
COMPRESSIVE SENSING WITH HIGHLY COHERENT

DICTIONARIES

SARA COHEN

Abstract. Compressive sensing is an emerging field based on the dis-

covery that sparse signals and images can be reconstructed from highly

incomplete information. Conventional approaches follow Shannons the-

orem, which states that the sampling rate must be twice the maximum

frequency present in the signal. In the case that the sensing matrix is

highly coherent, which happens when signals are only sparse in a truly

redundant dictionary, one must consider less traditional approaches to

reconstruct the signals. Sensing matrices are highly coherent in imag-

ing problems such as radar and medical imaging. This work compares

existing methods to solve the coherence problem. The first method at-

tempts recovery via an l1-analysis optimization problem, the second uses

l1-minimization, and the third method uses algorithms based on band

exclusion and local optimization. Detailed comparisons demonstrate the

superiority of the l1-minimization method which minimizes the distance

of the nonzero entries in the sparse vector x.

1. Introduction

This paper is by no means an exhaustive survey of the literature on com-

pressive sensing. It is merely an account of others own work and thinking in

this area which includes a large number of references to other people’s work.

The following introduction is credited to the authors: Massimo Fornaier,

Hoger Rauhut, Emmanuel J. Candes, Yonnia C. Eldar, Deanna Needell,

Paige Randall, Albert Fannjiang, and Wenjing Liao.

The Nyquist/Shannon sampling theorem states that to avoid losing in-

formation when measuring a signal, one must sample twice as fast as the

bandwidth of the signal. Similarly, the fundamental theorem of algebra

suggests that the number of collected measurements of a discrete finite-

dimensional signal should be at least as large as its length or dimension in

order to ensure reconstruction. However, in some applications, increasing

the sampling rate is either quite expensive or not feasible in the first place.
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Compressive sensing is a rapidly growing field which presents a new method

that allows signals to be captured and measured at a much lower sampling

rate despite common wisdom. There are many applications of compressed

sensing which range from medical imaging to radar and remote sensing to

video electronics.

Compressive sensing depends on the empirical observation that many

types of signals can be well-approximated by a sparse expansion, i.e only

a small number of non-zero coefficients, in terms of a suitable basis. This

is the key to many lossy compression techniques such as JPEG or MP3 [3].

Lossy compression refers to a data encoding method that compresses data

by discarding, or losing some of it. A compression is obtained by storing

only the largest basis coefficients. When reconstructing the signal, the non-

stored coefficients are set to zero. This is a reasonable strategy when full

information of the signal is available. However, when the signal has to be

obtained by a costly, lengthy, or otherwise difficult sensing procedure, this

strategy seems to be a waste of resources. The time and money is spent

in order to obtain full measurements and then most of the information is

thrown away during the compression stage. The goal would be to be able

to obtain the compressed version of the signal more directly by taking a

smaller number of measurements of the signal in the first place. It is not

clear whether or not this is possible since measuring the large coefficients re-

quires knowing their location beforehand. Nevertheless, compressive sensing

provides a way to reconstruct a compressed version of the original signal by

taking only a small amount of linear and non-adaptive measurements. The

particular number of measurements is comparable to the compressed size of

the signal. The measurements have to be suitably designed and surprisingly,

all good measurement matrices designed thus far have been random.

In terms of compressive sensing, the interest is in the undersampled case,

meaning there are fewer measurements than unknown signal values. There

are countless numbers of applications in which this type of problem arises.

For example, in radiology and biomedical imaging one is typically able to

collect far fewer measurements about an image of interest than the number

of unknown pixels. In wideband radio frequency signal analysis, one may be

able to acquire a signal at a rate which is far lower than the Nyquist rate

because of current limitations in Analog-to-Digital Converter technology.

Lastly, gene expression studies also provide examples in that one would like
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to infer the gene expression level of thousands of genes from a low number

of observations.

It is another important feature of compressive sensing that useful recon-

struction can be performed by using efficient algorithms. Since the attention

is in the immensely undersampled case, the linear system describing the mea-

surements is underdetermined and therefore has infinitely many solutions.

The main idea is that the sparsity helps in isolating the original vector. The

first näıve approach to a reconstruction algorithm entails searching for the

sparsest vector that is consistent with the linear measurements. This leads

to the combinatorial l0-problem which is unfortunately NP-hard in general.

There are essentially two approaches for alternative algorithms. The first

is convex relaxation leading to l1-minimization while the second constructs

greedy algorithms. A greedy algorithm is an algorithm that follows the

problem solving heuristic of making the locally optimal choice at each stage

with the hope of finding a global optimum. This paper will explain ba-

sic properties of the measurement matrix which ensure sparse recovery by

l1-minimization such as the null space property (NSP) and the restricted

isometry property (RIP).

Compressed sensing suggests obtaining a signal x ∈ Rn by collecting m

linear measurements of the form yk = 〈ak, x〉+ zk, 1 ≤ k ≤ m, or in matrix

notation

(1.1) y = Ax+ z,

where A is an m×n sensing matrix with m usually smaller than n by one or

numerous orders of magnitude and z is an error term modeling measurement

errors.

The matrix A is chosen independently of x. Under specific conditions of

the matrix A, compressive sensing indicates that as long as the unknown

signal x is reasonably sparse (contains mostly zeros) it is possible to recover

x. The solution simplifies to

(1.2) min
x̃∈Rn

‖x̃‖1 subject to ‖Ax̃− y‖2 ≤ ε,

where ‖ · ‖2 denotes the standard Euclidean norm, ‖x‖1 =
∑
|xi| is the

l1-norm and ε2 is a likely upper bound on the noise power ‖z‖22.
Compressed sensing typically compares the quality of the reconstruction

from the data y and the model y = Ax + z with the s most significant

entries of x. Let xs denote the vector consisting of the s largest coefficients
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of x ∈ Rn in magnitude

(1.3) xs = arg min
‖x̃‖0≤s

‖x− x̃‖2,

where ‖x‖0 = |{i : xi 6= 0}|. This vector xs has s nonzero entries and is the

best s-sparse approximation to the vector x. In other words, x − xs is the

tail of the signal and consists of the smallest n− s entries of x. It has been

established by Romberg and Tao that (1.2) recovers a signal x̃ observing

(1.4) ‖x̃− x‖2 ≤ C0
‖x− xs‖1√

s
+ C1ε,

given that the 2s-restricted isometry constant of A obeys δ2s < 0.4652. Since

the recovery error from (1.2) is proportional to the measurement error and

the tail of the signal, x − xs, the approximation error of a nearly sparse

signal is very small and the error completely vanishes for precisely sparse

signals.

Definition 1.1. For an m × n measurement matrix A, the s-restricted

isometry constant δs of A is the smallest quantity such that

(1.5) (1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22,

holds for all s-sparse signals x. Then matrix A is said to satisfy the s-

restricted isometry property with the s-restricted isometry constant

δs. The RIP characterizes matrices which are almost orthonormal when

operating on sparse vectors and it assures accurate recovery of signals that

are nearly sparse in a highly overcomplete and coherent dictionary (frame).

[1]

The condition (1.4) which x̃ must obey is quite natural since it prevents

sparse signals from lying in the nullspace of the sensing matrix A. A matrix

having a small restricted isometry constant means that every subset of s

or fewer columns is nearly orthonormal. Many matrices with Gaussian,

Bernoulli, or Fourier entries have small restricted isometry constants when

the number of measurements m is on the order of s log(n/s).

Compressive sensing is based on the observation that many types of real-

world signals and images have a sparse expansion in terms of a suitable basis.

This means that the expansion has only a small number of significant terms,

or in other words, that the coefficient vector can be well-approximated with

one having only a small number of nonzero entries.

The support of a vector x is denoted supp(x) = {j : xj 6= 0}, and
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‖x‖0 := |supp(x)|.
It has become common to call ‖ · ‖0 the l0-norm, although it is not even a

quasi-norm. A vector x is called s-sparse if ‖x‖0 ≤ s. For s ∈ {1, 2, ..., N},∑
s := {x ∈ CN : ‖x‖0 ≤ s}

denotes the set of s-sparse vectors. Furthermore, the best s-term approxi-

mation error of a vector x ∈ CN in lp is defined as

σs(x)p = infz∈
∑
s
‖x− z‖p.

If σs(x) decays quickly in s then x is called compressible. In order to

compress x one may simply store only the s largest entries. When recon-

structing x from its compressed version the nonstored entries are simply

set to zero, and the reconstruction error is σs(x)p. It is emphasized at this

point that the procedure of obtaining the compressed version of x is adap-

tive and nonlinear since it requires the search of the largest entries of x in

absolute value. Specifically, the location of the non-zeros is a nonlinear type

of information.

The best s-term approximation of x can be obtained using the nonincreas-

ing rearrangement r(x) = (|xi|, . . . , |xiN |)T , where ij denotes a permutation

of the indices such that |xij+1 | ≤ |xij | for j = 1, . . . , N − 1.

Then it is straightforward to check that

σs(x)p :=

(∑
rj(x)p

)1/p

, 0 < p <∞

and the vector x[s] derived from x by setting to zero all the N − s smallest

entries in absolute value is the best s-term approximation,

x[s] = arg minz∈
∑
s
‖x− z‖p,

for any 0 < p ≤ ∞.

The next lemma states essentially that lq-balls with small q (ideally q ≤ 1)

are good models for compressible vectors.

Lemma 1.2. Let 0 < q < p ≤ ∞ and set r = 1
q −

1
p . Then

σs(x)p ≤ s−r, s = 1, 2, . . . , N for all x ∈ BN
q .

Proof. Let T be the set of indices of the s-largest entries of x in absolute

value. The non-increasing rearrangement satisfies |rs(x)| ≤ |xj | for all j ∈ T ,

and therefore

srs(x)q ≤
∑

j∈T |xj |q ≤ ‖x‖
q
q ≤ 1.

Hence, rs(x) ≤ s
−1
q . Therefore
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σs(x)pp =
∑

j /∈T |xj |p ≤
∑

j /∈T rs(x)p−q|xj |q ≤ s−
p−q
q ‖x‖qq ≤ s−

p−q
q ,

which implies σs(x)p ≤ s−r. �

The null space property is fundamental in the analysis of l1-minimization.

Definition 1.3. A matrix A ∈ Cm×N is said to satisfy the null space

property (NSP) of order s with constant γ ∈ (0, 1) if

(1.6) ‖ηT ‖1 ≤ γ‖ηT c‖ − 1,

for all sets T ⊂ {1, . . . , N}, with #T ≤ s and for all η ∈ kerA.

The following sparse recovery result is based on this notion.

Theorem 1.4. Let A ∈ Cm×N be a matrix that satisfies the NSP of order

s with constant γ ∈ (0, 1). Let x ∈ CN and y = Ax and let x∗ be a solution

of the l1-minimization problem. Then

(1.7) ‖x− x∗‖1 ≤
2(1 + γ)

1− γ
σs(x)1.

In particular, if x is s-sparse x∗ = x.

Proof. Let η = x∗ − x. Then η ∈ kerA and

‖x∗‖1 ≤ ‖x‖1,

because x∗ is a solution of the l1-minimization problem. Let T be the set of

the s-largest entries of x in absolute value. One has

‖x∗T ‖1 + ‖x∗T c‖1 ≤ ‖xT ‖1 + ‖xcT ‖1.

It follows immediately from the triangle equality that

‖xT ‖1 − ‖ηT ‖1 + ‖ηT c‖1 − ‖xT c‖1 ≤ ‖xT ‖1 + ‖xT c .

Hence,

‖ηT c‖1 ≤ ‖ηT ‖1 + 2‖xT c‖1 ≤ γ‖ηT c‖1 + 2σs(x)1,

Or, equivalently,

(1.8) ‖ηT c‖1 ≤
2

1− γ
σs(x)1.

Finally,

‖x− x∗‖1 = ‖ηT ‖1 + ‖ηT c‖1 ≤ (γ + 1)‖ηT c‖1 ≤
2(1 + γ)

1− γ
σs(x)1

and the proof is completed. �
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One can also show that if all s-sparse x can be recovered from y = Ax

using l1-minimization then necessarily A satisfies the NSP of order s with

some constant γ ∈ (0, 1). Therefore, the NSP is actually equivalent to sparse

l1-recovery.

The RIP implies the NSP as shown in the following lemma.

Lemma 1.5. Assume that A ∈ Cm×N satisfies the RIP of order S = s+ h

with constant δS ∈ (0, 1). Then A has the NSP of order s with constant

γ =

√
s

h

1 + δS
1− δS

.

Proof. Let η ∈ N = kerA and T ⊂ {1, . . . , N}, with #T ≤ s. Define T0 = T

and T1, T2, . . . , Ts to be disjoint sets of indexes of size at most h, associated

to a non-increasing rearrangement of the entries of η ∈ N , i.e.,

(1.9) |ηj | ≤ |ηi| for all j ∈ Tl, i ∈ Tl, 1 ≤ l
′ ≤ l.

Note that Aη = 0 implies AηT0∪T1 = −
∑s

j=2AηTj . Then, from the Cauchy-

Schwarz inequality, the RIP, and the triangle inequality, the following se-

quence is deduced,

‖ηT ‖1 ≤
√
s‖ηT ‖2 ≤

√
s‖ηT0∪T1‖2

≤
√

s

1− δS
‖AηT0∪T1‖2 =

√
s

1− δs
‖AηT2∪T3∪...Ts‖2

≤
√

s

1− δS

s∑
j=2

‖AηTj‖2 ≤
√

1 + δS
1− σS

√
s

s∑
j=2

‖ηTj‖2.

(1.10)

It follows from (1.9) that |ηi| ≤ |ηl for all i ∈ Tj+1 and l ∈ Tj . Taking the

sum over l ∈ Tj first and then the l2-norm over i ∈ Tj+1 yields

|ηi| ≤ h−1‖ηTj‖1, and ‖ηTj+1‖2 ≤ h−1/2‖ηTj‖1.

Using the latter estimates in (1.10) gives

(1.11) ‖ηT ‖1 ≤
√

1 + δS
1− δS

s

h

s−1∑
j=1

‖ηTj‖1 ≤
√

1 + δS
1− δS

s

h
‖ηT c‖1,

and the proof is finished. �

Taking h = 2s above shows that δ3s < 1/3 implies γ < 1. By Theorem

1.4 recovery of all s-sparse vectors by l1-minimization is then guaranteed.

Additionally, stability in l1 is also ensured. The next theorem shows that

RIP implies also a bound on the reconstruction error in l2.
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Theorem 1.6. Assume A ∈ Cm×N satisfies the RIP of order 3s with δ3s <

1/3. For x ∈ CN , let y = Ax and x∗ be the solution of the l1-minimization

problem. Then

‖x− x∗‖2 ≤ C
σs(x)1√

s
,

with C =
2

1− γ

(
γ + 1√

2
+ γ

)
, and γ =

√
1 + δ3s

2(1− δ3s)
.

Proof. Similarly as in the proof of Lemma 1.5, let η = x∗ − x ∈ N =

kerA, T0 = T the set of the 2s-largest entries of η in absolute value, and

Tj ’s of size at most s corresponding to the non-increasing rearrangement of

η. Then using (1.10) and (1.11) with h = 2s of the previous proof,

‖ηT ‖2 ≤
√

1 + δ3s
2(1− δ3s)

s−1/2‖ηT c‖1.

From the assumption δ3s < 1/3 it follows that γ :=

√
1 + δ3s

2(1− δ3s)
< 1.

Lemmas 1.2 and 1.5 yield

‖ηT c‖2 = σ2s(η)2 ≤ (2s)−
1
2 ‖η‖1 = (2s)−1/2(‖ηT ‖1 + ‖ηT c‖1)

≤ (2s)−1/2(γ‖ηT c‖1 + ‖ηT c‖1) ≤
γ + 1√

2
s−1/2‖ηT c‖1.

(1.12)

Since T is the set of 2s-largest entries of η in absolute value, it holds

(1.13) ‖ηT c‖1 ≤ ‖η(suppx[2s])c‖1 ≤ ‖η(suppx[s])c‖1,

where x[s] is the best s-term approximation to x. The use of this latter

estimate, combined with the inequality 1.8, finally gives

‖x− x∗‖2 ≤ ‖ηT ‖2 + ‖ηT c‖2

≤
(γ + 1√

2
+ γ
)
s−1/2‖ηT c‖1

≤ 2

1− γ

(γ + 1√
2

+ γ
)
s−1/2σs(x)1.

(1.14)

This concludes the proof. �

The compressive sensing techniques described above are used when the

signals are sparse with respect to an orthonormal basis. However, there are

often times when a signal is not sparse in an orthonormal basis. Sparsity

if often expressed in terms of an overcomplete dictionary. An overcomplete

dictionary refers to a dictionary or matrix, which has many more columns

than rows. The use of overcomplete dictionaries is now widespread in the
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field of compressed sensing. They are often used when working in situa-

tions in which no good orthonormal basis is known to exist. Additionally,

overcomplete dictionaries provide benefits in certain applications such as

deconvolution, tomography, and other signal-denoising problems.

In the overcomplete dictionary situation our signal f ∈ Rn is now ex-

pressed as f = Dx where D ∈ Rn×d is some overcomplete dictionary. Now,

consider the case in which the sensing matrix A has Gaussian entries. If D is

not a unitary matrix then the matrix AD will have correlated columns and

thus would not satisfy the traditional requirements imposed by compressive

sensing. This paper will discuss the potential of good recovery when the

columns are highly correlated.

Traditional assumptions imposed by compressive sensing and sparse signal

recovery say that the measurement matrix must have uncorrelated columns.

Definition 1.7. The coherence of a matrix B is defined as

(1.15) µ(B) = max
j<k

|〈Bj , Bk〉|
‖Bj‖2‖Bk‖2

where Bj and Bk denote columns in B. A dictionary is considered inco-

herent if µ is small. Traditional approaches to compressive sensing require

that the measurement matrix satisfy a strict incoherence property such as

the restricted isomtery property (RIP).

Applying Gershgorin’s disc theorem to B∗TBT − I with #T = s shows

that

(1.16) δs ≤ (s− 1)µ.

Several explicit examples of matrices are known which have small coherence

µ = O(1/
√
m). A simple one is the concatenation B = (I|F ) ∈ Cm×2m of

the identity matrix and the unitary Fourier matrix F ∈ Cm×m with entries

Fj,s = m−1/2e
2πijs/m

. It is easily seen that µ = 1/
√
m in this case. In these

cases, δs ≤ C s√
m

. Combining this estimate with the recovery results for l1-

minimization above shows that all s-sparse vectors x can be stably recovered

from y = Ax via l1-minimization provided

(1.17) m ≥ C ′s2.

At first sight one might be satisfied with this condition since if s is very

small compared to N then still m might be chosen smaller than N and

all s-sparse vectors can be recovered from the undersampled measurements

y = Ax. Although this is great news for a start, one might nevertheless hope
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that (1.16) can be improved. In particular, one may actually expect that a

linear scaling of m in s should be enough to guarantee sparse recovery by l1-

minimization. The existence of matrices, which provide recovery conditions

of the form Cs logα(N) ≤ m (or similar) with some α ≥ 1, is shown in the

next section. Unfortunately, such results cannot be shown by simply using

the coherence because of the general lower bound

(1.18) µ ≥

√
N −m
m(N − 1)

∼ 1√
m

(N sufficiently large).

In particular, it is not possible to overcome the quadratic bottleneck in

(1.17) by using Gershgorins theorem or Riesz-Thorin interpolation between

‖ · ‖1→1 and ‖ · ‖∞→∞. In order to improve on (1.17) one has to take into

account also cancellations in the Gramian A∗TAT − I, and this task seems to

be quite difficult using deterministic methods. Therefore, it will not come as

a surprise that the major breakthrough in compressive sensing was obtained

with random matrices. It is indeed easier to deal with cancellations in the

Gramian using probabilistic techniques.

Optimal estimates for the RIP constants in terms of the number m of

measurement matrices can be obtained for Gaussian, Bernoulli, or more

general subgaussian random matrices. Let X be a random variable. Then

one defines a random matrix A = A(ω), ω ∈ Ω, as the matrix whose entries

are independent realizations of X, where (Ω,Σ,P) is their common proba-

bility space. One assumes further that for any x ∈ RN we have the identity

E‖Ax‖22 = ‖x‖22, where E denotes expectation.

The starting point for the simple approach is a concentration inequality

of the form

(1.19) P(|‖Ax‖22 − ‖x‖22| ≥ δ‖x‖22) ≤ 2e−c0δ
2m, 0 < δ < 1,

where c0 > 0 is some constant. The two most relevant examples of random

matrices which satisfy the above concentration are Gaussian and Bernoulli

matrices. Based on the concentration equality the following estimate on RIP

constants can be shown.

Theorem 1.8. Let A ∈ Rm×N be a random matrix satisfying the concen-

tration property. Then there exists a constant C depending only on c0 such

that the restricted isometry constant of A satisfies δk ≤ δ with probability

exceeding 1− ε provided

m ≥ Cδ−2(k log(N/m) + log(ε−1)).
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Combining this RIP estimate with the recovery results for l1-minimization

shows that all s-sparse vectors x ∈ CN can be stably recovered from a

random draw of A satisfying (1.19) with high probability provided

(1.20) m ≥ Ck log(N/m).

Up to the log-factor this provides the desired linear scaling of the number

m of measurements with respect to the sparsity s. Furthermore, the above

condition cannot be further improved; in particular, the log-factor cannot

be removed.

Theorem 1.9. If a system of linear equations Ax = b has a solution obeying

‖x‖0 < 1
2(1 + 1/µ(A)), this solution is necessarily the sparsest possible.

The coherence can never be smaller than 1√
n/2

, and therefore, the cardi-

nality bound of the above theorem is never larger than 1√
n

.

Theorem 1.10. For a system of linear equations Ax = b (A ∈ Rm×n full-

rank with n < m), if a solution x exists obeying

‖x‖0 < 1
2

(
1 + 1

µ(A)

)
,

then l1-minimization is guaranteed to find it exactly.

Next I would like to discuss how well one can estimate the response Ax

where A is a matrix and x is an s-sparse vector. The generic s-sparse model

is defined as follows:

(1) The support I ⊂ {1, . . . , p} of the s nonzero coefficients of A is

selected uniformly at random.

(2) Conditionally on I, the signs of the nonzero entries of A are inde-

pendent and equally likely to be -1 or 1.

No assumptions are made on the amplitudes. In some sense, this is the

simplest statistical model. It says that all subsets of a given cardinality are

equally likely, or in other words, one is not biased towards certain variables

nor is there any reason to believe that a given coefficient is positive or

negative.

On the other hand, suppose that our sparse vector x does not satisfy a

minimum distance between its nonzero entries. To test this scenario I chose a

64×256 DFT and a sparse vector with 10 consecutive nonzero entries. Using

l1-minimization I attempted to recover the signal; however, as apparent in

Figure 1 the reconstruction was not very accurate. There was a relative

error of 1.214253256401029 which is quite high. Therefore signal recovery
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via l1-minimization fails unless the sensing matrix or the signal itself satisfies

certain conditions.

Figure 1

If two columns are highly correlated it would be nearly impossible to

distinguish whether the signal comes from one or the other. For example,

suppose we are not undersampling and that A is the identity matrix. We

then observe y = Dx. Suppose that the first two columns are identical.

Then it would not be possible to reconstruct a unique sparse signal x from

measurements y = ADx. However, instead of recovering the coefficient

vector x we are interested in the actual signal Dx. Thus the high correlation

between the columns in D does not create a problem since differentiation

between the coefficient vectors is not the goal. Therefore the low coherence

of D may not be a necessary requirement for recovery.

To introduce my results, I will first discuss a concrete situation. I first

assume that the sensing matrix or dictionary D has Gaussian entries with a

decaying rate ε and shift 0.25. Next, I conduct the same tests using Fourier

matrices. I am interested in recovering the actual signal f = Dx instead of

the sparse vector x.
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The goal is to minf∈R‖D∗f‖1 subject to ‖Af − y‖2 ≤ ε given measure-

ments y where y = Af + z where z is noise. I want to find an f that fits the

data up to ε which is related to the noise by ‖z‖2 ≈ ε.
I tried three different methods to solve this compressed sensing prob-

lem. The first method is l1-analysis, the second is l1-minimization, and

the third method is band exclusion. The results show the superiority of

l1-minimization.

2. Methods

2.1. l1-analysis. This section proposes a reconstruction from y = Af + z

by the method of l1-analysis:

(2.1) f̃ = arg min
f̃∈Rn

‖D∗f̃‖1 subject to ‖Af̃ − y‖2 ≤ ε

where again ε is a likely upper bound on the noise level ‖z‖2. Empirical

studies have shown very promising results for the l1-analysis problem. Its

geometry has been studied as well as its applications to image restoration.

However, there are no results in the literature about its performance in

regard to the case where D is a redundant dictionary made of Gaussian

functions. The solution to (2.1) is very accurate provided that D∗f has

rapidly decreasing coefficients.

Theorem 2.1. Let D be an arbitrary n×n tight frame and let A be a m×n
Gaussian matrix with m on the order of s log(d/s). Then the solution f̃ to

(2.1) obeys

‖f̃ − f‖2 ≤ C0ε+ C1
‖D∗f − (D∗f)s‖1√

s
,

for some numerical constants C0 and C1, and where (D∗f)s is the vector

consisting of the largest s entries of D∗f in magnitude as in (1.3).

2.2. Band Exclusion. This method relies on the importance of band ex-

clusion. While many l1-minimization algorithms require either incoherence

or the Restricted Isometry Property to have good performances, this method

does not. [2]

According to theory of optimal recovery, for time sampling in [0,1], the

minimum resolvable length in the frequency domain is unity. This is the

Rayleigh threshold and this length will be referred to as the Rayleigh length

(RL). Thus, for the traditional inversion methods to work, it is essential that

the grid spacing be no less than 1 RL. In the compressed sensing setting,
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the Rayleigh threshold is closely related to the decay property of the mutual

coherence. [2]

Without any prior information about the object support, the gridding

error for the resolved grid, however, can be as large as the data itself, creating

an unfavorable condition for sparse reconstruction. To reduce the gridding

error, it is natural to consider the fractional grid

Z/F = {j/F : j ∈ Z}

with some large integer F ∈ N called the refinement factor. The relative

gridding error is roughly inversely proportional to the refinement factor;

however, the mutual coherence increases with F as the near-by columns of

the sensing matrix become highly correlated.

The hope is that if the objects are sufficiently separated with respect to

the coherence band, then the problem of a huge condition number associated

with unresolved grids can be somehow circumvented and the object support

can be approximately reconstructed.

The first technique that I will introduce to take advantage of the informa-

tion that objects are widely separated is called Band Exclusion and it can

be easily embedded in the greedy algorithm, Orthogonal Matching Pursuit

(OMP). The following proposition is a standard performance guarantee for

OMP.

Proposition 2.2. Suppose that the sparsity s of the signal vector x satisfies

µ(A)(2s− 1) + 2
‖e‖2
xmin

< 1,

where xmin = mink|xk| = |xs|. Let x̃ denote the output of OMP reconstruc-

tion. Then

supp(x̃) = supp(x),

where supp(x) is the support of x. The ideal case where e = 0, reduces to

µ(A) <
1

2s− 1
,

which is near the threshold of OMP’s capacity for exact reconstruction of

arbitrary objects of sparsity s.

Intuitively speaking, if the objects are not in each other’s coherence band,

then it should be possible to localize the objects approximately within their

respective coherence bands, no matter how large the mutual coherence is.

Define the η-coherence band of the index k to be the set

Bη(k) = {i | µ(i, k) > η},
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and the η-coherence band of the index set S to be the set

Bη(S) =
⋃
k∈S Bη(k).

Due to the symmetry µ(i, k) = µ(k, i), for all i, k ∈ Bη(k) if and only if

k ∈ Bη(i). Denote

(2.2) B(2)
η (k) := Bη(Bη(k)) = ∪j∈Bη(k)Bη(j),

(2.3) B(2)
η (S) ≡ Bη(Bη(S)) = ∪k∈Bη(S)Bη(k).

To embed BE into OMP, we make the following change to the matching step

imax = arg mini |〈rn−1, ai〉|, i /∈ B
(2)
η (Sn−1), n = 1, 2, . . .

meaning that the double η-band of the estimated support in the previous

iteration is avoided in the current search. This is natural if the sparsity

pattern of the object is such that Bη(j), j ∈ supp(x) are pairwise disjoint.

We call the modified algorithm the Band-excluded Orthogonal Matching

Pursuit (BOMP) which is formally stated in the following Algorithm.

Algorithm 1 Band-excluded Orthogonal Matching Pursuit (BOMP)

Input: A, b, η > 0

Initialization: x0 = 0, r0 = b, S0 = ∅
Iteration: For n = 1, . . . , s

(1) imax = arg maxi |〈rn−1, ai〉|, i /∈ B
(2)
η (Sn−1)

(2) Sn = Sn−1 ∪ {imax}
(3) xn = arg minz ‖Az − b‖2 s.t. supp(z) ∈ Sn

(4) rn = b−Axn

Output: xs

A main theoretical result of the present paper is the following performance

guarantee for BOMP.

Theorem 2.3. Let x be s-sparse. Let η > 0 be fixed. Suppose that

(2.4) Bη(i) ∩B(2)
η (j) = ∅, ∀i, j ∈ supp(x),

and that

(2.5) η(5s− 4)
xmax

xmin
+

5‖e‖2
2xmin

< 1,

where

xmax = maxk |xk|, xmin = mink |xk|.
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Let x̃ be the BOMP reconstruction. Then supp(x̃) ⊆ Bη(supp(x)) and more-

over every nonzero component of x̃ is in the η-coherence band of a unique

component of x.

First, numerical evidence shows degradation in BOMPs performance with

increased dynamic range consistent with the prediction of (2.5). Dynamic

range of objects is clearly an essential factor determining the performance of

recovery. This sensitivity to dynamic range can be drastically reduced by the

local optimization technique which is introduced next. Secondly, condition

(2.4) means that BOMP can resolve 3 RLs. Numerical experiments show

that BOMP can resolve objects separated by close to 1 RL when the dynamic

range is close to 1.

Numerical experiments show that the main shortcoming with BOMP is

in its failure to perform even when the dynamic range is only moderate.

To overcome this problem, we now introduce the second technique: the

Local Optimization (LO). LO is a residual-reduction technique applied to

the current estimate Sk of the object support. To this end, we minimize the

residual ‖Ax̃−b‖2 by varying one location at a time while all other locations

are held fixed. In each step we consider a vector x̃ whose support differs from

Sn by at most one index in the coherence band of Sn but whose amplitude is

chosen to minimize the residual. The search is local in the sense that during

the search in the coherence band of one nonzero component the locations

of other nonzero components are fixed. The amplitudes of the improved

estimate are carried out by solving the least squares problem. Because of

the local nature of the LO step, the computation is not expensive.

Algorithm 2 Local Optimization (LO)

Input: A, b, η > 0, S0 = {i1, . . . , ik}
Iteration: For n = 1, 2, . . . , k

(1) xn = arg minz ‖Az − b‖2,
supp(z) = (Sn−1\{in}) ∪ {jn}, jn ∈ Bη({in})

(2) Sn = supp(xn)

Output: Sk

Embedding LO in BOMP gives rise to the Band-excluded, Locally Opti-

mized Orthogonal Matching Pursuit (BLOOMP).

We now give a condition under which LO does not spoil the BOMP re-

construction of Theorem 2.3.
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Algorithm 3 Band-excluded, Locally Optimized Orthogonal Matching Pur-

suit (BLOOMP)

Input: A, b, η > 0 Initialization: x0 = 0, r0 = b, S0 = ∅
Iteration: For n = 1, . . . , s

(1) imax = arg maxi |〈rn−1, ai〉|, i /∈ B
(2)
η (Sn−1)

(2) Sn = LO(Sn−1 ∪ {imax}) where LO is the output from Algorithm 2

(3) xn = arg minz ‖Az − b‖2 s.t. supp(z) ∈ Sn

(4) rn = b−Axn

Output: xs

Theorem 2.4. Let η > 0 and let x be a s-sparse vector such that (2.4) holds.

Let S0 and Sk be the input and output, respectively, of the LO algorithm. If

(2.6) xmin > (ε+ 2(s− 1)η)

(
1

1− η
+

√
1

(1− η)2
+

1

1− η2

)
, ε = ‖e‖

and each element of S0 is in the η-coherence band of a unique nonzero

component of x, then each element of Sk remains in the η-coherence band

of a unique nonzero component of x.

Corollary 2.5. Let x̃ be the output of BLOOMP. Under the assumptions of

Theorems 2.3 and 2.4, supp(x̃) ⊆ Bη(supp(x)) and moreover every nonzero

component of x̃ is in the η-coherence band of a unique nonzero component

of x.

Even though we cannot improve the performance guarantee for BLOOMP,

in practice the LO technique greatly enhances the success probability of

recovery that BLOOMP has the best performance among all the algorithms

tested with respect to noise stability and dynamic range. In particular,

the LO step greatly enhances the performance of BOMP with respect to

dynamic range. Moreover, whenever Corollary 2.5 holds, for all practical

purposes we have the residual bound for the BLOOMP reconstruction x̃

(2.7) ‖b−Ax̃‖2 ≤ c‖e‖2, c ∼ 1.

On the other hand, it is difficult to obtain bounds for the reconstruction

error since ‖x− x̃‖2 is not a meaningful error metric without exact recovery

of an overwhelming majority of the object support.
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3. Numerics

3.1. Method 1: l1-analysis. To test the accuracy for recovery using the

l1-analysis method I will start by defining the Gaussian matrix D.

I define dictionary D by the following MATLAB code. [5] The variable

t =− ((row/2)− 1) : (row/2);

for k = −((column/2)− 1) : (column/2)

D(:, k + (column/2)) = e(−(t−(0.25∗k))
2/(ε)2);

end

(3.1)

ε is the decaying value of the Gaussian function. I have chosen to set this

value to 3 due to the localization and specific coherence properties of the

Gaussian function that I chose to use.

The next step is to create an s-spare vector x. The method I will use

utilizes the Matlab command randperm to choose the entries of the vector

which will contain the random nonzero coefficients [5]. The number of non-

zero coefficients is denoted by sparsity and the length of the vector x is

denoted by leng.

function [ vector ] = sparsevec( leng, sparsity )

index=randperm(leng);

index=index(1:round(sparsity));

vector=zeros(leng, 1);

vector(index)=randn(size(index));

To solve this l1-analysis problem I have chosen to use CVX, which is is a

Matlab-based modeling system for convex optimization. [4] [5] I was inter-

ested in testing this method for sparsity ranging from 1 to round(row/ log(column))

where row is the number of rows in the matrix D and column is the number

of columns. The Gaussian matrix I chose does not satisfy the requirements

of Equation (1.20) thus I cannot claim that this upper bound holds; I can

only use it as a guideline.

I tested the percent error of recovering f = Dx for sparsities between 1

and round(row/ log(column)). For my simulation I used a row length of

64 and a column length of 256 which means that sparsity ranged from 1 to
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The following code minimizes D∗f :

cvx begin

variableg(row)

minimize(norm(D′ ∗ g, 1))

subject to

norm(A ∗ g − y, 2) <= delta ∗ norm(y, 2)

cvx end

12. For each sparsity level I ran the code 10 times in order to compute an

average error.

The following graphs in Figure 2 show the resulting percent errors for a

range of sparsities. The results for the l1-analysis method are disappointing.

The resulting error when minimizing D∗x is higher than desired. The trend

is somewhat random which would imply that the tail of (D ∗ f)− (D ∗ fs) is

too large causing the l1-analysis method to lack accuracy in reconstruction.

As we have noticed from the results of the Matlab test it is apparent that

l1-analysis is not the best method for recovery when using a dictionary that

contains slowly decaying Gaussian matrices. [5]

Next, I would like to test the l1-analysis method for Fourier matrices.

I use the same code; however, I now define dictionary D by the Discrete

Fourier Transform (DFT) matrix by the following Matlab code. [5]

for k = 1 : row

xi = rand/20;

D(k, :) = e−i∗2∗π∗xi∗(0:column−1)/
√
row;

end

(3.2)

Similarly to the Gaussian case, a sparse vector x is created and CVX is

used to solve the convex optimization problem. [4] Again, I was interested in

analyzing the relative error in accurately recovering f = Dx using a range of

sparsities. The following graph in Figure 3 shows the resulting percent errors

for a range of sparsities. The results, similar to the l1-analysis method using

Gaussian matrices, are discouraging. The resulting error when minimizing
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Figure 2

D∗x is higher than desired. There doesn’t seem to be a straightforward trend

with the increase in sparsity of the vector x and similar to the Gaussian

case the trend is somewhat random which would imply that the tail of

(D∗f)−(D∗fs) is too large causing the l1-analysis method to lack accuracy

in reconstruction.

As we have noticed from the results of the MATLAB test it is apparent

that l1-analysis is not the best method for recovery when using a dictionary

that contains either Gaussian or Fourier matrices. [5]

3.2. Method 2: l1-minimization. Similar to the l1-analysis method I

used the same Gaussian matrix D and tested the percent error of recovering

f = Dx for sparsities between 1 and round(row/ log(column)). For my

simulation I used a row length of 64 and a column length of 256 which

means that sparsity ranged from 1 to 12. For each sparsity level I ran the

code 10 times in order to compute an average error.

The following graphs in Figure 4 show the resulting percent errors for a

range of sparsities. The results for the l1-minimization method where the



21

Figure 3

vector x is being minimized appear to show success. The errors for the range

of sparsities are on an order of magnitude of 10−3, which is relatively low.

Next, I tested the l1-minimization method for Fourier matrices. I used

the same Fourier matrix as I did in the l1-analysis method and similarly

tested the percent error of recovering f = Dx for sparsities between 1 and

round(row/ log(column)). The following graph in Figure 5 shows the re-

sulting percent errors for a range of sparsities. The results, similar to the

l1-analysis using Gaussian matrices, appear to be quite accurate and are

again on an order of magnitude of 10−8.

In both cases, using Gaussian and Fourier matrices, the l1-minimization

method recovers the signal with great accuracy.

3.3. Method 3: Band Exclusion. To test the accuracy for recovery using

the Band Exclusion method I considered multiple cases. I started off by

using a dictionary D containing Gaussian matrices. I first considered the

noiseless case and then I added noise using three different amounts: 5%,

10%, and 20% Gaussian noise.
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Figure 4

To create the code I used a refinement factor of 10. The larger the refine-

ment factor is, the smaller the gridding error is, but more computations are

involved. A value of 10 seemed to be a good balance between accuracy and

computational complexity. Next I chose a 64 × 480 sensing matrix, which

is significantly underdetermined. I chose the sensing vector to have sparsity

equal to 8 due to the decaying properties of the function. Then I created the

sensing matrix D with N = 64,M = 480, and ε = 6 (the decaying variable

of the Gaussian function) via the following MATLAB algorithm. [5]

t =− ((N)− 2) : 2 : (N) + 1;

for k = −((M/2)− 1) : (M/2)

D(:, k + (M/2)) = e−(t−(0.25∗k)).
2/(ε)2 ;

end

(3.3)

After defining the sensing matrix D, I needed to determine the band.

The band is based off of the choice of the number of columns of the sensing
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Figure 5

matrix as well as the shift of the Gaussian function. I wrote a function

called findband which determines the length of the band by first comparing

a Gaussian curve to the threshold 3.5/
√
row length and then determining

the index where the Gaussian curve is below the threshold. The code is as

follows:

function [ radius ] = findband( M, N, CoMatrix )

curve=abs(CoMatrix(M/2,:)/max(CoMatrix(M/2,:)));

diff=curve-(3.5/
√
N);

p=zeros(1,M);

t=p<diff;

ind=find(t,1,’last’);

maxvalueind=find(curve==max(abs(CoMatrix(M/2,:)/max(CoMatrix(M/2,:)))));

radius=abs(maxvalueind-round(ind+(M/100)));
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Figure 6 shows the coherence pattern of the 64×480 matrix with F = 10.

The bright diagonal band represents a heightened correlation, or pairwise

coherence, between a column vector and its neighbors on both sides.

Figure 6

This information is then used to determine the relative error when using

the OMP method, which is 0.42503 and can be seen in Figure 7.

Next, the the technique of band exclusion and local optimization is used

in the BLOOMP algorithm. As you can see in Figure 8, the relative error

is 0.0049354 which is significantly lower. When running the code 100 times,

the average relative error when using the BLOOMP algorithm was 0.00334.

After testing the noiseless case I tested the algorithms with 5%, 10%, and

20% Gaussian noise. After conducting many experiments I found that the

BLOOMP algorithm has a lower relative error in every case. Because of this

I will only report the numerics when using the BLOOMP algorithm. I ran

each algorithm 100 times and computed the average relative error. With
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Figure 7

5% Gaussian noise the BLOOMP algorithm has a relative error of 0.218,

with 10% Gaussian noise there is a relative error of 0.0474, and with 20%

Gaussian noise there is a relative error of 0.181.

The threshold 3.5/
√
row length is larger than Equation (1.18) dictates

and thus the band used when executing the algorithm is smaller than nec-

essary. Despite the small band, the algorithm relatively accurately recovers

the signal. Therefore the algorithm will work for a larger band.

Additionally, I tested the band exclusion method (both OMP and BLOOMP)

for a dictionary made of a Fourier function. I used the same DFT as I did for

the previous two methods. Similar to the Gaussian results, the BLOOMP

algorithm had a lower relative error in every case so I will only report the

results using the BLOOMP algorithm. Again, I was interested in testing

the algorithms with no noise, 5%, 10%, and 20% Gaussian noise. I ran each

algorithm 100 times and computed the average relative error.

Figure 9 shows the coherence pattern of the 64 x 480 matrix with F=10.

The bright diagonal bands represent a heightened correlation, or pairwise

coherence, between a column vector and its neighbors on both sides.
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Figure 8

Figure 10 shows the relative error with no noise using the BLOOMP

algorithm is 4.2715× 10−16 which is significantly lower than the error using

any of the other methods.

However, with 5% Gaussian noise the BLOOMP algorithm has a relative

error of 0.0271 which is now larger than when using l1-minimization. With

10% Gaussian noise there is a relative error of 0.0685 and with 20% Gaussian

noise there is a relative error of 0.2623, both of these being higher than the

relative errors determined using l1-minimization.

As we can see from the above results, the method of band exclusion works

reasonably well in reconstructing the signal. However; in all cases, with the

exception of the noiseless Fourier case, l1-minimization is a more accurate

method for signal recovery.

3.4. Imposed Minimum Distance Condition. After testing the mul-

tiple cases above and seeing the success of the l1-minimization method, I

was lastly interested in determining how imposing a minimum distance be-

tween the nonzero entries in the sparse vector x would affect the accuracy
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Figure 9

of recovery. I slowly increased the distance from 2 to 10 and noticed that

the relative error for the l1-minimization method decreased. For example,

in Figure 11 I imposed a minimum distance of 2 between the nonzero en-

tries of the vector x. The relative error when testing a range of sparsities

did not exceed 7.4 × 10−8. In Figure 12 I imposed a minimum distance

of 10 where the relative error did not surpass 4.4 × 10−8. It appears that

increasing the distance between nonzero entries in the sparse vector causes

the l1-minimization method to more accurately recover the signal. As of

now there is no theory in the relating literature as to why this is the case

for coherent dictionaries. The next step in this area of compressive sensing

would be to determine why l1-minimization is most successful in accurate

reconstruction and why the distance between nonzero entries in the sparse

vector affects this recovery.
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Figure 10

4. Conclusion

Compressive sensing is a developing field which asserts that one can re-

cover certain signals and images from far fewer samples or measurements

than traditional methods. When signals are only sparse in a truly redun-

dant dictionary, the sensing matrix is highly coherent and methods such

as l1-analysis and other such nontraditional methods are used. This pa-

per compares l1-analysis, l1-minimization, and band exclusion to see which

method better solves the coherence problem. After computing the error

in reconstructing signals with both Gaussian and Fourier dictionaries using

the three methods I found that l1-minimization is a superior method. It

recovered the signal with the lowest relative error in every case with the

exception of the noiseless Fourier case. Therefore, when trying to recover a

signal in which a highly coherent Gaussian or Fourier dictionary is needed,

the l1-minimization method, as opposed to l1-analysis and band exclusion,
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has proven to most accurately recover the signal. Thus, under certain spec-

ified conditions, I have established a link between the theory and practice

of compressive sensing.
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