
Bound States and Scattering States of a Quantum
Particle on Half-Infinite Lattices

by

AARON HSU

Faculty Mentor: Bruno Nachtergaele, Ph.D.

SENIOR THESIS

Submitted in partial satisfaction of the requirements for Highest Honors for
the degree of

BACHELOR OF ARTS AND SCIENCES

in

MATHEMATICS AND STATISTICS

in the

COLLEGE OF LETTERS AND SCIENCE

of the

UNIVERSITY OF CALIFORNIA, DAVIS

June 12, 2014

Contents

Abstract 3

1 Introduction 4

2 A Simple Example: The One-dimensional Ring 6

3 The One-dimensional Free-end Chain 8
3.1 The No-perturbation Model . 9
3.2 The Edge-perturbation Model . 10
3.3 Extension of the Finite Edge Perturbation to an Infinite Lattice . 13

4 Finite Two-dimensional Lattices 15

5 The Entire Infinite Two-dimensional Lattice 16

6 Existence of the Zero Ground State 18

7 A Conjecture on the Relationship between Bound States
and Spectral Gaps 20

8 The Half-infinite Two-dimensional Lattice with
Boundary Slope 1 21

9 The Half-infinite Two-dimensional Lattice with
Boundary Slope 2 25

10 Conclusions 25

Acknowledgments 32

References 32

Appendix: MATLAB Code 33

2

Abstract

The motion of a quantum particle, such as an electron, obeys the Schrödinger
equation, as determined by its Hamiltonian (which corresponds to the total
energy of the particle). Such a particle may either remain localized in a small
region of space (a bound state) or diffuse through the entire system (a scattering
state). We are particularly interested in two-dimensional lattice systems with
a boundary, such as a lattice of points in half of the xy-plane; physically, this
might correspond to a thin layer of atoms on a substrate or to the surface of a
crystal. Recent research has revealed that a particle in such a system may either
be confined to the boundary in a bound state or diffuse along the boundary.
We extend this knowledge by analyzing two configurations that until now have
not been studied. Applying techniques of spectral analysis, linear algebra, and
functional analysis, we investigate conditions differentiating the two cases and
test a conjecture for a general criterion for the existence of a bound state using
spectral gaps. We anticipate that our results may find practical applications in
the fields of condensed matter physics and materials science and in the design
of quantum information devices.

Keywords: infinite lattices, bound state, scattering state, discrete Laplacian,
spectral gap, transfer matrix, boundary conditions, perturbation

3

1 Introduction

Throughout human history, man has attempted to explain the universe around
him, and the progress of much of science, in particular much of physics, can
be characterized by attempts to describe the world at an increasingly smaller
scale. As a result, to this day, a significant portion of science is dedicated to
characterizing matter and describing the manners in which it behaves.

Over the course of time, science has developed successively more refined
theories of matter. In 1803, for instance, John Dalton formulated a theory that
all matter is composed of atoms. This was followed by discovery of subatomic
particles by Pierre and Marie Curie and electrons by J.J. Thomson in 1898.
Subsequently, around the turn of the 19th century, Max Planck theorized as to
what are now called photons, or quantized packets of light, the particle nature
of which was explored by Albert Einstein a few years later.

Following this, Ernest Rutherford demonstrated in 1909 the existence of nu-
clei in atoms, a model later refined by Neils Bohr in 1913. In 1931, James Chad-
wick discovered the neutron, and in 1964, Murray Gell Mann and George Zweig
proposed the quark model, describing elementary particles even smaller than
the subatomic particles of proton and neutron. Recent research has attempted
to describe yet smaller components of matter, leading to the development of,
e.g., string theory and the theory of loop quantum gravity.

In this paper, however, the matters we are concerned with shall not be
quite so small. We consider the kinetic energy of a quantum particle, such as a
quark or a lepton, that moves on a system modeled as a finite or infinite integer
lattice. In particular, we are interested in two-dimensional lattice systems with
a boundary, such as a lattice of points in half of the xy-plane. Physically, such
a system might correspond to a thin layer of atoms on a substrate or to the
surface of a crystal.

Quantum particles are among the basic building blocks of matter. These
particles include the well-known electron, which is an example of a lepton, as
well as less well-known leptons, such as muons and neutrinos, in addition to
photons, various quarks, and the recently-discovered Higgs boson. The dynam-
ics of such a quantum particle at low energies, i.e., in the non-relativistic regime,
are described by the celebrated Schrödinger’s equation:

i~
d

dt
ψ = Hψ.

This equation can be solved by diagonalizing the operator H [2]:

ψt = e−itHψ0.

This operator is called the Hamiltonian operator and represents interactions
between particles in the system; it can be thought of as a sum of matrices,
each representing an interaction between two particles or the kinetic energy of
a single particle. Quantum particles can reside in one of possibly many energy
levels, which are given by the eigenstates of the Hamiltonian.

4

Quantum particles belonging to a lattice have associated wavevectors resid-
ing in a Hilbert space. Specifically, for any given lattice Λ with possibly multiple
particles belonging to it, the Hilbert space of its wavevectors is

HΛ =
⊗
x∈Λ

C2.

In particular, for a one-particle subspace, which we will restrict our attention
to in this paper, the Hilbert space is reduced to

H(1)
Λ = `2(Λ) ∼= C|Λ|,

where the `2 space is given by

`2(Λ) = {(zα)α∈Λ|zα ∈ C,
∑
α∈Λ

|zα|2 <∞}

with the inner product

〈(zα), (z′α)〉 =
∑
α∈Λ

zαz
′
α.

The Hamiltonian we consider in this paper will initially be the discrete
second-order Laplacian operator, which describes the kinetic energy of quan-
tum particles:

Definition 1.1. The second-order Laplacian operator is defined as follows:

(HΛψ)x =
∑

y,|y−x|=1

(ψx − ψy)

where Λ is a finite or infinite lattice, x and y denote vertices on Λ, and ψ
denotes the wavevector describing the energy configuration of a particle on the
lattice.

As can be seen from the expression for the operator, we shall only be con-
cerned with nearest-neighbor interactions, i.e., interactions between lattice sites
immediately adjoining one another, in addition to each lattice site’s inherent
energy. This shall remain the case throughout this paper, although we will
generalize the relative weights of different interactions in Section 5.

As a remark on notation, in this paper, we will use ψx and ψ(x) inter-
changeably to denote the x component of the wavevector ψ, depending on which
notation is more clear.

This remainder of this paper is organized as follows. In Section 2, we will
consider and solve completely the simplest non-trivial model, the finite one-
dimensional ring. This model will be slightly modified in Section 3, where we will
consider the one-dimensional free-end chain and solve the model by employing
the technique of transfer matrices. We will also add a rank-one perturbation to
the system and analyze how this changes the Hamiltonian operator’s spectral

5

properties. In addition, we consider our first infinite models and analyze their
bound states.

We shall then proceed to a two-dimensional lattice in Section 4, then extend
it in Section 5 to the entire two-dimensional infinite lattice, which we analyze as
a tensor structure of the one-dimensional case. In Section 6, we will state and
prove a general theorem providing the existence of a unique zero ground state
for general lattices of this type. Relying upon these results, in Section 7, we
formulate a conjecture relating bound states of the Hamiltonians considered to
their spectral gaps. We test this conjecture in Sections 8 and 9, using the results
of Section 5 to inform our analytical and numerical analysis of two different half-
infinite lattice models in two dimensions. We close with some discussion of our
results and conclusions in the final section.

2 A Simple Example: The One-dimensional Ring

The first lattice Λ we consider is a finite, one-dimension joined-end chain of
particles.

Figure 1: Finite One-dimension Ring

· · ·

Our objective is to solve this model by deriving and diagonalizing the Hamil-
tonian corresponding to Λ, thereby finding its eigenstates and spectral charac-
teristics. This simple example will also illustrate some basic techniques we will
employ in solving subsequent models.

We begin by defining the set of basis vectors that will span the space of
wavevectors (i.e., `2(Λ)) for this matrix:

{ex}nx=1 where (ex)y = δxy. (2.1)

From linear algebra, we know that for any N -dimensional inner product
space V , the elements (ajk)1≤j,k≤N of any linear operator A : V → V , with
respect to an orthonormal basis {ej}, are given by

ajk = 〈ej , Aek〉.

Applying this, we have the following proposition that gives our Hamiltonian:

Proposition 2.1. The matrix corresponding to the discrete second-order Lapla-
cian operator for the lattice Λ (i.e., a one-particle, one-dimensional joined-end

6

chain) can be expressed as follows, in the given basis:

HΛ =

2 −1 −1
−1 2 −1

−1 2
. . .

2 −1
−1 −1 2

. (2.2)

Proof. By Definition 1, we have that

(HΛej)x =
∑

y,|y−x|=1

((ej)x − (ej)y)

=
∑

y,|y−x|=1

(δjx − δjy)

=

 2 if j = x
−1 if j = x± 1
0 else.

Multiplying a basis vector on the left then yields the elements of the matrix:

(HΛ)jk ekHΛej =

 2 if k = j
−1 if k = j ± 1
0 else.

(2.3)

We can diagonalize this matrix with the Discrete Fourier Transform:

Theorem 2.1. The eigenvalues λj and eigenvectors fj of the Hamiltonian op-
erator (2.2) are as follows:

λj = 2− 2 cos

(
2πi

M
j

)
∀j = 1, . . . ,M (2.4)

fj = (1, ω1j , ω2j , . . . , ω(M−1)j) ∀j = 1, . . . ,M. (2.5)

Proof. We observe that this matrix has identical rows that are merely shifted
horizontally, i.e., it is a circulant matrix. This allows us to diagonalize it with
the Discrete Fourier Transform (DFT) matrix [3]:

FM =

1 1 1 · · · 1
1 ω1·1 ω1·2 · · · ω1·(M−1)

1 ω2·1 ω2·2 · · · ω2·(M−1)

...
...

...
. . .

...
1 ω(M−1)·1 ω(M−1)·2 · · · ω(M−1)·(M−1)

 ,

where ω = e2πi/M is the primitive M -th root of unity.

7

The diagonalization relation is as follows:

F−1
M HΛFM = ∆

⇔ HΛFM = FM∆

⇔ HΛfj = λjfj ∀j = 1, . . . ,M,

writing FM = (f1, f2, . . . , fM) and ∆ = diag(λm).
Therefore, the eigenvectors of HΛ are given by the columns of the DFT

matrix FM , namely,

fj = (1, ω1j , ω2j , . . . , ω(M−1)j) ∀j = 1, . . . ,M.

The associated eigenvalues are then found as follows:

(λjfj)k = (HΛfj)k

= 2(fj)k − (fj)k−1 − (fj)k+1

= 2ωjk − ωj(k−1) − ωj(k+1).

We also have that

(λjfj)k = λj(fj)k

= λjω
jk.

Setting these expressions equal, we obtain

λjω
jk = 2ωjk − ωj(k−1) − ωj(k+1)

= 2ωjk − ωjkω−j − ωjkωj .

Hence,

λj = 2− ω−j − ωj

= 2− cos

(
−2πi

M
j

)
− i sin

(
−2πi

M
j

)
− cos

(
2πi

M
j

)
− i sin

(
2πi

M
j

)
= 2− 2 cos

(
2πi

M
j

)
∀j = 1, . . . ,M

are the respective associated eigenvalues for the eigenvectors fj previously ob-
tained.

3 The One-dimensional Free-end Chain

The next class of models we consider are logical variants of the first, where the
ends of the chain are no longer joined together (Figure 2). We first consider the
basic case, i.e., simply removing the interactions between the edge vertices. We
then introduce a perturbation to this model at the edge of the lattice.

8

Figure 2: A finite one-dimensional free-end lattice

· · ·

3.1 The No-perturbation Model

Following the same method as in Proposition 2.1 above, it is easy to see that
the Hamiltonian for this case is exactly like that in Eq. (2.2), but with no −1’s
on the lower-left and upper-right corners:

H =

2 −1
−1 2 −1

−1 2
. . .

2 −1
−1 2

.

As a result of the removed elements, the matrix is no longer circulant, and
thus, the Discrete Fourier Transform method used in Section 2 can longer be
applied. Instead, we apply to the elements of the eigenvectors vi an Ansatz of
the form

(vi)n = sin(αn+ γ),

verify that this produces eigenvectors, and solve for acceptable values of α and
γ. The eigenvalues follow immediately.

Our results are given in the following theorem:

Theorem 3.1. The Hamiltonian HΛ for the one-particle, one-dimensional free-
end lattice as described above has eigenvalues λi and eigenvectors vi = (vi)

N
n=1

as follows:

λi = 2− 2 cos(γ), γ =
2πn

N
(3.1)

(vi)n = sin((n− 1)α+ γ). (3.2)

Proof. For n = 2, . . . , N − 1, i.e., away from the ends of the lattice, we have

(λivi)n = [2− 2 cos(γ)] sin(α(n− 1) + γ)

= 2 sin(α(n− 1) + γ)

− [sin(α(n− 1) + b) cos(α)− cos(α(n− 1) + b) sin(α)]

− [sin(α(n− 1) + γ) cos(α) + cos(α(n− 1) + γ) sin(α)]

= 2 sin(α(n− 1) + γ)− sin(α((n− 1)− 1) + γ)

− sin(α((n− 1) + 1) + γ)

= 2 sin(α(n− 1) + γ)− sin(α(n− 2) + γ)− sin(αn+ γ)

= 2(vi)n − (vi)n−1 − (vi)n+1

= (HΛvi)n.

9

where the third equality uses the sum-difference formula for the sine function.1

Note that so far, any values of α and γ are acceptable. These will be specified
by the two boundary conditions.

For n = 1, the condition we must satisfy is HΛ(vi)1 = λi(vi)1, or

2 sin(γ)− sin(α+ γ) = [2− 2 cos(γ)] sin(γ) (3.3)

This equation gives:

sin(α+ γ) = 2 cos(γ) sin(γ)

sin(α+ γ) = sin(2γ)

sin

(
α+

2πn

N

)
= sin

(
2

2πn

N

)

Therefore, on the boundaries, we have, for n = 1:

(λivi)1 = [2− 2 cos(γ)] sin(γ)

= 2 sin(γ)− 2 cos(γ) sin(γ)

= 2 sin(γ)− sin(2γ)

= 2 sin(γ)− sin(α+ γ)

= 2(vi)1 − (vi)2

= (HΛvi)1.

The case for n = N is analogous.

3.2 The Edge-perturbation Model

Next, we add a rank-one perturbation to the model. The notation will be
clearer if we generalize the Hamiltonian somewhat by replacing the 2’s with a
variable b. To add a perturbation, we further replace the upper-left-most b with
a parameter a to determine how this affects the eigenstates of the Hamiltonian.
(Physically, this might correspond, for example, to a one-atom impurity on a
crystal.) The resulting matrix is as follows:

HΛ =

a −1
−1 b −1

−1 b
. . .

b −1
−1 b

.

1The sum-difference formula for sine is:

sin(α± γ) = sin(α) cos(γ)± cos(α) sin(γ).

10

We first consider a finite lattice (and hence, a finite operator and matrix),
but we are ultimately interested in the behavior of large systems. Accordingly,
we will proceed to consider the half-infinite matrix where the bound state(s), if
any, of the system will appear, along with the other scattering states.

Because of the asymmetry generated by this perturbation, we employ the
transfer-matrix method to find an eigenpair (eigenvalue and eigenvector) for this
matrix. We first define the recursive relations that must hold for any eigenvector
of HΛ; these are relatively simple given the tridiagonal nature of the matrix.
We express these relations in matrix form and diagonalize this matrix. We then
use the diagonalization to find the desired eigenvalue and, from there, proceed
to find the eigenvector.

Our results are as follows:

Theorem 3.2. There exists an eigenpair of HΛ given by the eigenvalue λ =
a− 1

b−a with the corresponding eigenvector v = (vi)
N
i=1, where

vi =

(
− 1

b− a

)i−1

. (3.4)

Proof. Denote the eigenvector we are seeking by v, with the x’th element de-
noted by v(x). Then, the following eigenvector relation must hold for each x:

[(HΛ − λI)v](x) = 0. (3.5)

To find the eigenvalues, we exploit the tridiagonal nature of HΛ, which
creates a series of simple recursive relations that must hold for any eigenvector
of HΛ, with exceptions only for the first and last elements:

λv(1) = av(1) + v(2)

λv(2) = v(1) + bv(2) + v(3)

λv(3) = v(2) + bv(3) + v(4)

...

λv(K) = v(K − 1) + bv(K) + v(K + 1)

...

λv(N − 1) = v(n− 2) + bv(N − 1) + v(n)

λv(N) = v(n− 1) + bv(N).

Without loss of generality, we take the first entry of the eigenvector to be
unity, i.e., we assume v(1) = 1. It then follows from the above equations that
v(2) = λ− a, v(3) = (λ− b)(λ− a)− 1, and so on.

We express the above equations in matrix form as follows:(
v(x)

v(x+ 1)

)
=

(
0 1
−1 λ− b

)(
v(x− 1)
v(x)

)
.

11

Denoting this 2 x 2 transition matrix by T , we find that, for any x,(
v(x)

v(x+ 1)

)
= T x−1

(
1

λ− a

)
. (3.6)

At the end of the matrix, we therefore have the following boundary condition
that the eigenvalue will need to satisfy:(

v(N − 1)
v(N)

)
= TN−2

(
1

λ− a

)
. (3.7)

We diagonalize the matrix T :

T =

(
(λ−b)+ψ

2
(λ−b)−ψ

2
1 1

)((λ−b)−ψ
2 0

0 (λ−b)+ψ
2

)(
1
ψ

−(λ−b)+ψ
2ψ

− 1
ψ

(λ−b)+ψ
2ψ

)

where
ψ =

√
(b− λ)2 − 4.

This yields the two eigenvalues

µ1 =
λ− b−

√
(b− λ)2 − 4

2
, µ2 =

λ− b+
√

(b− λ)2 − 4

2
. (3.8)

We observe that |µ1| < |µ2|.

Next, we can write

(
1

λ− a

)
in the orthonormal basis given by the columns

of V above: (
1

λ− a

)
= c+ω+ + c−ω−

so

T k
(

1
λ− a

)
= c+µ

k
+ω+ + c−µ

k
−ω−.

If λ is an eigenvalue of S, then, there must exist C such that(
λ−b+ψ(λ)

2
1

)
= c

(
1

λ− a

)
.

It immediately follows that

c =
1

λ− a
so we have the relation

λ− b+ ψ(λ)

2
=

1

λ− a
.

Solving for λ immediately yields the desired eigenvalue:

λ = a− 1

b− a
. (3.9)

12

We can now amend our T matrix equation as follows:(
v(x)

v(x+ 1)

)
=

(
0 1
−1 a− b− 1

a−b

)x−1(
1

λ− a

)
.

It remains to be shown that the corresponding eigenvector is as given. This is
done via induction. For the base cases, we first assume without loss of generality
that v1 = 1. It immediately follows from the recursive relations given above that
v2 = − 1

b−a .
Now, assume that

vi−2 =

(
− 1

b− a

)i−3

vi−1 =

(
− 1

b− a

)i−2

.

Then, by direct calculation, using the second equation of the T matrix:

vi =

(
a− b− 1

a− b

)(
− 1

a− b

)i−2

−
(
− 1

a− b

)i−3

= −(b− a)

(
− 1

a− b

)i−2

+

(
− 1

a− b

)i−1

−
(
− 1

a− b

)i−3

=

(
− 1

a− b

)i−3

+

(
− 1

a− b

)i−1

−
(
− 1

a− b

)i−3

=

(
− 1

a− b

)i−1

,

as desired.

3.3 Extension of the Finite Edge Perturbation to an Infi-
nite Lattice

For large lattices, as would be encountered for physical systems where we have,
for example, a crystal with a number of atoms of order 1023, it is convenient to
consider infinite lattices. In this case, for a one-dimensional chain, the bound-
ary condition Equation 3.7 disappears, and we can use the `2-norm conver-
gence criterion to determine whether bound states exist. Extending this edge-
perturbation case to an infinite lattice is therefore straightforward:

Corollary 3.1. The eigenvalues and eigenvectors of HΛ corresponding to the
finite Λ in Figure 2 are precisely identical to those of the Hamiltonian HΓ cor-
responding to the half-infinite extension of that lattice.

13

Proof. The exact same steps can applied for the infinite case as were applied
for the finite case, with the exception that one of the terminal conditions (that
for the bottom of the matrix) can now be discarded, since there is no “end” to
the matrix. Accordingly, the eigenpairs remain the same.

Since the matrix is now infinite, different eigenstates now fall into two cate-
gories:

1. Continuous spectrum values, with corresponding scattering (or delo-
calized) states. These satisfy the equation

Hψ = λψ, ψ ∈ `∞(Γ) but ψ /∈ `2(Γ).

2. Bound state eigenvalues, with corresponding localized eigenvectors.
These satisfy the equation

Hψ = λψ, ψ ∈ `2(Γ).

An vector ψ in an `2 space is square-summable, meaning that

||ψ||22 =

∞∑
i=1

|ψi|2 <∞.

On the other hand, if ψ is in `∞ space, but not `2 space, it is not square-
summable. This has an important physical interpretation: For a normalized
wavevector ψ, the probability that the particle is found at location x is given
by ψx [2]:

P (particle is at x) =
|ψx|2

||ψ||22
A wavevector that is not square-summable, however, cannot be normalized.2

We also know that the existence of a bound state due to the addition of a
rank-one perturbation to the operator H will not change the continuous spec-
trum values of the original operator. This is guaranteed by Weyl’s Theorem
[1].

As an example, the eigenvector we found in Theorem 3.2 above gives us a
bound state for HΓ, under certain conditions:

Theorem 3.3. A bound state for HΓ as defined above exists exactly when b /∈
[a− 1, a+ 1].

2Intuitively, since ||ψ||22 =∞,

P (particle is at x) =
|ψx|2

||ψ||22
=

(finite number)

∞
“ = ” 0.

Hence, there is a zero probability of finding the particle in any given location!

14

Proof. As discussed, a bound state exists precisely when the wavevector ψ cor-
responding to that state is square-summable, i.e., ψ ∈ `2(Γ). Here, square-
summability is easily verified:

∞∑
i=1

vi =

∞∑
i=1

(
− 1

b− a

)i−1

=
1

1−
(
− 1
b−a

)
=

1

1 +
(

1
b−a

) <∞

exactly when

−1 <
1

b− a
< 1.

Then, we have two cases:

• Case 1: If b > a, then b− a > 0⇒ −(b− a) < 1 < b− a⇒ b > a+ 1.

• Case 2: If b < a, then b− a < 0⇒ −(b− a) > 1 > b− a⇒ b < a+ 1.

Hence, b cannot be in the interval [a− 1, a+ 1].

We can also observe that the continuous spectrum of the Hamiltonian op-
erator remains invariant under the perturbation (see Figure 6), in accordance
with Weyl’s Theorem.

4 Finite Two-dimensional Lattices

At this point, we have considered the main basic cases in one dimension (finite
and infinite lattices with and without perturbations), and it is natural to now
consider analogous lattices in two dimensions.

Our above method from Section 2 generalizes immediately to the two-dimen-
sional case, where the top and bottom boundaries are joined, as well as the left
and right edges. For a lattice with n rows of sites and m columns, we label the
lattice by counting from left to right and from the top down (see Figure 3 for
an example). To be mathematically precise, for each lattice site, we count the
number of rows before the row containing the site, and the column wherein the
site is located. For example, the lattice site on the 3rd row, 5th column would
be labeled site number 2m+ 5.

Using this system of indexing, we can find the matrix representation of the
Hamiltonian. Again, the matrix is circulant; therefore, the same technique with
a Discrete Fourier Transform matrix can be applied:

15

Figure 3: A finite two-dimensional lattice with sites labeled

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Theorem 4.1. The eigenvalues for the matrix H above are

λt = 4− 2 cos

(
2πi

M
t

)
− 2 cos

(
2πi

M
mt

)
, (4.1)

with associated eigenvectors

ft = (1, ωt, ω2t, . . . , ω(mn−1)t) ∀t = 1, . . . ,mn. (4.2)

for i = 1, . . . ,mn.

Proof. As before, columns of the DFT matrix are the eigenvectors of H, as
shown above. The eigenvalues follow:

(λtft)s = (Atft)s

= 4(ft)s − (ft)s−1 − (ft)s+1 − (ft)s−m − (ft)s+m

= 4ω(s−1)t − ω(s−2)t − ωst − ω(s−m−1)t − ω(s−m+1)t

Additionally, using the eigenvectors explicitly:

(λtft)s = λt(ft)s

= λtω
(s−1)t

Setting the two expressions equal, we have our eigenvalues:

λt = 4− ω−t − ωt − ω−mt − ωmt

= 4− cos

(
−2πi

M
t

)
− i sin

(
−2πi

M
t

)
− cos

(
2πi

M
t

)
− i sin

(
2πi

M
t

)
− cos

(
−2πi

M
mt

)
− i sin

(
−2πi

M
mt

)
− cos

(
2πi

M
mt

)
− i sin

(
2πi

M
mt

)
= 4− 2 cos

(
2πi

M
t

)
− 2 cos

(
2πi

M
mt

)
∀j = 1, . . . ,M,

as desired.

5 The Entire Infinite Two-dimensional Lattice

Our results above naturally generalize to two dimensions when the entire two-
dimensional lattice (Figure 4) is considered.

16

Figure 4: The entire infinite two-dimensional lattice

· · ·
· · ·
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·
· · ·

...
...

...
...

...

...
...

...
...

...

In the one-dimensional case, we found that

(H
(1)
Λ ψ)x = ψx + ψx+1 + cψx

which, in terms of the basis vectors of the Hilbert space, implies that

(H
(1)
Λ ez)x = δx−1 + δx−1 + cδx

= ez+1 + ez−1 + cez. (5.1)

The two-dimensional case is analogous; for any lattice site (x, y), and denot-
ing e(x,y) = ex ⊗ ey, the Hamiltonian is given by

H(2)e(x,y) = H(2)(ex ⊗ ey)

= ex−1 ⊗ ey + ex+1 ⊗ ey + ex ⊗ ey−1 + ex ⊗ ey+1 + cex ⊗ ey
= H(1)ex ⊗ ey − cex ⊗ ey + ex ⊗H(1)ey − cex ⊗ ey + cex ⊗ ey

We can therefore factor this expression using the tensor product:

(H(2) − c1⊗ 1)(ex ⊗ ey) = [(H(1) − c1)⊗ 1+ 1⊗ (H(1) − c1)](ex ⊗ ey)

(H(2) − c1⊗ 1) = [(H(1) − c1)⊗ 1+ 1⊗ (H(1) − c1)] (5.2)

The eigenvalues of H(2) are easily found as a result:

Theorem 5.1. The eigenvectors for the matrix H(2), corresponding to the dis-
crete second-order Laplacian on the entire two-dimensional lattice, are

wkl = vk ⊗ vl (5.3)

with corresponding eigenvalues

ηkl = λk + λl − c, (5.4)

where λk is the eigenvalue corresponding to the eigenvector vk of the one-
dimensional matrix H(1) and c is defined in Equation (5.1).

17

Figure 5: Half-infinite lattice with boundary slope of 0

· · ·
· · ·
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·
· · ·

...
...

...
...

...

...
...

...
...

...

Proof. This follows directly from our computations above:

H(2)wkl = (c1⊗ 1)wkl + (H(1) − c1)⊗ 1wkl + 1⊗ (H(1) − c1)wkl

= cwkl + (H(1) − c1)vk ⊗ vl + vk ⊗ (H(1) − c1)vl

= cwkl + (λk − c)vk ⊗ vl + vk ⊗ (λl − c)vl
= cwkl + (λk − c)wkl + (λl − c)wkl
= (λk + λl − c)wkl,

as desired.

6 Existence of the Zero Ground State

Next, we wish to begin considering half-infinite lattices with differing types of
boundaries. Another author considers a boundary of slope 0, with respect to
the x-axis, as shown in Figure 5 [4].

We shall extend this investigation to consider two similar, but distinct, two-
dimensional half-infinite lattices in this paper, with boundary slopes of 1 and 2.
These correspond to boundary angles of arctan(1) = π/4 = 45° and arctan(2) ≈
1.11 ≈ 63.43° (relative to the x-axis), respectively.

Before we do so, however, it is useful to state and prove a general theorem
guaranteeing the existence of a zero eigenvalue for the cases we consider.

First, we generalize the second-order discrete Laplacian, the Hamiltonian
operator we have been using up until this point, by allowing two parameters
(those quantifying nearest-neighbor interactions) to vary:

Definition 6.1. Define the generalized second-order discrete Laplacian Hamil-
tonian H̃Λ by

H̃Λ =
∑
x�y

hxy,

where the summation is over all directed edges x� y for x, y ∈ Λ, and

hxy =

{
|λhex − ey〉 〈λhex − ey| if x� y is horizontal
|λvex − ey〉 〈λvex − ey| if x� y is vertical

18

for λh, λv ≥ 0.

This definition of the Hamiltonian H̃ subsumes the Hamiltonian H pre-
viously defined in Definition 1.1 as the special case in which λh = λv = 1.
Accordingly, from this point forward, the operator H shall refer to that de-
fined in Definition 6.1. In addition, all Hamiltonians of this class are positive
semidefinite, as defined as follows:

Definition 6.2. A matrix is positive semidefinite (denoted A ≥ 0) if A∗ = A
and 〈ψ,Aψ〉 ≥ 0 for all vectors ψ.

A very useful property of positive semidefinite matrices is that all of its
eigenvalues are non-negative. In addition, the following Lemma provides another
useful property:

Lemma 6.1. For positive semidefinite matrices Ai ≥ 0, i = 1, ..., N ,(
N∑
i=1

Ai

)
ψ = 0

if and only if Aiψ = 0 for all i = 1, ..., N .

Proof. Suppose A1, A2 are positive semidefinite matrices and (A1 + A2)ψ =
0. Then, ψT (A1 + A2)ψ = 0. Because A1, A2 are positive semidefinite, we
know that ψTA1ψ,ψ

TA2ψ ≥ 0, so it must follow that ψTA1ψ = ψTA2ψ = 0.
Because A1 is positive semidefinite, there exists B such that A1 = BTB. Then,
ψTBTBψ = (Bψ)TBψ = 0, which implies that Bψ = 0 (since a self-orthogonal
vector is a zero vector, by definition). But then A1ψ = BTBψ = 0. The case
for A2ψ is analogous. The generalization to an arbitrary number of matrices Ai
follows by induction, and the reverse direction of the lemma is trivial.

These properties help us prove the main theorem of this section:

Theorem 6.1. For any finite, connected lattice such that λh, λv > 0, there will
exist a unique ground state (i.e., there will exist exactly one ψ such that HΛψ
= 0), up to normalization.

Proof. By the lemma above, HΛψ =
(∑

x�y hxy

)
ψ = 0 if and only if hxy = 0

for all directed x� y of the lattice Λ. It thus suffices to show that there exists
a unique solution ψ, up to normalization, of the equations hxy = 0, i.e.,

hxy |ψ〉 = λ2 |ex〉 〈ex |ψxex〉+ |ey〉 〈ey |ψxex〉 (6.1)

− λ |ex〉 〈ey |ψyey〉 − λ |ey〉 〈ex |ψxex〉
= ψxλ

2 |ex〉+ ψy |ey〉 − λψy |ex〉 − λψx |ey〉
= 0,

19

where λ represents either λv or λh, whichever applies, depending upon whether
x and y are joined horizontally or vertically. Express ψ in the canonical basis:

ψ =

|Λ|∑
x=1

ψx |ex〉

Then, for any x� y, hxy = 0 if and only if λψx − ψy = 0, or

λψx = ψy. (6.2)

(Again, here λ represents either λv or λh, as appropriate.)
Now, we assumed that Λ is a connected lattice. Hence, if the set of equations

given by Equation 6.2 is consistent for all edges, then fixing one value ψ1 will
uniquely determine all other components of ψ.

To see that consistency indeed holds, we observe that Equation 6.2 simply
states that, when moving one lattice site up (resp. to the right), the value
of the corresponding component of ψ will be multiplied by a factor of 1/λv
(resp. 1/λh). Since λv, λh do not depend upon the lattice sites x or y involved,
the successive multiplications and divisions imply that the resulting relation
between the components corresponding to any two lattice sites z1, z2 ∈ Λ will
be independent of the path taken between them.

7 A Conjecture on the Relationship between
Bound States and Spectral Gaps

Let us briefly revisit the model we considered in Section 3.2, in which we per-
turbed a one-dimensional free-end chain with a varying constant c = b − a.
According to Proposition 3.3, this results in a bound state exactly when the
absolute value of the perturbation is greater than 1. We can also examine the
spectral properties resulting from this perturbation. Figure 6 shows the eigen-
values of the perturbed Hamiltonian as functions of the value of the perturbation
c. Observe that at c = 1, the ground state eigenvector begins to separate from
the rest of the continuous spectrum, resulting in a spectral gap.

We now consider whether these two phenomena—the beginning of a spectral
gap and the beginning of the appearance of a bound state—are related to each
other. Formally, we wish to test the following:

Conjecture. The conditions under which the spectral gap appears are also the
conditions under which bound states exist.

To test this conjecture, we consider the two aforementioned different half-
infinite lattices, each with a different boundary:

1. Boundary slope 1: This lattice, depicted in Figure 7a, has a boundary
angle of arcsin(1) = 45°.

20

Figure 6: Bound state of the model in Section 3.2 when perturbed

2. Boundary slope 2: This lattice, depicted in Figure 7b, has a boundary
angle of arcsin(2) ≈ 63°.

We proceed with analyzing the first lattice in close detail.

8 The Half-infinite Two-dimensional Lattice
with Boundary Slope 1

To model the behavior of an infinite two-dimensional half-infinite lattice with a
boundary slope of 1, we construct triangle lattices with such a boundary, with
the points labeled as in Figure 8.

The total number of points for such a lattice Λ of n columns and rows is
given by the n-th triangular number, i.e.,

|Λ| =
(
n

2

)
. (8.1)

For example, for the lattice in Figure 8, the total number of lattice points is

|Λ| =
(

5

2

)
= 20.

21

Figure 7: Half-infinite lattices with boundary slopes of 1 and 2

(a) Boundary slope 1

· · ·
· · ·
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·
· · ·

...
...

...
...

...

...
...

...
...

...

(b) Boundary slope 2

· · ·
· · ·
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·
· · ·

...
...

...
...

...

...
...

...
...

...

Figure 8: Half-infinite lattice with boundary slope 1 with sites labeled

· · ·
· · ·
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·
· · ·

...
...

...
...

...

...
...

...
...

...

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

For sake of simplicity, the remainder of this paper shall refer to this n (the
number of columns in the lattice) as the lattice size instead of the actual number
of points in the lattice.

In this case, instead of considering perturbations, we shall be interested
in when and how the two parameters λv and λh of the generalized Laplacian
operator affect the existence of a bound state or a spectral gap for that operator.

To test our conjecture, there are two properties of any Hamiltonian pertain-
ing to this lattice that we must know: the spectral gap, and the existence or
absence of a bound state.

The spectral gap of a matrix H is defined as the difference between the two
smallest eigenvalues of H. (Recall that, for our purposes, H is always Hermitian,
and hence all its eigenvalues are real; as a result, “small” makes sense in this
context.) According to Theorem 6.1, the smallest eigenvalue for the cases we
consider here is always 0; hence, the spectral gap is simply the second smallest
eigenvalue.

Determining whether the ground state is also a bound state, however, is not
quite so straightforward. Since we are considering finite lattices as an approxi-
mation of their half-infinite counterparts, we will not have any wavevectors that
are divergent in the 2-norm (i.e., there will exist no ψ such that ψ ∈ `∞(Λ) but
ψ /∈ `2(Λ)). We will therefore consider the following quantity, which (for lack
of a better name) shall be called the “norm ratio”, as a function of the ground

22

state eigenvector ψ̃:

R(ψ̃) =
||ψ̃||∞
||ψ̃||2

. (8.2)

If this quantity approaches 0 as the size of the lattice increases, then the 2-norm
grows faster than the∞-norm. This would appear to indicate that as the lattice
becomes larger (and hence, ψ̃ becomes longer), there will be terms toward the
end of the vector sufficiently large to overpower the previous terms, suggesting
divergence of ψ̃ in the 2-norm. If true, this would correspond to a scattering
state.

On the other hand, if this quantity approaches some constant ξ 6= 0 as the
size of the lattice increases, then it would appear that the larger terms in ψ̃
appear toward the beginning of the vector, which would suggest convergence of
the 2-norm and, thus, membership in the `2 space, and would correspond to a
bound state.

Although it is not difficult to construct a matrix representation of the Hamil-
tonian for this lattice (or, for that matter, any other lattices considered in this
paper), it is not immediately obvious how such matrices could be diagonalized
analytically (e.g., by the methods considered in previous sections). However,
both of the key quantities just described—the spectral gap and the norm ratio—
can be readily calculated numerically by MATLAB. Accordingly, our analysis
from this point on will rely heavily upon such computations. (Code for all of the
MATLAB routines necessary to replicate these results is given in the Appendix.)

As our first step, we need to determine how large of a lattice we need to
use in our computations. To do this, we plot the norm ratio R(ψ̃) against n
(the number of columns in the lattice) for various values of λv and λh. This is
shown in Figure 9. We look for a value of n at which point we can reasonably
expect to be able to differentiate between bound state vectors and continuous
spectrum vectors. From this figure, n = 30 appears to be a reasonable choice.

Next, we examine the spectral properties and probable bound states of the
Hamiltonian for various values of λh and λv. These are also best examined with
plots. Figure 10 gives the norm ratios, and Figure 11 gives the spectral gaps, of
Hamiltonians with varying parameter values.

These figures together show that for the λh, λv values attempted, the mini-
mum spectral gap is indeed the location at which the norm ratio is the smallest.

With this information, it is possible to classify, for each (λh, λv) pair, whether
the particle will tend to be localized in a bound state, and furthermore, how
it will tend to be localized. From experimental data, it appears that the par-
ticle has seven different general types of behaviors, as illustrated in Figures 12
through 18, depending upon the values of λh, λv:

1. The particle is localized on the diagonal boundary (Figure 12).

2. The particle is localized on the upper right corner (Figure 13).

3. The particle is localized on the right boundary (Figure 14).

4. The particle is localized on the lower right corner (Figure 15).

23

Figure 9: Norm ratio by n for various values of λh and λv (slope = 1)

Figure 10: Norm ratios for various values of λh and λv (size = 30, slope = 1)

24

5. The particle is localized on the lower boundary (Figure 16).

6. The particle is localized on the lower left corner (Figure 17).

7. The particle does not localize and remains in a scattered state (Figure 18).

For an intuitive view of how the λh, λv parameters affect the behavior of
the particle, Figure 19 classifies the behavior of the particle at values of λh, λv
between 0.1 and 2 based upon visual inspection. The seven types of behaviors
listed above correspond to the following symbols, respectively:

1. Yellow “x” denotes localization on the diagonal boundary.

2. Blue square denotes localization on the upper right corner.

3. Pink star denotes localization on the right boundary.

4. Red triangle denotes localization on the lower right corner.

5. Cyan asterisk denotes localization on the lower boundary.

6. Green circles denotes localization on the lower left corner.

7. Black diamond denotes a delocalized (scattering) state.

9 The Half-infinite Two-dimensional Lattice
with Boundary Slope 2

Our analysis for a lattice of slope 2 is similar. The number of points in a lattice
of this type with n columns is

|Λ| =
n∑
i=1

(2i− 1) = 2

n∑
i=1

(i)− n = 2

(
n(n+ 1)

2

)
− n = n2. (9.1)

Again, from Figure 20, we see that a lattice of n = 30 columns should be
sufficient for our purposes.

Next, like before, we examine the spectral properties and probable bound
states of the Hamiltonian for various values of λh and λv. Figure 21 gives
the norm ratios, and Figure 22 gives the spectral gaps, of Hamiltonians with
differing parameter values. Again, we observe that the minimum values of both
the norm ratios and the spectral gaps appear to coincide in each case.

10 Conclusions

In this paper, we first considered several simple cases in one and two dimensions,
which we solved with several different methods (Discrete Fourier Transform,
transfer matrices, and Ansatz). These results motivated the main conjecture

25

Figure 11: Spectral gaps for various values of λh and λv (size = 30, slope = 1)

Figure 12: Density plot for λv = 1.7, λh = 0.6 (size = 30, slope = 1)

26

Figure 13: Density plot for λv = 0.6, λh = 0.6 (size = 30, slope = 1)

Figure 14: Density plot for λv = 0.4, λh = 1.0 (size = 30, slope = 1)

27

Figure 15: Density plot for λv = 0.6, λh = 1.6 (size = 30, slope = 1)

Figure 16: Density plot for λv = 1.0, λh = 1.6 (size = 30, slope = 1)

28

Figure 17: Density plot for λv = 1.6, λh = 1.6 (size = 30, slope = 1)

Figure 18: Density plot for λv = 1.0, λh = 1.0 (size = 30, slope = 1)

29

Figure 19: Phase diagram of particle states by λv, λh (size = 30, slope = 1)

Figure 20: Norm ratio by n for various values of λh and λv (slope = 2)

30

Figure 21: Norm ratios for various values of λh and λv (size = 30, slope = 2)

Figure 22: Spectral gaps for various values of λh and λv (size = 30, slope = 2)

31

we investigated, which we tested by varying two parameters in the Hamiltonian
and observing the resulting spectral gaps and existence of bound states. The
two different half-infinite lattices we considered in the latter portion of the paper
seem to support the conjecture; in each of the cases, the minimal spectral gap
coincides with the probable appearance of a bound state, as evidenced by the
ratio of the∞-norm to the 2-norm of the ground state eigenvector. The analysis
also showed the effects of varying the nearest-neighbor interaction parameters
upon the spectral properties of the Hamiltonian.

We hope to extend this research in the future by exploring methods of an-
alytically investigating lattices such as the ones we have considered in the two
preceding sections. In addition, whereas in this paper we have considered lat-
tices with boundaries of slopes 1 and 2, we hope in the future to be able to
construct and analyze lattice boundaries of arbitrary slopes. Finally, we wish
to consider other methods of approximating half-infinite lattices such as those
considered here. In this paper, we have built successively larger triangles. How-
ever, it is uncertain whether this is the most suitable way to construct such
lattices, and the different types of behavior of a localized particle may be fewer
than the seven presented. This may become more apparent with a different way
of constructing these finite lattices.

Acknowledgments

I wish to thank Professor Bruno Nachtergaele for his most generous and patient
guidance and support throughout this project. I also would like to express my
appreciation for my family—A.H., A.H., A.H., and A.H.—for their support and
for bearing with a often very preoccupied Aaron throughout this project, as
well as C.H., J.H, J.L., M.P., and E.Y., and my fellow classmates at SIBS-
NCSU 2012 (especially C.G. and J.Y.), for their continued encouragement of
my mathematical endeavors. Finally, I would like to acknowledge all of the
wonderful professors, instructors, and classmates I have had the opportunity to
learn from during my time here at UC Davis.

References

[1] Christian Remling, Functional Analysis: Perturbation by Com-
pact Operators. http://www2.math.ou.edu/˜cremling/teaching/
lecturenotes/fa-new/ln15.pdf

[2] David J. Griffiths, Introduction to Quantum Mechanics, Pearson Prentice
Hall, Upper Saddle River, New Jersey, 2nd edition, 2005.

[3] Limeng Feng, Vadim Linetsky, Electronic Companion to “Pricing Options in
Jump-Diffusion Models: An Extrapolation Approach”, Operations Research,
56:2, ec1-ec3 (2007).

[4] Amanda Young, personal communication.

32

Appendix: MATLAB Code

The analysis in Sections 8 and 9 employed MATLAB extensively to compute
eigenvalues, eigenvectors, norms, spectral gaps, and other properties of the
Hamiltonian operators considered. This Appendix contains the code for all
of the computations performed in those sections.

Note: In the following functions, the n parameter specifies the number of
points in the lattice, rather than the number of columns like was done in the
paper.

%%
%%% File: VertexList1.m
%%% Function: VertexList1(last_n)
%%% Purpose: Creates a list of all vertex coordinates with
%%% corresponding lattice site numbers up to the last point last_n
%%% for a lattice of slope 1.
%%

function vertex_list = VertexList1(last_n)

% Initialize variables
old_x = 0;
old_y = 0;
vertex_list = [];

for vertexnum = 1:last_n

% If next point is below y = x, add the next point up
if old_y + 1 <= old_x

new_x = old_x;
new_y = old_y + 1;

% If next point is above y = x, add the next point in the next ...
column

elseif old_y + 1 > old_x
new_x = old_x + 1;
new_y = 0;

end

% Record new_x, new_y corresponding to n
temp = [vertexnum, old_x, old_y]';
vertex_list = horzcat(vertex_list, temp);

% Set new variables as old variables to prepare for the next ...
iteration

old_y = new_y;
old_x = new_x;

end

% Uncomment to plot the resulting lattice
% scatter(vertex_list(2,:), vertex_list(3,:))

33

%%
%%% File: VertexList2.m
%%% Function: VertexList2(last_n)
%%% Purpose: Creates a list of all vertex coordinates with
%%% corresponding lattice site numbers up to the last point last_n
%%% for a lattice of slope 2.
%%

function vertex_list = VertexList2(last_n)

% Initialize variables
old_x = 0;
old_y = 0;
vertex_list = [];

for vertexnum = 1:last_n

% If next point is below y = 2x, add the next point up
if old_y + 1 <= 2*old_x

new_x = old_x;
new_y = old_y + 1;

% If next point is above y = 2x, add the next point in the next ...
column

elseif old_y + 1 > 2*old_x
new_x = old_x + 1;
new_y = 0;

end

% Record new_x, new_y corresponding to n
temp = [vertexnum, old_x, old_y]';
vertex_list = horzcat(vertex_list, temp);

% Set new variables as old variables to prepare for the next loop
old_y = new_y;
old_x = new_x;

end

% Uncomment to plot the resulting lattice
% scatter(vertex_list(2,:), vertex_list(3,:))

%%
%%% File: Ham1.m
%%% Function: Ham1(n, lambda_v, lambda_h)
%%% Purpose: Creates the Hamiltonian operator for a lattice of n
%%% points and slope 1 with nearest-neighbor interaction weights
%%% lambda_v and lambda_h.
%%

function H = Ham1(n, lambda_v, lambda_h)

% Initialize vector of edges
listofhedges = [1;2];
listofvedges = [];

34

% Loop through each column of the lattice except the last; this ...
gives all edges besides vertical edges for outermost column of ...
lattice

for latticecol = 2:(n-1)

% Edge for boundary vertex
boundary = nchoosek(latticecol+1,2); ...

% Calculate the boundary point

% Edge going to the right
start = boundary; ...

% Calculate the starting point
finish = (boundary + latticecol); ...

% Calculate the ending point
boundaryedge = [start, finish]'; ...

% Put together the edge
listofhedges(1:2,size(listofhedges,2)+1) = boundaryedge; ...

% Append the edge to the list of edges

% Edges for non-boundary vertices
for current = (nchoosek(latticecol,2)+1):nchoosek(latticecol+1,2)-1

% Edge going above
start = current;
finish = current+1;
aboveedge = [start, finish]';
listofvedges(1:2,size(listofvedges,2)+1) = aboveedge;

% Edge going to the right
start = current;
finish = (current + nchoosek(latticecol+1,2) - ...

nchoosek(latticecol,2));
rightedge = [start, finish]';
listofhedges(1:2,size(listofhedges,2)+1) = rightedge;

end
end

% Create vertical edges of the last column of the lattice
for current = (nchoosek(n,2)+1):nchoosek(n+1,2)-1

% Edge going above
start = current;
finish = current+1;
aboveedge = [start, finish]';
listofvedges(1:2,size(listofvedges,2)+1) = aboveedge;

end

% Create a Hamiltonian of zeroes
vertexmax = nchoosek(n+1,2);
H = zeros(vertexmax);

% Update Hamiltonian entries for vertical edges
for p = 1:size(listofvedges,2);

x = listofvedges(1,p);
y = listofvedges(2,p);

35

H(x,x) = H(x,x) + 1;
H(y,y) = H(y,y) + lambda_vˆ2;
H(x,y) = H(x,y) - lambda_v;
H(y,x) = H(y,x) - lambda_v;

end

% Update Hamiltonian entries for horizontal edges
for p = 1:size(listofhedges,2);

x = listofhedges(1,p);
y = listofhedges(2,p);
H(x,x) = H(x,x) + 1;
H(y,y) = H(y,y) + lambda_hˆ2;
H(x,y) = H(x,y) - lambda_h;
H(y,x) = H(y,x) - lambda_h;

end

%%
%%% File: Ham2.m
%%% Function: Ham2(n, lambda_v, lambda_h)
%%% Purpose: Creates the Hamiltonian operator for a lattice of n
%%% points and slope 2 with nearest-neighbor interaction weights
%%% lambda_v and lambda_h.
%%

function H = Ham2(n, lambda_v, lambda_h)

% Initialize vector of edges
listofhedges = [1;2];
listofvedges = [];

% Loop through each column of the lattice except the last; this ...
gives all edges besides vertical edges for outermost column of ...
lattice

for latticecol = 2:(n-1)

% Edge for boundary vertex
boundary = latticecolˆ2; ...

% Calculate the boundary point

% Edge going to the right
start = boundary; ...

% Calculate the starting point
finish = (boundary + (latticecolˆ2 - (latticecol-1)ˆ2)); ...

% Calculate the ending point
boundaryedge = [start, finish]'; ...

% Put together the edge
listofhedges(1:2,size(listofhedges,2)+1) = boundaryedge; ...

% Append the edge to the list of edges

% Edges for non-boundary vertices
for current = ((latticecol-1)ˆ2+1):(latticecolˆ2-1)

% Edge going above
start = current;
finish = current+1;
aboveedge = [start, finish]';

36

listofvedges(1:2,size(listofvedges,2)+1) = aboveedge;

% Edge going to the right
start = current;
finish = (current + latticecolˆ2 - (latticecol-1)ˆ2);
rightedge = [start, finish]';
listofhedges(1:2,size(listofhedges,2)+1) = rightedge;

end
end

% Create vertical edges of the last column of the lattice
for current = ((n-1)ˆ2+1):(nˆ2)-1

% Edge going above
start = current;
finish = current+1;
aboveedge = [start, finish]';
listofvedges(1:2,size(listofvedges,2)+1) = aboveedge;

end

% Create a Hamiltonian of zeroes
vertexmax = nˆ2;
H = zeros(vertexmax);

% Update Hamiltonian entries for vertical edges
for p = 1:size(listofvedges,2)

x = listofvedges(1,p);
y = listofvedges(2,p);
H(x,x) = H(x,x) + 1;
H(y,y) = H(y,y) + lambda_vˆ2;
H(x,y) = H(x,y) - lambda_v;
H(y,x) = H(y,x) - lambda_v;

end

% Update Hamiltonian entries for horizontal edges
for p = 1:size(listofhedges,2)

x = listofhedges(1,p);
y = listofhedges(2,p);
H(x,x) = H(x,x) + 1;
H(y,y) = H(y,y) + lambda_hˆ2;
H(x,y) = H(x,y) - lambda_h;
H(y,x) = H(y,x) - lambda_h;

end

%%
%%% File: GroundState.m
%%% Function: GroundState(H)
%%% Purpose: Returns the ground state vector (i.e., that which
%%% corresponds to the smallest eigenvalue by absolute value) of a
%%% given matrix H.
%%

function groundstate = GroundState(H)

37

% Diagonalize H
[V, D] = eig(H);

% Sort the V and D matrices in ascending order
[discard, permutation]=sort(abs(diag(D)));
D = D(permutation, permutation);
V = V(:, permutation);

% Return the ground state eigenvector
groundstate = V(:,1);

%%
%%% File: NormRatio.m
%%% Function: NormRatio(vector)
%%% Purpose: Computes, for a given vector, the norm ratio of
%%% (infinity-norm)/(2-norm).
%%

function result = NormRatio(vector)

% Calculate infinity-norm divided by two-norm of the desired ...
eigenvector

result = max(abs(vector)) / norm(vector,2);

%%
%%% File: ReturnSpectralGap.m
%%% Function: ReturnSpectralGap(n, lambda_h_min, lambda_h_max,
%%% lambda_h_interval, lambda_v, linespec)
%%% Purpose: Returns spectral gap values for a Hamiltonian with a
%%% slope 1 lattice of size n, for a given lambda_v and range of
%%% varying lambda_h values. Similar function for slope 2 Hamiltonians.
%%

function evalues = ReturnSpectralGap(n, lambda_h_min, lambda_h_max, ...
lambda_h_interval, lambda_v, linespec)

% Initialize eigenvalues array
evalues = [];

for lambda_h = lambda_h_min:lambda_h_interval:lambda_h_max

% Compute the Hamiltonian and diagonalize
H = Ham1(n, lambda_h, lambda_v);
D = eig(H);

% Take the absolute value of all eigenvalues
D = abs(D);

% Sort the eigenvalues in ascending order
Dsorted = sort(D);

% Select the second smallest eigenvalue by absolute value
selected = D(2);

% Add to the eigenvalues matrix

38

evalues = [evalues D(2)];

end

%%
%%% File: PlotSpectralGap.m
%%% Function: PlotSpectralGap(n, lambda_h_min, lambda_h_max,
%%% lambda_h_interval, lambda_v, linespec)
%%% Purpose: Calculates and plots the spectral gap for the slope 1
%%% Hamiltonian of lattice size n, for a given lambda_v and varying
%%% lambda_h's and the desired linespec. Note: Should be used after the
%%% command "hold on". Similar function for slope 2 Hamiltonians.
%%

function PlotSpectralGap(n, lambda_h_min, lambda_h_max, ...
lambda_h_interval, lambda_v, linespec)

% Initialize evalues and lambdas arrays
evalues = [];
lambdas = [];

for lambda_h = lambda_h_min:lambda_h_interval:lambda_h_max

% Construct the Hamiltonian and diagonalize
H = Ham1(n, lambda_h, lambda_v);
D = eig(H);

% Take the absolute value of all eigenvalues
D = abs(D);

% Sort the eigenvalues in ascending order
Dsorted = sort(D);

% Select the second smallest eigenvalue by absolute value
selected = D(2);

% Add to the evalues matrix
evalues = [evalues D(2)];

end

% Plot the spectral gaps
plotname = sprintf('\\lambda_v = %g', lambda_v);
plot(lambda_h_min:lambda_h_interval:lambda_h_max, evalues, ...

linespec,'DisplayName',plotname);

%%
%%% File: PlotNormRatioByN.m
%%% Function: PlotNormRatioByN(max_n, lambda_h, lambda_v, linespec)
%%% Purpose: Calculates and plots the norm ratio of the ground state
%%% eigenvector for slope 1 Hamiltonians of sizes 2 to max_n, with
%%% given lambdas and the specified linespec. Note: Should be used
%%% after the command "hold on". Similar function for slope 2
%%% Hamiltonians
%%

39

function PlotNormRatioByN(max_n, lambda_h, lambda_v, linespec)

% Initialize results array
results = [];

% Perform computations
for n = 2:max_n

% Calculate the Hamiltonian
H = Ham1(n, lambda_h, lambda_v);

% Compute the ground state
groundstate = GroundState(H);

% Calculate the ground state's (infinity-norm)/(2-norm)
normratio = NormRatio(groundstate);

% Add to results array
results = [results normratio];

end

% Plot the results
plotname = sprintf('\\lambda_h = %g, \\lambda_v = %g', lambda_h, ...

lambda_v);
plot(2:max_n, results, linespec, 'DisplayName', plotname);

%%
%%% File: PlotNormRatioByLambdah.m
%%% Function: PlotNormRatioByLambdah(n, lambda_h_min, lambda_h_max,
%%% lambda_h_interval, lambda_v, linespec)
%%% Purpose: Computes and plots the norm ratio of the ground state
%%% for Hamiltonians with slope 1 lattices of sizes 2 to max_n,
%%% with the given lambdas. Note: Should be used after the command
%%% "hold on". Similar function for slope 2 lattices.
%%

function PlotNormRatioByLambdah(n, lambda_h_min, lambda_h_max, ...
lambda_h_interval, lambda_v, linespec)

% Initialize results array
results = [];

% Perform computations
for lambda_h = lambda_h_min:lambda_h_interval:lambda_h_max

% Calculate the Hamiltonian
H = Ham1(n, lambda_h, lambda_v);

% Compute the ground state
groundstate = GroundState(H);

% Calculate the ground state's (infinity-norm)/(2-norm)
normratio = NormRatio(groundstate);

40

% Add to results array
results = [results normratio];

end

% Plot the results
plotname = sprintf('\\lambda_v = %g', lambda_v);
plot(lambda_h_min:lambda_h_interval:lambda_h_max, results, ...

linespec,'DisplayName',plotname);

%%
%%% File: DensityPlot1.m
%%% Function: DensityPlot1(n, lambda_v, lambda_h, resolution, show,
%%% save)
%%% Purpose: Creates a density plot indicating the probability of
%%% the particle being found at each site on the slope 1 lattice of
%%% size n, with Hamiltonian lambda parameters as specified. Plotting
%%% resolution was specified at 0.01 to generate plots in the paper.
%%% Probability is indicated by both size and color. If save == 1,
%%% saves the plot as a .jpg file. if show == 1, displays the image.
%%% Note: Please create the 'DensityPlot_results' folder in the Matlab
%%% current directory firstif saved plots are desired. Similar function
%%% for slope 2 lattices.
%%

function h = DensityPlot1(n, lambda_v, lambda_h, resolution, show, ...
save)

% Set up graphical environment
close all
h = 1;
figure(h);
set(h, 'color', 'white');
if show == 0

set(h, 'Visible', 'off');
end
hold on

% Initialize results matrix
results = [];
plotnorm_list = [];

% Generate the list of vertices
lastvertex = nchoosek(n+1, 2);
L = VertexList1(lastvertex);

% Compute the Hamiltonian
H = Ham1(n, lambda_h, lambda_v);

% Diagonalize the Hamiltonian
[V, D] = eig(H);

% Generate rounded norms for plotting
for i = 1:length(V(1,:))

% Calculate the norm squared

41

normsq = norm(V(i), 2)ˆ2;

% Round the norm for plotting
normsq_r = round(normsq * 1000) / 1000;
plotnorm = 1000 * normsq_r;
plotnorm_list = [plotnorm_list plotnorm];

end

% Set plotting parameters
size = linspace(2, 500, 1000); % to vary circle size
color = linspace(1, 101, 1000); % to vary circle color

% Plot each vertex
for i = 1:length(V(1,:))

% Plot in a scatterplot
scatter(L(2,i), L(3,i), size(plotnorm_list(i)+1), ...

color(plotnorm_list(i)+1));
axis([-1 n+1 -1 n+1])

end

% Plotting annotations
plotname = sprintf('Probability Density Plot for \\lambda_v = %g, ...

\\lambda_h = %g (lattice columns = %g)', lambda_v, lambda_h, n);
% title(plotname); % Uncomment if plot title is desired
xlabel('Lattice column number');
ylabel('Lattice row number');

% Save the figure
if save == 1

filename = sprintf('densityplot_lv_%4.2f_lh_%4.2f_n_%g.jpg', ...
lambda_v, lambda_h, n);

fullname = fullfile(pwd,'DensityPlot_results',filename);
I = getframe(h);
set(h, 'units', 'inches', 'PaperPosition', [0 0 4 3]);
imwrite(I.cdata, fullname, 'Quality',100);

end

% Reset graphical environment
hold off

%%
%%% File: MultipleDensityPlots.m
%%% Function: MultipleDensityPlots(n, lambda_h_min, lambda_h_max,
%%% interval_h, lambda_v_min, lambda_v_max, interval_v
%%% resolution)
%%% Purpose: Creates density plots for a Hamiltonian with a slope
%%% 1 lattice of size n with a range of lambda_h and lambda_v values.
%%% Plotting resolution was specified at 0.01 to generate plots in the
%%% paper. Note: Please create the 'DensityPlot_results' folder in the
%%% Matlab current directory first. Similar function for slope 2
%%% lattices. Returns 1 if successful.
%%

42

%%% Create density plots for a range of lambda_h and lambda_v values.
function success = MultipleDensityPlots(n, lambda_h_min, ...

lambda_h_max, interval_h, lambda_v_min, lambda_v_max, ...
interval_v, resolution)

% Reset graphical environment
close all;

% Create list of lambdas to use
lambda_h_list = lambda_h_min:interval_h:lambda_h_max;
lambda_v_list = lambda_v_min:interval_v:lambda_v_max;

% Replace all zeroes by small non-zero values
for i = 1:length(lambda_h_list)

if lambda_h_list(i) == 0
lambda_h_list(i) = 0.000001;

end
if lambda_v_list(i) == 0

lambda_v_list(i) = 0.000001;
end

end

i = 1;

% Compute the number of plots to be created
fprintf('A total of %g plots will be created and saved.\n', ...

length(lambda_h_list)*length(lambda_v_list));

% Main execution loop; create a density plot for every pair of ...
lambda_h, lambda_v

for lambda_h = lambda_h_list
for lambda_v = lambda_v_list

temp = DensityPlot1(n, lambda_v, lambda_h, resolution, 0, 1);
fprintf('Plot number %g complete.\n', i);
i = i+1;

end
end

% Reset graphical environment
close all;

% Return success code
success = 1;

%%
%%% File: CreatePhaseDiagram.m
%%% Function: CreatePhaseDiagram(n, lambda_h_min, lambda_h_max,
%%% interval_h, lambda_v_min, lambda_v_max, interval_v)
%%% Purpose: Assists the user in creating phase diagrams for density
%%% plots created with MultipleDensityPlots. Saves the classification
%%% data in the file "classification.mat". Note: Arguments used should
%%% be the same as those used in the MultipleDensityPlots function. To
%%% recreate a phase diagram from the "classification.mat" file, use
%%% the function RecreatePhaseDiagram.
%%

43

function results = CreatePhaseDiagram(n, lambda_h_min, ...
lambda_h_max, interval_h, lambda_v_min, lambda_v_max, interval_v)

% Set up graphical environment
close all;

% Initialize results matrix
results = zeros(length(lambda_h_min:interval_h:lambda_h_max), ...

length(lambda_v_min:interval_v:lambda_v_max));

% Note: lambda_h values vary across rows
% lambda_v values vary across columns

% Main execution loop; display a density plot for every pair of ...
lambda_h, lambda_v and request a classification

% First lambda_h goes into first row
results_row = 1;

for lambda_h = lambda_h_min:interval_h:lambda_h_max

% First lambda_v goes into first column
results_col = 1;

for lambda_v = lambda_v_min:interval_v:lambda_v_max

% Display density plot
currentfile = ...

sprintf('densityplot_lv_%4.2f_lh_%4.2f_n_%g.jpg', ...
lambda_h, lambda_v, n);

fullname = fullfile(pwd,'DensityPlot_results',currentfile);
I = imread(fullname);
imshow(I);

% Request classification
class = input('Please classify this density plot ...

configuration:\n', 's');

% Store classification
results(results_row, results_col) = class;

% Increment results column index
results_col = results_col+1;

end

% Increment results row index
results_row = results_row+1;

end

% Convert results matrix to a character array
results = char(results)

% Plot the phase diagram
close all;

44

figure;
hold on;
size(results)
j = 1;
for j = 1:size(results(:,1)) % Iterate through values of ...

lambda_h
k = 1;
for k = 1:size(results(:,2)) % Iterate through values of ...

lambda_v
marker = 'o';
if results(j,k) == 'c' % Corner (near)

color = 'm';
elseif results(j,k) == 'd' % Diagonal boundary

color = 'y';
elseif results(j,k) == 'f' % Far corner

color = 'c';
elseif results(j,k) == 'r' % Right boundary

color = 'r';
elseif results(j,k) == 'b' % Bottom boundary

color = 'g';
elseif results(j,k) == 's' % Scattered

color = 'k';
elseif results(j,k) == 'e'; % Bottom right corner

color = 'b';
else

color = 'k';
marker = 'd';

end
scatter(j, k, color, marker);
k = k+1;

end
j = j+1;

end

% Save data
save('classification.mat', 'results');

% Reset graphical environment
hold off;

%%
%%% File: RecreatePhaseDiagram.m
%%% Function: RecreatePhaseDiagram(n, lambda_h_min, lambda_h_max,
%%% interval_h, lambda_v_min, lambda_v_max,
%%% interval_v, results)
%%% Purpose: Recreates a phase diagram from density plots created
%%% previously with MultipleDensityPlots and classified with
%%% CreatePhaseDiagram. Loads the user classification data from the
%%% array results. Note: Load the 'classification.mat' data first and
%%% specify the loaded variable name as parameter "results". Other
%%% arguments used should be the same as those originally used in the
%%% MultipleDensityPlots function.
%%

function results = RecreatePhaseDiagram(n, lambda_h_min, ...
lambda_h_max, interval_h, lambda_v_min, lambda_v_max, ...

45

interval_v, results)

% Set up graphical environment
close all;
h = 1;
figure(h);
hold on;

% Plot the phase diagram
j = 1; % Start at row 1
results = transpose(results); % Correct which one is ...

lambda_h, which one is lambda_v
for j = 1:size(results(:,1)) % Iterate through values of ...

lambda_h
k = 1;
for k = 1:size(results(:,2)) % Iterate through values of ...

lambda_v
marker = 'o';
if results(j,k) == 'c' % Corner (near)

color = 'g';
marker = 'o';

elseif results(j,k) == 'd' % Diagonal boundary
color = 'y';
marker = 'x';

elseif results(j,k) == 'f' % Far corner
color = 'b';
marker = 'square';

elseif results(j,k) == 'r' % Right boundary
color = 'm';
marker = 'pentagram';

elseif results(j,k) == 'b' % Bottom boundary
color = 'c';
marker = '*';

elseif results(j,k) == 's' % Scattered
color = 'k';
marker = 'd';

elseif results(j,k) == 'e'; % Bottom right corner
color = 'r';
marker = 'ˆ';

else % Errors
color = 'k';
marker = 'd';

end
scatter(j, k, color, marker);
k = k+1;

end
j = j+1;

end

% Set axes and background color
set(findobj(gcf,'type','axes'), 'XTickLabel', [0:0.2:lambda_h_max + ...

0.1])
set(findobj(gcf,'type','axes'), 'YTickLabel', [0:0.2:lambda_v_max + ...

0.1])
set(gcf,'color','w');

% Annotate plot

46

xlabel('\lambda_h');
ylabel('\lambda_v');
title('Phase Diagram of Density Plot State by \lambda_h, \lambda_v');

% Reset graphics environment
hold off;

47

