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Abstract. We verify the results of [1] in the special case that the function f

is a polynomial. That is, we verify that the fluctuations of the matrix entries
of a random matrix Wigner random matrices approach a Gaussian distribution

in the limit of large N . We use the technique of Martingale Differences as in
the Appendix by J. Baik and J. Silverstein in [2].

1. Introduction

The study of Random Matrices became a subject of great interest to physicists
due to the work of Wigner, Dyson, Gaudin, and Mehta [3]. The reasons for this
intense interest was due to the desire to model the transitions that represent neu-
tron emission for atoms with large atomic number such as U239. For low atomic
numbers, successful models were constructed by analyzing shell-structure of nuclei
and individual energy levels. However, for very high atomic numbers and large
excited states, the reliability of the shell-structure model decreases [4]. A suggested
idea that took hold was to treat the quantum mechanical system itself as a random
system – that is, to assume that the effect of the shell structure disappeared.

To clarify this idea it is important to recall that in quantum mechanics all ob-
servables are represented by a Hermitian operator. The eigenvalues (which must
be real) represents the possible results of a measurement of that observable. The
operator that describes how a state evolves in time is known as the Hamiltonian
operator H. Its eigenvalues are the energy levels of the system.

What was suggested above as a model was to take the Hamiltonian H to be
a random Hermitian operator – in this case a random Hermitian matrix of large
dimension N . This corresponds to a random “system.” Note, that this is a radically
different approach from traditional statistical physics in which the states are taken
as given, and we simply assume that the probability of each is equally likely at
equilibrium. In this case, the energy levels themselves are random! A goal then,
is to obtain the probability ditribution of the eigenvalues of H and see its limiting
distribution as N →∞.

The applications of random matrices to fields vastly unrelated to nuclear physics
soon revealed themselves in the 1970s due to a meeting between F. Dyson and
H. Montgomery [5]. H. Montgomery was studying the distribution of zeros of the
Riemann zeta function and discovered that with the rescaling of the zeros γj along
the critical line Re(z) = 1/2, to

γ̃j =
γj log γj

2π
,
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(note the rescaling means that in the limit that N → ∞ the expression #{j ≥
1 : γ̃j < N}/N → 1 from the prime number theorem) the resulting two-point
correlation function:

R(a, b) = lim
N→∞

1

N
#{pairs(j1, j2) : 1 ≤ j1, j2 ≤ N, γ̃j1 − γ̃j2 ∈ (a, b)}

can be expressed as

R(a, b) =

∫ b

a

(
1−

(
sin 2πu

2πu

)2
)
du.

Dyson pointed out that this result was identical to the result obtained if one as-
sumed that the zeros of the Riemann zeta function behaved as the eigenvalues of
a random matrix of the Gaussian Unitary Ensemble. Similar situations occured in
fields as diverse as signal processing and finance.

It is the goal of this paper to verify a special case of a theorem given in [1], which
concerns itself with the fluctuations of the entries of functions of what are known as
Wigner matrices. Before preceding with this result, it is necessary to first describe
what Wigner Matrices are, along with important facts concerning them that are
necessary in order to formulate our problem.

2. Wigner Matrices

A Wigner Matrix XN = 1√
N
WN is a random real symmetric (Hermitan) matrix.

We consider the real symmetric case. In this situation we have that all of the
off-diagonal entries that is (WN )jk where j 6= k are i.i.d. random variables with
probability distribution µ, such that

E(WN )jk = 0, V(WN )jk = σ2,E(WN )4jk = m4 <∞ 1 ≤ j < k ≤ N

where E denotes the expectation and V denotes the variance. We will also assume
that higher moments are finite as necessary – this assumption will be far stronger
than the assumption given in [1], which simply assumes only that the fourth moment
is finite. The diagonal entries of the matrix (WN )ii are also i.i.d. random variables
independent from the off-diagonal entries such that

E(WN )ii = 0, V(WN )ii = σ2
1 , 1 ≤ i ≤ N.

The probability distribution of 1√
2
(WN )11 by µ1.

One of the most important results of random matrices is the Wigner Semicircle
Law which states [6]:

Theorem 2.1. Let λNi denote the ordered (smallest to largest) eigenvalues of XN ,
and define the empirical distribution of the eigenvalues as

LN =
1

N

N∑
i=1

δλN
i
,

define also, the semicircle distribution on R with density

ψ(x) =
1

2πσ2

√
4σ2 − x21[−2σ,2σ](x),

then we have that the empirical distribution converges weakly in probability to the
semicircle distribution.
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Note that the the moments of the semicircle distribution are:

m2k =

∫ 2σ

−2σ

x2k
√

4σ2 − x2
2πσ2

dx = σ2kCk, m2k+1 = 0,

where Ck is the k-th Catalan number:

Ck =

(
2k

k

)
1

k + 1
.

The result of [1] that we are concerned with in this paper, is concerning the
limiting value of the entries of a function f(XN ) of the wigner matrix (see THeorem
2.3 in [1]). We wish to show that

√
N

(
f(XN )ii −

∫ 2σ

−2σ
f(x)

1

2πσ2

√
4σ2 − x2dx

)
,

converges to the sum of two independent random variables α(f)
σ Wii and N(0, ν21(f)),

where

ν21(f) = 2

(
ω2(f)− α2(f) +

κ4(µ)

2σ4
β2(f)

)
,

ω2(f) =
1

2

∫ 2σ

−2σ

∫ 2σ

−2σ
(f(x)− f(y))2

1

4π2σ4

√
4σ2 − x2

√
4σ2 − y2dxdy,

α(f) =
1

σ

∫ 2σ

−2σ
xf(x)

1

2πσ2

√
4σ2 − x2dx,

β(f) =
1

σ2

∫ 2σ

−2σ
f(x)(x2 − σ2)

1

2πσ2

√
4σ2 − x2dx,

κ4(µ) = m4 − 3σ4.

Specifically, we will be analyzing the case when f(XN ) is a polynomial and when
i = j = 1.

The technique that we will be using is the central limit theorem of Martingale
differences. An example of this technique in use is given in the Appendix of [2] due
to J. Baik and J. Silverstein.

The theorem is as follows:

Theorem 2.2. For each N , let ZN1, . . . ZNrN
be a real martingale difference se-

quence with respect to the increasing σ-field {FN,j} having second moments. If as
N →∞,

rN∑
j=1

E(Z2
Nj
|FN,j−1)

P−→ ν2, (2.1)

where ν2 is a positive constant, and for each ε > 0,

rN∑
j=1

E(Z2
Nj

1|ZNj
|≥0)→ 0, (2.2)

then
rN∑
j=1

ZNj

L−→ N(0, ν2). (2.3)
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3. Cubic Polynomial Case

Let f(x) = x3, in this case then we have that

f(XN )11 =

N∑
k=1

N∑
j=1

X1jX1kXjk,

where we have used the fact that Xij is symmetric. We can rewrite this expression
as

f(XN )11 =

N∑
k=1

X2
1kXkk +

N∑
k=2

k−1∑
j=1

X1jXjkX1k +

N∑
j=2

j−1∑
k=1

X1jXjkX1k

=

N∑
k=1

X2
1kXkk + 2

N∑
k=2

k∑
j=1

X1jXjkX1k,

where we have again used the fact that Xij is symmetric.
We will define a sequence of increasing sigma algebras as follows:

FN,k−1 = σ(Xst, 1 ≤ s, t ≤ k − 1),

that is FN,k−1 is the sigma algebra generated by the k − 1 × k − 1 submatrix of
XN .

We construct a martingale difference by first defining

S̃1 =
√
NX3

11

S̃k =
√
NX2

1kXkk + 2
√
N

k−1∑
j=1

X1jXjkX1k k ≥ 2

then defining

Sk = S̃k − E(S̃k|FN,k−1),

so that clearly E(Sk) = 0, since

E(SK) = E(S̃k)− E(E(S̃k|FN,k−1)) = 0,

where we have used the tower property E(E(U |V )) = E(U).
Note that

N∑
k=1

S̃k =
√
Nf(XN )11,

so obtaining (2.3) for this expression is exactly what we want.
Now, we proceed to evaluate:

E(S̃1|FN,0) = E(
√
NX3

11) =
√
NE(X3

11),
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and for k ≥ 2:

E(S̃k|FN,k−1) =
√
NE(X2

1kXkk|Xij 1 ≤ i, j ≤ k − 1)

+ 2
√
N

k−1∑
j=1

E(XijXjkX1k|Xij 1 ≤ i, j ≤ k − 1),

=
√
NE(X2

1k)E(Xkk) + 2
√
N

k−1∑
j=1

X1jE(XjkX1k),

= 2
√
NX11E(X2

1k),

where we have used the linearity of expectation, along with the fact that for inde-
pendent variables Y and Z, E(Y Z) = E(Y )E(Z).

We now may construct our sequence of martingale differences:

S1 =
√
NX3

11 −
√
NE(X3

11),

Sk =
√
NX2

1kXkk + 2
√
N

k−1∑
j=1

X1jXjkX1k − 2
√
NX11E(X2

1k) k ≥ 2.

Next, we need to verify (2.1). Since we need to evaluate the convergence of the
sum

N∑
k=1

E(S2
k|FN,k−1),

it is reasonable to examine

E

(
N∑
k=1

E(S2
k|FN,k−1)

)
=

N∑
k=1

E(S2
k),

and see what this converges to. We claim that this converges to ν2, to verify this,
we define

Z =

N∑
k=1

E(S2
k|FNj−1

)− ν2,

and check that

lim
N→∞

E(Z2) = 0.

This will verify (2.1) since by Chebyshev’s inequality:

P(|Z| ≥ ε) ≤ ε−2E(Z2),

so that if E(Z2)→ 0 as N →∞ then we have that

P(|Z| ≥ ε)→ 0,

which is the same as (2.1).
So to find ν2 we find

lim
N→∞

N∑
k=1

E(S2
k).

Now we evaluate:

E(S2
1) = N(E(X6

11)− E(X3
11)2),
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and for k ≥ 2:

S2
k = N(X4

1kX
2
kk + 4

k−1∑
j=1

k−1∑
l=1

X1jX1lXjkXlkX
2
1k + 4X2

11E(X2
1k)2,

+ 4X2
1kXkk

k−1∑
j=1

X1jXjkX1k − 4X2
1kXkkX11E(X2

1k),

− 8X11E(X2
1k)

k−1∑
j=1

X1jXjkX1k),

so that

E(S2
k) = N [E(X4

1k)E(X2
kk) + 4

k−1∑
j=1

k−1∑
l=1

E(X1jX1lXjkXlkX
2
1k) + 4E(X2

11)E(X2
1k)2,

+ 4E(Xkk)

k−1∑
j=1

E(X1jXjkX
3
1k)− 4E(X2

1kXkkX11)E(X2
1k),

− 8E(X2
1k)

k−1∑
j=1

E(X11X1jXjkX1k)],

= N [E(X4
1k)E(X2

kk) + 4

k−1∑
j=1

E(X2
1j)E(X2

jkX
2
1k) + 4E(X2

11)E(X2
1k)2,

− 8E(X2
1k)2E(X2

11)],

where we have used independence and the fact that E(Xij) = 0 to obtain the second
line.

We main now evaluate the sum

N∑
k=1

E(S2
k) = N [E(X6

11)− E(X3
11)2 +

N∑
k=2

E(X4
1k)E(X2

kk),

+ 4

N∑
k=2

k−1∑
j=1

E(X2
1j)E(X2

jkX
2
1k),

− 4

N∑
k=2

E(X2
11)E(X2

1k)2],

= N [E(X6
11)− E(X3

11)2 + (N − 1)E(X4
12)E(X2

11),

+ 4

N∑
k=3

k−1∑
j=2

E(X2
1j)E(X2

jkX
2
1k),

+ 4(N − 1)E(X2
11)E(X4

12)− 4(N − 1)E(X2
11)E(X2

12)2],

= N [E(X6
11)− E(X3

11)2 + 5(N − 1)E(X4
12)E(X2

11)

+ 4E(X2
12)3

(
N2 − 3N + 2

2

)
− 4(N − 1)E(X2

11)E(X2
12)2],
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where we have used the fact that for k ≥ 2, E(X2
1k) = E(X2

12), and also we have
evaluated the sum

4

N∑
k=3

k−1∑
j=2

E(X2
1j)E(X2

jkX
2
1k) = 4E(X2

12)3
N∑
k=3

k−1∑
j=2

1,

= 4E(X2
12)3

N∑
k=3

(k − 2),

= 4E(X2
12)3

(
N3 − 3N + 2

2

)
.

Now since Xij = Wij/
√
N , we know that X6

ij = O(1/N3) so that

O(E(X3
11))2 = O(E(X4

12)E(X2
11)) = O(E(X2

12)2E(X2
11)) = O(E(X2

12)3) = 1/N3,

thus we have that the only non-zero term in the sum above that remains as N →∞
is

2N3E(X2
12)3 = 2E(W 2

12)3 = ν2.

Now we define as before

Z =

N∑
k=1

E(S2
k|FN,k−1)− ν2

so that

EZ2 = E

 N∑
j=1

N∑
l=1

E(S2
j |FN,j−1)E(S2

l |FN,l−1)− 2ν2
N∑
k=1

E(S2
k|FN,k−1) + ν4


=

N∑
j=1

N∑
l=1

E
(
E(S2

j |FN,j−1)E(S2
l |FN,l−1)

)
− 2ν2

N∑
k=1

E(S2
k) + ν4,

where we have used the tower property in the second line. Now in the limit that
N →∞ we know that

N∑
k=1

E(S2
k)→ ν2,

so that

lim
N→∞

EZ2 = lim
N→∞

N∑
j=1

N∑
l=1

E
(
E(S2

j |FN,j−1)E(S2
l |FN,l−1)

)
− ν4.

Thus, all we need to verify is that

lim
N→∞

N∑
j=1

N∑
l=1

E
(
E(S2

j |FN,j−1)E(S2
l |FN,l−1)

)
= ν4.

We calculate

E(S2
1 |FN,0) = N

(
X6

11 − 2X3
11E(X3

11) + E(X3
11)2

)
E(S2

k|FN,k−1) = N

E(X4
12)E(X2

11) + 4

k−1∑
j=1

X2
1jE(X2

jkX
2
1k)− 4X2

11E(X2
12)2

 ,
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so that
N∑
k=1

E(S2
k|FN,k−1) = N(X6

11 − 2X3
11E(X3

11) + E(X3
11)2 + (N − 1)E(X4

12)E(X2
11)

+ 4

N∑
k=2

k−1∑
j=1

X2
1jE(X2

jkX
2
1k)− 4(N − 1)X2

11E(X2
12)2),

we need to evaluate the limit of the expectation value of this quantity squared. The
only term that is relavant in the square (the rest are of order N−k where k is a
positive integer) is 4

N∑
k=2

k−1∑
j=1

X2
1jE(X2

jkX
2
1k)

2

,

but from above we know that the expectation value of this goes to ν4, thus we have
satisfied (2.1).

Next, we will verify (2.2). In order to do so, I will first cite a result, with proof
from the appendix of [2]: For random variable Z1 and Z2 and positive ε, we have
that

E(|Z1 + Z2|21|Z1+Z2|≥ε ≤ 4(E(|Z1|21|Z1|≥ε/2 + E(|Z2|21|Z2|≥ε/2))), (3.1)

this follow by analyzing:

E(|Z1|21|Z1+Z2|≥ε) ≤ E(|Z1|21|Z1|≥ε/2) + E(|Z1|21(|Z1|<ε/2),(|Z2|≥ε/2))

≤ E(|Z1|21|Z1|≥ε/2) + (ε2/4)P(|Z2| ≥ ε/2)

≤ E(|Z1|21|Z1|≥ε/2) + E(|Z2|21|Z2|≥ε/2).

Exchanging with Z2 lets us obtain (3.1).
Recall that we need to show that for all ε > 0

lim
N→∞

N∑
k=1

E(S2
k1|Sk|≥ε)→ 0.

To do this we split for k ≥ 2 the term S2
k as:

(Sk)2 = (
√
NX2

1kXkk + 2
√
N

k−1∑
j=1

X1jXjkX1k − 2
√
NX11E(X2

1k))2,

= (Z
(1)
k + Z

(2)
k )2,

where

Z
(1)
k =

√
NX2

1kXkk − 2
√
NX11E(X2

1k), Z
(2)
k = 2

√
N

k−1∑
j=1

X1jXjkX1k,

now we notice that the expression:

E(|S1|21|S1|≥ε) +

N∑
k=2

E(|Z(1)
k |

21|Z(1)
k |≥ε/2

)→ 0

as N → ∞, this is because each term of Z
(1)
k is of order 1

N , so that the order of

|Z(1)
k |2 is 1

N2 , which means the sum from k = 2 to N can be at most order 1
N which

goes to 0 as N →∞.
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All that remains for consideration is the term (we replace ε/2 with ε for conve-
nience):

N∑
k=2

E(|Z(2)
k |

21|Z(2)
k |≥ε

)

(recall that the in the limit as N → ∞ we had that limN→∞ E((Z
(2)
k )2) → ν2).

Now we use the following bound, for a random variable Y :

E(|Y |21|Y |≥ε) ≤
1

ε2
E(|Y |4),

this follows simply by using the inequality:

|Y | ≥ ε =⇒ 1 ≤ |Y |
ε
,

in general it follows that

E(|Y |21|Y |≥ε) ≤
1

ε2k
E(|Y |2k).

In our case we may bound:

N∑
k=2

E(|Z(2)
k |

21|Z(2)
k |≥ε

) ≤ 1

ε2

N∑
k=2

E(|Z(2)
k |

4).

We proceed to calculate:

E(|Z(2)
k |

4) = 16N2E

 k−1∑
j4=1

k−1∑
j3=1

k−1∑
j2=1

k−1∑
j1=1

X1j1X1j2X1j3X1j4Xj1kXj2kXj3kXj4kX
4
1k


= 16N2

k−1∑
j4=1

k−1∑
j3=1

k−1∑
j2=1

k−1∑
j1=1

E
(
X1j1X1j2X1j3X1j4Xj1kXj2kXj3kXj4kX

4
1k

)

notice that

E (X1j1X1j2X1j3X1j4)

is non-zero only when there are no single powers of X1j , that is, it is only non-zero
in the three cases that two pairs of indices are identical (e.g. j1 = j2 and j3 = j4).
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The consequence is that

N∑
k=2

E(|Z(2)
k |

4) = 48N2
N∑
k=2

k−1∑
j2=1

k−1∑
j1=1

E
(
X2

1j1X
2
1j2

)
E
(
X2
j1kX

2
j2kX

4
1k

)
,

= 48N2

( N∑
k=2

k−1∑
j=1

E(X4
1j)E(X4

jkX
4
1k)

+ 2

N∑
k=3

k−1∑
j2=2

j2−1∑
j1=1

E(X2
1j1)E(X2

1j2)E(X2
j1kX

4
1k)E(X2

j2k)

)
,

= 48N2

(
E(X4

11)E(X8
12)

N∑
k=2

1 + E(X4
12)3

N∑
k=3

k−1∑
j=2

1

+ 2E(X2
12)4E(X4

12)

N∑
k=4

k−1∑
j2=3

j2−1∑
j1=2

1

+ 2E(X2
11)E(X2

12)2E(X4
12)

N∑
k=3

k−1∑
j2=2

1

)
,

= 48N2

(
E(X4

11)E(X8
12)(N − 1) + E(X4

12)3
(
N2 − 3N + 2

2

)
+ 2E(X2

12)4E(X4
12)

(
N3 − 12N2 + 24N − 84

12

)
+ 2E(X2

11)E(X2
12)2E(X4

12)

(
N2 − 3N + 2

2

))
,

note that the order of O
(
E(X4

12)3
)

= 1
N6 and also:

O
(
E(X4

11)E(X8
12)
)

= O
(
E(X2

12)4E(X4
12)
)

= O
(
E(X2

11)E(X2
12)2E(X4

12)
)

=
1

N6
,

so that in the limit as N →∞ we have that

N∑
k=2

E(|Z(2)
k |

4)→ 0,

thus we have satisfied 2.2.
Now the result of our theorem is that

N∑
k=1

Sk → N(0, ν2).

We check:

N∑
k=1

Sk =
√
Nf(XN )11 −

√
NE(X3

11) + 2W11E(W 2
12)− 2

√
NX11E(X2

12).
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Now we compare with the result from [1]:

ω2(f) =
1

2

∫ 2σ

−2σ

∫ 2σ

−2σ
(x3 − y3)2

1

4π2σ4

√
4σ2 − x2

√
4σ2 − y2dxdy,

= σ6C3 = 5σ6,

α(f) =
1

σ

∫ 2σ

−2σ
x4

1

2πσ2

√
4σ2 − x2dx,

= σ3C2 = 2σ3,

β(f) =
1

σ2

∫ 2σ

−2σ
x3(x2 − σ2)

1

2πσ2

√
4σ2 − x2dx,

= 0,

ν21(f) = 2(5σ6 − 4σ6) = 2E(W 2
12)3,

and we see clearly ν21(f) = ν2 as expected. Also, the remaining random variable is
α(f)
σ W11 = 2σ2W11 = 2E(W 2

12)W11 which matches with the above expression.

4. Quartic Polynomial Case

To illustrate the difficulties of generalizing this method to higher degree polyno-
mials, we will consider the case that f(x) = x4. In this situation:

f(X)11 =

N∑
k=1

N∑
l=1

N∑
j=1

X1jXjkXklXl1,

in order to write this in terms of martingale differences, we cannot simply take our
martingale differences to be:

Sk =

N∑
l=1

N∑
j=1

X1jXjkXklXl1 − E

 N∑
l=1

N∑
j=1

X1jXjkXklXl1

 ,

for it can be easily seen that E(S2
1) diverges as N → ∞. Rather, we wish to

approach this problem in a similar fashion as in the previous section, and write the
k-th martingale difference as a sum up to k − 1. In order to contain every element
of the sum in f(X)11, we must consider sevaral possibilities. There are a total of
13 cases as follows:

l > k > j, l >j > k, j > k > l,

j > l > k, k >l > j, k > j > l,

j = l > k, k =l > j, j = k > l,

k > j = l, j >k = l, l > j = k,

j =k = l,

that is, we can break up the sum f(X)11 into thirteen sums over defined by the
above relations between the indices j, k, and l. For each of these thirteen cases, we
can create a sequence of martingale differences which we can put together to create
the needed martingale difference sequence.
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For example, the case where j = k = l we have

N∑
k=1

X2
1kX

2
kk,

so that if we define:

S̃
(1)
k =

√
NX2

1kX
2
kk,

and then subtract out its expectation (note that FN,k−1 will refer to the same sigma
algebra as before):

E(S̃
(1)
k |FN,k−1) =

√
NE(X2

1kX
2
kk|FN,k−1) = E(X2

1kX
2
kk),

so that

S
(1)
k =

√
N(X2

1kX
2
kk − E(X2

1kX
2
kk)),

is a martingale difference.
We list all 13 martingale differences that represent the cases listed above:

S
(1)
k =

√
N
(
X2

1kX
2
kk − E(X2

1kX
2
kk)
)
, k ≥ 1

S
(2)
k =

√
N

k−1∑
j=1

X1jXjjXjkX1k −X2
11E(X2

12)

 , k ≥ 2

S
(3)
k =

√
N

k−1∑
j=1

X1jXjjXjkX1k −X2
11E(X2

12)

 , k ≥ 2

S
(4)
k =

√
N

k−1∑
j=1

X2
1jX

2
jk − E(X2

12)

k−1∑
j=1

X2
1j

 , k ≥ 2

S
(5)
k =

√
N

k−1∑
j=1

X1kXkkXjkX1j

 , k ≥ 2

S
(6)
k =

√
N

k−1∑
j=1

X1kXkkXjkX1j

 , k ≥ 2

S
(7)
k =

√
N

k−1∑
j=1

X2
1kX

2
jk −

k−1∑
j=1

E(X2
1kX

2
jk)

 , k ≥ 2

S
(8)
k =

√
N

k−1∑
j=2

j−1∑
l=1

X1jX1lXjkXlk

 , k ≥ 3
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S
(9)
k =

√
N

k−1∑
j=2

j−1∑
l=1

X1jX1lXjkXlk

 , k ≥ 3

S
(10)
k =

√
N

k−1∑
l=2

l−1∑
j=1

X1kX1lXjkXlj − E(X2
12)

k−1∑
l=2

X2
1l

 , k ≥ 3

S
(11)
k =

√
N

k−1∑
j=2

j−1∑
l=1

X1kX1lXjkXlj

 , k ≥ 3

S
(12)
k =

√
N

k−1∑
j=2

j−1∑
l=1

X1jX1kXjlXlk − E(X2
12)

k−1∑
j=2

X2
1j

 , k ≥ 3

S
(13)
k =

√
N

k−1∑
l=2

l−1∑
j=1

X1jXjlXlkX1k

 , k ≥ 3

Now we sum over all of these martingale differences which gives us:

S1 =
√
N [X4

11 − E(X4
11)]

S2 =
√
N
[
X2

12X
2
22 − E(X2

12)E(X2
11) + 3X2

11X
2
12 − 3E(X2

12)X2
11

+ 2X2
12X11X22 +X4

12 − E(X4
12)
]
,

Sk =
√
N

[
X2

1kXkk − E(X2
1kX

2
kk) + 2

k−1∑
j=1

X1jXjjXjkX1k − 2X2
11E(X2

12)

+

k−1∑
j=1

X2
1jX

2
jk − E(X2

12)

k−1∑
j=1

X2
1j + 2

k−1∑
j=1

X1kXkkXjkX1j

+

k−1∑
j=1

X2
1kX

2
jk −

k−1∑
j=1

E(X2
1kX

2
jk) + 2

k−1∑
j=2

j−1∑
l=1

X1jX1lXjkXlk

+ 2
k−1∑
j=2

j−1∑
l=1

X1jX1kXjlXlk − 2E(X2
12)

k−1∑
j=2

X2
1j

+ 2

k−1∑
j=2

j−1∑
l=1

X1kX1lXjkXlj

]
, k ≥ 3,

Recall that we wish to find ν2 such that

lim
N→∞

N∑
k=1

E(S2
k|FN,k−1)

P−→ ν2,

this means we must evaluate E(S2
k|FN,k−1) for all k.
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We begin by listing the result for k = 1 and k = 2:

E(S2
1 |FN,0) = N [E(X8

11)− E(X4
11)2],

E(S2
2 |FN,1) = N [E(X4

12)E(X4
11) + E(X2

12)2E(X2
11)2

+ 9X4
11E(X4

12) + 9X4
11E(X2

12)2

+ 4X2
11E(X4

12)E(X2
11) + E(X8

12) + E(X4
12)2

− 2E(X2
11)2E(X2

12)2 + 6X2
11E(X4

12)E(X2
11)

− 6X2
11E(X2

12)2E(X2
11) + 4X11E(X4

12)E(X3
11)

+ 2E(X6
12)E(X2

11)− 2E(X2
12)E(X4

12)E(X2
11)

− 18E(X2
12)2X4

11 + 6X2
11E(X6

12)

− 6X2
11E(X4

12)E(X2
12)− 2E(X4

12)2],

we will not write the complete expression of the conditional expectation value of
S2
k – the sum is intractable. The proper strategy it seems is to determine what

terms are relavant in the limit. However, this will require a detailed analysis of the
asymptotics of each term in S2

k. We begin by writing S2
k:

S2
k = N

[
X4

1kX
4
kk − E(X2

1kX
2
kk)2 + 4

k−1∑
j=1

k−1∑
l=1

X1jX1lXjjXllXjkXlkX
2
1k

+ 4X4
11E(X2

12)2 +

k−1∑
j=1

k−1∑
l=1

X2
1jX

2
1lX

2
jkX

2
lk

+ E(X2
12)2

k−1∑
j=1

k−1∑
l=1

X2
1jX

2
1l + 4

k−1∑
j=1

k−1∑
l=1

X2
1kX

2
kkXjkXlkX1jX1l

+

k−1∑
j=1

k−1∑
l=1

X4
1kX

2
jkX

2
lk +

k−1∑
j=1

k−1∑
l=1

E(X2
1kX

2
jk)E(X2

1kE(X2
lk)

+ 4

k−1∑
j2=2

j2−1∑
l2=1

k−1∑
j1=2

j1−1∑
l1=1

X1j1X1j2X1l1X1l2Xj1kXj2kXl1kXl2k

+ 4

k−1∑
j2=2

j2−1∑
l2=1

k−1∑
j1=2

j1−1∑
l1=1

X1j1X1j2X
2
1kXj1l1Xj2l2Xl1kXl2k

+ 4E(X2
12)2

k−1∑
j=2

k−1∑
l=2

X2
1jX

2
1l

+ 4

k−2∑
j2=2

j2−1∑
l2=1

k−1∑
j1=2

j1−1∑
l1=1

X1j1X1j2X
2
1kXj1l1Xj2l2Xl1kXl2k

+ · · ·
]
,

where the cross terms have been omitted (these are simply the sum of the squares of
each terms). We wish to determine from the unommitted terms in this sum, which
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terms will be relavant in the limit that N → ∞, and then from that determine
which cross terms will need to be present.

We will evaluate the expectation of each of these terms and sum from k = 3 to
N , and verify if the limit is non-zero:

N∑
k=3

NE(X4
1kX

4
kk) = NE(X4

12)E(X4
11)(N − 2)→ 0,

since O(X4
12) = O(X4

11) = 1/N2 so that the entire term is O(1/N2). The same
argument holds for the second term. Next,

4N

N∑
k=3

k−1∑
j=1

k−1∑
l=1

E(X1jX1lXjjXllXjkXlkX
2
1k) = 4N

N∑
k=3

E(X2
1jX

2
jjX

2
jkX

2
1k),

so in the limit this goes to zero as well (by the same argument). The fourth term
disappears in the same fashion. The fifth term:

N

N∑
k=3

k−1∑
j=1

k−1∑
l=1

E(X2
1jX

2
1lX

2
jkX

2
lk) = N

N∑
k=3

k−1∑
j=1

E(X4
1j)E(X4

jk)

+2N

N∑
k=3

k−1∑
j=2

j−1∑
l=1

E(X2
1j)E(X2

1l)E(X2
jk)E(X2

lk)]

= NE(X4
11)E(X4

12) +NE(X4
12)2

N∑
k=3

k−1∑
j=2

1

+ 2NE(X2
11)E(X2

12)3
N∑
k=3

k−1∑
j=2

1

+ 2NE(X2
12)4

N∑
k=4

k−1∑
j=3

j−1∑
l=2

1,

the only term that does not vanish in the limit is the final term. This last term is:

lim
N→∞

2NE(X2
12)4

(
N3 + 9N2 + 21N

6

)
=

E(W 2
12)4

3
,

The sixth term:

NE(E(X2
12)

k−1∑
j=1

k−1∑
l=1

X2
1jX

2
1l) = NE(X2

12)2
k−1∑
j=1

k−1∑
l=1

E(X2
1jX

2
1l)

= NE(X2
12)2[

k−1∑
j=1

E(X4
1j) + 2

k−1∑
j=2

j−1∑
l=1

E(X2
1j)E(X2

1l)],

which, when we sum from k = 3 to N and take the limit as N →∞, the only term
to remain:

1

3
E(W 2

12)4.
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Continuing in this fashion, we obtain that the sum of expectations of the expres-
sion above is

13

3
E(W 2

12)4 +
5

3
E(W 2

12)2E(W 4
12),

not including cross terms. The only terms that gave a non-negative expectation
were the fifth, sixth, and the eigth through thirteenth. Now, the cross terms yield:

22

3
E(W 2

12)2E(W 4
12)− 34

3
E(W 2

12)4,

so that in sum,
ν2 = 9E(W 2

12)2E(W 4
12)− 7E(W 2

12)4.

As in the previous section, we can verify 2.1 and 2.2 using the same techniques.
We compare with the result obtained using the methods from [1]:

ω2(f) =
1

2

∫ 2σ

−2σ

∫ 2σ

−2σ
(x4 − y4)2

1

4π2σ4

√
4σ2 − x2

√
4σ2 − y2dxdy

= σ8C4 − σ8C2
2 = 10σ8,

α(f) =
1

σ

∫ 2σ

−2σ
x5

1

2πσ2

√
4σ2 − x2dx

= 0,

β(f) =
1

σ2

∫ 2σ

−2σ
x4(x2 − σ2)

1

2πσ4

√
4σ2 − x2dx

= σ4(C3 − C2) = 3σ4,

κ4(µ) = m4 − 3σ4,

ν21(f) = 2(10σ8 +
(m4 − 3σ4)

2σ4
9σ8)

= 9σ4m4 − 7σ8,

thus we see that ν21(f) = 9E(W 2
12)2E(W 4

12)− 7E(W 2
12)4 which matches ν2 exactly.
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