
TOPOLOGICAL K-THEORY OF COMPLEX PROJECTIVE SPACES

VIRGIL CHAN

28 February 2013

Abstract. We compute the K-theory of complex projective spaces. There are three major
ingredients: the exact sequence of K-groups, the theory of Chern character and the Bott
Periodicity Theorem.
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1. Introduction

Topological K-theory (or K-theory in short) is the study of abelian groups generated by
vector bundles. It is an extraordinary cohomology theory that plays an important role in
topology. The fundamental concept of K-theory is the construction of the Grothendieck
group (see Proposition 2.1) from the equivalence classes of complex vector bundles. That
is, for any complex vector bundle, we associate it with a sequence of abelian groups, known as
theK-groups orK-functor. According to the common opinion, it was Alexander Grothendieck
who had started the subject to formulate his Grothendieck-Riemann-Roch Theorem, but the
first works in K-theory were published in 1959 by Michael Atiyah and Friedrich Hizebruch,
and in 1964 most results were completed due to Frank Adams, Michael Atiyah, Raoul Bott
and Freidrich Hizebruch. The most remarkable result related to K-theory perhaps is the
Atiyah-Singer Index Theorem in Partial Differential Equations. Later, the key ideas of
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K-theory was extended to algebra and algebraic geometry, which nowadays known as the
Algebraic K-theory (see [Ros94]).

The goal of this paper is to compute the K-theory of the complex projective space CPn:

Theorem 1.1

Kq(CPn) =

{
Z⊕n+1 if q is even;
0 if q is odd.

Moreover, as a ring,
K0(CPn) = Z[γ]/〈γn+1〉,

where γ = ζ − 1̃, ζ is the Hopf bundle, and 1̃ is the trivial vector bundle CP × C → CP
of dimension 1.

In Section 2, we introduce the basic notations and concepts of K-theory based on [FF89].
In Section 3, we study the cohomology structure of CPn by using its CW structure.
In Section 4, we briefly introduce the theory of Chern character based on [MS74] and

[MT97], and compute the Chern character of the Hopf bundle.
In Section 5, we state the Bott Periodicity Theorem and its corollaries to path the basic

settings for the proof of Theorem 1.1.

Acknowledgement. The author is extraordinarily grateful to his undergraduate thesis ad-
visor Professor Dmitry Fuchs for his uncountable help, insightful discussions and endless
encouragement in writing this paper. Nevertheless, the author would also like to thank Pro-
fessor Albert Schwarz and Professor Jerome Kaminker in reviewing this paper and providing
fruitful feedback.

2. K-Theory

We start with a proposition:

Proposition 2.1 (Construction of the Grothendieck Group)
Let S be a commutative semi-group (not necessarily having a unit). There is an abelian
group G (called the Grothendieck group or group completion of S) and a homo-
morphism φ : S → H, such that for any group abelian group H and homomorphism
ψ : S → H, there is a unique homomorphism θ : G→ H such that ψ = θ ◦ φ.

Proof. Define an equivalence relation “∼” in S × S by:

(x, y) ∼ (u, v) ⇐⇒ ∃ t ∈ S such that x+ v + t = u+ y + t in S.

Denote the equivalence class of (x, y) by [(x, y)], and let G be the set of equivalence classes
of “∼”. We define the abelian group structure in G.

First of all, the addition of equivalence classes is defined to be:

[(x, y)] + [(x′, y′)] = [(x+ x′, y + y′)] ,

and we show that it is well-defined.
If (x, y) ∼ (u, v) and (x′, y′) ∼ (u′, v′), then by definition, there exists t, t′ ∈ S such that:

x+ v + t = y + u+ t;

x′ + v′ + t′ = y′ + u′ + t′.
2

http://www.math.ucdavis.edu/research/profiles/fuchs
http://www.math.ucdavis.edu/research/profiles/schwarz
http://www.math.ucdavis.edu/research/profiles/schwarz
http://www.math.ucdavis.edu/~kaminker/


So we have:

(x+ x′) + (v + v′) + (t+ t′) = (x+ v + t) + (x′ + v′ + t′)

= (y + u+ t) + (y′ + u′ + t′)

= (y + y′) + (u+ u′) + (t+ t′)

and hence [(x+ x′, y + y′)] ∼ [(u+ u′), (v + v′)]. This concludes the addition is well-defined.
Next, we define the identity element with respect to this addition.
Note that for any x, y ∈ S, we have:

[(x, x)] = [(y, y)]

since x+y = y+x. We denote this distinguished element [(x, x)] by 0. Moreover, 0 is indeed
the additive identity since for every u, v ∈ S, we have:

(u+ x, v + x) ∼ (u, v).

Equally important, we wish to define the additive inverse.
Just observe that for every x, y ∈ S, we have:

[(x, y)] + [(y, x)] = [(x+ y, x+ y)] = 0.

This shows that [(x, y)] = − [(y, x)]
If (x, y) ∼ (u, v), then there exists t such that:

x+ v + t = y + u+ t.

⇒ y + u+ t = x+ v + t and hence, (y, x) ∼ (v, u).
It is easy to check also that the addition, together with the inverse and identity satisfy the

group axioms. Moreover, commutativity of elements in G follows from the the commutative
property of the semi-group S. As a result, G is an abelian group as desired.

Now, define φ : S → G such that φ(x) = [(x + x, x)]. Note that [(x, y)] = φ(x) − φ(y).
Therefore Im(φ) generates G.

Given a group H and homomorphism ψ : S → H, define θ : G → H by θ([(x, y)]) =
ψ(x)− ψ(y). We have ψ = θ ◦ φ.

If φ′ : S → G′ is any other pair with same property, then there exists an isomorphism
α : G→ G′ such that φ′ = α ◦ φ.

Therefore, the claim holds as desired. �

Now, consider a finite CW complex X. Let F (X) be the set of equivalence classes of
complex vector bundles with the base X. Observe that F (X) has two binary operations:
the Whitney sum “⊕” and the tensor product “⊗”, correspond to addition and multiplication
respectively. Also note that the class of zero-dimensional complex vector bundle serves as the
additive identity element in F (X). So F (X) forms a semi-group under ⊕. By Proposition
2.1, we can construct an abelian group from F (X). This motivates the following definition:

Definition 2.2 (K-group)
Let X be a finite CW complex. Let F (X) be the set of equivalence classes of complex
vector bundles with the base X. Then, K(X) is the Grothendieck group of F (X). We call
elements in K(X) as virtual bundles.

We describe a little bit more of the algebraic structure of K(X). First, direct sum deter-
mines the addition in K(X), with the equivalence class of zero-dimensional vector bundle
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as the additive identity. Secondly, the tensor product determines a multiplication in K(X),
with the equivalence class of trivial bundle of dimension 1 is the multiplicative identity in
K(X). Moreover, one can easily show that the multiplication in K(X) is commutative,
associative and distributive with respect to the addition. Therefore, we can actually answer
questions concerning the ring structure of K(X).

Consider a trivial case when X is a single point. Clearly, a complex vector bundle over a
point is uniquely determined by its dimension. So the dimension map, denote “dim”, gives
an isomorphism from F (point) to N. That is, F (point) = N. Since the Grothendieck group
of N is Z, we have:

K(point) = Z.
Similarly, for any finite CW complex X, the dimension map gives a map

dim : F (X)→ N
by sending the trivial bundle 1̃ to the number 1 ∈ Z, which extended to a group homomor-
phism:

dim : K(X)→ Z
and leads to the following definition:

Definition 2.3 (Reduced K-group K̃)
Let X be a finite CW complex. The reduced K-group of X is defined to be:

K̃(X) = Ker [dim : K(X)→ Z]

where “dim” is the dimension map.
Equivalently, we have:

K̃(X) = Ker [dim : K(X)→ K(x0)] ,

where x0 is the base-point of X.

A geometrical way to understand K̃ is that, K̃(X) is the group of stably equivalent classes
of complex vector bundles over X (see [FF89, Chapter 6, Section 37, P.4 Theorem]).

Definition 2.4 (Relative K-group Kq(X,A))
Let (X,A) be a finite CW pair and ΣX denote the suspension over X. For q ≤ 0, we
define:

Kq(X,A) = K̃(Σ−q(X/A)).

From the above definition, if we pick A = ∅, then:

X/A = X/∅ = X t (one point).

Hence,
K(X, ∅) = K̃(X/∅) = K̃(X t point) = K(X)

because K̃(X t point) is the group of virtual bundles over X t point, that is dimension 0
over the point, which is exactly the group of virtual bundles over X. Therefore, we have:

Kq(X) = Kq(X, ∅). (2.1)

Recall that if ξ is a vector bundle p : E → Y , and f : X → Y is a continuous map, then
the induced vector bundle is defined to be:

f ∗ξ = {(x, e) ∈ X × E |p(e) = f(x)}.
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Moreover, the vector bundle f ∗ξ over X has same dimension of the vector bundle E over Y .
The construction of the induced bundle establishes a ring homomorphism K(Y )→ K(X)

(and hence also K̃(Y ) → K̃(X) and K−q(Y ) → K−q(X)). With this homomorphism, one
can show that the functor K̃ is half exact (see [FF89]), and for a CW pair (X,A), we have
the following exact sequence of K-groups:

K0(A) · · · K−q(A) K−q(X) K−q(X,A) K−q−1(A) · · ·
(2.2)

which will be the one of the main tools to prove Theorem 1.1 and complete the construction
of K-groups.

2.1. K-theory and Classifying Space.

The general linear group GL(R) (where R is a ring) arises in lots of areas in mathematics.
In the context of topological and algebraic K-theory, it is an essential element. For example,
in algebraic K-theory, the definition of the first algebraic K-group K1 is defined to be the
quotient group of GL(R) and its subgroup generated by elementary matrices (see [Ros94]).
In topological K-theory, its subgroup U allows one to compute the K-theory of certain CW
complexes.

Definition 2.5 (The group U)
Let U(n) be the group of unitary n× n-matrices. We embed U(n) into U(n+ 1) by:

A 7→
[
A 0
0 1

]
.

The group U is defined to be:
U = lim

n→∞
U(n).

Definition 2.6 (Classifying Space)
Let CG(N, n) denote the complex Grassmannian. We can embed CG(N, n) to a larger
Grassmannian CG(N ′, n′) by a similar way we did to U(n). The Classifying Space is
defined to be:

BU = CG(∞,∞) = lim
n→∞

lim
N→∞

CG(N, n),

We now state an important relation between K-theory and Classifying Space.

Theorem 2.7 ([FF89, Chapter 6, Section 37, Corollary])
For any finite CW complex X, K̃(X) is equal to the set of homotopic maps from X to
BU . That is,

K̃(X) = π(X,BU).

Moreover, for a continuous map f : X −→ Y , the induced homomorphism:

f ∗ : K̃(Y ) −→ K̃(X)

coincides with the map:
f# : π(Y,BU) −→ π(X,BU)
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Proof. As stated before, K̃(X) is the group of stably equivalent classes of complex vector
bundles over X. We show that the classes are one-to-one correspond to homotopy classes of
the maps X → BU .

By elementary bundle theory, a vector bundle of dimension n over X induces a map:

X → CG(∞, n).

Since CG(∞, n) ⊂ CG(∞,∞), we get a continuous map X → CG(∞,∞).
It follows immediately that two maps that correspond to two vector bundles over X

X → CG(∞, n1), X → CG(∞, n2)

are homotopic in CG(∞,∞) if and only if the two vector bundles are stably equivalent. So
the claim holds as desired. �

Using Theorem 2.7, we are able to compute the K-theory of sphere. Put X = Sr, we
immediately get:

K̃(Sr) = π(Sr, BU) = πr(BU).

We can say more than this. By elementary homotopy theory, U is homotopic equivalent to
the loop space of BU (i.e. U ∼ ΩBU). So a (r − 1)-spheroid in U is a r-spheroid in BU . It
follows that πr(BU) = πr−1(U). Gluing all these together we get:

K̃(Sr) = πr(BU) = πr−1(U) (2.3)

A full algebraic description will be made in Section 5.

3. Cohomology and Cohomology Ring of CPn

In this section, we will discuss the cohomology structure of CPn.

3.1. CW Structure of CPn.

CPn has a nice CW structure:

Proposition 3.1
CPn is obtained from CPn−1 by attaching a single 2n-cell.

Proof. Let E2n be a 2n-cell.
Define f : E2n → CPn by:

fn(z) = fn(z1, · · · , zn) = [(z1, · · · , zn
√

1− |z|2)],

where [(z1, · · · , zn
√

1− |z|2)] is the equivalence class of (z1, · · · , zn
√

1− |z|2) ∈ S2n+1.
We first show that fn(S2n−1) = CPn−1.
Since S2n−1 = {z ∈ E2n| |z| = 1}, we have fn(S2n−1) = {[(z1, · · · , zn, 0)]} = CPn−1.
We show that if U2n = E2n − S2n−1, then the restriction of fn to U2n

f̃n : U2n → CPn − CPn−1

is a homeomorphism.
Since fn(S2n−1) = CPn−1, we have fn : E2n → CPn is surjective. This implies that fn is a

quotient map since E2n is compact and CPn is Hausdorff.
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f̃n is surjective: If p ∈ CPn − CPn−1, then p = [(z1, · · · , zn, w)] with w 6= 0 and
(z1, · · · , zn, w) ∈ S2n+1. Write w = reiθ, and let λ = e−iθ.

⇒ λ(z1, · · · , zn, w) = (λz1, · · · , λzn, r) = (z
′

1, · · · , z
′

n,
√

1− |z|2)
⇒ f̃n(z

′
) = f̃(z

′

1, · · · , z
′

n) = (z
′

1, · · · , z
′

n,
√

1− |z|2) ∈ [(z1, · · · , zn, w)]

⇒ f̃n(z
′
) = p

∴ f̃n is surjective.

f̃n is injective: If f̃n(α) = f̃n(β), then
[
(α1, · · · , αn,

√
1− |α|2)

]
=
[
(β1, · · · , βn,

√
1− |β|2)

]
.

⇒ (α1, · · · , αn,
√

1− |α|2) = λ(β1, · · · , βn,
√

1− |β|2),where |λ| = 1.

⇒
√

1− |α|2 = λ
√

1− |β|2

⇒ λ = 1

⇒ α = β

∴ f̃n is injective.

This concludes that f̃n is a bijective quotient map. Hence, f̃n is a homeomorphism.
Moreover, since fn(S2n−1) = CPn−1, we have CPn is obtained by CPn−1 by attaching a 2n-
cell. Inductively, CPn has a CW-structure with one cell in each even dimension, and no cells
of odd dimension. Therefore, the claim holds as desired. �

3.2. Cohomology of CPn.

We now compute the cohomology of CPn.

Proposition 3.2
The cohomology of CPn is given by:

H2k(CPn;Z) =

{
Z if 0 ≤ k ≤ n;
0 if else.

Proof. Since CW structure on a topological space gives a cellular filtration relative to the
empty space, the kth cellular chain group is Zd, where d is the number of k-cells.

So combining with the CW-structure of CPn (Proposition 3.1), the chain complex has
form:

· · · 0 0 Z
2k

0 Z · · · Z 0

1

Z
0

that is, the chain complex of CPn is:
7



C2k(CPn) =

{
Z if 0 ≤ k ≤ n;
0 if else.

⇒ C2k(CPn;Z) = Hom(C2k(CPn),Z)

=

{
Hom(Z,Z) if 0 ≤ k ≤ n;
Hom(0,Z) if else.

=

{
Z if 0 ≤ k ≤ n;
0 if else.

∴ H2k(CPn;Z) =

{
Z if 0 ≤ k ≤ n;
0 if else.

�

3.3. Cohomology Ring of CPn.

To compute the cohomology ring of CPn, we need the following lemma:

Lemma 3.3 ([May99, p.152 Corollary])
Let Tp ⊂ Hp(M) be the torsion subgroup. The cup product pairing

α⊗ β → 〈αβ, z〉
induces a non-singular pairing

Hp(M ;Z)/Tp ⊗Hn−p(M ;Z)/Tn−p → Z

Proof. Recall that if M is a compact n-manifold, then Hq(M ;Z) is finitely generated for all
q, and Hn(M ;Z) = Z.

If α ∈ Tp, then there exists r ∈ Z such that rα = 0. For β ∈ Hn−p(M ;Z), we have
r(α ∪ β) = 0. So α ∪ β = 0 since Hn(M ;Z) = Z. This shows paring vanishes on torsion
elements.

Now, since Ext1Z(Zr,Z) = Zr, and each Hp(M ;Z) is finitely generated, it follows that
Ext1Z(M ;Z) is a torsion group. By Universal Coefficient Theorem, we have:

Hp(M ;Z)/Tp = Hom(Hp(M ;Z),Z).

Hence, if α ∈ Hp(M ;Z) projects to a generator of the free abelian group Hp(M ;Z)/Tp,
then there exists a ∈ Hp(M ;Z) such that 〈α, a〉 = 1.

By Poincaré Duality, there exists β ∈ Hn−p(M ;Z) such that β ∩ z = a, where z is a
generator of Hn(M ;Z). So 〈β ∪ α, z〉 = 〈α, β ∩ z〉 = 1. The claim holds as desired. �

Proposition 3.4
The cohomology ring of CPn is given by:

H∗(CPn;Z) = Z[α]/〈αn+1〉
where α is a generator of H2(CPn;Z).
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Proof. We will prove the claim by induction on n.
When n = 1, CP1 is homeomorphic to S2 by the CW-structure of CPn (Proposition 3.1).

Since H1(S2) = 0, we have:

H∗(CP1;Z) = H0(CP1;Z)⊕H2(CP1;Z)

= Z⊕ Z
= Z[α]/〈α2〉 since α2 ∈ H4(CP1;Z) = 0

So the claim holds for n = 1.
Assume the claim holds for n ∈ {1, · · · , k − 1} ⊆ N. When n = k, the assumption asserts

that if α generates H2(CPn;Z), then αq generates H2q(CPn;Z) for q < n. By Lemma 3.3,
there exists β ∈ H2n−2(CPn;Z) such that

〈α ∪ β, z〉 = 1

where z is a generator of H2n(CPn;Z) Note that β must be a generator, so we have β =
±αn−1. Hence, αn generates H2n(CPn;Z), and αn+1 = 0 since αn+1 ∈ H2n+2(CPn;Z) = 0.
∴ By induction, the claim holds as desired. �

4. Chern Character

In this section, we will introduce the basic notations and concepts about Chern character,
and compute the Chern character of the Hopf bundle. For further details of the Chern
theory, see [MS74] or [MT97].

4.1. Gysin Sequence and Chern Classes.

Suppose ω is complex n-dimensional vector bundle, with total space E and base space B.
We construct a canonical (n− 1)-dimensional vector bundle ω0 over the deleted total space
E0 (we obtain E0 by deleting the zero section of E). A point in E0 is determined by a fiber
F of ω, and a non-zero vector v ∈ F . We define the fiber of ω0 over v to be the quotient
vector space F/(Cv). By Cv we mean the 1-dimensional subspace spanned by the non-zero
vector v. From this construction, F/(Cv) is a complex vector space of dimension n− 1, and
clearly can be considered as fiber of ω0. So ω0 is indeed a vector bundle over E0.

By [MS74, p. 143], any real oriented 2n-plane bundle π : E → B possesses an exact Gysin
sequence with integer coefficients:

· · · H i−2n(B) H i(B)
∪c

H i(E0)
π∗0

H i−2n+1(B) · · ·

where

∪c : H i(E)→ H i+n(E,E0) with ∪c (u) = u ∪ c
is an isomorphism for any arbitrary coefficient module.

Note that for i < 2n− 1, the groups H i−2n(B) and H i−2n+1(B) are zero, so the map:

π∗0 : H i(B)→ H i(E0)

is an isomorphism. We now define the Chern class of a vector bundle.
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Definition 4.1 (Chern classes)
Let ω be a complex n-plane bundle, with total space E and base space B. Denote ω0 be
the (n− 1)-bundle over the deleted total space E0.

For i < n, the ith Chern Class of ω is defined to be:

ci(ω) =

{
π∗
−1

0 (ω0) if 0 < i < n;
1 if i = 0.

where π∗0 is defined in the Gysin sequence:

· · · H2i−2n(B) H2i(B)
∪c

H2i(E0)
π∗0

H2i−2n+1(B) · · ·

Note that ci(ω) ∈ H2i(B;Z).
For i > n we just set ci(ω) = 0.
If i = n, the top Chern class is defined to be the Euler class: Put i = n, the Gysin

sequence gives:

H0(B) H2n(B) H2n(E0)

which the composition of maps sends 1 ∈ H0(B) to some element y ∈ H2n(E0). Then,
cn(ω) is the (unique) element in H2n(B) that is the pre-image of y.

The total Chern class of E is the formal sum of Chern classes:

c(E) = 1 + c1(E) + c2(E) + · · ·+ cn(E)

which is an element in the even cohomology Heven(B) =
n⊕
i=0

H2i(B).

Note: π∗0 : H2i(B) → H2i(E0) is an isomorphism for i < n. So the ith Chern class is
well-defined and unique.

Definition 4.2 (Chern Character)
Let x1, · · · , xn be variables, and pk(x1, · · · , xn) be the kth power sum:

pk(x1, · · · , xn) =
n∑
i=1

xki = xk1 + · · ·+ xkn.

Moreover, denote ei be the elementary symmetric polynomial:

e0(x1, · · · , xn) = 1;

e1(x1, · · · , xn) = x1 + · · ·+ xn;

e2(x1, · · · , xn) =
∑

1≤i≤j≤n

xixj;

en(x1, · · · , xn) = x1x2 · · ·xn;

ek(x1, · · · , xn) = 0 for k > n.
10



The functions pk can be expressed as polynomials of e1, · · · , en. For example:

p1 = e1;

p2 = e21 − 2e2;

p3 = e31 − 3e1e2 + 3e3;
...

As a result, we can write pk = sk(e1, · · · , en).
Let E be a vector bundle of rank n. The kth Chern character of E is:

chk(E) =
sk(c(E))

k!
for k > 0.

If k = 0, we define:
ch0(E) = dim(E).

The total Chern character of E is defined to be:

ch(E) = dim(E)+
∞∑
k=1

sk(c(E))

k!
= n+c1(E)+

c21(E)− 2c2(E)

2
+
c31(E)− 3c1(E)c2(E) + 3c3(E)

3!
+· · ·

(4.1)

We list some properties of the Chern character and Chern class. For the proofs, see [MS74]
or [MT97].

Proposition 4.3
Suppose E0, E1 are two complex vector bundles over a common paracompact base space
B, then:

ch(E0 ⊕ E1) = ch(E0) + ch(E1); (4.2)

ch(E0 ⊗ E1) = ch(E0)ch(E1) (4.3)

(The product on the right hand side is referring to the cup product). Moreover, we have:

c(E0 ⊕ E1) = c(E0)c(E1).

The additivity of Chern character allows us to extend the Chern character to a homomor-
phism in K-theory:

ch : K(X)→ Heven(X;Q).

Equally important, the multiplicative proper of Chern character makes this homomorphism
multiplicative (and hence becomes a ring homomorphism). As a result, the Chern character
contributes on investigating the algebraic properties of elements of the K-group.

The following proposition gives an application of the Chern character to K-theory:

Proposition 4.4
Suppose E0, E1 are two complex vector bundles over a common paracompact base space
B. If ch(E0) 6= ch(E1), then E0 and E1 give different elements in the K-group.

4.2. Chern Character of Hopf Bundle.
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Recall that the Hopf bundle ζ is a rank 1 bundle S2n+1 → CPn over CPn. Here, we
compute the Chern character of ζ. In this section, the Chern character of the Hopf bundle
is computed.

Lemma 4.5
For 2 ≤ i ≤ n, ci(ζ) = 0.

Proof. Suppose n = 2. Since ζ has rank 1, and n = 2 > 1, so by Definition 4.1, we
immediately have c2(ζ) = 0. Therefore, the claim holds for n = 2.

Assume the claim holds for n ∈ {2, · · · , k − 1} ⊆ N. If n = k, then by definition:

ci(ζ) = π∗
−1

0 (ζ0),

where ζ0 is a bundle over S2n. By assumption, ci(ζ0) ∈ H2i(S2n−1) = 0 for every 2 ≤ i ≤ n.

Since π∗0 is an isomorphism, we must have ci(ζ) = π∗
−1

0 (ci(ζ0)) = π∗
−1

0 (0) = 0.
∴ By induction, the claim holds as desired. �

Proposition 4.6
Let x be a generator of H2(CPn;Z). Then ch(ζ) = ex.

Proof. Using Equation 4.1, we have:

ch(ζ) = 1 + c1(ζ) +
c21(ζ)− 2c2(ζ)

2!
+
c31(ζ)− 3c1(ζ)c2(ζ) + 3c3(ζ)

3!
+ · · ·

= 1 + c1(ζ) +
c21(ζ)

2!
+
c31(ζ)

3!
+ · · · (by Lemma 4.5)

= ex

�

5. Bott Periodicity Theorem

It is often hard to determine the equivalence classes of a given complex vector bundles,
even we have a natural identification in Theorem 2.7:

K̃(X) = π(X,BU).

However, the Bott Periodicity Theorem provides a powerful machinery to compute K-
groups. If X = C, then we only need to compute K0 and K1. If X = R, we need to compute
K0, K1, · · · , K7. As a result, we are able to extend the group Kq(X,A) to all integers q. In
this section, we will give the statement of Bott Periodicity Theorem and two of its corollaries.
For the proofs, see [FF89].

Theorem 5.1 (Bott Periodicity)
For any finite CW complex, the Bott map:

Bott : K(X)⊕K(X)→ K(X × S2)

defined by
Bott(α1, α2) = (α1 ⊗ 1̃) + (α2 ⊗ ζ)

is an isomorphism.
Here, 1̃ is the trivial bundle of dimension 1, and ζ is the Hopf bundle.

An immediately consequence of Bott Periodicity Theorem is that:
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Corollary 5.2
Let X be a finite CW complex. Then

K̃(X) ∼= K̃(Σ2X)

Because of Bott Periodicity Theorem, to compute the K-theory of complex vector bundle,
we only need to calculate K0 and K1. Moreover, by elementary homotopy theory we have:

π1(U) = Z and π1(BU) = 0.

So we have the following corollary, which calculates the K-theory of sphere.

Corollary 5.3 (Corollary of Corollary 5.2)
For any q,

πi−2(BU) ∼= πi(BU) = K̃(Si) =

{
Z if i is even;
0 if i is odd.

and hence,

πi−2(U) ∼= πi(U) =

{
0 if i is even;
Z if i is odd.

So far, the group Kq(X) is defined for q < 0. Because of Corollary 5.3, we can write:

Kq(X) ∼= Kq+2(X)

for all q. Therefore, the group Kq(X) is defined for every integer q. This completes the
construction of K-groups.

6. Proof of Main Theorem

To prove Theorem 1.1, we still need one lemma:

Lemma 6.1
The homomorphism ch : K̃(S2n)→ H̃∗(S2n;Q) has image Z.

Proof. When n = 1, we have K̃(S2) = Z and H̃∗(S2;Q) = H2n(S2;Q) = Q. The claim
follows immediately, since ch maps the trivial bundle 1 to the identity element in Q (which
is the natural number 1).

For general n, just observe that the following diagram commutes (by [FF89]):

K̃0(X)

K̃2(X)

H̃even(X;Q)

H̃even(X;Q)

K̃0(X) H̃even(X;Q)

Σ2

ch

ch

Σ2

ch

Bott =

So the claim holds. �
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Let’s restate the main theorem first:
Theorem 1.1

Kq(CPn) =

{
Z⊕n+1 if q is even;
0 if q is odd.

Moreover, as a ring,
K0(CPn) = Z[γ]/〈γn+1〉,

where γ = ζ − 1̃, ζ is the Hopf bundle, and 1̃ is the trivial vector bundle CP × C → CP
of dimension 1.

Proof. By Bott Periodicity Theorem (Theorem 5.1), we can focus on the cases q = 0 and
q = 1.

By the CW structure of CPn (Proposition 3.1), we have CPn/CPn−1 is homeomorphic to
S2n. We will compute K0(CPn) by induction on n.

If n = 1, CPn is homeomorphic to S2.

⇒ K0(CPn) = K0(S2) (since K(X) is homotopy invariant.)

= K̃(S2)⊕ Z (by Definition 2.4)

= Z⊕ Z (by Equation 2.3)

and

K1(CPn) = K1(S2)

= K̃(S3) (by Definition 2.4)

= π3(BU) (by Corollary 5.3)

= 0

So the claim holds for n = 1. Assume the claim holds for n ∈ {1, · · · , k} ⊆ N. If n = k+1,
by the CW pair (CPk+1,CPk), the part of exact sequence of K̃-groups yields:

0 K̃(CPk) K̃(CPk+1) K̃(CPk+1/CPk) K̃(
∑

CPk)

which reduced to the following diagram:

0 K̃(CPk) K̃(CPk+1) K̃(CPk+1/CPk) K̃(
∑

CPk)

0 Z⊕k K̃(CPk+1) K̃(S2k+2) K̃(
∑

CPk)

0 Z⊕k K̃(CPk+1) Z K̃(
∑

CPk)

= = = = =

= = = = =

By assumption, K̃(CPk) = Z⊕k. By Proposition 3.1, we have S2k = CPk+1/CPk. So we
obtain the second row from the first row. By Corollary 5.3, we have K̃(S2k+2) = Z, so we
obtain the third row.

Now, apply Five Lemma to the diagram:
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0 Z⊕k K̃(CPk+1) Z K̃(
∑

CPk)

0 Z⊕k Z⊕ Z⊕k Z K̃(
∑

CPk)

= = = =

We have K̃(CPk+1) = Z⊕ Z⊕k = Z⊕k+1. Since K(X) = K̃(X)⊕ Z, we have

K0(CPk+1) = Z⊕k+1 ⊕ Z = Z⊕k+2.

We do the same thing to get K1(CPn). By assuming K1(CPn) = 0 for n ∈ {1, · · · , k} ⊆ N,
when n = k + 1, we have the exact sequence:

K0(CPk+1,CPk) K−1(CPk) K−1(CPk+1) K−1(CPk+1,CPk) K−2(CPk)

K0(CPk+1,CPk) K1(CPk) K1(CPk+1) K1(CPk+1,CPk) K(CPk)

Z 0 K1(CPk) 0 Z⊕k+1

= = = = =

= = = = =

By Bott Periodicity Theorem, we have K−1(X) = K1(X), so we get the second row from
the first row. By assumption, we have K1(CPk) = 0. Moreover, we have:

K1(CPk+1,CPk) = K1(S2k+2) = K̃(S2k+3) = 0 (by Corollary 5.3).

Combining the result we get for K0(CPn), we get the third row from the second row.
Again, apply the Five Lemma to the diagram:

Z 0 K1(CPk+1) 0 Z⊕k+1

Z 0 0 0 Z⊕k+1

= = = =

We have K1(CPk+1) = 0. So by induction, the claim holds as desired.
For the ring structure of K(CPn), we first compute the Chern character of γ. By Propo-

sition 4.5, we have:

ch(ζ) = ex = 1 + x+
x2

2
+ · · ·

where x is a generator of H2(CPn;Z).
Using Proposition 4.3, we get:

ch(γ) = ch(ζ − 1̃) = ex − 1 = x+
x2

2
+ · · · ,

and

ch(γk) = ch(γ⊗k) = (ch(γ))k = xk +
k

2
xk+1 + · · · .

for 1 < k < n.
Now, when k = n+ 1, by Proposition 3.4, we have xn+1 = 0. So we get

ch(γn+1) = xn+1 = 0

and
ch(γn) = xn.
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By Proposition 4.4, 1̃, γ, · · · , γn represent different elements in K(CPn). We show that
they generate K∗(CPn) over Z by induction on n.

When n = 1, the claim follows immediately. So assume the claim holds for n ∈ {1, · · · , k−
1} ⊆ N.

If n = k, the part of exact sequence of K-groups yields:

K(CPn,CPn−1) = K̃(S2n) K(CPn) K(CPn−1) 0.
p∗ i∗

By assumption, K(CPn−1) is generated by 1̃, γ, · · · , γn−1. Consider a map:

g : K(CPn−1)→ K(CPn)

such that g(γ) = γ. It is clear that i∗ ◦ g is the identity map on K(CPn−1). So the previous
exact sequence of K-groups splits:

K(CPn) = Im(p∗)⊕ Im(q).

Thus, if α ∈ K(CPn), then α can be written as:

α = g ◦ i∗(α) + p∗(β)

= r0 + r1γ + · · ·+ rn−1γ
n−1 + p∗(β), (6.1)

where ri ∈ Z, and β ∈ K̃(S2n).
We wish to show that p∗(β) = rγn for some r ∈ Z, which can be done by computing the

Chern character of p∗(β)). We have the following commutative diagram:

K̃(S2n)

H2n(S2n)

K(CPn)

H2n(CPn)

ch

p∗

p∗

ch

Furthermore, by Proposition 3.2, we know that

H2n(CPn;Z) = Z = Zxn

where xn = ch(γn).
So we must have ch(p∗(β)) = rxn for some r ∈ Z.
Now, since H2n(CPn;Z) = Z, it is torsion free. So the map:

ch : K(CPn)→ H2n(CPn)

has trivial kernel. Combining this with the fact that ch(γn) = xn, we must have:

p∗(β) = rγn.

Therefore, Equation 6.1 becomes:
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α = g ◦ i∗(α) + p∗(β) (β ∈ K̃(S2n))

= r0 + r1γ + · · ·+ rn−1γ
n−1 + p∗(β) where ri ∈ Z

= r0 + r1γ + · · ·+ rn−1γ
n−1 + rγn.

As a result, by induction, we conclude that 1̃, γ, · · · , γn generate K(CPn) over Z as a ring
as desired.

�
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