
Assigning Teaching Assistants to Courses: Mathematical Models

By

VICTOR KEESEY FUENTES

SENIOR THESIS

Submitted in partial satisfaction of the requirements for Highest Honors for the degree of

BACHELOR OF SCIENCE

in

APPLIED MATHEMATICS

in the

COLLEGE OF LETTERS AND SCIENCE

of the

UNIVERSITY OF CALIFORNIA,

DAVIS

Approved:

Jesús A. De Loera

June 2014

i

iv

ABSTRACT. In this senior thesis, we discuss an implementation of three models to
solve a specific application of the Stable Marriage Problem, namely matching graduate
student teaching assistants to discussion sections. We consider 3 different models, one
that utilizes the Hungarian Algorithm, one that uses a combination of graph theory and a
modified formulation of the Gale-Shapley algorithm, and a third model that is implemented
as an integer program. Various constraints and restrictions are considered in each model,
either tying into the likelihood of a particular matching or preventing a matching entirely.
The criterion considered for these constraints are factors such as a graduate students time
schedule, their seniority (as identified by the department), and the need for the department
to potentially match a single graduate student to multiple discussion sections/courses.

Contents

Chapter 1. Introduction 1
1.1. Premise and Motivation 1
1.2. Overview of Implementations 1

Chapter 2. Hungarian Algorithm: Linear Programming View 3
2.1. Definitions and Concepts 3
2.2. General Algorithm 3
2.3. Example 6
2.4. Conclusion 8

Chapter 3. Gale-Shapley Algorithm 11
3.1. Overview of Concept 11
3.2. Definitions 11
3.3. General Algorithm 12
3.4. Theory 12
3.5. Example 14

Chapter 4. Integer Program Model 19
4.1. Definitions and Concepts 19
4.2. The Basic Theory of Integer Programming 19
4.3. Example 21
4.4. Implementation 23

Appendix A. Selected Pieces of Code in both Python and Zimpl 27
A.1. Setup 27
A.2. Running the Code 28
A.3. Understanding the Output 29
A.4. Integer Program Implementation 30

Appendix. Bibliography 35

v

CHAPTER 1

Introduction

Every quarter the Mathematics Department at the University of California, Davis must
go through the process of assigning each graduate student to one (or possibly two) of the
mathematics courses provided at the time. This process has been carried out by first
emailing all graduate students (teaching assistants) to find out what classes they would
prefer to teach and then the Student Affairs Officer matches the graduate students to the
available classes via heuristics. This assignment alone takes upwards of 8 hours to complete
and generally fails to reach a solution in which both the department and graduate students
find acceptable.

1.1. Premise and Motivation

Our goal was to assign teaching assistants to discussion sections in an unbiased manner
such that an acceptable matching is achieved under as many constraints as given by the
user. More specifically, we wanted an optimal matching - a matching that would be most
preferable for both parties involved (the department and the TAs) either by maximizing
or minimizing an objective function. The Hungarian Algorithm was considered as the
initial model, as it guaranteed optimality of the matching, although it was found that this
criteria was not sufficient for our purposes. This led to our second model, the Gale Shapley
Algorithm, which not only guaranteed optimality, but introduced a notion of stability to the
generated optimal solution. The third model, born out of a desire to compare our modified
Gale Shapley Algorithm (GSA), was a Binary Integer Program (BIP) implementation, as it
is possible to take into account all of the intricacies in the problem (i.e., which courses are
available to which individual, how many courses each individual has to teach, possible time
conflicts, etc) via the construction of additional constraints to the general BIP formulation.
In total, these three implementations provide varied approaches to generating solutions to
similar problems, that is generating a matching constrained by a collection of specified
conditions.

1.2. Overview of Implementations

The Hungarian Algorithm, named after two mathematicians J. Egeváry and D. Knig,
is a special case of the Primal-Dual Algorithm in which it takes a bipartite graph and
produces a maximal matching.

1

2 1. INTRODUCTION

One option that is considered is the Gale-Shapley Algorithm, an algorithm developed
in 1962 by mathematicians D. Gale and L.S. Shapley [2] to solve the Stable Marriage
Problem in polynomial time. It requires equal-sized sets of men and women as the input,
each with their own strictly-ordered and complete preference lists. As an iterative process,
each member of the proposing set proposes to his or her most preferred partner. The
proposees accept their respective offers unless their current fiancé is more preferred than
the current proposer. The algorithm continues until the last member of the proposee set
is engaged.

Another option under consideration is an integer program approach, where we intro-
duce an objective function (which relates to the total satisfaction of the faculty members)
and construct a collection of constraints. Such constraints that are taken into account:
the number of courses a particular faculty member must teach, ensure all courses have a
professor, ensure that each professor receives at least one course they like (which is done
by extensive weighting of every course throughout the entire year), that graduate courses
are taught by full-time faculty, that faculty do not teach small lower division courses (or
that large courses are split up between faculty), and take into account individual requests
(i.e., preferences not to work particular quarters, specific times to teach, specific courses,
etc). As a binary integer program, an acceptable assignment between faculty member and
course (i.e., a matching that meets all the constraints) is denoted by a 1, whereas a 0
denotes an assignment that either is not allowed due to some constraint being violated or
because a better assignment has already been made.

With the Hungarian Algorithm acting as a starting point for our investigation, we wish
to build up our understanding of the Assignment Problem and the many ways it can be
represented.

CHAPTER 2

Hungarian Algorithm: Linear Programming View

2.1. Definitions and Concepts

Here are a collection of definitions that will aid in constructing the proper context for
the Hungarian Algorithm:

Definition. The Assignment Problem is a class of problems where m agents must be
assigned to n possible tasks such that the sum of the costs incurred by the individual
assignments is minimized.

Definition. An undirected graph (or simply a graph) G consists of a finite non-empty set
of elements V (G) called points and a multi-set of unordered pairs of points E(G) called
lines. [7]

Definition. If the point set of a graph G can be partitioned into two disjoint non-empty
sets, V (G) = A

⋃
T , such that all lines of G join a point of A to a point of T , we call G

bipartite and refer to A
⋃
T as the bipartition of G. [7]

Definition. A matching for a bipartite graph G = ({A,T},E) is a subset M of E such
that no two elements of M have a common vertex.

Definition. If G = ({A,T},E) is a bipartite graph, set ρ(G) = max{M̄ | M is a matching
of G}. A matching M such that M̄ = ρ(G) will be called a maximal matching.

Definition. A set of vertices V ′ is said to be a cover of a set of edges E′ if every edge in
E′ is incident on one or more of the vertices in V ′. A set of vertices S will be called a cover
of the bipartite graph G = ({A,T},E) if every edge of G is incident on one or more of the
vertices of S.

2.2. General Algorithm

The assignment problem is one of the fundamental combinatorial optimization problems
in the branch of optimization or operations research in mathematics. It consists of finding
a maximum weight matching in a weighted bipartite graph. Such a formulation begins

3

4 2. HUNGARIAN ALGORITHM: LINEAR PROGRAMMING VIEW

with a complete bipartite graph between the sets A, the agents, and T , the tasks, as seen
below.

a1

a2

a3

a4

t5

t6

t7

t8

A

T

Figure 1. Complete bipartite graph

Each edge between the sets is provided a weight value, c, which represents the cost of
assigning a particular node a ∈ A to t ∈ T . Although not shown in the above complete
bipartite graph, each cij , i, j = 1, 2, 3, 4, represents the appropriate cost of assigning agent
ai to task tj . In cases where a particular agent aij cannot be assigned to a task tij , a cost
cij = 0 is given, effectively removing that edge from the graph. It is required to perform
all tasks by assigning exactly one agent to each task and exactly one task to each agent in
such a way that the total cost of the assignment is minimized.

This can in turn be expressed as a standard linear program where, if given two sets
A and T, of equal size, with a weight function C : A × T → R, the following objective
function, ζ is constructed:

minimize
∑
i∈A

∑
j∈T

Cijxij

subject to
∑
j∈T

xij = 1 , i ∈ A,

∑
i∈A

xij = 1i , j ∈ T,

xij ≥ 0 , i ∈ A, j ∈ T.

Where xij represents the assignment of agent i to task j, with value 1 if the assignment
is made and 0 otherwise. The first constraint requires that every agent (i ∈ A) be assigned
to a single task, and the second constraint requires that every task (j ∈ T) be assigned to

2.2. GENERAL ALGORITHM 5

a single agent. The goal is to find a solution vector x ∈ Rn such that all the constraints
are satisfied and the objective function ζ is minimized.

Definition. A solution to the linear program is called optimal if it both satisfies all of the
constraints and attains the desired maximum (or minimum). [8]

With the goal being an optimal assignment of agents to tasks, the Hungarian Algorithm
provides a solution to the problem in O(n4) time [6].

Hungarian Algorithm

Let A be an n× n cost matrix with aij > 0 representing the cost of assigning agent i
to task j.

(1) For all i ∈ {1, 2, ..., n} and aij such that j ∈ {1, 2, ..., n}, set aij = aij - minj{aij}.
Similarly, for all j ∈ {1, 2, ..., n} and aij such that i ∈ {1, 2, ..., n}, set aij = aij -
mini{aij}. Let this new matrix be denoted as A′.

(2) 2. Find the number of lines, k, through both the rows and columns that ”cover”
all of the zeros of A′.

(3) If k < n, let a0 be equal to the minimal element aij such that aij is not covered
by any of the k lines. For all uncovered elements aij , let aij = aij - a0, whereas
for all twice covered elements let aij = aij + a0. With the revised matrix, repeat
Step 2.

(4) When k ≥ n, construct a set of n independent zeros, Γ, where for all aij , if aij ∈
Γ, aij = 1, else aij = 0. This assignment output, composed of the n independent
zeros, is the new (and final) matrix.

Theorem. Suppose that Step (1) or (3) in the assignment is implemented. Then the
optimal solution of the assignment problem with the new cost matrix does not change. [6]

Proof. For Step (1) note that the optimal solution x∗ does not change if a constant is
subtracted from the column. To see this suppose that c is subtracted from every element
in the first row of the cost coefficient matrix. Then the problem becomes

minimize
∑
i≥2,j

cijxij +
∑
j

(c1j − c)x1j

subject to
∑
j∈T

xij = 1 , i ∈ A,

∑
i∈A

xij = 1 , j ∈ T,

xij ≥ 0 , i ∈ A, j ∈ T.

But we note that

6 2. HUNGARIAN ALGORITHM: LINEAR PROGRAMMING VIEW∑
j(c1j − c)x1j +

∑
i≥2,j cijxij =

∑
i,j cijxij −

∑
j cx1j =

∑
i,j cijxij − c.

So the optimal solution for the original problem is exactly the optimal solution for the
perturbed problem. The same holds for all other rows and columns. So Step (1) of the
algorithm does not change the optimal solution.

Now suppose c is added to each cost of a doubly covered entry and c is subtracted from
each cost of an uncovered entry. This is equivalent to adding c to each covered column
and subtracting c from each uncovered row. To see this, suppose c is added to the covered
column 1 and subtracted from the uncovered row 1. Suppose column two is uncovered and
row two is covered. Then we get the upper left 2 × 2 submatrix

cov(+c) uncov(no action)
uncov(−c) c− c = 0 −c

cov(no action) +c 0

which covers all four cases. So the action in Step (3) is a series of actions in Step (1)
and the optimal solution does not change. �

2.3. Example

Here is an illustrative example of the Hungarian Algorithm, which walks through the
above steps. We begin with the following:

A =


14 5 8 7
2 12 6 5
7 8 3 9
2 4 6 10


(1) For all i ∈ {1, 2, ..., 4}, the row minimum (RowMin) is calculated and each row

aij , for j = {1, 2, ..., 4} is reduced by its respective minimum.
RowMin

14 5 8 7 5
2 12 6 5 2
7 8 3 9 3
2 4 6 10 2


and for j ∈ {1, 2, ..., 4}, the column minimum (ColMin) is also calculated and

each column aij , for i = {1, 2, ..., 4} is reduced by its respective minimum.

2.3. EXAMPLE 7
9 0 3 2
0 10 4 3
2 5 0 6
0 2 4 8

ColMin 0 0 0 2


(2) A minimal covering of the zeros for the new matrix A′ is found

→ 9 0 3 0
0 10 4 1

→ 4 5 0 4
0 2 4 6
↑


but with this cover k = 3 and k < n (n = 4), so we must continue to Step 3.

(3) The minimal non-covered element is a24 = 1, so our modified matrix is
→ 10 0 3 0

0 9 3 0
→ 5 5 0 4

0 1 3 5
↑ ↑


which gives us the minimal number of covering lines, k = 4, as desired.

(4) To begin the construction of a set of zeros Γ, set x33 = 1 and delete the corre-
sponding row and column. 

10 0 3 0
0 9 3 0

→ 5 5 0 4
0 1 3 5

↑


This generates a 3× 3 submatrix of A′

→ 10 0 0
→ 0 9 0

0 1 5
↑


Set x31 = 1 (x41 in the original matrix A′). Again, this generates a smaller,

2× 2 submatrix

8 2. HUNGARIAN ALGORITHM: LINEAR PROGRAMMING VIEW → 0 0
9 0
↑


Set x22 = 1 (x24 in the original A′. This forces the last assignment to be x12

in the original A′.

(5) Therefore with the original matrix we have the following assignment, with the
appropriate zeros underlined 

10 0 3 0
0 9 3 0
5 5 0 4
0 1 3 5


which is equivalently expressed in the the assignment matrix

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0



2.4. Conclusion

The objective function considered for this system is ζ =
∑

i

∑
j Aijxij , with the desire

to minimize the overall cost. This algorithm does just that with the following constraints:

minimize
∑
i

∑
j

Aijxij

subject to
∑
j

xij = 1 , i ∈ {1, 2, 3, 4}

∑
i

xij = 1 , j ∈ {1, 2, 3, 4}

xij ≥ 0 , i, j ∈ {1, 2, 3, 4}

.
As can be seen through the example from the previous section, this algorithm does

indeed provide the optimal solution to this linear program. A natural extension to this
problem would be to ask if, introducing some new concept of preference and instead max-
imizing upon that, would this change the solution to the system? That is to say, if a
particular assignment had two such agents that prefer each others tasks (and maximizing
overall satisfaction of each agents assignment was one of the criterion), then how would

2.4. CONCLUSION 9

this change the assignment found if just trying to minimize the overall cost of an assign-
ment? This question takes us away from the linear program model and reintroduces the
bipartite graph representation, along with a different algorithm, to handle this seemingly
new question of finding an optimal solution.

CHAPTER 3

Gale-Shapley Algorithm

3.1. Overview of Concept

In the search for an optimal solution to the Assignment Problem, as seen in the Hungar-
ian Algorithm in Chapter 2, there is also another criterion, stability, that serves a purpose
in our search for a solution. A well-known example of the criterion, the Stable Marriage
Problem, presents a situation in which there are two groups of equal size, one of men and
the other women. Each individual in their respective group, in the desire for marriage, has
a strict preference list of each potential spouse, from most to least desirable. Similar to
the set up in Chapter 2, let us denote the two groups as sets of men, M , and women, W ,
and each individual in the set m and w, respectively.

3.2. Definitions

Definition. A matching for a bipartite graph G = ({M ,W},E) is a subset M of E such
that no two elements of M have a common vertex. The set M consists of the two-tuples,
where for each m ∈ M and w ∈ W , (m,w) ∈ M denote a particular matching between
the elements m and w.

Definition. A stable matching occurs when for all matchings (m,w) and (m′, w′) in an
assignment set M∈ E, the following do not occur together:

(1) m prefers w′ over his current partner w,
(2) w′ prefers m over her current partner m′.

Definition. If man m and woman w are matched inM, then m and w are called partners
in M. To specify the particular partners in matching M, we write m = pM(w) and w =
pM(m), where pM(m) is the M-partner of m, and pM(w) is the M-partner of w. [3]

Definition. A man m and a woman w are said to block a matchingM, or a blocking pair
of M, if m and w are not partners in M, but m prefers w to pM(m) and w prefers m to
pM(w). [3]

Definition. If there is at least one blocking pair for a matchingM, then this matching is
considered to be unstable. [3]

11

12 3. GALE-SHAPLEY ALGORITHM

The Stable Marriage Problem is a class of matching problems where each element of
one set must be matched to exactly one element of another set of the same size such that
the matching is stable.

3.3. General Algorithm

We start with the each of the men m ∈ M proposing to one of the women w ∈ W ,
where each man and woman has a complete, strictly ordered preference list of the opposite
set. Each man proposes to his top choice.

(1) If a woman does not receive a proposal, continue.
(2) If a woman receives only one proposal, she is engaged to the proposer.
(3) If a woman receives more than one proposal, she is engaged to the most preferable

proposer.
(4) Rest are rejected.
(5) Each rejected man proposes to his next best choice.
(6) Repeat Steps 1 and 2 until each woman is engaged.

3.4. Theory

Here we introduce some of the theorems regarding the Gale-Shapley Algorithm that
address the notion of stability (and its various forms) for the Stable Marriage Problem.

Theorem. For any given Stable Marriage Problem, the Gale-Shapley algorithm terminates
and the terminus engagements are stable.

Proof. -First we show that no man can be rejected by all the women. A woman can
reject only when she is engaged, and once she is engaged she never again becomes free.
So the rejection of a man by the last woman on his list would imply that all the women
were already engaged. But since there are equal numbers of men and women, and no man
has two fiancées, all the men would also be engaged, which is a contradiction. Also, each
iteration involves one proposal, and no man ever proposes twice to the same woman, so the
total number of iterations cannot exceed n2 time (for an instance involving n men and n
women). Therefore the algorithm terminates. It is clear, at termination, the engaged pairs
specify a matching, which we denote by M. If man m prefers woman w to pM(m), which
denotes the M-partner of man m, then w must have rejected m at some point during the
execution of the algorithm. But this rejection implies that w was, or became, engaged to
a man she prefers to m, and any subsequent change of her fiancé brings her a still better
partner. So w cannot prefer m to pM(w), and therefore (m, w) cannot blockM. It follows
that there are no blocking pairs forM, and therefore thatM is a stable matching. [3] �

Theorem. With males proposing to females, every ordering of the male proposals results
in the same stable solution. There is no stable solution that each man would be happier in.

3.4. THEORY 13

Proof. Suppose that an arbitrary execution E of the algorithm yields the matching
M, and that, in contradiction of the theorem, there is a matching M′ and a man m
such that m prefers w′=p′M(m) to w=pM(m). Then during E, w′ must have rejected
m. Suppose, without loss of generality, that this was the first occasion, during E, that a
woman rejected a stable partner, and suppose that this rejection took place because of the
engagement of w′ to m′ (so that w′ prefers m′ to m). Then m′ can have no stable partner
whom he prefers to w′ (for no woman had previously rejected a stable partner). So m′

prefers w′ to his partner in M′, and the supposed stable matching M′ is blocked by (m′,
w′). Each man m is therefore matched in M with his favorite stable partner w, and since
E was an arbitrary execution of the algorithm, it follows that all possible executions of the
algorithm leads to this same stable matching. [3] �

Theorem. In the man-optimal stable matching, each woman is paired with the worst part-
ner she can have in a stable matching.

Proof. Suppose not. LetM0 be the man-optimal stable matching, and suppose there
is a stable matching M′ and a woman w such that w prefers m=pM0(w) to m′=p′M(w).
But then (m, w) blocks M′ unless m prefers pM′(m) to w=pM0(m), in contradiction of
the fact that m has no stable partner better than his partner in M0. [3] �

Although the GS algorithm is effective on its own, there is a particular limitation,
when the size of the sets of men and women are not equal, that calls for a very necessary
extension of the algorithm. This brings us to the extended GS algorithm when taking into
account sets of unequal size, which is defined as follows:

Let X and Y be the sets of men and women, respectively, and suppose that |X| = nx < ny
= |Y |. Then a matching M is unstable if there is a man m and a woman w such that:

(1) m and w are not partners in M;
(2) m is either unmatched in M, or prefers w to his partner in M;
(3) w is either unmatched in M, or prefers m to her partner in M.

This variation on the concept of stability is necessary due to the fact that most systems
are rarely ever equal in terms of the two sets (for example, in our particular context the
number of TAs is rarely equal to the number of classes).

Let us consider a possible (and very much relevant) relaxation of the Gale-Shapley Al-
gorithm, where each individuals preference list is no longer required to be strictly ordered.
This relaxation in turn requires a necessary extension of the notion of stability. There are
three such notions to consider:

(1) First Notion: Regard a matching as unstable if there is a man and a woman who
are not partners, each of whom likes the other at least as well as his/her partner
in the matching. If such a matching is stable under this criterion, the matching is

14 3. GALE-SHAPLEY ALGORITHM

super-stable.
An example for which no super-stable matching exists would be when there is
complete indifference, where no strict preference is expressed by anyone. [3]

(2) Second Notion: A more relaxed notion of stability would be to regard a matching
as unstable if there exists a man and woman who are not partners, such that one
strictly prefers the other to his/her partner and the other is at least indifferent. If
such a matching is stable under this criterion, the matching is denoted as strongly
stable.
An example in which no matching is strongly stable is to consider an instance of
size 2 described by the following preference lists:

Men’s Preferences Women’s Preferences

m1 w1 w2

m2 (w1) (w2)
w1 m2 m1

w2 m2 m1

where all preferences are strict except for those of m2, which are denoted by
parentheses around each woman in his list. Then the matching {(m1,w1),(m2,w2)}
is blocked by the pair (m2,w1) and the matching {(m1,w2),(m2,w1)} is blocked by
the pair (m2,w2). [3]

(3) Third Notion: A matching is unstable if there is a man and a woman who are not
partners, each of whom strictly prefers the other to his/her partner. In this case, if
an instance with strict preferences is created by breaking all ties arbitrarily, then
any matching that is stable in that standard instance will also be stable in the
original instance with ties. That is to say, for this weaker notion of stability, a
stable matching can always be found by breaking ties arbitrarily and applying the
Gale-Shapley algorithm. [3]

3.5. Example

For example we can consider a particular collection of four men (denoted as m1, m2,
m3, m4) and 4 women (denoted w1, w2, w3, w4) given their particular strict preference
lists

Men’s Preferences Women’s Preferences

m1 w2 w4 w1 w3

m2 w3 w1 w4 w2

m3 w2 w3 w1 w4

m4 w4 w1 w3 w2

w1 m2 m1 m4 m3

w2 m4 m3 m1 m2

w3 m1 m4 m3 m2

w4 m2 m1 m4 m3

3.5. EXAMPLE 15

We start with a list both men and women’s preferences, where the left most entry in
the list is the most preferred match and the right most the least preferred match. This
information can be depicted with a bipartite graph, that is two disjoint sets of nodes
representing each of the men and each of the women, and we can utilize the Gale-Shapley
algorithm along with the information. We then have the following graph:

MEN WOMEN

m1 w1

m2 w2

m3 w3

m4 w4

We find that the stable matching between these sets of men and women is as seen below
in blue.

MEN WOMEN

m1 w1

m2 w2

m3 w3

m4 w4

m1

w4

m2

w3m3

w2

m4

w1

For sake of the example we will consider some of the first few steps to help illustrate
the Gale-Shapley algorithm and how it utilizes the preference options.

1. We start with each man’s first choice on their preference lists and draw a line be-
tween that man and their respective first choice to denote a proposal. This gives us the
following graph:

16 3. GALE-SHAPLEY ALGORITHM

MEN WOMEN

m1 w1

m2 w2

m3 w3

m4 w4

m1

w2m2

w3m3

w2

m4 w4

Men’s Preferences Women’s Preferences

m1 w2 w4 w1 w3

m2 w3 w1 w4 w2

m3 w2 w3 w1 w4

m4 w4 w1 w3 w2

w1 m2 m1 m4 m3

w2 m4 m3 m1 m2

w3 m1 m4 m3 m2

w4 m2 m1 m4 m3

2. We notice that both m1 and m3 have w2 as their first choice. When a situation like this
occurs, where there exists more than one proposal to the same woman, we have to refer
to the preference list of that particular woman (in this case w2) to see which of the two
men (m1 and m3) she prefers more. This process is done to establish an engagement or
a tentative matching between a men and women after each round of going through each
man’s preference list, meaning that there is the possibility that the matching may change.

MEN WOMEN

m1 w1

m2 w2

m3 w3

m4 w4

m1

w2m2

w3m3

w2

m4 w4

Men’s Preferences Women’s Preferences

m1 w2 w4 w1 w3

m2 w3 w1 w4 w2

m3 w2 w3 w1 w4

m4 w4 w1 w3 w2

w1 m2 m1 m4 m3

w2 m4 m3 m1 m2

w3 m1 m4 m3 m2

w4 m2 m1 m4 m3

3.5. EXAMPLE 17

3. Since women w2 prefers man m3 over m1 she accepts the proposal from m3 and after the
first round we have the following matches (where blue denotes established engagements):

MEN WOMEN

m1 w1

m2 w2

m3 w3

m4 w4

m2

w3m3

w2

m4 w4

Men’s Preferences Women’s Preferences
m1 w2 w4 w1 w3

m2 w3 w1 w4 w2

m3 w2 w3 w1 w4

m4 w4 w1 w3 w2

w1 m2 m1 m4 m3

w2 m4 m3 m1 m2

w3 m1 m4 m3 m2

w4 m2 m1 m4 m3

We see from the preference lists that since man m1 was rejected, we go to his next highest
choice (as denoted in red, w4) and see that that choice conflicts with the current engage-
ment between m4 and w4. This brings us again to the situation where we must consider
the woman’s preference with regards to both men. Since w4 prefers m1, a new tentative
engagement is made between m1 and w4, leaving m4 now without a partner. The last step
would be to look at the preference list of m4 and check his next highest choice, which is
w1. Since w1 has not yet received a proposal, m4 is engaged to w1. Since all men and
women are engaged, the algorithm terminates, leaving us with a stable matching between
these particular sets of men and women.

This, in effect, is the Gale-Shapley algorithm, going through the preference lists of each of
the proposers (traditionally the men, since this is reference to the Stable-Marriage Problem)
and dealing with multiple men preferring the same woman by consulting that particular
woman’s preference list.

Although the Gale-Shapley Algorithm worked relatively well, even when modified via a
”black list” to remove unsatisfactory potential matchings, there were some questions as to
whether this implementation was the most effective one if a larger and/or more complex
collection of constraints/restrictions were to be considered. This leads to the preliminary
tests of an Integer Program Implementation of matching faculty members to courses, which
will be discussed in greater detail in the following chapter.

CHAPTER 4

Integer Program Model

Now we are re-imagining this matching problem as an integer programming problem
where our goal is to maximize the overall satisfaction given all matchings. Classes are still
separated by time, but the entire set of classes can be (and is, in this case) partitioned into
subsets such that there is a set of early morning classes, a set of late morning classes, a set
of early afternoon classes, etc. Classes are also separated into sets containing lower division
courses, upper division courses, and graduate level courses. Faculty members can also be
separated in a similar manner, where different sets are constructed to denote which faculty
members are cleared to teach which type of classes (for example, differentiating between
full-time and part-time faculty members).

Furthermore, this set up allows for us to utilize constraints to dictate the number of units
a faculty member must teach. A faculty’s preferences can be taken into account by des-
ignating a weight (ranging from 100, which means the faculty member loves that course,
to -100, which means the faculty member loathes that course). Any special conditions can
be taken into account as an extra constraint for the problem, which includes time conflicts
such as sabbaticals or particular times during the day.

4.1. Definitions and Concepts

Definition. The simplex algorithm for linear programming (LP) allows for the maximiza-
tion or minimization of a linear function of several variables, subject to a collection of
linear constraints. [9]

Definition. An integer program (IP), that is, an optimization or feasibility program in
which the variables are restricted to be integers and can be further restricted to a binary
case (denoted as BIP), with variables either 0 or 1. [8]

4.2. The Basic Theory of Integer Programming

Before jumping into the binary variant of an integer program, which is the desired
model for the matching problem we are dealing with, let us motivate the concepts behind
the Linear Programing (LP) Problem. With the goal being optimization, let us define
decision variables xj , j = 1, 2, ..., n as variables whose values are to be decided in an optimal

19

20 4. INTEGER PROGRAM MODEL

fashion and a linear function of these variables, whose value we may want to maximize or
minimize, the objective function denoted by ζ = c1x1 + c2x2 + ... + cnxn. Furthermore
any situation will introduce additional constraints on these decision variables, with these
constraints consist of an equality or inequality associated with some linear combination of
the decision variables:

a1x1 + a2x2 + ... + anxn


≤
=
≥

 b.

Note that these constraints can be converted from inequalities to equalities with the
introduction of a nonnegative variable w called a slack variable. There we go from an
inequality such as

a1x1 + a2x2 + ... + anxn ≤ b

and convert it to an equality constraint with the addition of w:

a1x1 + a2x2 + ... + anxn + w = b.

On the other hand, an equality constraint can be decomposed into two inequality
constraints:

a1x1 + a2x2 + ...+ anxn ≤ b,
a1x1 + a2x2 + ...+ anxn ≥ b.

The preferred presentation is pose the inequalities as less-thans and stipulate that all
of the decision variables are nonnegative. Therefore the linear programming problem can
be formulated as follows:

maximize c1x1 + c2x2 + ...+ cnxn

subject to a11x1 + a12x2 + ...+ a1nxn ≤ b1,
a21x1 + a22x2 + ...+ a2nxn ≤ b2,

...

am1x1 + am2x2 + ...+ amnxn ≤ bm,
x1, x2, ..., xn ≥ 0.

A proposal for specific values of the decision variables is called a solution. With a LP
there various types of solutions. Let us define a solution as feasible if the solution (x1,
x2, ... , xn) satisfies all constraints. The solution is optimal if the solution also attains
the desired maximum. Some problems are just infeasible, so let us define a solution as
infeasible if there exists no feasible solution. On the other end of the spectrum, there may
be problems where there exist feasible solutions, but no upper bound on the value the
objective function takes. These problems are called unbounded. [8]

4.3. EXAMPLE 21

For linear programming (LP), the simplex method is commonly utilized to find an
optimal solution for the system in question. With Integer Programming (Integer Linear
Programming, ILP) a similar approach can be used in which repeated calls to LP are made,
along with the addition of new constraints each time. The basic idea for this ILP is called
the branch-and-bound method, where the goal is to optimize a linear function subject to a
set of linear constraints such that the solution only contains integer values. The process is
as follows:

(1) First step is to use LP to solve the system, which for the sake of example shall be
2-dimensional, in the space of rational (or approximate real) numbers. If the LP
solution occurs at integer values, the process terminates.

(2) If the solution from the initial LP is not integer, choose a variable x and set up two
new LP problems, one with x ≥ m, where m = dqe (q being one of the non-integer
solution of the initial LP), and the other with the constraint that x ≤ n, where n
= bqc.

(3) This process is repeated, creating a binary tree structure. The tree can be explored
in either a depth-first (follow one branch in its entirety) or breadth-first (evaluate
at each level of the tree, moving downwards) manner.

(4) The process terminates when the LP solution is integer, along with the objective
function being either the minimum (or maximum) integer value. [9]

4.3. Example

Let us consider the objective function ζ = 17x1 + 12x2 subject to the constraints x1, x2

∈ N, 10x1 + 7x2 ≤ 40, x1 + x2 ≤ 5, and x1, x2 ≥ 0. This LP relaxation can be expressed
in the following manner:

maximize 17x1 + 12x2

subject to 10x1 + 7x2 ≤ 40,

x1 + x2 ≤ 5,

x1, x2 ≥ 0,

x1, x2 ∈ N.

Using the simplex method, the LP relaxation finds the minimum value ζ = 68..33 at x
= 1.67 and y = 3.33 (let this point be denoted as P0). We then choose one of the variables,
say x1, and set up two new LP problems where if x = 1.67, one of the problems will have
the additional constraint x ≥ d1.67e = 2 and the other will have the additional constraint
x ≤ b1.67c = 1. This effectively pushes the value of x towards the nearest integer. In the
following enumeration tree, the leftmost branch P1 represents the LP relaxation with the
additional constraint x1 ≤ 1 and the rightmost branch P2 represents the LP relaxation
with the additional constraint x1 ≥ 2.

22 4. INTEGER PROGRAM MODEL

P0: x1 = 1.67, x2=3.33 ζ=68.33

P1: x1=1, x2=4 ζ=65 P2: x1=2, x2=2.86 ζ=68.29

Since the LP relaxation with x1 ≤ 1 gives us an integer solution, let us continue along
the right most branch stemming from the original LP relaxation P0. With the additional
constraint of x ≥ 2 considered in the next implementation of the LP, the new minimum
value generated for P2 is ζ = 68.29. We again set up two new LP relaxation problems,
moving the value for x2 towards an integer value, one with the additional constraint x2 ≥
3 (the right branch, which we will denote as UB1, but not evaluate just yet) and the other
additional constraint x2 ≤ 2 (the left branch, which we will denote P3).

P0: x1 = 1.67, x2=3.33 ζ=68.33

P1: x1=1, x2=4 ζ=65 P2: x1=2, x2=2.86 ζ=68.29

P3: x1=2.6, x2=2 ζ=68.2

P4: x1=2, x2=2 ζ=58 P5: x1=3, x2=1.43 ζ=68.14

UB1

Now at P3 x2 is integer, but ζ = 68.2 and x1 = 2.6 are not, so we continue down this
branch. We add to further constrain the variable x1, with P4 adding the constraint x1 ≤
2 and P5 adding x1 ≥ 3. Notice above the P4 is double boxed. This signifies that we have
reached an integer solution (like what we saw in P1), particularly one in which x1 = 2, x2

= 2 and ζ = 58. Since we have not exhausted all possible branches (determining if we can
find a better solution, or at least confirm infeasibility) we continue the process with P5

4.4. IMPLEMENTATION 23

P5: x1=3, x2=1.43 ζ=68.14

P6: x1=3.3, x2=1 ζ=68.1

P7: x1=3, x2=1 ζ=63 P8: x1=4, x2=1 ζ=68

UB2

With the above fragment of the enumeration tree for this Integer Program proces, we
see that both P7 and P8 generate integer solutions, with the objective function ζ = 63 for
P7 and ζ = 68 for P8. Therefore the branches for P6 have been accounted for and we may
return to the two uncheck branches to see if they generate any integer solutions that will
maximize the objective function. It turns out the two branches we left unchecked result
in infeasible solutions, so the search is complete. The optimal integer solution for this LP
relaxation problem is x1 = 4, x2 = 0, with the objective function generating ζ = 68. [8]

4.4. Implementation

Imagining this matching problem as a Binary Integer Program (BIP), it is necessary
to identify both an objective function and the collection of constraints of our given system.
Before considering either construct, let us first define a number of terms relevant to our
particular applied problem:

(1) Professors

Fa = auxiliary faculty member(s),

F = faculty,

L = lecturers,

I = instructors := F ∪ L.

24 4. INTEGER PROGRAM MODEL

(2) Course Times

FC = fall courses,

WC = winter courses,

SC = spring courses,

EMC = early morning courses,

LMC = late morning courses,

EAC = early afternoon courses,

LAC = late afternoon courses,

EvC = evening courses,

CbyT = course by time := EMC ∪ LMC ∪ EAC ∪ LAC ∪ EvC.

(3) Course Days

mwfC = monday/wednesday/friday courses,

trC = tuesday/thursday courses,

CbyD = course by day := mwfC ∪ trC.

(4) Course Types/Sizes

SmC = small lower division courses,

BgC = big lower division courses,

UpC = upper division courses,

GrC = graduate courses,

C = courses := SmC ∪BgC ∪ UpC ∪GrC.

Since there are many possible assignments, IP algorithms are used to maximize a
satisfaction function. Since the decision is binary, the variables x[p,c] take on a value
of either 1 or 0, depending on whether instructor p is assigned to course c. Therefore
maximization depends on a summation of weights, which can be denoted as d[p,c], whose
values depend on the input instructor p and course c. The values of d[p,c] are integer
values that are assigned by the user: d[p,c] is positive means ”instructor p likes course c”,
zero means ”indifferent”, and a negative d[p,c] means ”instructor p dislikes course c”. The
scale for the weights ranges from 100 to -100. Furthermore, the number of teaching units
per instructor, which can be denoted by units(p), dictates both the number of courses and
the types of courses (as there is a distinction between small and large courses).

4.4. IMPLEMENTATION 25

maximize
∑

(i,j)∈E

d[i, j] ∗ x[i, j]

The following section will provide an example of how to take specific requests made by
professors with regards to their teaching schedules and translate that into a functional set
of constraints for the integer program.

(1) All courses need a professor

∀ j ∈ C,
∑

(i,j)∈E

x[i, j] = 1.

(2) Instructors need to meet their unit duties

∀ v ∈ I\F ,
∑

(v,i)∈I×K

x[v, i] +
∑

(v,i)∈I×BgC

2x[v, i] = units(v),

where K = [SmC ∪ UpC ∪GrC].

(3) Distribute big classes among the faculty

∀ v ∈ I,
∑

(v,i)∈F×BgC

x[v, i] ≤ 1.

(4) Graduate courses taught by full-time faculty

∀ v ∈ I\F ,
∑

(v,i)∈I×GC

x[v, i] = 0.

(5) Faculty should not teach small lower division courses or too low

∀ v ∈ F,
∑

(v,i)∈F×S

x[v, i] = 0,

where S = [SmC ∪ {”12− fall9am”, ”12− fall5pm”, ”B”, ”C”}].

(6) Any individual faculty member gets a positive value of classes

∀ v ∈ F,
∑

(v,i)∈F×C

−d[v, i] ∗ x[v, i] ≤ −1.

As you can see, each set in question, be it faculty or courses, is further broken down
into subsets to allow for more detailed specification of the intricacies of how each faculty
member can be assigned to a particular course. Furthermore, this integer program only
generates one of possibly many optimal feasible solutions, save for the very rare situation
there is only one specific assignment of faculty members that will achieve the maximum of
the objective (satisfaction) function. In all, this formulation allows a different perspective
on the same problem, effectively generating a set of possible optimal binary solutions for
the assignment problem.

APPENDIX A

Selected Pieces of Code in both Python and Zimpl

Gale Shapley Algorithm

These are the instructions for the product of our REU with Professor Jesus De Loera
from the summer of 2012. We have written a Python script that implements a modified
version of the Gale-Shapley Algorithm that provides a matching of people to time slots, be
they teaching assistants (TAs) to discussion sections, professors to courses, or professors
to committees.

These instructions will describe the process for matching TAs to discussion sections.

A.1. Setup

The first step is to install the necessary software to execute the script
1. First off, you must install Python (v2.7) on your computer. You can download it here:
Python v2.7
2. Additionally, two modules to write and read in Excel files are required. You can down-
load them here: XLRD XLWT
3. Keep everything in one folder: the Python script and the input Excel file

A.1.1. Formatting. After installing the prerequisite software, you must properly for-
mat the input excel file. You may follow the example file ”Example.xlsx” as a guide.

There are a couple of important things to note:

• First and foremost, format all of your cells in each sheet of the input Excel file to
be Text. This can be done by doing the following:
(1) Press Ctrl + A
(2) Right-click the current spreadsheet and select ”Format cells”
(3) Select ”Text”

First Sheet:

• The first sheet will contain the information pertaining to the TAs. It will have the
columns ”Teaching Assistants”, ”Like”, ”Dislike”, ”Time Conflicts”, ”Number of
Classes Taught”, and ”Ranking”.

27

http://www.python.org/getit/
http://pypi.python.org/pypi/xlrd
http://pypi.python.org/pypi/xlwt/

28 A. SELECTED PIECES OF CODE IN BOTH PYTHON AND ZIMPL

• The ”Like” and ”Dislike” columns are both in order of most to least. For example,
if the list 16A, 22A, 16B, 250A was in the ”Like” column, then that TA’s pref-
erences will have 16A as his or her first choice, followed by 22A, etc. If it was in
the ”Dislike” column, then 16A would be his or her least preferable class to teach,
22A would be the next least preferable, etc. Also. make sure that the ”Like” and
”Dislike” columns have elements separated by exactly one (1) comma and one (1)
space.
• In the ”Time Conflicts” column, please do not put commas between times as-

sociated with the same group of days. You should model your entries after the
following example: MTWF 13.5-14.5 15-16, W 8-9, TR 10-11. Each block of
days and times is separated by a comma. Additionally, please use the 24-hour
clock to represent the times, using the ending ”.5” instead of ”:30” for half-hour
increments. In the previous example, 13.5-14.5 represents 1:30-2:30.
• The ”Number of Classes Taught” column has the number of discussion sections

each TA is teaching. This number is not the number of units the TA must teach,
but the number of classes.
• The ”Ranking” column has some number (integer) assigned to each TA repre-

senting a ranking of him or her. It should take into account seniority and past
performance. These cells should not be left blank.

Second Sheet:

• The second sheet will have all of the information pertaining to the classes. It will
have the the columns ”CRN”, ”Class Name”, ”Time”, and ”Blacklist”.
• The ”CRN” column must be one number associated with one discussion section,

and it may not be more than nine (9) digits long.
• The ”Class Name” column has the name of the class associated with the corre-

sponding CRN.
• The ”Time” column must have at least one time slot for the corresponding dis-

cussion section.
• The ”Blacklist” column is a list of TAs separated by one (1) comma and one (1)

space that are not qualified to teach the corresponding class.

A.2. Running the Code

The next step after formatting the input Excel file is to run the script. Befor doing
so, make sure that the file you want analyzed is in the same directory as assignments.py.
Then, right-click on assignments.py and select ”Open in IDLE”. Next, click Run → Run
Module, or alternatively press F5. Then in a separate window, you will be prompted for
the name of the file you wish to have analyzed (including the file extension). Finally, press
Enter, and the output Excel file will be automatically saved to your working directory.

A.3. UNDERSTANDING THE OUTPUT 29

A.3. Understanding the Output

There are two choices of optimal matchings that you can decide between, the first of
which (on the first sheet in the outputted excel file) places more of an emphasis on the
preferences provided by the TAs and the second one (second sheet on the same excel file)
placing more emphasis on the individual rankings of the TAs. Each row in this Excel file
corresponds to a matching between a TA and a discussion section with its corresponding
CRN.

It is possible that not every TA will be matched to a class or vice versa. This can
occur because of time conflicts ot restrictions from the blacklist. In such cases, it may be
necessary to hire graduate students from other departments.

30 A. SELECTED PIECES OF CODE IN BOTH PYTHON AND ZIMPL

A.4. Integer Program Implementation

Here are some snippets from the integer program constructed by Dr. Jess De Loera in
February of 2013 with the goal of generating acceptable assignments of faculty members
to department courses (with the test data set being the Math Department Faculty and the
courses taught by faculty from the department).

MATHSCHEDULER: software to solve the instructor-to-course assignment problem
at Dept. of MATH UCD.

code and model developed February 2013 by Jesus De Loera.

OVERVIEW: Instructors need to be assigned to courses.
This is a binary decision to be made. In this software there
are variables x[p,c] which take value 1 or 0 depending on whether
instructor p is assigned course c.

The assignments must satisfy a series of linear equations and inequalities.
that enforce conditions: E.g., they do not go over their units or
all courses are covered by an instructor.

There are many possible assignments, we use IP algorithms
to maximize a satisfaction function. These is the SUM of weights d(p,c)
whose values depend on the input instructor p & course c.
The values of d() are integer values that are assigned by the user
(e.g., mso, chair,etc): d(p,c) is positive means “instructor p likes course c”,
zero means “indifferent”, a negative d(p,c) means “c dislikes course p”.
Our scale is 100 to -100.

NOTE: There is alot of freedom as to how the integers d(c,p) are assigned
and they are the “subjective” part of the model. The d(c,p) are extracted
the response of faculty to the call for courses. In the future faculty should
provide this themselves.

To construct the variables x[p,c] we first set
the names of instructors and courses (with quarters+start time)

set faculty:=

A.4. INTEGER PROGRAM IMPLEMENTATION 31

{”babson”,”benham”,”biello”,”bremer”,”cheer”,”deloera”,”fannjiang”,”freund”,
”fuchs”,”gravner”,”guy”,”hass”,”hunter”,”kapovich”,”koeppe”,”kuperberg”,”lewis”’
”liu”,”mogilner”,”morris”,”mulase”,”nachtergaele”,”osserman”,”pizzo”,
”puckett”,”romik”,”saito”,”schilling”,”schultens”,”schwarz”,”shkoller”,”soshnikov”,
”strohmer”,”temple”,”thomases”,”thompson”,”tracy”,”vazirani”,”walcott”,
”waldron”,”xia”, ”newfaculty”};

set lecturers and kaps:=
{”daddel”,”kouba”,”marx”,”kap1”,”kap2”,”kap3”,”kap4”,”kap5”,”kap6”,”kap7”,
”kap8”, ”lect1”,”lect2”,”lect3”,”lect4”,”lect5”,”lect6”,”lect7”};

set visitors and occasional:=
{”chuchel”,”visitor1”,”visitor2”,”visitor3”,”fantasma”};

set instructors:=faculty union lecturers and kaps union
visitors and occasional;

Following the above segment of code, the courses for the entire year are separated by
quarter, time of day, and size/level, with each denomination representing a particular sub-
set of the whole set of courses. Furthermore, specific subsets are generated by the union
of other subsets. For example, the subset coursesbyquarter := fallcourses union winter-
courses union springcourses. In similar fashion, the courses separated by time and by day
are grouped via the union of smaller subsets.

Now we assign the official teaching units per instructor
param units[instructors] :=
<”babson”> 4, <”benham”> 2, <”biello”> 4,<”bremer”> 2,<”cheer”> 4,<”deloera”>
3,<”fannjiang”> 4, <”freund”> 4,<”fuchs”> 4,<”gravner”> 4,<”guy”> 4,<”hass”> 1,<”hunter”>
4,<”kapovich”> 1,<”koeppe”> 4,<”kuperberg”> 3,<”lewis”> 4,<”liu”> 1,<”mogilner”>
1,<”morris”> 4,<”mulase”> 4,<”nachtergaele”> 0,<”osserman”> 4,<”pizzo”> 0,<”puckett”>
4,<”romik”> 4,<”saito”>3,<”schilling”> 4,<”schultens”> 1,<”schwarz”> 3,<”shkoller”>
2,<”soshnikov”> 4,<”strohmer”> 3,<”temple”> 3,<”thomases”> 4,<”thompson”> 2,<”tracy”>
2,<”vazirani”> 4,<”walcott”> 4,<”waldron”> 4,<”xia”> 4,<”newfaculty”> 3,<”daddel”>
9,<”kouba”> 9,<”marx”> 9,<”kap1”> 3,<”kap2”> 4,<”kap3”> 4,<”kap4”> 4,<”kap5”>
4,<”kap6”> 4,<”kap7”> 4,<”kap8”> 4, <lect1”> 6,<”lect2”> 6,<”lect3”> 6,<”lect4”>
6,<”lect5”> 6,<”lect6”> 6,<”lect7”> 6, <”visitor1”> 2,<”visitor2”> 2,<”visitor3”> 2,<”chuchel”>
3,<”AuxiliaryFaculty”>1000;

32 A. SELECTED PIECES OF CODE IN BOTH PYTHON AND ZIMPL

NOW we are ready to set up the constraining equations, inequalities.

The variables are labelled by the pairs of instructors and courses. # A variable x[p,c]=1
if and only if professor p is assigned to teach course c.

set E := { <i,j> in (instructors cross courses)};

these pairs will be labeling our variables

var x[E] binary;

Here we enter the satisfaction function. This is read from the requests # of faculty
and the needs of the department and the chair’s decision.

Here is the procedure followed: # if a class c was starred (*) by professor p, it is
very desirable, then # d(p,c)=100. d(p,c) is assigned a negative number if professor dis-
likes it # e.g., course c is too early for professor p.

WEIGHTED PREFERENCES HERE # satisfaction index (rankings go from 100 to
-100).

HERE IS WHAT WE WANT TO MAXIMIZE

maximize total satisfaction:
(sum <i,j> in E : d[i,j] * x[i,j]);

#-(sum <i,j> in ({”AuxiliaryFaculty”} cross courses): 10000*x[i,j]);

HERE ARE THE CONDITIONS THAT NEED TO BE TRUE!

#————-
All courses need to have a professor.

subto course covering:
forall <j> in courses do

A.4. INTEGER PROGRAM IMPLEMENTATION 33

sum <i,j> in E : x[i,j] == 1;

#————–
All professors received at least one course they like:

#subto something to like:
#forall <i> in faculty without {”newfaculty”} do
#sum <i,j> in E: d[i,j]*x[i,j] >=0;

#————-
Instructors need to meet their unit duties.

subto instructors meet teaching units:
forall <v> in instructors without {”AuxiliaryFaculty”} do
(sum <v,i> in (instructors cross (smalllowcourses union uppercourses union gradcourses))
: x[v,i]) + (sum <v,i> in instructors cross biglowcourses : 2*x[v,i]) == units[v];

#—————
This constraint aims to distribute big classes among many faculty (no more than one).

subto atmost onebigclassfor instructors:
forall <v> in instructors do
sum <v,i> in (faculty cross biglowcourses): x[v,i] <=1;

#—————-
Graduate courses are taught by full-time faculty

subto gradcourses restricted to faculty:
forall <v> in (instructors without faculty) do
sum <v,i> in instructors cross gradcourses: x[v,i]==0;

#—————-
Faculty should not teach small lower division classes or too low

subto nosmalllowdivcourses forfaculty:
forall <v> in faculty do
sum<v,i> in (faculty cross (smalllowcourses union {”12-fall9am”,”12-win5pm”,”B”,”C”})):
x[v,i]==0;

34 A. SELECTED PIECES OF CODE IN BOTH PYTHON AND ZIMPL

#————————————-
Any individual faculty member gets a positive value of classes:

#subto satisfactionofeachfaculty:
#forall <v> in faculty do
#sum <v,i> in (faculty cross courses): -d[v,i] * x[v,i] <=-1;

Bibliography

[1] D. Bertsimas and R. Weismantel, Optimization over integers, Dynamic Ideas, 2005.

[2] D. Gale and L.S. Shapley, College admissions and the stability of marriage, Amer. Math. Monthly 69 (1962),

9–15.

[3] D. Gusfield and R.W. Irving, The stable marriage problem: Structure and algorithms, The MIT Press, 1989.

[4] R. W. Irving, Stable marriage and indifference, Discrete Applied Mathematics 48 (1994), 261–272.

[5] R. W. Irving, D. F. Manlove, and S. Scott, Stable marriage problem with master preference lists, Discrete Applied

Mathematics 156 (2008), 2959–2977.

[6] H.W. Kuhn, The hungarian method for the assignment problem, Naval Research Logistics Quarterly 2 (1955),

83–97.

[7] L. Lovasz and M.D. Plummer, Matching theory, Elsevier Science Publishers B.V., 1986.

[8] R. J. Vanderbei, Linear programming: Foundations and extensions, 2008.

[9] S. Wagon, An algebraic approach to geometrical optimization, Math Horizons (2012), 22–27.

35

	Chapter 1. Introduction
	1.1. Premise and Motivation
	1.2. Overview of Implementations

	Chapter 2. Hungarian Algorithm: Linear Programming View
	2.1. Definitions and Concepts
	2.2. General Algorithm
	2.3. Example
	2.4. Conclusion

	Chapter 3. Gale-Shapley Algorithm
	3.1. Overview of Concept
	3.2. Definitions
	3.3. General Algorithm
	3.4. Theory
	3.5. Example

	Chapter 4. Integer Program Model
	4.1. Definitions and Concepts
	4.2. The Basic Theory of Integer Programming
	4.3. Example
	4.4. Implementation

	Appendix A. Selected Pieces of Code in both Python and Zimpl
	A.1. Setup
	A.2. Running the Code
	A.3. Understanding the Output
	A.4. Integer Program Implementation

	Bibliography

