, and
– maximization problems with convex objective functions.

• For a minimization problem with a concave objective function, the corresponding
design problem can be set up as a convex optimization problem.
• If the Ellipsoid Algorithm is used to solve the problem, then the problem can be

solved in polynomial-time.
• Another way to solve the design problems is an algorithm developed by the authors

that is based on the Ellipsoid Algorithm but is even more efficient. This is the
main algorithmic result of the paper and an important development of the Ellipsoid
Algorithm.

Example 2. The Classical Bin Packing Problem
A recent application of the Ellipsoid Algorithm is in the Classical Bin Packing Problem,
where n items of specified sizes need to be packed into the smallest number of unit-sized
bins, and fragmentation of the items is allowed. Fragmentation can reduce the number of

27

28 3. RECENT APPLICATIONS AND DEVELOPMENTS OF THE ELLIPSOID ALGORITHM

bins required, but will increase overhead costs. The paper [17] considers two variants of
this problem:

1. The first variant is “bin packing with size increasing fragmentation”, where frag-
menting an item increases the input size.

2. The second variant is “bin packing with size preserving fragmentation”, where
there is a bound on the total number of fragmented items.

These two variants cover a many practical scenarios, including “message transmission
in community TV networks” and “preemptive scheduling on parallel machines with setup
times/setup costs”. The authors found that by applying the Ellipsoid Algorithm, they can
solve the dual LP of this problem in polynomial-time.

There are many more applications of the Ellipsoid Algorithm, and many more devel-
opments. We briefly examine several other significant applications and developments that
took place from 1990 to present.

3.1. Applications and Developments

(1) A simple algorithmic framework based on the Ellipsoid Algorithm is used to com-
pute the approximation for a single-source buy-at-bulk problem with an unknown
concave cost function. [8]

(2) An algorithm based on the ellipsoid method can be used to solve the windy post-
man problem. [15]

(3) The Ellipsoid Algorithm can be used to efficiently find a minimum cost k-partition
for k = 2 of a set X with respect to the objective function, a problem that is NP-
hard to solve exactly for the general case. [21]

(4) A variant of the Ellipsoid Algorithm is used to estimate the “distance to ill-
posedness” of a conic linear system. The authors also present an analysis of the
complexity of the ellipsoid algorithm. The main conclusion of the paper is that
“the complexity of estimating the distance to ill-posedness of a particular conic
system is roughly of the same order as the complexity of solving the conic system”.
[6]

(5) An algorithm that computes an allocation in the intersection of the prekernel
and the least core of any cooperative game (in game theory) uses the Ellipsoid
Algorithm as a subroutine. [5]

(6) The nucleolus flow of games has been shown to be polynomially solvable by the
Ellipsoid Algorithm. [12]

(7) The Ellipsoid Algorithm is described by the authors as “easy to implement and
[having] very good theoretical complexity”. A modification of the algorithm, where
the radii of the spheres they use are unknown, is an improvement on the author’s
previous work. [7]

(8) More efficient combinatorial algorithms that are based on the Ellipsoid Algorithm
have been developed in recent years, as discussed in [10].

3.1. APPLICATIONS AND DEVELOPMENTS 29

(9) The authors establish that Khachiyan’s barycentric coordinate descent method
is the polar of the deepest cut Ellipsoid Algorithm as they consider the classical
problems of “computing a minimum-volume enclosing ellipsoid and an approxi-
mate rounding of the convex hull of the set”. [20]

(10) The “best fit multiple ellipsoid” method has been explored for the use in classifi-
cation (data mining) problems, where several ellipsoids are used in the separation
of sets. [4]

(11) A large class of optimization problems, including directed edge augmentation prob-
lems (which fall into the class of covering supermodular functions over pairs of
sets), can be solved using an algorithm that relies on the Ellipsoid Algorithm. [1]

(12) A survey found that an algorithm based on the Ellipsoid Algorithm is able to color
the vertices of perfect graphs optimally and in polynomial time. [14]

It is important to note that although we have mentioned many applications and devel-
opments here, this list is far from complete. The Ellipsoid Algorithm has a far-reaching
impact in mathematics and, since the development by Khachiyan in 1979, has broadened
many aspects of the mathematical community and created new opportunities for research
and further development. Since it is a fairly new addition to the family of linear program-
ming algorithms, the Ellipsoid Algorithm has many years of research and development
ahead, hopefully with the discovery of many more useful applications.

Bibliography

1. A. A. Benczúr, Pushdown-reduce: an algorithm for connectivity augmentation and poset covering problems,

Discrete Appl. Math. 129 (2003), no. 2-3, 233–262. MR 1997351 (2004g:90089)

2. G. D. Chakerian and J. R. Sangwine-Yager, Synopsis and exercises for the theory of convex sets, 2009.

3. D. Chakrabarty, A. Mehta, and V. V. Vazirani, Design is as easy as optimization, SIAM J. Discrete Math. 24

(2010), no. 1, 270–286. MR 2630027 (2011b:90073)

4. A. V. Demyanov and M. Gaudioso, An approach to classification based on separation of sets by means of several

ellipsoids, Optimization 54 (2005), no. 6, 579–593. MR 2190810 (2006g:90124)

5. U. Faigle, W. Kern, and J. Kuipers, On the computation of the nucleolus of a cooperative game, Internat. J.

Game Theory 30 (2001), no. 1, 79–98. MR 1863715 (2002m:91008)

6. R. M. Freund and J. R. Vera, On the complexity of computing estimates of condition measures of a conic linear

system, Math. Oper. Res. 28 (2003), no. 4, 625–648. MR 2015906 (2004j:90159)

7. , Equivalence of convex problem geometry and computational complexity in the separation oracle model,

Math. Oper. Res. 34 (2009), no. 4, 869–879. MR 2573500 (2010m:90158)

8. A. Goel and I. Post, An oblivious O(1)-approximation for single source buy-at-bulk, 2009 50th Annual IEEE

Symposium on Foundations of Computer Science (FOCS 2009), IEEE Computer Soc., Los Alamitos, CA, 2009,

pp. 442–450. MR 2648425 (2011d:68196)

9. M. Grötschel, L. Lovász, and A. Schrijver, Geometric algorithms and combinatorial optimization, 2 ed., Algo-

rithms and Combinatorics, Springer-Verlag, Germany, 1993.

10. S. Iwata, Submodular function minimization, Math. Program. 112 (2008), no. 1, Ser. B, 45–64. MR 2327001

(2008j:90103)

11. H. Karloff, Linear programming, Birkhäuser, 1991.

12. W. Kern and D. Paulusma, On the core and f-nucleolus of flow games, Math. Oper. Res. 34 (2009), no. 4,

981–991. MR 2573505 (2011e:91052)

13. L. G. Khachiyan, A polynomial algorithm in linear programming, Dokl. Akad. Nauk SSSR 244 (1979), no. 5,

1093–1096. MR 522052 (80g:90071)

14. F. Maffray, On the coloration of perfect graphs, Recent advances in algorithms and combinatorics, CMS Books

Math./Ouvrages Math. SMC, vol. 11, Springer, New York, 2003, pp. 65–84. MR 1952983 (2003m:05073)

15. Z. Mart́ınez and F. Javier, Series-parallel graphs are windy postman perfect, Discrete Math. 308 (2008), no. 8,

1366–1374. MR 2392053 (2009a:05200)

16. P. Olver and C. Shakiban, Applied linear algebra, Prentice-Hall, 2006.

17. H. Shachnai, T. Tamir, and O. Yehezkely, Approximation schemes for packing with item fragmentation, Theory

Comput. Syst. 43 (2008), no. 1, 81–98. MR 2385695 (2009d:68188)

18. G. Strang, Linear algebra and its applications, Thomson, Brooks/Cole, 2006.

19. M. J. Todd, The basic George B. Dantzig, by Richard W. Cottle, Bulletin of the American Mathematical Society

48 (2011), no. 1, 123–129.

20. M. J. Todd and E. A. Yıldırım, On Khachiyan’s algorithm for the computation of minimum-volume enclosing

ellipsoids, Discrete Appl. Math. 155 (2007), no. 13, 1731–1744. MR 2348357 (2008h:90077)

21. L. Zhao, H. Nagamochi, and T. Ibaraki, On generalized greedy splitting algorithms for multiway partition prob-

lems, Discrete Appl. Math. 143 (2004), no. 1-3, 130–143. MR 2087875 (2005k:05025)

31

