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Abstract

In this paper, I review the link between stochastic processes and partial dif-
ferential equations. In particular, I demonstrate how the heat and Schrödinger
equations can be understood in terms of Brownian motion. This connection is
demonstrated through Feynman-Kac formulas. I give a physical intuition why
one should expect the heat equation should be understood in terms of Brownian
motion by arguments given by Einstein and Smoluchowski.
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Chapter 1

Basics from probability
theory

Brownian Motion was first studied by Robert Brown in 1828 [1]. He encountered
it while studying the erratic motion of pollen suspended in water. He didn’t
know why the pollen moved like it did. It wasn’t until 1905 that Albert Einstein
proposed a solution. He proposed that Brownian motion was the motion of the
pollen particle as it randomly collided with water molecules. In his paper, he
writes ”In this paper it will be shown that according to the molecular-kinetic
theory of heat, bodies of microscopically-visible size suspended in a liquid will
perform movements of such magnitude that they can be easily observed in a
microscope, on account of the molecular motions of heat” [5].

However before we start, we must first define Brownian Motion rigorously. To
do this, we briefly review the basics of probability theory. This includes a lot
of definitions, but if the reader can get past the formality, the picture is quite
nice and unified.

Definition 1. A Sigma Algebra, Σ of some universal set, Ω is a collection
of subsets of Ω satisfying:

1. A ∈ Σ =⇒ Ac ∈ Σ

2. Ai ∈ Σ =⇒
∞⋃
i=1

Ai ∈ Σ for any countable collection of subsets

3. Ω ∈ Σ

Definition 2. The Borel Sets of the Real Numbers, B(R) is the smallest
Σ-algebra that contain all the open subsets of R.

More generally, given any topological space, (X,T ), we may define the Borel
Sets in a similar fashion. The Borel Sets are nice because it gives us a connection
between Probability Theory and Topology.
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Definition 3. A Measurable Space is some set, Ω along with a Σ-algebra of
Ω, written in an ordered pair: (Ω,Σ).

Definition 4. Given a measurable space, (Ω,Σ), a Measure is a function
µ : Σ→ [0,∞] satisfying:

1. µ(∅) = 0

2. µ(
∞⋃
i=1

Ai) =
∞∑
i=1

µ(Ai) if Ai are disjoint and countable

Definition 5. A measure space is an ordered triple (Ω,Σ, µ):

1. Ω is some set

2. Σ is a Σ-algebra

3. µ is a measure

Note, the reason why we need to consider the Borel sets rather than just
”all subsets” is that some subsets of the Real Numbers turn out to be not
measurable (with respect to the Lebesgue, or standard, measure)! An example
of non measurable sets are the Vitali Sets. For more information, see [1].

Definition 6. Given a measurable space, (Ω,Σ), a Probability Measure is a
measure, P : Σ→ [0, 1] with the additional property that P (Ω) = 1.

Definition 7. A Probability Space is a measure space, (Ω,Σ, P ) where P is
a probability measure. In this case, we shall refer to:

1. Ω as the set of outcomes

2. Σ as the set of all events

3. P (A) is the probability of event A

Definition 8. Given a measure space, (Ω,Σ, µ), we say a property, Q =
Q(ω), for ω ∈ Ω, holds Almost Everywhere if µ(S) = 0, where S = {ω ∈
Ω|Q(ω)is not true}, should S ∈ Σ.

If (Ω,Σ, P ) is a probability space, then we say Q holds Almost Surely

Definition 9. Given a probability space, (Ω,Σ, µ) and a measurable space,
(E,F ), a random variable X(ω) is a function X : Ω→ E such that for every
set B ∈ F , we have that X−1(B) = {ω ∈ Ω|X(ω) ∈ B} ∈ Σ.

Definition 10. If we have a probability space, (Ω,Σ, µ), a measurable space,
(E,F ), and a random variable X : Ω → E, we may define the Pushforward
Measure on (E,F ) as PX(B) = µ(X−1(B)), for all B ∈ F . This makes a
probability space, (E,F, P ).
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Definition 11. Given a probability space, (Ω,Σ, µ), and a measurable space,
(E,F ), a Stochastic Process, Xt is a collection of random variables Xt : Ω→
E indexed by a totally ordered indexing set, T .

Definition 12. Given a probability space, (Ω,Σ, µ), the measurable space, (R,B(R)),
and a random variable, X : Ω→ R, we may define the Distribution Function
as:

FX(x) = µ(X ≤ x) = µ ({ω ∈ Ω: X(ω) ≤ x})

Definition 13. If X has a distribution function that is of the form:

FX(x) =

∫ x

−∞
ρ(t)dt

then we call ρ(t) the Probability Density Function, provided such a ρ(t)
exists.

The integral in this case is the Lebesgue Integral [1]

Definition 14. Given a probability space, (Ω,Σ, µ) and a random variable,
X(ω) : Ω → R is a (Ω,Σ) → (R,B(R)) measurable random variable, we de-
fine the Expectation Value, E(X(ω)) as E(X) =

∫
Ω
X(ω)dµ(ω), where dµ(ω)

denotes integrating with respect to the probability measure, µ.

Note, the expectation value can sometimes be referred to as the Mean.

Definition 15. Let (Ω,Σ) a measurable space with two measures, µ and ν. We
say µ is Absolutely Continuous with respect to ν, denoted µ � ν if for all
E ∈ Σ, ν(E) = 0 implies µ(E) = 0

Definition 16. A measure space, (Ω,Σ, µ) is σ-finite if there is a sequence
(Ai)i∈N with Ai ∈ Σ for i ∈ N such that:

Ω =

∞⋃
n=1

Ai

and µ(Ai) <∞

Theorem 1 (Radon Nikodym). Let (Ω,Σ) be a measurable space with two
measures, µ and ν such that µ � ν, (Ω,Σ, µ) is σ-finite and (Ω,Σ, ν) is σ-
finite. Then there exists a (Ω,Σ) → (R, B(R)) measurable function, f : Ω → R
such that for all E ∈ Σ:

µ(E) =

∫
E

fdν

f is called the Radon Nikodym Derivative:

dµ

dν
= f

Proof. see [1]
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Why this is important is that it allows us to easily calculate expectation
value if there is a probability density function.
Let (Ω,Σ, µ) be a probability space. Let X(ω) : Ω→ R be a (Ω,Σ)→ (R,B(R))
measurable random variable with some probability distribution function, ρ(x).
Then there is a pushforward measure on (R,B(R)), P such that:

P (E) = µ(X−1(E)) =

∫
E

ρ(x)dx

In this way, ρ(x) is the Radon Nikodym derivative,

dµ

dx
= ρ(x)

From definition 14:

E(X(ω)) =

∫
Ω

X(ω)dµ(ω) (1.1)

Morally we may think of y = X(ω), dµ = ρ(y)dy in an analogous way to u-
substitution from elementary calculus

E(X(ω)) =

∫
R
yρ(y)dy (1.2)

provided this integral exists.

More generally, if ψ(y) is a measurable function: Then we may arrive at:

E(ψ(X(ω))) =

∫
R
ψ(y)ρ(y)dy (1.3)

provided this integral exists.

Definition 17. Given a random variable X, we define the variance of X as
V ar(X) = E((E(X)−X)2), provided it exists.

By simply expanding and noting that expectation is linear, we get that
V ar(X) = E(X2)− (E(X))2 which is the most commonly used form.

Definition 18. Brownian Motion Brownian Motion is a real valued stochas-
tic process, Bt, t ≥ 0 satisfying:

1. if t1 > s1 > t2 > s2, then E((Bt2−Bs2)(Bt1−Bs1)) = E(Bt2−Bs2)E(Bt1−
Bs1)

2. Bt − Bs have a normal distribution with mean 0 and variance t, that is

for t > s ≥ 0, and A ∈ B(R), P ((Bt −Bs) ∈ A) =
∫
A

1√
2πt

exp{−x
2

2t }dx

3. B0 = 0

4. almost surely, the function t→ Bt is continuous
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Brownian motion is a map such that for all t ≥ 0, Bt : Ω→ R and ω 7→ Bt(ω).
Then almost surely, t 7→ Bt(ω) ∈ C(R≥0,R) where Ω is the set of all Brownian
paths. Then we may define t 7→ Bt(ω) as one particular parameterized Brown-
ian path, with ”time” parameter t. That is, t 7→ Bt(ω) : R≥0 → R and Bt(ω) is
almost surely continuous.

We may calculate the expectation value of Brownian Motion:

E(Bt) =

∫
y√
2πt

exp{−y
2

2t
}dy (1.4)

Using (1.2). Since we are integrating over all space and the integrand is odd,
we have that:

E(Bt) = 0 (1.5)

Recall from definition 14:

E((Bt)) =

∫
Ω

Bt(ω)dµ(ω) (1.6)

This is a sum over all Brownian paths Bt(ω) ω ∈ Ω, each with a weight factor
of dµ(ω). What is the weight for this summation? What is dµ(ω)?
To give a heuristic picture, we introduce the idea of ”gates”. That is, we consider
times:

t1, ..., tn ∈ R≥0

and elements of B(R):
A1, ...An

We want to find the weight for the Brownian particles going through these
n gates:

µ(B−1
t1 ∈ A1, ..., B

−1
tn ∈ An)
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using the pushfoward measure gives:

µ(B−1
t1 (A1), ..., B−1

tn (An)) = P (Bt1 ∈ A1, ..., Btn ∈ An) (1.7)

By definitions 12 and 13:

P (Bti ∈ Ai) =

∫
Ai

ρ(y)dy

By independence:

P (Bt1 ∈ A1, ..., Btn ∈ An) =

∫
A1

ρ(y1)dy1...

∫
An

ρ(yn)dyn =

∫
A

ρ(y1), ...ρ(yn)dy1...dyn

where A = A1 × ...×An

Coming back to our question, the weight dµ(ω) can heuristically be thought
of as the infinitesimal version of (1.7) as n → ∞ and as ∆t = ti − ti−1 → 0.
This gave rise to Feynman Path integration [2].
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Chapter 2

Heat Equation

2.1 A function

The connection between partial differential equations and Brownian Motion
can be shown by using nothing more than basic differentiation. Let Bt be a
generalized Brownian motion. We introduce a scaled time parameter, t 7→ Dt,
D > 0. We define u(x, t) = E(ψ(x − Bt)) as a function, where ψ(x) ∈ C∞c (R),
the compactly supported smooth functions.

u(x, t) =

∫ ∞
−∞

1√
2πDt

exp

(
−z2

2Dt

)
ψ(x− z)dz (2.1)

Then letting:
y = x− z, dy = dz

u(x, t) =

∫ ∞
−∞

1√
2πDt

exp

(
−(x− y)2

2Dt

)
ψ(y)dy (2.2)

We may differentiate this function with respect to t:

∂u

∂t
=

∂

∂t

∫ ∞
−∞

1√
2πDt

exp

(
−(x− y)2

2Dt

)
ψ(y)dy (2.3)

We would like to pass the derivative inside the integral now, in order to do this
we use:

Theorem 2 (Lebesgue Dominated Convergence Theorem). Let {fn} be a se-
quence of real valued measurable functions on a measure space, (Ω,Σ, µ) such
that fn converges pointwise to some function f(x). Assume that there exists
some integrable function g(x) such that:

|fn(x)| ≤ g(x)

Then:

lim
n→∞

∫
Ω

fn(x)dµ =

∫
Ω

f(x)dµ
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Letting v =
√
ty and dv =

√
tdy, we may write u(x, t) as:∫ ∞

−∞

1√
2πD

exp

(
−v2

2D

)
ψ(x−

√
tv)dv (2.4)

Now fix x and t > 0.

∂u

∂t
=

1√
2πD

lim
h→0

∫ ∞
−∞

exp

(
−v2

2D

)
1

h

(
ψ(x−

√
t+ hv)− ψ(x−

√
tv)
)
dv

(2.5)
By the intermediate value theorem, for an arbitrarily small h there is a c ∈
[t, t+ h] where [t, t+ h] ∩ R−0 = ∅ such that

1

h

(
ψ(x−

√
t+ hv)− ψ(x−

√
tv)
)

= v
−1

2
√
c
ψ′(x−

√
cv) (2.6)

Since ψ(x−
√
sv) is smooth, it is bounded for all s ∈ [t, t+ h]. Since t > 0, −1

2
√
s

is bounded on the same interval. Define:

g(x, v) := sup
s∈[t,t+h]

∣∣∣∣v −1

2
√
s
ψ′(x−

√
sv)

∣∣∣∣ (2.7)

For arbitrarily small h∣∣∣∣exp

(
−v2

2D

)
1

h

(
ψ(x−

√
t+ hv)− ψ(x−

√
tv)
)∣∣∣∣ ≤ ∣∣∣∣exp

(
−v2

2D

)
g(x, v)

∣∣∣∣ (2.8)

Clearly,

exp

(
−v2

2D

)
g(x, v)

is integrable, so using this dominating function, we may employ Lebesgue’s
dominated convergence theorem:

∂u

∂t
=

∫ ∞
−∞

∂

∂t

1√
2πDt

exp

(
−(x− y)2

2Dt

)
ψ(y)dy

=

∫ ∞
−∞

ψ(y) exp

(
−(x− y)2

2Dt

)
1√

2πDt

(
(x− y)2

2Dt2
− 1

2t

)
dy

(2.9)

Analogously, we can use Dominated Convergence with respect to x. Differenti-
ating with respect to x twice gives:

∂u

∂x
=

∫ ∞
−∞

ψ(y) exp

(
−(x− y)2

2Dt

)
1√

2πDt

−(x− y)

Dt
dy (2.10)

∂2u

∂x2
=

∫ ∞
−∞

ψ(y) exp

(
−(x− y)2

2Dt

)
1√

2πDt

(
(x− y)2

D2t2
− 1

Dt

)
dy (2.11)

Now comparing (2.9) and (2.11) leads to the result:

∂u

∂t
=

1

2
D
∂2u

∂x2
(2.12)
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That is, u solves the heat equation! This is a remarkable result, because on one
hand we have something seemingly deterministic, that’s tied into something
completely stochastic! Also, since ψ is never defined, we may vary ψ to get
ALL solutions to the heat equation. Also note that at time t = 0, u(x, t) =
E(ψ(x− 0)) = ψ(x). We must check continuity at t = 0.

lim
t→0+

u(x, t) = lim
t→0+

∫ ∞
−∞

1√
2πDt

exp

(
−z2

2Dt

)
ψ(x− z)dz (2.13)

Again, let v =
√
tz and dv =

√
tdz to get to the form in (2.4)

lim
t→0+

u(x, t) = lim
t→0+

∫ ∞
−∞

1√
2πD

exp

(
−v2

2D

)
ψ(x−

√
tv)dv (2.14)

Here we may yet again apply Lebesgue’s dominated convergence theorem, also
noting that ψ(x) is continuous:

lim
t→0+

u(x, t) =

∫ ∞
−∞

1√
2πD

exp

(
−v2

2D

)
ψ(x)dv

= ψ(x)

∫ ∞
−∞

1√
2πD

exp

(
−v2

2D

)
dv

= ψ(x)

(2.15)

This leads us to the Feynman-Kac formula:

Theorem 3 (Feynman-Kac). Given the partial differential equation:

∂u

∂t
=

1

2
D
∂2u

∂x2

and an initial condition:
u(x, 0) = ψ(x)

the solution is
u(x, t) = E(ψ(x−Bt))

2.2 Einstein-Smoluchowski

In his 1905 paper, Einstein derived the heat equation on a macroscopic scale
using thermodynamic arguments [2]. This explicitly shows the relation between
Brownian Motion and the Heat Equation and also demonstrates the validity
of atomism. It shows how macroscopic phenomenon can be constructed by
microscopic principles.

Consider a cylinder, with cross-sectional area A, full of a liquid, and Brownian
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particles suspended in it, as seen in picture:

We assume that the particles don’t interact. We additionally assume that they

all have the same mass. The aim is to find ρ(x, t) = n(x)
V , the density of particles

where n(x) is the number of particles and V is volume. First, note that ρ(x, t)
must satisfy the continuity equation:

∂ρ

∂t
= − ∂j

∂x
(2.16)

where j is the current. We also know the ideal gas law:

PV = n(x)kT

where n(x) is the number of particles in V = dV , k, and T are the Boltzmann
constant and temperature.
We divide by V and arrive at:

P = ρkT (2.17)

We may then differentiate with respect to x:

dP

dx
=
dρ

dx
kT (2.18)

Multiplying by A
n(x)

A

n(x)

dP

dx
=
dρ

dx
kT

A

n(x)
(2.19)

A
dP

n(x)
=
dρ

dx
kT

dV

n(x)
(2.20)

Noting that area times pressure is force, and 1
ρ = dV

n(x) , we get that the force

per particle due to pressure is:

dF

n(x)
=

1

ρ

dρ

dx
kT (2.21)
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However, not only do particles experience a force from pressure, there is also a
friction force, which we may model as f = −γv where v is the velocity of the
particle and γ is the friction coefficient. In equilibrium these are equal. We
have:

−γv =
1

ρ

dρ

dx
kT (2.22)

−ρv =
kT

γ

dρ

dx
(2.23)

But ρv = j, the current! Plugging (2.23) into (2.16) gives that:

∂ρ

∂t
=
kT

γ

∂2ρ

∂x2
(2.24)

That is, we have derived the heat equation! This equations governs the motion
of density of the “Brownian” particle. But Einstein never even defined what
“Brownian Motion” is! Without a microscopic picture, Einstein predicts the
constant D! This constant has been verified experimentally.
Now that we know that the solution is a probability distribution, it makes (2.1)
seem reasonable. What exactly IS Brownian motion? Why should we expect
Brownian motion? Why should we expect a normal distribution to solve the
heat equation? To answer these questions, Smulochowski offers another deriva-
tion.

We now turn away from the macroscopic principles of Einstein’s arguments,
and turn to a microscopic argument.
To start, we consider infinitely many particles of the same mass on a lattice with
spacing l. We look at one particle, and center it at “0”. We give each particle
a random starting velocity, ±v each with probability 1

2 . We are interested in

finding Xt, the position of the ”middle” particle at a time t. Define ∆t = l
2v .

∆t is the time step. That is, every ∆t seconds, we have a collision (or lack of).
This is essentially a random walk. Every time step the particle goes to the left
with probability a half, right with probability a half. For example, one situation
might look like the following picture:
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We conclude that:

Xt =

b t
∆tc∑
k=1

∆xk (2.25)

Where
⌊
t

∆t

⌋
is the floor function, that is the greatest integer n ≤ ∆t. What

this sum is saying is that every ∆t seconds, there is a change in position, ∆xk.
The sum of these changes is the position at time t. ∆xk is l

2 with probability
1
2 and −l

2 with probability 1
2 . In addition, we assume that ∆xi and ∆xj are

independent if i 6= j.

We may now compute expectation values:

E(Xt) = E

b t
∆tc∑
k=1

∆xk

 (2.26)

Then by linearity, we can get:

E(Xt) =

b t
∆tc∑
k=1

E∆xk

=

⌊
t

∆t

⌋(
−l
2

1

2
+
l

2

1

2

)
= 0

(2.27)

We have expectation of 0, which is characteristic of Brownian motion, now lets
calculate:

E(X2
t ) = E

b t
∆tc∑
k=1

∆xk


2

(2.28)

Then by expanding:

E(X2
t ) =

b t
∆tc∑
k=1

E(∆x2
k) +

∑
E(ci,j∆xi∆xj) (2.29)

The last term vanishes, as linear terms have expectation value zero and cross
terms are independent.

E(X2
t ) =

⌊
t

∆t

⌋
(
l2

4

1

2
+
l2

4

1

2
)

=

⌊
t

∆t

⌋
l2

4

(2.30)

For any fixed l or v, we have that X2
t is proportional to t, we write this as

X2
t ∼ t
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This already looks a lot like Brownian Motion. Recall the definition of Brown-
ian motion (def 18). We have independent, increments with mean 0. However
here we have discrete time steps rather than continuous time. To introduce
continuous time, we scale Xt.

Define Xε
t = εXt/ε2 . We must scale out, and limit ∆t → 0. We choose the

prefactor and scaled time parameter to be in a certain ratio, as to maintain
mean and variance. Again, lets compute expectation values:

E(Xε
t ) = ε0 = 0 (2.31)

E((Xε
t )

2) = ε2E((Xt/ε2)2) ∼ ε2 t
ε2

= t (2.32)

We still have the same properties when we scale, but in order to get Brownian
Motion, we must take the ε→ 0 limit.

First, we find the probability density function, pε(x, t) for Xε
t , then take the

limit ε→ 0. To do this, we consider the Fourier Transform, p̂ε(x, t)

√
2πp̂ε(x, t)(k) = E(e−ikX

ε
t ) =

∫ ∞
−∞

e−ikxpε(x, t)dx (2.33)

Then we may expand Xε
t :

E(e−ikX
ε
t ) = E

exp

−ikε
b t
ε2∆t
c∑

j=1

∆xj


 (2.34)

E(e−ikX
ε
t ) = E

b t
ε2∆t
c∏

j=1

e−iεk∆xj

 (2.35)

Then by independence, we may move the expectation value inside:

E(e−ikX
ε
t ) =

b t
ε2∆t
c∏

j=1

E(e−iεk∆xj ) (2.36)

Then since all ∆xj are identically distributed, we may turn the product into a
power. Also we Taylor expand:

E(e−ikX
ε
t ) = (E(1− ikε∆xj −

1

2
k2ε2(∆xj)

2 +O(ε3))b
t

ε2∆t
c (2.37)

where O(ε3) means higher ordered terms.

E(e−ikX
ε
t ) =

(
1− 1

8
k2ε2l2 +O(ε4)

)b t
ε2∆t
c

(2.38)
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The higher order terms don’t matter. To see this, simply Taylor expand again
and take the ε→ 0 limit. Define ε2n = 1

n∆t . Then:

E(e−ikX
εn
t ) = (1− tl2k2

8n∆t
+O(

1

n2
))n (2.39)

Taking limits at n→∞ and ε→ 0

lim
n→∞

√
2πp̂ε(x, t)(k) = lim

n→∞

(
1− tl2k2

8n∆t
+O(

1

n2
)

)n
= exp{−lvtk

2

4
} (2.40)

We may inverse Fourier transform to get

p(x, t) =
1

2π

∫ ∞
−∞

eikxe
−lvtk2

4 dk

=

∫ ∞
−∞

exp{ikx− lvtk2

4
}dk

Let a = lvt
4 and b = ix for convenience. This becomes:

p(x, t) =
1

2π

∫ ∞
−∞

exp{−ak2 + bk}dk

=
1

2π

∫ ∞
−∞

exp{−a
(
k2 − b

a
k

)
}dk

=
1

2π

∫ ∞
−∞

exp{−a
(
k2 − b

a
k +

b2

4a2
− b2

4a2

)
}dk

=
1

2π

∫ ∞
−∞

exp{−a
(
k − b

2a

)2

− b2

4a
}dk

=
1

2π
exp{− b

2

4a
}
∫ ∞
−∞

exp{−a
(
k − b

2a

)2

}dk

(2.41)

Then let y = k − b
2a , dy = dk. Then this integral becomes:

p(x, t) =
1

2π
exp{− b

2

4a
}
∫ ∞
−∞

e−ay
2

dy (2.42)

Let u =
√
ay, then du =

√
ady and y2 = 1

au
2. This makes the integral:

p(x, t) =
1√
a

1

2π
exp{− b

2

4a
}
∫ ∞
−∞

e−u
2

du (2.43)

This is a well known integral:∫ ∞
−∞

e−u
2

du =
√

2π
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so we arrive at:

p(x, t) =
1√
2πa

exp{− b
2

4a
}

Plugging in the constants, a and b gives that:

p(x, t) =
1√
πlvt

exp{− x
2

lvt
} (2.44)

To connect these two arguments, we can compare constants to get that:

kT

γ
=

1

2
D = lv (2.45)

We have modeled a Brownian motion as a sequence of particle collisions. We
then explained why it should have a Gaussian distribution. By Feynman-Kac,
we know that the expectation of this is the solution to the heat equation.
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Chapter 3

Other Remarks

3.1 Existence of Brownian Motion

Although morally, Smulochowski’s argument demonstrates that Brownian Mo-
tion exists, it lacks certain technical considerations. The first problem is that
we don’t know if there is ONE probability space with ONE probability measure
where the random variables, Bt, t ≥ 0 live. The second problem is continuity.
In the limit ε → 0, intuitively the resulting process should be continuous. But
it’s not guaranteed. To take care of the first consideration one resorts to the
Kolmogorov’s Extension Theorem. The full proof that Brownian Motion exists
can be found in [1]. We only wish to point the difficulties.

Theorem 4 (Kolmogorov). Define a measure on R:

ptm−tm−1
(a, b) :=

1√
2πt

exp{−(b− a)2

2t
}

and a measure on Rn:

µt1,...tn(A1 × ...×An) =

∫
A1

dx1...

∫
An

dxn

n∏
m=1

ptm−tm−1(xm, xm−1)

Where Ai ∈ B(R), t0 = 0
In addition, assume for all {s1, ..., sn−1} ⊂ {t1, ..., tn}:

µs1,...sn−1(A1 × ...×An−1) = µt1,...tn(A1 × ...× R×Aj+1 × ...×An)

where sj 6∈ {t1, ..., tn}
Let Ω0 = {functions ω : [0,∞) → R} and F0 be the Σ-algebra generated by the
finite dimensional sets {ω : ω(ti) ∈ Ai for 1 ≤ i ≤ n}, for Ai ∈ B(R). Then
there is a unique probability measure, ν on (Ω0, F0) such that ν{ω : ω(0) = 0} =
1 and for 0 < t1 < ... < tn

ν({ω : ω(ti) ∈ Ai}) = µt1,...tn(A1 × ...×An) (3.1)

where µ is the probability measure
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Kolmogorov’s extension theorem gives the existence of a Gaussian Process

Definition 19. Given a probability space, (Ω,Σ, µ), a Gaussian Process,
Xt(ω) : Ω → R is a stochastic process with independent, normally distributed
increments.

In closing we have a stochastic process Bt(ω) : Ω→ R such that:

1. if t1 > s1 > t2 > s2, then E((Bt2−Bs2)(Bt1−Bs1)) = E(Bt2−Bs2)E(Bt1−
Bs1)

2. Bt − Bs have a normal distribution with mean 0 and variance t, that is

for t > s ≥ 0, and A ∈ B(R), P ((Bt −Bs) ∈ A) =
∫
A

1√
2πt

exp{−x
2

2t }dx

3. B(0) = 0

However, we are still lacking continuity. This is challenging, because we can’t
even check that the process Kolmogorov’s extension theorem gives us is contin-
uous. Meaning:

{ω ∈ Ω|t 7→ Xtis continuous} 6∈ F0

This is because the distribution depends on only countably many coordinates.

3.2 Schrödinger Equation, Feynman Path Inte-
grals

In his PhD Thesis, Richard Feynman created a new formulation of quantum me-
chanics. [4] He called this the Path Integral Formulation of quantum mechanics.
We give a quick overview of it here, and explain how quantum mechanics is re-
lated to statistical mechanics. In his paper, he proposes that all possible paths
contribute to the observed path of a particle. That is, each path has a certain
weight associated with it, then all these paths are summed over with this weight.
This is known as a path integral.
What does this have to do with Brownian Motion? Well, we are integrating
over paths with a certain weight. This should remind you of taking expectation
values of Brownian Motion! Lets re-frame the question. Take the function (2.1)
and perform what’s called Wick Rotation. That is, map t→ it, introducing the
idea of imaginary time. This function becomes:

u(x, t) =

∫ ∞
−∞

1√
2πDit

exp{−(x− y)2

2Dit
}ψ(y)dy (3.2)

We may define C = iD. Then the computation in chapter 2 holds exactly the
same, and we get that the new, Wick Rotated function solves:

∂u

∂t
=

1

2
C
∂2u

∂x2
(3.3)
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Or
∂u

∂t
=

1

2
iD

∂2u

∂x2
(3.4)

That is, u solves the “free” Schrödinger equation:

∂u

∂t
=

i~
2m

∂2u

∂x2
(3.5)

where D = ~
m and ~ is the reduced Planck’s constant and m is the mass of a

particle. By “free”, we mean that there is no potential function.
In statistical mechanics, solutions to the heat equation are generated by expec-
tation values of functions of Brownian motion running in real time. In quan-
tum mechanics in a loose sense, the solutions to the Schrödinger equation are
generated by expectation values of functions of Brownian motion running in
imaginary time.

3.3 Closing Remarks

The connection between Brownian motion and partial differential equations is
truly remarkable. On one hand, we have something that by its very definition is
random, on the other hand we have something that is truly deterministic. They
are connected in a deep and maybe at first unexpected way. Looking forward,
we may abstract this connection even further through Stochastic Calculus. For
this, I recommend [3]. Stochastic calculus formalizes this connection through
stochastic differential equations (SDEs).
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