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Abstract

We start with a deck of cards labeled 1 through n, arranged in an arbitrary
permutation. At each stage, we move the card on the top of the deck to the position
in the deck corresponding to its number. We ask the following questions: for a given
n, what is the longest sequence of moves possible? Does every sequence of moves
terminate? Considering all n! possible permutations, what is the average number of
moves? In the research presented here, we prove that every sequence of moves does
terminate, and have characterized the longest sequence of moves for all n. However,
the question of the average number of moves has proven much more difficult, and
from the cases we examine for small n, it appears unlikely that the average will
be given by a simple formula. This is an interesting and accessible problem, which
yields surprisingly complex behavior given the simplicity of its statement.

Introduction

Consider the following algorithm: starting with a deck of n cards in an arbitrary permu-
tation, take the top card in the deck and move it to the position in the deck corresponding
to its number (Note: we refer to the “front” and “back” of the deck interchangeably with
the “top” and “bottom”). We repeat this until there are no more possible moves. For
example, if we were to start with a deck of four cards in the order 4, 2, 3, 1, we would
subsequently get 2, 3, 1, 4, then 3, 2, 1, 4, then 2, 1, 3, 4, and then 1, 2, 3, 4. At this point
we have no possible moves; the card labeled 1 is in position 1, so if we attempt to play
again, nothing in the deck will move; at this point we can say that the game enters an
infinite sequence of trivial moves, or that it terminates. For simplicity, we will say that it
terminates.

We ask the following questions: for a deck of size n, what is the longest sequence of
moves possible? Considering all n! possible permutations, what is the average number of
moves? Will a sequence of moves necessarily terminate at all? In general, will our algo-
rithm completely sort the deck? How do these outcomes change if we allow for repeated
cards in the deck?

Although this algorithm (to the best of our knowledge) has not yet been studied in
the literature, there are several similar models that have been investigated extensively. A
random-to-random shuffle of a deck of cards is an algorithm wherein we repeatedly select
a random card from the deck and move it to a randomly selected position in the deck [2].
In a top-to-random shuffle, we repeatedly take the top card of our deck and randomly
select a position to move it to. For this shuffle, it has been proven that if the deck is of
size n, it will take approximately n log(n) moves to thoroughly randomize the deck [1].
Interestingly, this is not sufficient to randomize the distribution of fixed points in the deck
[6]. The entropy of the deck, which measures the amount of information remaining in the
deck after a given number of moves, has also been studied [8].

2



Taking this process in reverse and generalizing slightly, the Tsetlin library, or heaps pro-
cess [3], describes a shelf of n books from which we randomly select books one at a time,
each with a certain probability of being selected, returning each to the top of the shelf
before selecting the next. Over time, we expect to find the more popular books near
the top of the shelf. A number of quantities related to this process have been exactly
determined, including the long-run probability of any arrangement of the books [10], the
mean depth of each book in the pile in the long-run [10], the stationary distribution of
the books on the shelf [4, 5] and the eigenvalues of transition matrix of the associated
Markov chain [7].

The primary difference between these examples and the algorithm presented here is that
they deal with probabilities and random choice, whereas our game is completely determin-
istic. Nevertheless, it displays surprisingly complex behavior, some of which we have been
able to characterize enumeratively, and some of we describe only asymptotically. Also, it
is possible to view our algorithm as a random walk when taken in reverse; starting with
any permutation of the deck that fixes at least one card, we randomly select a fixed card
and move it to the front of the deck. It is possible that this reverse approach may be used
to solve some of the problems associated with our algorithm.

In Section 1, we present the longest possible sequence of moves for a deck of size n.
In Section 2, we represent our algorithm using directed graphs, and prove some properties
of these graphs. Section 3 characterizes the permutations achieved along the sequence
of moves described in Section 1. In Section 4, we give a partial characterization of the
permutations on which our game acts as a sorting algorithm. Section 5 gives a conjecture
and some numerical data about the average number of moves. In Section 6, we prove
some facts about the behavior of our game if we allow for repeated cards in the deck.
And last, Appendices A and B provide code used to find the numerical results in Sections
4 and 5.
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1 Longest sequence of moves

Theorem 1. The longest possible sequence of moves for a deck of a given size n will be
generated by the starting order: 2, 3, . . . , n, 1, and will consist of 2n−1 − 1 moves.
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Lemma 2. If a sequence of moves does not terminate, then it eventually enters an end-
lessly repeating finite sequence of moves.

Proof. There are only n! possible orders of a deck of size n. If a sequence of moves does
not terminate, then there must be at least one permutation p that the deck attains twice
in the first n! + 1 moves. Between the first and second time the deck attains this order,
suppose we make k moves. Since the game is completely deterministic, after another k
moves, the deck will once again be in the order p. We can repeat this infinitely many
times to make the deck return again and again to order p. Moreover, since the game is
completely deterministic, each of the k − 1 intermediate orderings that the deck attains
will also be the same each time. Thus the deck eventually enters a loop in which a
sequence of moves of length k <∞ is repeated endlessly.

Lemma 3. Every sequence of moves terminates with the card labeled 1 at the front of the
deck (equivalently, by Lemma 2, there are no endless loops).

Proof. Given a deck of n cards, assume the opposite. Then at some point the game enters
an endlessly repeating loop; assume we have reached this point of the game. We can
divide the cards into two sets: the k cards that will advance to the front infinitely many
times, and the n − k cards that will not advance to the front again for the rest of the
infinite sequence. Observe that both sets are nonempty; the first by assumption, and the
second because 1 must be in it (if 1 advances to the front of the deck, then the sequence
of moves will immediately terminate).

Since the first set contains k cards, none of which is 1, it must contain a card of face
value k′ > k + 1. By assumption k′ must advance to the front at some point. In the next
move, it will go to position k′ > k + 1; here it must have at least 1 card c in front of it
that is a member of the second set: there are only k − 1 cards other than k′ in the first
set, whereas there are k slots to be filled in front of position k + 1. By assumption, k′

must advance to the front again, and in order for this to happen, every card in front of
it must also advance to the front at least once, including card c. But this contradicts our
assertion that c will not advance to the front for the remainder of the game. Thus we
reach a contradiction. Therefore a sequence of moves may not endlessly loop.

And last, when the game terminates, the card labeled 1 must be at the front of the
deck; else we can move the front card to a position further back in the deck, giving us
another valid move.

Lemma 4. A sequence of moves of maximal length must start with 1 in the last position
of the deck.

Proof. Given a deck of n > 1 cards, suppose some index i > 1 comes after 1 in our starting
permutation; this ordering can be written as p, 1, i, p′, where i is any card other than 1,
and p and p′ are any two (possibly empty) permutations of the rest of the cards. Assume
towards contradiction that this ordering produces a sequence of moves of maximal length
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m. Clearly 1 does not advance to the front of the deck until the last move: as soon as 1 is
at the front of the deck, the sequence of moves terminates. So we can put any other card
in the place of 1 (as long as we don’t change the permutation p at all), and in m moves it
will have advanced to the front of the deck. Now consider the ordering p, i, 1, p′. As just
argued, in m moves we will have i at the front of the deck; hence we must make at least
one more move to advance 1 to the front of the deck. Therefore the sequence of moves
produced by the initial ordering p, i, 1, p′ has at least length m + 1, contradicting the
maximality of m. Thus a sequence of moves of maximal length must start with 1 in the
last position of the deck.

Lemma 5. Given a deck of at least n > 1 cards, if we start with the ordering: 2, 3, . . . , n, i, p,
where i is any card not in {2, 3, . . . , n}, and p is some (possibly empty) fixed permuta-
tion of the remaining cards, then after 2n−2 − 1 moves, the cards will be in the order
n, 2, 3, . . . , n− 1, i, p.

Proof. We will prove the lemma by induction on n.

Base Step: if n = 2, then starting with at least n cards in the order 2, i, p, we per-
form 2n−2 − 1 = 20 − 1 = 0 moves, remaining at 2, i, p as desired.

Inductive Step: Assume that the lemma holds up to n for some n > 1, and consider
a deck of at least n + 1 cards in the order 2, 3, . . . , n, n + 1, i, p. By our induction
hypothesis, after 2n−2 − 1 moves, the cards will be in the order

n, 2, 3, . . . , n− 1, n + 1, i, p.

(Here we have the card n + 1 = i1 in the place of i and the string i, p = p1 in the place
of p.) After one additional move, the cards will be the order

2, 3, . . . , n− 1, n + 1, n, i, p.

Similarly, using the induction hypothesis for n−1, after another (2(n−1)−2−1) + 1 moves,
the cards will be in the order

2, 3, . . . , n− 2, n + 1, n− 1, n, i, p.

Proceeding inductively, after (2(n)−2 − 1) + 1 + (2(n−1)−2 − 1) + 1 + (2(n−2)−2 − 1) + 1 +
· · ·+ (22−2 − 1) + 1 total moves, the cards will be in the order: n + 1, 2, 3, . . . , n, i, p.
And we observe that:

(2(n)−2 − 1) + 1 + (2(n−1)−2 − 1) + 1 + (2(n−2)−2 − 1) + 1 + · · ·+ (22−2 − 1) + 1

= 2n−2 + 2(n−1)−2 + 2(n−2)−2 + · · ·+ 20

=
n−2∑
k=0

2k =
1− 2n−1

1− 2

= 2n−1 − 1

= 2(n+1)−2 − 1
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So given a deck of at least n + 1 cards in the starting position 2, 3, . . . , n, n + 1, i, p,
after 2(n+1)−2− 1 moves the cards will be in position n+ 1, 2, 3, . . . , n− 1, n, i, p. Our
induction is complete.

Lemma 6. Given at least n > 1 cards, the ordering 2, 3, . . . , n, i, p produces the
longest sequence of moves to advance i to the front of the deck, of all orderings of the form
p′(2, 3, . . . , n), i, p, where i and p are as defined in Lemma 5, and p′ is a permutation of
cards 2, 3, . . . , n.

Proof. We will prove the lemma by induction on n:

Base Step: If n = 2, then for a given i and p, there is only one ordering of the form
p′(2, 3, . . . , n), i, p, namely 2, i, p. Thus the claim is trivially true.

Inductive Step: Assume the statement holds up to some n > 1. Then by our in-
duction hypothesis, for a deck of at least n + 1 cards, and for any p, the ordering
2, 3, . . . , n, n+ 1, i, p gives the longest sequence of moves to advance n+ 1 to the front
of the deck, among orderings of the form p′(2, 3, . . . , n), n+ 1, i, p. (taking i1 = n+ 1 in
place of i and p1 = i, p in place of p).

Moreover, by Lemma 5, at this point the cards will be in the order n+1, 2, 3, . . . , n, i, p.
After one additional move, they will be in the order 2, 3, . . . , n, i, n + 1, p. And by
our induction hypothesis, this gives the longest possible sequence of moves to advance i
to the front of the deck (among all orderings of the form p′(2, 3, . . . , n), i, n + 1, p).

Observe that the first change of position of i must occur precisely when n + 1 is moved
behind it; i starts in position n+ 1, so it can only advance when a card with face value at
least n+ 1 is played, and the only such card initially in front of i is n+ 1. The card n+ 1
moves behind i immediately after advancing to the front of the deck. So the length of the
total sequence of moves to advance i to the front of the deck is the number of moves to
advance n+1 to the front of the deck, plus one move to place it behind i, plus the number
of moves to advance i to the front of the deck once n + 1 is behind it. The starting order
2, 3, . . . , n, n + 1, i, p maximizes the first and last summands, as just shown; hence it
gives the longest sequence of moves to advance i to the front of the deck, among orderings
of the form p′(2, 3, . . . , n), n + 1, i, p. Our induction is complete.

Corollary 7. For a given n > 1, the starting order 2, 3, . . . , n, 1 gives the longest
sequence of moves to advance 1 to the front of the deck, among all strings of the form
p′(2, 3, . . . , n), 1

Proof. For n = 1 this is trivial, as there is only one possible order for the deck. For n > 1,
this is a restatement of Lemma 6, in the specific case where i = 1 and p is the empty
string.

Lemma 8. The sequence of moves determined by the initial ordering 2, 3, . . . , n, 1 is
of length 2n−1 − 1.
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Proof. By Lemma 5, with i = 1 and p an empty string, we have: with initial ordering
2, 3, . . . , n, 1, after 2n−2 moves, the deck will be in the order 2, 3, . . . , n − 1, 1, n.
Similarly, after another 2(n−1)−2 moves, the deck will be in the order 2, 3, . . . , n −
2, 1, n− 1, n. Inductively, after 2n−2 + 2(n−1)−2 + 2(n−2)−2 + · · ·+ 22−2 moves, the deck
will be in the order 1, 2, 3, . . . , n. And as computed in the proof of Lemma 5,

2n−2 + 2(n−1)−2 + 2(n−2)−2 + · · ·+ 22−2 =
n−2∑
k=0

2k = 2n−1 − 1

Thus the sequence of moves produced by the initial ordering 2, 3, . . . , n, 1 is of length
2n−1 − 1.

Proof of Theorem 1. By Lemma 3, for a deck of n <∞ cards, every sequence of allowed
moves is of finite length. By Lemma 4, any initial card-ordering producing the maximum
number of moves must have 1 in the last position of the deck. By Corollary 7, the initial
ordering 2, 3, . . . , n, 1 produces the longest sequence of moves of all initial orderings
with 1 in the last position of the deck. Therefore 2, 3, . . . , n, 1 produces the longest
possible sequence of moves overall. And by Lemma 8, it is of length 2n−1 − 1.

2 Graphs

We can use directed graphs to illustrate the effect of our algorithm on a deck of a given
size. For a deck of n cards, we create n! vertices, one for each permutation of the deck. We
then make an edge from vertex p1 to p2 if the permutation corresponding to p1 is sent to
the permutation corresponding to p2 by a single move of our game (note: for convenience,
we will label vertices by their corresponding permutations, and refer to vertices and per-
mutations interchangeably). We refer to this graph as Gn. We have used the computer
algebra system Sage [9] to produce the graphs G3, G4, and G5 shown in Figures 1, 2, and 3.
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Figure 1: G3

Figure 2: G4
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Figure 3: G5

We can make a few observations, but first we will give some definitions:

Definition 9. A tree is a connected graph that does not contain a closed walk in which
all vertices are distinct.

Definition 10. A leaf of a tree is a vertex of degree 1 (a vertex that connects to exactly
one edge).

Definition 11. A rooted tree is a tree in which a particular node is designated as the
root. Then if a vertex u is on the path from the root to another vertex v, we say that u
is an ancestor of v, or equivalently, that v is a descendant of u.

Definition 12. A rooted forest is a disjoint union of rooted trees.

Now we are ready to make our observations: for any n, the graph Gn is a directed rooted
forest, where we designate the root of each tree by a vertex corresponding to a permutation
with 1 in the first position. The game always ends with 1 at the front of the deck, so
each tree in the forest contains precisely one such vertex. This implies that Gn will be
comprised of (n− 1)! disconnected rooted trees.
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Proposition 13. For any n, the leaves in Gn correspond precisely to the derangements
of n indices.

Proof. Consider any permutation p = a1, a2, . . . , af−1, f, af+1, . . . , an, where some in-
dex f is fixed by p, and f 6= 1. Then in one move of our game, the permutation
p′ = f, a1, . . . , af−1, af+1, . . . , an will be sent to p. So there will be an edge directed
from p′ to p in Gn, which means that p is not a leaf. Thus a permutation that fixes
an index other than 1 is not a leaf. And a permutation that fixes 1 is a root vertex, as
previously argued, so using standard terminology for rooted trees, it cannot be a leaf.
Hence, any permutation that fixes a value is not a leaf.

Conversely, if a vertex p in Gn is not a leaf, then it is either a root, or there is an
edge directed from some other vertex p′ to p. If p is a root, then the permutation p fixes
the index 1. If there is an edge directed from another vertex p′ to p, then it corresponds
to a move in our game in which we move the first index i of p′ to place i, arriving at the
new permutation p. Then by construction, i is a fixed point of p. Thus any vertex that
is not a leaf corresponds to a permutation that fixes at least one index. Therefore the
leaves in Gn correspond precisely to the derangements of n indices.

Similarly, there will be precisely one edge directed to a vertex p for each index other than
1 fixed by the permutation p. (Note: we do not include loops on the root vertices.) From
this, we see that a given tree in Gn will branch precisely at vertices corresponding to
permutations that fix at least two indices excluding 1.

In addition, we can make several observations about the particular tree rooted by the
vertex 1, 2, 3, . . . , n.

Definition 14. For a deck of size n, we denote by Tn the tree rooted by the vertex
1, 2, 3, . . . , n.

Theorem 15. Tn contains disjoint subgraphs isomorphic to G1, G2, . . . , Gn−2 and Gn−1.
Explicitly, for each k, the subgraph of Tn consisting of the descendants of a permutation
of the form n, p2, . . . , pk, 1, k + 1, . . . , n − 1 is isomorphic to the tree in Gk rooted at
1, p2, . . . , pk.

This is illustrated for T5 in Figure 4:
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Figure 4: T5

Before we prove this theorem, we will need another lemma:

Lemma 16. Our algorithm will completely order any permutation of the form
pk, 1, k+ 1, . . . , n−1, n, where k 6 n, and pk is any permutation of the indices 2, 3, . . . , k.

Proof. In the permutation pk, 1, k + 1, . . . , n − 1, n, the index 1 is in position k, so in
order for the 1 to advance another position forward, a card with index at least k must be
played. However all indices greater that k are already behind the 1, and cannot be played
again. So the 1 will only advance forward when card k is played, at which point the
deck will be in the order pk−1, 1, k, k + 1, . . . , n, for some permutation pk−1 of the indices
2, 3, . . . , k − 1. Inductively, the 1 will advance again when k − 1 is played, then again
when k− 2 is played, and so on. Eventually the deck will be in the order p2, 1, 3, 4, . . . , n,
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where p2 is a permutation of the index 2. But the only such permutation is simply the
index 2. So the deck will be in the order 2, 1, 3, 4, . . . , n, and after one more move, it will
be in the order 1, 2, 3, . . . , n. Thus the deck is completely sorted.

Now we can prove the theorem:

Proof of Theorem 15. Consider any permutation of the form p = n, p2, p3, . . . , pk, 1, k +
1, . . . , n − 1, where p2, p3, . . . , pk is a permutation of the indices 2, 3, . . . , k. In a single
move of our game, the permutation p is sent to the permutation p′ = p2, p3, . . . , pk, 1, k +
1, . . . , n−1, n. Thus there is an edge from p to p′ in the graph Gn; this implies that they are
on the same tree within Gn. By Lemma 16, our game will order p′ completely; hence p′ is a
vertex on Tn, and therefore so is p. We now consider the descendants of the vertex p on Tn.

Observe that no permutation q that is a descendant of p can be of the form n, a2, a3, . . . , an
for any string a2, a3, . . . , an. If any q were of this form, then in one move of the game, it
would be sent to a permutation q′ = a2, a3, . . . , an, n at which point the index n would be
behind the index 1. And after any number of moves starting from q′, the index n would
never again come to the front of the deck: in order for the n to come to the front, each
cards in front of it would first have to be played at least once, including the 1, but that
would end the game. So in any (nonzero) number of moves our game, q would not be
sent to a permutation with n as the first entry. But p has n as its first entry, so this
contradicts out assumption that q is a descendant of p. Therefore no descendant of p has
n as its first index.

Moreover, every descendant of p is of the form q1, . . . , qk, 1, k + 1, . . . , n − 1: Consider
any permutation a = a1, . . . , an with, and suppose that in one move of our game, it
is sent to b = b1, . . . , bk, 1, k + 1, . . . , n − 1. In this move, a1 is sent to position a1, so
the index a1 must be fixed in b1, . . . , bk, 1, k + 1, . . . , n − 1. We observe that the indices
{1, k + 1, . . . , n − 1} are not fixed; hence a1 /∈ {1, k + 1, . . . , n − 1}. So we must have
a1 6 k. And in general, when a card a1 is played, the indices in positions greater than
the face value of a1 do not move; here, since a1 6 k, the indices in positions greater than
k do not move. Therefore the last n− k entries of b are identical to the last n− k entries
of a. So a = a1, . . . , ak, 1, k + 1, . . . , n− 1. Inductively, a permutation that is carried to b
after any number of moves must have 1, k + 1, . . . , n− 1 as its last n− k entries. So since
the last n− k entries of p are 1, k + 1, . . . , n− 1, these must also be the last n− k entries
of any descendant q of p on the graph Gn.

Now consider any permutation a of k indices with a(1) = i > 1. We can write

a = a1, a2, . . . , ai−1, 1, ai+1, . . . , ak.

Suppose in one move of our game, a is sent to some permutation

b = b1, b2, . . . , bj−1, 1, bj+1, . . . , bk.
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Then the permutation

a′ = a1, a2, . . . , ai−1, n, ai+1, . . . , ak, 1, k + 1, k + 2, . . . , n− 1

is sent by one move of our game to

b′ = b1, b2, . . . , bj−1, n, bj+1, . . . , bk, 1, k + 1, k + 2, . . . , n− 1.

The converse also holds: if a′ is sent to b′, then a is sent to b. Both statements are true
because in a′, neither 1 nor n is the first index, so we can interchange the two indices
in a′ without affecting the destinations of the other cards under one move of our game.
Also, we can append extra cards to a without affecting the destination of the first k cards.

From this, we inductively conclude that, given i > 1,

q = q1, . . . , qi−1, n, qi+1, . . . , qk, 1, k + 1, . . . , n− 1

is sent after some number of moves to

q′ = q′1, . . . , q
′
j−1, n, q

′
j+1, . . . , q

′
k, 1, k + 1, . . . , n− 1

if and only if
q1, . . . , qi−1, 1, qi+1, . . . , qk

is sent in the same number of moves to

q′1, . . . , q
′
j−1, 1, q

′
j+1, . . . , q

′
k.

Observe here that if j = 1 and q′j+1, . . . , q
′
k = p2, p3, . . . , pk, then

q′ = p = n, p2, p3, . . . , pk, 1, k + 1, . . . , n− 1

This implies that the subgraph in Gn of the descendants of p is isomorphic to the sub-
graph in Gk of the descendants of 1, p2, p3, . . . , pk. But the graph of descendants of
1, p2, p3, . . . , pk is simply one of the trees that together comprise Gk; every tree in Gk

is rooted by a permutation of the form 1, p2, p3, . . . , pk. And recall that for any k,
and for any permutation p2, p3, . . . , pk of the indices 2, 3, . . . , k, the permutation p =
n, p2, p3, . . . , pk, 1, k + 1, . . . , n − 1 is a vertex of Tn. Therefore each tree of each Gk is
isomorphically contained in Tn in the manner just described. Thus Tn contains subgraphs
isomorphic to G1, G2, . . . , Gn−2 and Gn−1. It remains only to show that these subgraphs
are disjoint. However, as we have shown, the vertices of the isomorphic copy of each
Gk are permutations in which the last entries are 1, k + 1, k + 2 . . . , n − 1. This string
is distinct for each k; hence the subgraphs cannot share any vertices, and are therefore
disjoint.
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Corollary 17. Tn contains disjoint subgraphs isomorphic to T1, T2, . . . , Tn−2 and Tn−1.
Explicitly, for each k, the subgraph of Tn consisting of the descendants of the permutation
pk = n, 2, 3, . . . , k, 1, k+ 1, . . . , n− 1 is isomorphic to Tk. Moreover, the longest path from
the root vertex of Tn to any vertex on this isomorphic copy of Tk is 2k − 1.

Proof. The first statement follows directly from Theorem 15. And after one move, pk is
sent to 2, 3, . . . , k, 1, k + 1, . . . n − 1, n. By Lemma 8 (ignoring the indices after the 1),
after 2k−1−1 additional moves, the deck will be in the order 1, 2, . . . , n. So the path from
pk to 1, 2, . . . , n is of length 1 + (2k−1 − 1) = 2k−1.

Moreover, for any k, by Theorem 1, the longest path from the root of Tk to any other
vertex on Tk is of length 2k−1−1 (the permutation 2, 3, . . . , k, 1 is on Tk). And as we have
just shown, for n > k, the path from the root vertex of the isomorphic copy of Tk within
Tn to the root vertex of Tn is of length 2k−1. So the longest path from the root vertex of
Tn to any vertex on the isomorphic copy of Tk is 2k−1 − 1 + 2k−1 = 2k − 1.

3 Permutations achieved along the longest sequence of moves

We can characterize the permutation that results from performing m moves of our game
on a deck of n cards starting in the order 2, 3, . . . , n, as long as m 6 2m−1 − 1, so as
not to exceed the length of the game (by Lemma 8, the sequence of moves starting with
permutation 2, 3, . . . , n has length 2n−1 − 1).

We construct a permutation as follows: we choose any subset {f1, . . . , fk} of the in-
dices {2, 3, . . . , n} and set our permutation to fix each of these indices. We then fill in the
rest of the permutation with the indices 2, 3, . . . , n, 1 in that order, omitting the indices
{fi}. For example, the permutation 3, 2, 6, 4, 5, 1, 7 is of this form, with {fi} = {2, 4, 5, 7}.
Since {2, 3, . . . , n} has 2n−1 subsets, there will be 2n−1 permutations of this form as long
as they are all distinct from each other (it is not difficult to show that they are, but it
will not be necessary here).

Lemma 18. Starting with the permutation 2, 3, . . . , n, 1, after 2fk−2 + · · ·+ 2f1−2 moves,
the order of the deck will be of the form described above, with the indices f1, . . . , fk fixed.

Proof. We prove this by downward induction. At the beginning of the game, the order
of the deck is of the given form, with the empty set forming our set of fixed indices.
This forms our base step. Without loss of generality, assume f1 < · · · < fk. Inductively,
assume that after 2fk−2 + · · ·+ 2fj+1−2 moves, the permutation of the deck is of the given
form, with the indices fk, . . . , fj+1 fixed. Moreover, assume that the deck is in the order
2, 3, · · · , fj, i, p, for some index i, where p is a permutation of the remaining indices. Then
by Lemma 5, after 2fj−2 moves, the deck will be in the order 2, 3, . . . , fj − 1, i, fj, p. The
index fj is fixed by this new permutation, and the non-fixed indices are in the same order
relative to each other as in the previous permutation; we have simply removed fj from
the set of non-fixed indices and enlarged the set of fixed indices by one. Thus the new
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permutation is of the given form, with the indices {fk, fk−1, . . . , fj} fixed.

Moreover, since fj−1 < fj by assumption, the new permutation can be written as 2, 3, . . . ,
fj−1, i

′, p′ where i′ = fj−1 + 1 if fj−1 < fj − 1, and i′ = i if fj−1 = fj − 1; this completes
our induction. So after 2fk−2 + · · ·+ 2f1−2 moves, the order of the deck will be of the form
described above, with the indices {f1, . . . , fk} fixed.

With this in mind, we write the number m of moves in its binary expansion. Since
m < 2n−1, we can write m = cn−22

n−2 + cn−32
n−2 + · · ·+ c12 + c01, where ci ∈ {0, 1} for

all i. So

m = 2xk + 2xk−1 + · · ·+ 2x2 + 2x1 , for some {x1, . . . , xk} ⊆ {0, 1, . . . , n− 2}.

Therefore, setting fi − 2 = xi for all i (note: this implies that 2 6 fi 6 n for all i,
as desired), then by Lemma 18, starting with the deck in the order 2, 3, . . . n, 1, after m
moves, the order of the deck will be of the form given above, with the indices {f1, . . . , fk}
fixed.

By Lemma 8, the sequence of moves starting at permutation 2, 3, . . . , n, 1 has length
2n−1−1, so there are 2n−1 permutations of the deck generated by this sequence, including
the starting permutation. And as we have just shown, each of these permutations is of
the form defined above. Therefore there are at least 2n−1 distinct permutations of this
form. But as previously argued, since there are 2n−1 subsets of {2, 3, . . . , n}, there can be
at most 2n−1 permutations of that form. So there are precisely 2n−1 distinct permutations
of this form, and each of them is generated by performing m moves of our game on the
deck in starting order 2, 3, . . . , n, 1, for some 0 6 m 6 2n−1 − 1.

We summarize our results in the following theorem.

Theorem 19. The permutations generated by performing m moves of our game, with
0 6 m 6 2n−1−1, on a deck of n cards starting in the order 2, 3, . . . , n are precisely those
permutations which fix some set of indices {f1, . . . , fk} ⊆ {2, 3, . . . , n}, and in which the
remaining indices appear in the order 2, 3, . . . , n, 1 (with the indices {fi} omitted).

4 Our game as a sorting algorithm

One question we may ask: will this algorithm always sort the deck completely? The
answer is no: we may take as an example a deck of 4 cards in the order 1, 3, 4, 2. Since
there is a 1 at the front of the deck, the game is already over, and so the deck must remain
out of order. To take a slightly less trivial example, consider 2, 1, 4, 3. After one move, the
deck is in the order 1, 2, 4, 3, and the game is over. Again, the deck is out of order. But
observe that the indices behind the 1 were out of order initially. We can make a general
observation:
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Proposition 20. If in its starting permutation, the section of the deck behind the index
1 contains an inversion, then our algorithm will not sort the deck completely.

Proof. Suppose the section of the deck behind the index 1 contains an inversion b, a. Any
card behind the 1 can never be played; in order to do so we would have to play the 1 first,
but this ends the game. So every move of the game consists of playing some card initially
in front of the 1. This card will either move to some position in front of the 1, leaving the
cards behind the 1 entirely unaffected, or else it will move behind the 1, perhaps moving
but never inverting the cards behind the 1. So a and b can never change order with each
other, and at the end of the game they will still be inverted. Thus the deck does not end
up in order.

Here is a less trivial example. With a deck of 5 cards, consider the starting order 4, 5, 1, 2, 3.
The indices behind the 1 are initially arranged in increasing order, but after the first move,
the deck is in the order 5, 1, 2, 4, 3, and at this point the portion of the deck behind the
1 contains the inversion 4, 3. Thus the deck cannot possibly end up in order, by the
previous proposition. So when precisely does the deck end up in order? Had we chosen a
slightly different permutation, 5, 4, 1, 2, 3, the game would have subsequently produced the
orderings 4, 1, 2, 3, 5, and 1, 2, 3, 4, 5; the algorithm would have sorted the deck completely.
We can produce a general criterion:

Lemma 21. Given a permutation p with the indices behind the 1 arranged in increasing
order, if the remaining indices move behind the 1 in decreasing order as the game is played,
then our algorithm will sort the deck completely.

Proof. It suffices to consider the effect of each move on the string of indices behind the 1.
At the end of the game, the 1 will be in front of the deck, and this string will necessarily
be some permutation of the indices {2, 3, . . . , n}, where n is the size of the deck. And if
this string remains in increasing order throughout every move of the game, then it must
necessarily finish as 2, 3, . . . , n; in other words, the deck must finish in order.

Now let us start with an arbitrary permutation a1, . . . , a`, 1, b1, . . . , bm, where the se-
quence b1, . . . , bm is increasing. Assume that the indices {ai} all move behind the 1 in
decreasing order as the game is played. When a1 is played, if it goes to a position to
the left of the 1, then the string of cards behind the 1 remains unchanged, and is still in
increasing order. Now suppose that a1 goes to a position to the right of the 1; in other
words, assume it moves behind the 1.

Each of the cards ai must move behind the 1 in order for the game to end. Since we
have assumed that they will move behind the 1 in decreasing order, this implies that a1
is the largest of all the indices {ai}. Suppose bi < a1 < bi+1 for some i (we will handle the
cases a1 < b1 and bm < a1 later). By assumption, the sequence b1, . . . , bm is increasing,
so every index to the right of bi+1 is also greater than a1. Thus every index less than a1
is to the left of bi+1. So the set {a1, . . . , a`, 1, b1, . . . , bi} has cardinality at least a1. And
since a1 is the largest element of {aj}, and is larger than every element of {b1, . . . , bi},
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the cardinality is precisely a1. Thus when a1 is played, it will advance to the position
of bi, and the deck will be in the order a2, . . . , a`, 1, b1, . . . , bi, a1, bi+1, . . . , b`. So since
bi < a1 < bi+1, the string of indices behind the 1 is still in increasing order.

We now address the two remaining cases: If a1 < b1, then every index to the right of b1 is
also greater than a1. Thus all indices less than a1 are contained in the set {a1, . . . , a`, 1},
giving it cardinality at least a1. And since a1 > ai for all i 6= 1, this set has cardinality
exactly a1. Thus when a1 is played, the deck will be in the order a2, . . . , a`, 1, a1, b1, . . . , bn.
So since a1 < b1, the string of indices behind the 1 is still in increasing order.

Last, if a1 > bm, then since a1 > ai for i 6= 1 and bm > bi for i 6= m, we see that
a1 is the largest card in the deck. So when a1 is played, the deck will be in the order
a2, . . . , a`, 1, b1, . . . , bm, a1. Then since a1 > bm, the string of indices behind the 1 is still
in increasing order.

Inductively, if we start with a permutation in which the string of indices behind the
1 is arranged in increasing order, and if all the other indices move behind the 1 in de-
creasing order as the game is played, then at each move of the game, the string of indices
behind the 1 will remain in increasing order. So as previously argued, our algorithm will
order the deck.

Lemma 22. Given a permutation p with the indices behind the 1 arranged in increasing
order, if the remaining indices do not all move behind the 1 in decreasing order as the
game is played, then our algorithm will not sort the deck completely.

Proof. If the remaining indices do not all move behind the 1 in decreasing order, then we
must have two indices x and y with x < y that start out in front of the 1, such that x
moves behind the 1 while y is still in front of the 1. Immediately before this move, the
deck is in the order x, a1, . . . , ak, y, ak+1, . . . , a`, 1, b1, . . . , bm, where {ai} and {bi} com-
prise the remainder of the deck. If at this point, the sequence b1, . . . , bm is not arranged
in increasing order, then by the Proposition 20, our algorithm will not sort the deck, and
we are done.

Now assume the sequence b1, . . . , bm is arranged in increasing order, and suppose bi <
x < bi+1 for some i (we will handle the cases x < b1 and bm < x later). Then every
card to the right of bi+1 is also greater than x. So every card less than x is to the left
of bi+1. Thus the set {x, a1, . . . , ak, y, ak+1, . . . , a`, 1, b1, . . . , bi} has cardinality at least x.
And since y > x, it has cardinality at least x+ 1. So when x is played, it will not advance
as far as the position of bi. However, by assumption, it will advance past the 1. Thus we
will have x to the left of bi, and both behind the 1, but x > bi. Hence the portion of the
deck behind the 1 will contain the inversion x, bi, and by Proposition 20, our algorithm
will not sort the deck.

We now address the two remaining cases: If x < b1, then every index to the right
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of b1 is also greater than x. Thus all indices less than x are contained in the set
{x, a1, . . . , ak, y, ak+1, . . . , a`, 1}. So this set has cardinality at least x, and since y > x, it
has cardinality at least x + 1. Thus when it is moved, x does not advance as far as the
position of the 1. But this contradicts our assumption that x advances past the 1; hence
this case is impossible.

If x > bm, consider our deck of cards. It must have size at least y. Then when x is
played, it cannot advance to the last position of the deck, since x < y. Thus it goes to
a position left of bm. And by assumption, it advances past the 1. So since x > bm, the
cards behind the 1 contain the inversion x, bm, and by the Proposition 20, our algorithm
will not order the deck.

Together, Lemmas 21 and 22 give a necessary and sufficient condition for our algorithm
to order the deck:

Theorem 23. Given a permutation p with the indices behind the 1 arranged in increasing
order, our algorithm will order the deck completely if and only if the remaining indices
move behind the 1 in decreasing order as the game is played.

In practice, this theorem is difficult to use, as it is usually hard to predict whether the
indices in the front of the deck will move behind the 1 in decreasing order. For exam-
ple, our algorithm will order the permutation 3, 4, 7, 6, 1, 2, 5, but not the permutation
4, 3, 7, 6, 1, 2, 5, which is identical except for the first two indices. It is at least possible,
however, to get reasonably good bounds on the number of permutations ordered by our
algorithm for a given size of deck.

Proposition 24. For a deck of n cards, the proportion of all permutations that our

algorithm sorts completely is at least
1

n
.

Proof. There are (n − 1)! = n!
n

permutations with 1 in the last position. By Lemma 16
(with k = n), our algorithm sorts these permutations completely. So the proportion of
permutations that our algorithms sorts is at least 1

n
.

Proposition 25. For a deck of n cards, the proportion of all permutations that our

algorithm sorts completely is at most
e

n
.

Proof. If our algorithm sorts a permutation, then by Proposition 20, the indices behind the
1 must at least be in increasing order. Let us count the total number of such permutations.
For any k from 0 to n− 1, there are

(
n−1
k

)
choices of k cards to go behind the 1. For each

choice, there is one possible increasing order for these cards, and (n − k − 1)! possible
orders for the remaining cards (excluding the 1). Thus the total number of permutations
that our algorithm will sort is at most
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n−1∑
k=0

(
n− 1

k

)
(n− k − 1)!

=
n−1∑
k=0

(n− 1)!

k!(n− 1− k)!
(n− k − 1)!

=
n−1∑
k=0

(n− 1)!

k!

=(n− 1)!
n−1∑
k=0

1

k!
.

Therefore the proportion of all permutations that our algorithm sorts is at most

1

n!

[
(n− 1)!

n−1∑
k=0

1

k!

]
=

1

n

n−1∑
k=0

1

k!

It is well known that ex =
∞∑
k=0

xn

k!
, and for positive real numbers x, the sequence of partial

sums is clearly strictly increasing, so the partial sums are all less than ex. In particular,

the sequence of partial sums
∞∑
k=0

1

k!
converges from below to e1 = e. So the proportion of

all permutations that our algorithm sorts is less than
e

n
.

In particular, this upper bound tells us that the percentage of permutations sorted com-
pletely by our algorithm becomes vanishingly small as n grows large. We have written a
program to estimate the proportion of permutations sorted by our game for small n (the
code is provided in the Appendix A). The results for 2 6 n 6 24, as well as the upper
and lower bounds just determined, are shown in Figure 5. It appears that the proportion
of permutations sorted quickly becomes close to 1

n
.
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Figure 5: Proportion of Permutations Sorted

5 Average number of moves

We can ask: for a deck of n cards, considering all n! possible permutations, what is the
average length of the sequence of moves generated by our game? We have shown that the
longest sequence of moves has length 2n−1 − 1. It seems reasonable to suppose that the
average number of moves may also be given by a shifted exponential function. However,
this is not the case: the average numbers of moves for n = 1, 2, and 3 are 0, 1

2
, and 7

6

respectively, so if the average is av(n) = a · bn + c for some a, b, c ∈ R, then we can solve
for a, b, and c: 

0 = a · b1 + c
1
2

= a · b2 + c
7
6

= a · b3 + c

The solution to this system is: a = 9
8
, b = 4

3
, and c = −3

2
. Thus if the average number of

moves were a shifted exponential function of n, it would be av(n) = 9
8
·
(
4
3

)n− 3
2
. Therefore

we would have av(4) = 37
18

. But we can directly compute the average number of moves for
a deck of 4 cards; it is 50

4!
= 25

12
6= 37

18
. Therefore the average number of moves is not given

by a shifted exponential function.
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But perhaps it comes close: does the average number of moves as a function of n asymp-
totically approach an exponential function as n grows large? If so, then for large n, we
would have log(av(n + 1))− log(av(n)) ≈ log(a · ec(n+1))− log(a · ec·n) for some constants
a, c ∈ R. And

log(a · ec(n+1))− log(a · ec·n) = log(a) + log(ec(n+1))− log(a)− log(ec·n)

= log(ec(n+1))− log(ec·n)

= c(n + 1)− c · n
= c.

Therefore if the average number of moves asymptotically approaches an exponential
function, then log(av(n + 1)) − log(av(n)) will approach some constant c as n grows
large. In particular, if the average approaches some constant multiple of 2n = elog(2)·n

as n grows large, then log(av(n + 1)) − log(av(n)) will approach log 2. Conversely, if
log(av(n + 1))− log(av(n)) approaches log 2 as n grows large, then it can be shown that
av(n) will approach some constant multiple of 2n, provided that the sequence of error
terms [log(av(n + 1))− log(av(n))]− log 2 converges to zero sufficiently fast.

We have written a program to estimate the quantity log(av(n + 1)) − log(av(n)) for
small n; its output is given in Figure 6.

Figure 6: Asymptotic Behavior of log(av(n + 1))− log(av(n))

From this data, it seems likely that log(av(n + 1))− log(av(n)) may approach log 2 as n
grows large, and that av(n) may approach a constant multiple of 2n, but we have not yet
discovered a rigorous argument for this.

21



6 Repeated cards and infinite sequences of moves

Our proof that every sequence of moves terminates depended on every card appearing
precisely once in the deck. What would happen if we allowed for repeated cards and
missing cards? Would we get infinite loops of moves, and if so, under what conditions?
In order for the moves of the game to be defined, we stipulate that the face value of each
card cannot be greater than the total size of the deck. We also stipulate that the deck
must be of finite size (although some of the claims also hold for a deck of infinite size).

Lemma 26. If the deck does not contain a card labeled 1, then from any starting permu-
tation, the game will enter an infinite loop of moves.

Proof. If we start with some arbitrary permutation of the deck, and perform our sequence
of moves on it, at each stage the card in front of the deck will not be labeled 1, and we
can move it to the place in the deck corresponding to its number. Thus we can always
make another (nontrivial) move, and the sequence of moves cannot terminate. Hence by
Lemma 2, the sequence of moves enters an infinite loop (note: the proof of Lemma 2
depended only on the deck being of finite size, and not on the face values of any of the
cards).

Lemma 27. Given any permutation of the deck, starting from the top and working our
way down, if before we encounter a card labeled 1, we first encounter some (nonempty)
subset S of the deck such that every card in S has face value less than or equal to the
cardinality |S|, then the sequence of moves generated by this starting permutation will
enter an infinite loop.

Proof. In order for the game to end, we must have a card labeled 1 at the front of the
deck. In order for this to occur, we must move every card that is initially in front of the
first appearing 1 behind it. By assumption, the entire set S starts in front of the first
appearing 1. So until and unless some element of S moves behind it, the position of this
1 will be at least |S| + 1. As just stated every card s ∈ S initially starts in front of the
first appearing 1, and the face value of every such s ∈ S is at most |S|, so if any given s is
played, it cannot move to a position greater than |S|; hence it cannot move behind the 1.
Thus the position of the first appearing 1 will always be at least |S| + 1 > 1. Hence the
game never ends, and will enter an infinite sequence of (nontrivial) moves. By Lemma 2,
this is equivalent to the game entering an infinite loop.

Lemma 28. If the sequence of moves generated by a given starting permutation eventually
enters an infinite loop, then the set S of the cards that are played infinitely many times
fulfills the “S-criterion”: for each card s ∈ S, the face value of s is at most the cardinality
|S|.

Proof. Suppose we have a sequence of moves on a deck of cards that eventually enters an
infinite loop. Once the sequence of moves has entered this loop, we can divide the deck
into two sets: set S of cards that infinitely loop, and the set R of the remaining cards that
will not be played again. Suppose towards contradiction that s > |S| for some s in S.
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Then we have two cases. The first is trivial: if S is the whole deck, then we have violated
our starting assumption that the face value of each card is at most the size of the deck.
In the second case R is nonempty. So when s is played it will go to position s > |S|. Thus
there must be at least |S| cards in front of s immediately after it is played. Since there
are only |S| − 1 other cards in S, at least one of the |S| cards must be a card r ∈ R. But
s is played infinitely many times by assumption, so we must play it again, and in order
for that to happen, we must first play every card that is in front of it, including the card
r. But this violates our assumption that r will not be played again once the game has
entered its infinite loop. Hence by contradiction, s 6 |S| for all s ∈ S.

Lemma 29. Given any initial ordering of the deck, suppose that it has a subset S as
defined in the statement of Lemma 27. Then consider the first such S we encounter,
starting from the top of the deck and working our way down. If two such subsets exist (as
in the ordering 2, 3, 2, 1; which has subsets {2, 2} and {2, 3, 2} both fulfilling the given
criterion), then we take S to be the smallest such subset. Claim: S is now well-defined,
and cards in the deck that infinitely loop are precisely the set S.

Proof. Suppose towards contradiction that we have two distinct subsets S1 and S2 fulfilling
the given criteria (in particular |S1| = |S2|). Then certainly the two sets must have a
mutual last element, as we count from the top of the deck; otherwise (without loss of
generality) we would encounter S1 before S2 as we count from the top of the deck, and
S2 would then not fulfill the criteria outlined above. So S1 and S2 must share their last
card s`, and since they are distinct and of equal cardinality, each must have a card that
is not in the other: s1 ∈ S1 and s2 ∈ S2, but s1 6∈ S2 and s2 6∈ S1. Then

|S1 \ {s`} ∪ S2 \ {s`}| = |S1 \ {s`}|+ |S2 \ {s`}| − |S1 \ {s`} ∩ S2 \ {s`}|
= (|S1| − 1) + (|S2| − 1)− |S1 \ {s`} ∩ S2 \ {s`}|
= (2|S1| − 2)− |S1 \ {s`} ∩ S2 \ {s`}| since |S1| = |S2|
> (2|S1| − 2)− (|S1| − 2) since s1 and s2 are not in this intersection

= |S1|

Observe that the set |S1 \ {s`} ∪ S2 \ {s`}| is encountered in the deck (counting from the
top down) before either S1 or S2, since all its elements are in either S1 or S2, but it does
not contain their mutual last card, s`. Moreover, for every card s ∈ (S1 \{s`}∪S2 \{s`}),
we have s ∈ S1 or s ∈ S2, so by the definition of S1 and S2, we have s 6 |S1| = |S2|. But
as shown above, |S1| 6 |S1 \ {s`} ∪ S2 \ {s`}|; hence s 6 |S1 \ {s`} ∪ S2 \ {s`}|. Therefore
S1 \ {s`} ∪ S2 \ {s`} fulfills the properties of the set S, and is encountered in the deck
before S1 or S2, contradicting the definitions of S1 and S2. Therefore the set S as defined
above is well-defined.

Now we let S be as defined above, and attempt to show that every card in S must
be played at least once. If some card s in S is never played, then some subset A of the
cards in front of s in the initial ordering of the deck must never move behind s. In turn,
some set of cards B ⊆ A must be played infinitely many times (there are only finitely
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many cards in A, but we have just assumed that they remain in front of s for infinitely
many moves). However, by Lemma 28, the set of cards that infinitely loop must fulfill the
“S-criterion,” so B must fulfill the S-criterion. And observe that B comes before S in the
initial ordering of the deck (since s is behind all the cards of B in the initial ordering).
This contradicts our definition of S. Therefore every card s ∈ S must be played at least
once.

Moreover, when a card s ∈ S is played, it moves to position s, and it will never sub-
sequently move to a position with higher value: if another card is moved to a position
p > s, then the position of card s decreases by 1, but if a card is moved to a position p > s,
then the position of card s remains unchanged. So after each card in S is played, the
cards in S occupy the first |S| slots of the deck, and will remain in these slots indefinitely.
Thus the set S0 of cards that are played infinitely many times will be some subset of S (in
order for any other card to be played, it would first have to advance into the first |S| slots,
displacing a card from S). Moreover, if S0 is a proper subset of S, then by Lemma 28,
it must fulfill the S-criterion, contradiction our assumption that S has no proper subset
with this property. Thus the set of cards that infinitely loop are precisely the set S.

Conclusion

We have been able to explicitly characterize some of the behavior of this algorithm, in-
cluding the length and structure of the longest sequence of moves, the conditions under
which the game will enter an infinite sequence of moves when repeated cards are allowed,
and the recursive structure of parts ofs the directed graphs that we have used to represent
the game. However, we have been unable to exactly determine or even rigorously estimate
the average number of moves, and we have not yet found a useful complete characteriza-
tion of the permutations that will be sorted by our algorithm.

Future work could be done to place tighter bounds on the proportion of permutations
sorted completely by our algorithm; in particular, it seems likely that the upper bound of
e
n

could be improved substantially. It may also be possible to find an asymptotic formula
for the average number of moves, or perhaps even an exact formula.

Appendix A

Below is a C program that estimates the proportion of permutations sorted by our algo-
rithm:

1 // This program computes the proportion of permutations of a deck of //

2 // size n that are sent by our game to 1, 2, 3, ..., n. //

3

4 #include <stdio.h>

5 #include <stdlib.h>
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6 #include <time.h>

7

8

9 // Produces a randomly shuffled deck of n cards

10 int* makeDeck(int n, int* deck){

11 int i,j;

12 int temp;

13

14 for (i = 0; i < n; ++i){ // produces an ordered deck

15 deck[i] = i + 1;

16 }

17

18 for (i = n - 1; i > 0; i--){ // randomly shuffles the deck ,

19 j = rand() % (i + 1); // using the Fisher -Yates shuffle

20 temp = deck[i];

21 deck[i] = deck[j];

22 deck[j] = temp;

23 }

24 return deck;

25 }

26

27 int* oneMove(int n, int* deck){ // Performs a single move of

28 int i; // our game

29 int temp;

30

31 temp = deck [0];

32 for (i = 1; i < temp; i++){

33 deck[i - 1] = deck[i];

34 }

35 deck[temp - 1] = temp;

36

37 return deck;

38 }

39

40 // Determines if a given permutation is sorted by our game , returning //

41 // 1 if it is sorted and 0 otherwise //

42 int isSorted(int n, int* deck){

43

44 int i, sorted = 1;

45

46 makeDeck(n, deck); // produces a randomly ordered deck

47

48 while (deck [0] >1){ // keeps playing the game until 1

49 oneMove(n, deck); // is at the front of the deck

50 }

51

52 sorted = 1;

53 for(i = 0; i < n; i++){ // gives "sorted = 1" if the deck is

54 if(deck[i] != i+1){ // now in the order 1,2,...,n, and

55 sorted = 0; // sets "sorted = 0" otherwise

56 break;

57 }
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58 }

59 return sorted;

60 }

61

62

63 int main(){

64

65 int n = 0;

66 int iterations;

67 double count = 1, totalCount = 1;

68 double numberSorted = 0, proportion = 0;

69 char more = ’y’;

70

71 srand ( time(NULL) ); // seeds pseudorandom number

72 // generator function

73

74 printf("Enter the size of your deck: ");

75 scanf("%d", &n);

76

77 int deck[n];

78

79 while (more == ’y’){

80 printf("How many iterations would you like to perform \n(for

indefinitely many , enter any negative integer) ");

81 scanf("%d", &iterations);

82

83 for (count = 1; count <= iterations || iterations < 0; count ++){

84 numberSorted += isSorted(n, deck); // computes the

85 proportion = numberSorted / totalCount; // proportion of

86 // permutations

87 printf("%lf\n", proportion); // sorted by our game

88 totalCount ++;

89 }

90

91 printf("Continue? (enter y or n) ");

92 scanf(" %c", &more);

93 }

94

95 return 0;

96 }

Appendix B

Below is a C program that estimates the quantity log(av(n+ 1))− log(av(n)) for a given
n. Note: to compile this program, it is necessary to link to the math library by writing
“-lm” at the end of the compile statement (this library contains the natural log function).

1 // This program computes the quantity log(av(n+1)) - log(av(n)) //

2 // (the difference of logs of the average number of moves for //
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3 // consecutive deck sizes) //

4

5 #include <stdio.h>

6 #include <stdlib.h>

7 #include <time.h>

8 #include <math.h>

9

10

11 // Produces a randomly shuffled deck of n cards //

12 int* makeDeck(int n, int* deck){

13 int i, j;

14 int temp;

15

16 for (i = 0; i < n; ++i){ // produces an ordered deck

17 deck[i] = i + 1;

18 }

19

20 for (i = n - 1; i > 0; i--){ // randomly shuffles the deck ,

21 j = rand() % (i + 1); // using the Fisher -Yates shuffle

22 temp = deck[i];

23 deck[i] = deck[j];

24 deck[j] = temp;

25 }

26 return deck;

27 }

28

29

30 // Performs a single move of our game //

31 int* oneMove(int n, int* deck){

32 int i;

33 int temp;

34

35 temp = deck [0];

36 for (i = 1; i < temp; i++){

37 deck[i - 1] = deck[i];

38 }

39 deck[temp - 1] = temp;

40

41 return deck;

42 }

43

44 // Counts the number of moves in our game , starting with a random //

45 // permutation of n indices //

46 long long unsigned int countMoves(int n, int* deck){

47 long long unsigned int count;

48

49 makeDeck(n, deck); // produces a randomly

50 // ordered deck

51

52 for (count = 0; deck [0] > 1; count ++){ // keeps playing the game

53 oneMove(n, deck); // until 1 is at the front

54 } // of the deck
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55

56 return count;

57 }

58

59 // Computes the difference of the logs of two given numbers //

60 double logDiff(double avg_1 , double avg_2){

61

62 double constant = log(avg_2) - log(avg_1);

63 return constant;

64 }

65

66 int main(){

67

68 int n = 0;

69 int iterations;

70 double count = 1, totalCount = 1;

71 double avgBig = 0, avgLittle = 0;

72 char more = ’y’;

73

74 srand(time(NULL)); // seeds pseudorandom number

75 // generator function

76

77 printf("Enter the size of your deck: ");

78 scanf("%d", &n);

79

80 int littleDeck[n];

81 int bigDeck[n+1];

82

83 while (more == ’y’){

84 printf("How many iterations would you like to perform \n(for

indefinitely many , enter any negative integer) ");

85 scanf("%d", &iterations);

86

87 // Iteratively computes the average number of moves in our //

88 // game for decks of size n and n+1, at each step computing //

89 // and printing the difference of the natural logs of these //

90 // two averages //

91

92 for (count = 1; count <= iterations || iterations < 0; count ++){

93 avgBig = (( totalCount - 1) / totalCount) * avgBig

94 + (countMoves(n+1, bigDeck) / (totalCount + 1));

95 avgLittle = (( totalCount - 1) / totalCount) * avgLittle

96 + (countMoves(n, littleDeck) / (totalCount + 1));

97

98 printf("%lf\n", logDiff(avgLittle , avgBig));

99 totalCount ++;

100 }

101

102 printf("Continue? (enter y or n) ");

103 scanf(" %c", &more);

104 }

105
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106 return 0;

107 }
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