
Cut-Generating Functions for Integer Linear Programming

By: Masumi Sugiyama

Faculty advisor: Matthias Köppe

Senior thesis

June 2015

UNIVERSITY OF CALIFORNIA, DAVIS

COLLEGE OF LETTERS AND SCIENCE

DEPARTMENT OF MATHEMATICS

Contents

Abstract 1

1 Introduction 2
1.1 Generalized Infinite Group Relaxation Problem 2

2 Minimal Valid Functions 3
2.1 Generalized Case . 4
2.2 Positive Integer Case . 7

3 Quasi-Periodic Functions 8
3.1 Minimal and Strongly Minimal Valid Functions 8
3.2 Decomposition of Quasi-Periodic Functions 9
3.3 Sage Code . 12

3.3.1 Construction of a Quasi-Periodic Function 12
3.3.2 Minimality/Strong Minimality Test 13

4 Group and Lifting functions 13
4.1 The conversion between group and lifting functions 13
4.2 CPL-3 function . 15

4.2.1 Extreme Valid Functions . 16
4.3 Sage Code . 17

4.3.1 Conversions between Group and Lifting Functions 17
4.3.2 Construction of a CPL-3 function . 18
4.3.3 Extreme Functions in the Literature 18

5 Parametric Search 18
5.1 Maple Experiment . 19

5.1.1 Number of parameters vs. CPU-time for a set of unsimplified inequality 19
5.1.2 Number of parameters vs. CPU-time for a set of simplified inequalities 21
5.1.3 Priority of parameters vs. CPU-time 21

5.2 Parameter Regions . 22
5.2.1 One Parameter Case . 22
5.2.2 Two Parameters Case . 23

5.3 Sage Code . 24

6 Conclusions 25

Acknowledgment 26

References 27

Abstract

Linear programming (LP) is an optimization method to achieve the best outcome subject to
linear constraints. When the unknown variables are required to be integers, one method of
obtaining integer solutions involves refining the feasible regions using general-purpose cut-
ting planes. The coefficients of a cutting plane are given by a valid function. In this thesis,
the development of extending an existing software for valid functions in Gomory–Johnson’s
model to a more general model introduced recently by Yildiz and Cornuejols is presented.
The generalized model for positive integers case is studied by using quasi-periodic functions.
Developing a computational method of constructing quasi-periodic functions allows investi-
gation of the conversion between group and lifting functions. We focus on the continuous
piecewise lifting functions (CPL3 functions) and their group functions. A computational
method for finding the exact parameter region of valid functions is also investigated. Dif-
ferent experiments of solving a set of inequalities using Maple software interfaced in Sage
software are discussed.

1

1 Introduction

The development of linear programming is – in my opinion – the most important
contribution of the mathematics of the 20th century to the solution of practical
problems arising in industry and commerce.
– Martin Grötschel, 2006 [1].

Optimization problems arise in many situations in everyday life. For example, business
applications include maximizing the profit and minimizing the total production cost in a
factory. In mathematics, linear programming (LP) is an optimization method to achieve
the best outcome subject to linear constraints. If, in addition, the unknown variables are
required to be integers, then it is called integer linear programming (ILP). LP is a powerful
framework for describing and solving optimization problems, and originated from George
Dantzig’s work on the military’s program-planning process. In 1947, the first algorithm for
solving LP problem called the simplex method was proposed by Dantzig. This algorithm
remains one of the most efficient and most reliable methods for solving LP problems at
this date. However, the simplex algorithm cannot directly handle the integrality conditions
of ILP problems. One method of obtaining solutions to such problems involves iteratively
refining the feasible regions using general-purpose cutting planes. By removing undesirable
fractional solutions, cutting planes tighten the formulation but leave the feasible solutions to
the original ILP problems. The coefficients of a cutting plane are given by a valid function
which is hierarchized on the strength of cutting planes.

1.1 Generalized Infinite Group Relaxation Problem

Let us consider the optimal simplex tableau of a linear integer program

max{c · x|Ax = b, x ∈ Zm+}.

It takes the form

xB = A−1
B b+ (−A−1

B AN)xN , xB ∈ ZB+, xN ∈ ZN+

where the subscripts B and N denote the basic and non-basic parts of the solution x and
matrix A, respectively.

We select n rows of the tableau, corresponding to n basic variables xi for i ∈ B. The tableau
corresponding to these n rows is of the following form

x = f +
∑
j∈N

rjxj, x ∈ Zn+, xj ∈ Z+ (1)

where rj ∈ Rn is the vector of coefficients of decision variable xj and f ∈ Rn
+ is the vector of

constant values of the original linear constraints.

By relaxing xB ∈ ZB+ to xB ∈ ZB, we obtain Gomory–Johnson’s group relaxation:

xB = A−1
B b+ (−A−1

B AN)xN , xB ∈ ZB, xN ∈ ZN+ .

2

Now, n rows of the tableau is of the following form

x = f +
∑
j∈N

rjxj, x ∈ Zn, xj ∈ Z+.

We re-write non-basic variables xj as a function of r which we write as yr such that y : Rn →
Z+. The function y has finite support which means that the infinite-dimensional vector has
a finite number of nonzero entries. By introducing infinitely many new variables yr for every
r ∈ Rn, we obtain Gomory–Johnson’s infinite group relaxation:

x = f +
∑
r∈Rn

ryr, x ∈ Zn, yr ∈ Z+. (2)

If we assume f ∈ Rn \ Z, then the basic solution x = f, y = 0, is not feasible. Therefore,
we would like to generate cutting planes that cut off this infeasible solution. A function
π : Rn → R is a valid function for (2) if a valid inequality

∑
r∈Rn π(r)yr ≥ 1 with π ≥ 0

holds for any feasible solutions (x, y) to (2). The valid function gives the coefficients of a
cutting plane for (2) to cut off the infeasible solution.
Instead of restricting a valid function to be nonnegative, Yildiz and Cornuéjols considered
the generalization of the Gomory–Johnson infinite group relaxation which allows a valid
function to take all real values between −∞ and ∞. The generalization of the Gomory–
Johnson infinite group relaxation is defined as

x = f +
∑
r∈Rn

ryr, (3)

x ∈ S,

yr ∈ Z+,∀r ∈ Rn,

y has finite support,

where S is an non-empty subset of Rn and f ∈ Rn
+.

Definition 1 (Valid function for the generalized case). A function π: Rn → R is a valid
function for (3) if the valid inequality

∑
r∈Rn π(r)yr ≥ 1 holds for any feasible solutions (x, y)

to (3).

Valid functions are hierarchized on the strength of the corresponding valid inequalities. Min-
imal valid functions are considered to be stronger than non-minimal valid functions. In the
next section, we will look at the characterization of minimal valid functions for (3).

2 Minimal Valid Functions

Definition 2 (Minimal valid function). A valid function π is minimal if there is no valid
function π′ distinct from π such that π′(r) ≤ π(r) for every r ∈ Rn.

3

2.1 Generalized Case

The main proofs of the following Lemma 3, 5, 7, and Theorem 8 are from the paper ([5]),
and more detailed derivations were added to the original proofs.

Let Z++ be the set of strictly positive integers.

Lemma 3 ([5]). If π is a minimal valid function for (3), then π(0) = 0.

Proof. Suppose π(0) < 0. Let (x̄, ȳ) be a feasible solution of (3). Then there exists some
k̄ ∈ Z++ such that π(0)k̄ < 1−

∑
r∈Rn\{0} π(r)ȳr since the right hand-side of the inequality

is a constant.

Define ỹ as ỹ0 = k̄ and ỹr = ȳr for all r 6= 0. Then (x̄, ỹ) is a feasible solution of (3) since

f + {0 · (ỹ0) +
∑

r∈Rn\{0} rỹr} = f + {0 · (ȳ0) +
∑

r∈Rn\{0} rȳr} = x.

This contradicts the assumption that π is a valid function since∑
r∈Rn π(r)ỹr = π(0)k̄ +

∑
r∈Rn\{0} π(r)ỹr < 1−

∑
r∈Rn\{0} π(r)ȳr +

∑
r∈Rn\{0} π(r)ỹr = 1.

Hence, π(0) ≥ 0.

Let (x̄, ȳ) be a feasible solution of (3). Define ỹ as ỹ0 = 0 and ỹr = ȳr for every r 6= 0. Then
as before (x̄, ỹ) is a feasible solution of (3). Now define the function π′ as π′(0) = 0 and
π′(r) = π(r) for every r 6= 0. Since π′(0) = ỹ0 = 0,∑

r∈Rn π
′(r)ȳr = π′(0)ȳ0 +

∑
r∈Rn\{0} π

′(r)ȳr = π(0)ỹ0 +
∑

r∈Rn\{0} π(r)ỹr =
∑

r∈Rn π(r)ỹr.

Since π is a valid function,
∑

r∈Rn π
′(r)ȳr =

∑
r∈Rn π(r)ỹr ≥ 1. This implies that π′ is also a

valid function for (3). Since π is minimal and π′ ≤ π, we have π′ = π. Hence, π(0) = 0.

Definition 4 (Subadditivity). A function π is subadditive if π(r1 + r2) ≤ π(r1) + π(r2) for
r1, r2 ∈ Rn.

Lemma 5 ([5]). If π is a minimal valid function for (3), then π is subadditive.

Proof. Let r1, r2 ∈ Rn. When r1 = 0 or r2 = 0, π(r1 + r2) = π(r1) + π(r2) by the Lemma 3.

Assume that r1 6= 0 and r2 6= 0. Define the function π′ as π′(r1 + r2) = π(r1) + π(r2) and
π′(r) = π(r) for r 6= r1 + r2. Let (x̄, ȳ) be any feasible solution to (3).
Define ỹ as ỹr1 = ȳr1 + ȳr1+r2 , ỹr2 = ȳr2 + ȳr1+r2 , ỹr1+r2 = 0, and ỹr = ȳr otherwise.
Then, ∑

r∈Rn rỹr = r1ỹr1 + r2ỹr2 + (r1 + r2)ỹr1+r2 +
∑

r∈Rn\{r1,r2,r1+r2} rỹr

= r1(ȳr1 + ȳr1+r2) + r2(ȳr2 + ȳr1+r2) +
∑

r∈Rn\{r1,r2,r1+r2} rỹr

= r1ȳr1 + r2ȳr2 + (r1 + r2)ȳr1+r2 +
∑

r∈Rn\{r1,r2,r1+r2} rȳr

=
∑

r∈Rn rȳr.

4

Therefore, (x̄, ỹ) is a feasible solution to (3). Furthermore, by similar computation,∑
r∈Rn π

′(r)ȳr =
∑

r∈Rn π(r)ỹr. Since π is a valid function, we have
∑

r∈Rn π
′(r)ȳr =∑

r∈Rn π(r)ỹr ≥ 1. This implies that π′ is a valid function. Since π is minimal, it follows
that π(r1 + r2) ≤ π′(r1 + r2) = π(r1) + π(r2).

Definition 6 (Generalized symmetry condition). A function π : Rn → R satisfies the
generalized symmetry condition if

π(r) = sup
x,k

{
1

k
(1− π(x− f − kr)) : x ∈ S, k ∈ Z++

}
∀r ∈ Rn. (4)

Lemma 7 ([5]). If π is a minimal valid function for (3), then it satisfies the generalized
symmetry condition.

Proof. Let r̄ ∈ Rn. For any x̄ ∈ S and k̄ ∈ Z++, define ȳ as ȳr̄ = k̄, ȳx̄−f−k̄r̄ = 1, and ȳr = 0
otherwise.
Then,

f +
∑

r∈Rn rȳr = f + [r̄ȳr̄ + (x̄− f − k̄r̄)ȳx̄−f−k̄r̄ +
∑

r∈Rn\{r̄,x̄−f−k̄r̄} rȳr]

= f + r̄k̄ + (x̄− f − k̄r̄)
= x̄.

Therefore, (x̄, ȳ) is a feasible solution to (3). Since π is a valid function,∑
r∈Rn π(r)ȳr = π(r̄)ȳr̄ + π(x̄− f − k̄r̄)ȳx̄−f−k̄r̄ + 0 ≥ 1

π(r̄) ≥ 1
k̄
(1− π(x̄− f − k̄r̄)).

The definition of supremum implies that π(r̄) ≥ sup{ 1
k
(1−π(x− f −kr̄)) : x ∈ S, k ∈ Z++}.

Since π is a real-valued function, the value on the right hand side is bounded from above.

Let the function ρ : Rn → R be defined as ρ(r) = sup{ 1
k
(1−π(x−f−kr)) : x ∈ S, k ∈ Z++}

for all r ∈ Rn. Suppose that π does not satisfy the generalized symmetry condition. Then
there exists r̃ ∈ Rn such that π(r̃) > ρ(r̃). Define the function π′ as π′(r̃) = ρ(r̃) and
π′(r) = π(r) for all r 6= r̃. Consider any feasible solution (x̃, ỹ) to (3).

Case 1: If ỹr̃ = 0,∑
r∈Rn π

′(r)ỹr = π′(r̃)ỹr̃ +
∑

r∈Rn\{r̃} π
′(r)ỹr = π(r̃)ỹr̃ +

∑
r∈Rn\{r̃} π(r)ỹr =

∑
r∈Rn π(r)ỹr.

Since π is a valid function,
∑

r∈Rn π
′(r)ỹr =

∑
r∈Rn π(r)ỹr ≥ 1.

Case 2: If ỹr̃ ≥ 1,

π′(r̃)ỹr̃ +
∑

r∈Rn\{r̃} π
′(r)ỹr ≥ 1− π(x̃− f − ỹr̃r̃) +

∑
r∈Rn\{r̃} π(r)ỹr ≥ 1.

The first inequality is obtained from π′(r̃) = ρ(r̃) ≥ 1
ỹr̃

(1− π(x̃− f − ỹr̃r̃)) by setting k = ỹr̃
and x = x̃. Since ρ(r̃) is the supremum of the set, the right-hand side of the equation is less

5

than or equal to ρ(r̃) for the particular choice of k ∈ Z++ and x ∈ S. The second inequality
is obtained from the subadditivity of π and

∑
r∈Rn\{r̃} rỹr = x̃− f − ỹr̃r̃. Then,

π(x̃− f − ỹr̃r̃) = π(
∑

r∈Rn\{r̃} rỹr) ≤
∑

r∈Rn\{r̃} π(r)ỹr.

Hence, 1− π(x̃− f − ỹr̃r̃) +
∑

r∈Rn\{r̃} π(r)ỹr ≥ 1.

Therefore, π′ is a valid function for (3). Since π′(r̃) ≤ π(r̃) from π′(r̃) = ρ(r̃), π(r̃) > ρ(r̃)
and π′(r) = π(r) for all r 6= r̃, this is a contradiction to the minimality of π. Thus, π satisfies
the generalized symmetry condition.

The results of Lemma 3, Lemma 5, and Lemma 7 lead to the following Theorem.

Theorem 8 ([5]). Let π : Rn → R. The function π is a minimal valid function for (3) if
and only if π(0) = 0, π is subadditive and satisfies the generalized symmetry condition.

Proof. Assume that π(0) = 0, π is subadditive and satisfies the generalized symmetry con-
dition. Since π(0) = 0, the generalized symmetry condition implies

0 = sup
x,k
{ 1
k
(1− π(x− f)) : x ∈ S, k ∈ Z++}.

By considering x = x̄ and k = 1,

0 ≥ 1− π(x̄− f).

Thus π(x̄− f) ≥ 1 for every x̄ ∈ S.
Any feasible solution (x̄, ȳ) for (3) satisfies

∑
r∈Rn rȳr = x̄− f , and we have∑

r∈Rn π(r)ȳr ≥ π(
∑

r∈Rn rȳr) = π(x̄− f) ≥ 1.

Thus, π is a valid function. The first inequality is obtained by using the subadditivity of π.

Assume by contradiction that π is not minimal. Then there exists a valid function π′ such
that π′ ≤ π and π′(r̄) < π(r̄) for some r̄ ∈ Rn. Let ε = π(r̄) − π′(r̄). Because π satisfies
the generalized symmetry condition, there exist k̄ ∈ Z++ and x̄ ∈ S such that π(r̄) − ε

2
≤

1
k̄
(1− π(x̄− f − k̄r̄). Using π′ ≤ π and ε = π(r̄)− π′(r̄), we obtain

1 ≥ k̄(π(r̄)− ε
2
) + π(x̄− f − k̄r̄)

= k̄(π′(r̄) + ε− ε
2
) + π(x̄− f − k̄r̄)

≥ k̄(π′(r̄) + ε
2
) + π′(x̄− f − k̄r̄).

This implies that k̄π′(r̄) + π′(x̄ − f − k̄r̄) < 1. This contradicts the hypothesis that π′ is a
valid function. Since (x̄, ȳ), where ȳ is defined as ȳr̄ = k̄, ȳx̄−f−k̄r̄ = 1, and ȳr = 0 otherwise,
is a feasible to (3),∑

r∈Rn π
′(r)ȳr = π′(r̄)ȳr̄ + π′(x̄− f − k̄r̄)ȳx̄−f−k̄r̄ +

∑
r∈Rn\{r̄,x̄−f−k̄r̄} π

′(r)ȳr

= π′(r̄)k̄ + π′(x̄− f − k̄r̄)
< 1.

Thus, π is minimal.

6

2.2 Positive Integer Case

The case S = Zn+ is of particular interest since it is closely related to n row of the tableau
of an integer linear program (1) described earlier. In this paper, we are interested in one
dimensional case where n = 1 and S = Z+.

Assumption 1 When S = Z+, assume that f ∈ R \ Z+.

The generalization of Gomory and Johnson model in this setting is of the following form.

x = f +
∑
r∈R

ryr, (5)

x ∈ Z+,

yr ∈ Z+,∀r ∈ R,

y has finite support,
where S = Z+ and f ∈ R+.

Theorem 8, the characterization of minimal valid functions, yields that if a function π : R→
R is a minimal valid function for (5), it satisfies π(0) = 0, π is subadditive, and π satisfies
the generalized symmetry condition (4).

The generalized symmetry condition for the case of n = 1 and S = Z+ is defined as

π(r) = sup
x,k

{
1

k
(1− π(x− f − kr)) : x ∈ Z+, k ∈ Z++

}
∀r ∈ R.

The generalized symmetry condition can also be satisfied using different conditions.

Definition 9 (Nondecreasing with respect to S). A function π : Rn → R is nondecreasing
with respect to S if π(r) ≤ π(r + w) for all r ∈ Rn and w ∈ S.

Proposition 10 ([5]). The function π : R→ R satisfies the generalized symmetry condition
if and only if π is nondecreasing with respect to Z+ and satisfies the condition

π(r) = sup
k

{
1

k
(1− π(−f − kr)) : k ∈ Z++

}
∀r ∈ R. (6)

By satisfying the generalized symmetry condition using Proposition 10, the characterization
of minimal valid functions can be described in the following Theorem.

Theorem 11 ([5]). Let S = Z+. Let π : R→ R. The function π is a minimal valid function
for (5) if and only if π(0) = 0, π is subadditive, nondecreasing with respect to S, and satisfies
(6).

The following proposition gives the condition for a function π to be nondecreasing with
respect to Z+.

7

Proposition 12 ([5]). Let π : R → R be a subadditive function such that π(0) = 0. The
function π is nondecreasing with respect to Z+ if and only if π(−1) ≤ 0.

Theorem 11 with Proposition 12 lead to the following simpler result of the characterization
of minimal valid function for S = Z+. The result is that a function π is a minimal valid
function (5) if and only if π(0) = 0, π(−1) ≤ 0, π is subadditive and satisfies (6).

3 Quasi-Periodic Functions

Definition 13 (Quasi-periodic). A continuous function π : R → R is quasi-periodic with
period d ∈ R+ if there exists c ∈ R such that π(r+ d) = π(r) + c for all r ∈ R. See Figure 1.

Figure 1: Continuous quasi-periodic function π with period d = 3
2
.1

3.1 Minimal and Strongly Minimal Valid Functions

Definition 14 (Symmetric). A function π : R→ R is symmetric if π(r)+π(−f−r) = π(−f)
for all r ∈ R.

Theorem 15 ([5]). Let S = Z+ and f satisfy Assumption 1. Let π : R → R be a quasi-
periodic function with period d. The function is a minimal valid function for (3) if and only
if π(0) = 0, π(−1) ≤ 0, π is subadditive and symmetric. See Figure 2.

Definition of ‘imply’ in strongly minimal valid functions

Let α(x − f) ≥ α0 be a valid inequality for S = Z+. A valid function π′ for (5) implies
another valid function π for (5) if there exists a valid inequality α(x − f) ≥ α0 for S and
β ≥ 0 such that π(r) ≥ αr + βπ′(r) and α0 + β ≥ 1.

The above definition makes sense. Let f +
∑

r∈R ryr = x for any (x, y) feasible to (5). Then,
x − f =

∑
r∈R ryr and

∑
r∈R αryr ≥ α0. If

∑
r∈R π

′(r)yr ≥ 1 is a valid inequality for (5),
then

∑
r∈R π(r)yr ≥

∑
r∈R αryr + β

∑
r∈R π

′(r)yr ≥ α0 + β ≥ 1 is also a valid inequality for
(5). The first and second inequalities come from the definition of imply.

1q = PiecewiseQuasiPeriodic([[(0,1/2), FastLinearFunction(3,0),[(1/2,3/2),FastLinearFunction(-1,2)]])
2q = PiecewiseQuasiPeriodic([[(0,1), FastLinearFunction(3,0)],[(1,4/3), FastLinearFunction(-3,6)]])

8

Figure 2: Minimal quasi-periodic function π with period d = 4
3
.2

Definition 16 (Strongly minimal valid function). A valid function π is strongly minimal if
there does not exist a valid function π′ distinct from π that implies π. See Figure 3.

Figure 3: Strongly minimal quasi-periodic function π with period d = 3
2
.3

Note that a strongly minimal valid function π is minimal. This follows from the definition
above. By taking α = 0, α0 = 0, and β = 1, the definition says that there does not exist a
valid function π′ distinct from π such that π(r) ≥ π′(r) for all r ∈ R. Hence, π is minimal.
With the fact that strongly minimal valid functions are minimal, the following Theorem
gives a simpler way of defining strongly minimal valid functions.

Theorem 17 ([5]). Let S = Z+ and f satisfy Assumption 1. Let π : R→ R. The function
π is a strongly minimal cut-generating function for (5) if and only if π is a minimal valid
function for (5), π(−f) = 1 and π(−1) = 0. See Figure 3.

3.2 Decomposition of Quasi-Periodic Functions

Let π̃ : R→ R be a continuous quasi-periodic function with period d. Then, π̃ can be written
as π̃(r) = π(r) + φ(r) where π : R→ R is a periodic function with period d and φ : R→ R
is a linear function with its slope π̃(d)−π̃(0)

d
.

3q = PiecewiseQuasiPeriodic([[(0,1), FastLinearFunction(2,0)],[(1,3/2),FastLinearFunction(-2,4)]])

9

(a) Linear function.4 (b) Periodic function.5

Figure 4: Decomposition of Figure 1

Assumption 2: We assume that the continuous quasi-periodic function takes the value zero
at the origin, i.e.,π̃(0) = 0.

From Assumption 2, we have φ(r) = αr with α = π̃(d)
d

.
New claim 1: The decomposition of a continuous quasi-periodic function is unique.

Proof. Let π̃(r) = π(r) + φ(r) be a quasi-periodic function where π(r) is a periodic function
and φ(r) is a linear function. Since π(r) is periodic, it must have the same values at r = 0
and r = d such that π(0) = π(d) = 0 from Assumption 2. Then, the linear function φ(r)
must have the points such that (0, π̃(0) − π(0)) = (0, 0) and (d, π̃(d) − π(d)) = (d, π̃(r)).

Therefore, the function has a slope π̃(d)−π(d)−π̃(0)−π(0)
d−0

= π̃(d)
d

. Since the slope depends only on
a value of π̃, there exists a unique linear function going through the origin associated with
a quasi-periodic function. This implies that there exits a unique periodic function. Hence,
the decomposition of a quasi-periodic function is unique.

Definition 18 (Normalized periodic function). Let π : R → R be a periodic function with
period d. A periodic function π′ : R→ R is a normalized periodic function of π if and only
if π′(r′) = π(dr′)

c
where r′ = r

d
and c ∈ R+ is the value of π(−f).

New claim 2.1: The normalized periodic function π′ is subadditive if and only if the periodic
function π is subadditive.

Proof. Assume that the normalized periodic function π′ is subadditive.
Then, π′(r′1 + r′2) ≤ π′(r′1) + π′(r′2) holds for every r′1, r

′
2 ∈ R.

π′(r′1 + r′2) ≤ π′(r′1) + π′(r′2)

⇐⇒
π(dr′1 + dr′2)

c
≤ π(dr′1)

c
+
π(dr′2)

c
⇐⇒

π(r1 + r2) ≤ π(r1) + π(r2).

4q.linear term
5q.periodic term

10

Since r′1, r
′
2 are arbitrary, this implies that r1, r2 are also arbitrary.

Hence, π(r1 + r2) ≤ π(r1) + π(r2) holds for all r1, r2 ∈ R, and the periodic function π is
subadditive.

New claim 2.2: The normalized periodic function π′ is not subadditive if and only if the
periodic function π is not subadditive.

Proof. (⇒) Assume by contraposition that the periodic function π is subadditive. From
Claim 2, we know that the normalized periodic function π′ is subadditive. Hence, if π′ is not
subadditive, then π is not subadditive.
(⇐) Similarly from Claim 2 that if π is not subadditive, then π′ is not subadditive.

New claim 3.1: The quasi-periodic function π̃ is subadditive if and only if the normalized
periodic function π′ is subadditive.

Proof. Assume that the normalized periodic function π′ is subadditive. From the above
Claim 2, we know that the assumption implies that the periodic function π is subadditive.
Then, π(r1 + r2) ≤ π(r1) + π(r2) holds for all r1, r2 ∈ R.
Let φ be the linear function from the quasi-periodic function π̃ such that φ = αr.

π(r1 + r2) ≤ π(r1) + π(r2)

⇐⇒
π(r1 + r2) + α(r1 + r2) ≤ π(r1) + αr1 + π(r2) + αr2

⇐⇒
π̃(r1 + r2) ≤ π̃(r1) + π̃(r2).

Since r1, r2 are arbitrary, π̃(r1 + r2) ≤ π̃(r1) + π̃(r2) holds for every r1, r2 ∈ R. Hence, the
quasi-periodic function π̃ is subadditive.

New Claim 3.2: The quasi-periodic function π̃ is not subadditive if and only if the normal-
ized periodic function π′ is not subadditive.

Proof. (⇒) Assume by contraposition that the normalized periodic function π′ is subadditive.
From Claim 3, we know that the quasi-periodic function π̃ is subadditive. Hence, if π̃ is not
subadditive, then π′ is not subadditive.
(⇐) Similarly from Claim 3 that if π′ is not subadditive, then π̃ is not subadditive.

As a conclusion of Claim 2.1-3.2, testing subadditivity of a normalized periodic function is
sufficient to test subadditivity of a quasi-periodic function.

New claim 4: The quasi-periodic function π̃(r) is symmetric if and only if the normalized
periodic function π′(r′) is symmetric.

11

Proof. Assume that the normalized periodic function π′(r′) is symmetric.

π′(r′) + π′(−f ′ − r′) = π′(−f ′)
⇐⇒

π(dr′)

c
+
π(−df ′ − dr′)

c
=
π(−df ′)

c
⇐⇒

π(r) + π(−f − r) = π(−f)

⇐⇒
π(r) + φ(r) + π(−f − r) + φ(−f − r) = π(−f) + φ(−f).

Since π(−f) = π̃(−f)− φ(−f), the above equation becomes

π̃(r) + π̃(−f − r) = π̃(−f).

Since r ∈ R is arbitrary, the quasi-periodic function π̃(r) is symmetric.

New claim 4.1: The quasi-periodic function π̃(r) is not symmetric if and only if the nor-
malized periodic function π′(r′) is not symmetric.

Proof. (⇒) Assume by contraposition that the normalized periodic function π′ is symmetric.
From Claim 4, we know that the quasi-periodic function π̃ is symmetric. Hence, if π̃ is not
symmetric, then π′ is not symmetric.
(⇐) Similarly from Claim 4 that if π′ is not symmetric, then π̃ is not symmetric.

Therefore, verifying if a normalized periodic function is symmetric is sufficient to test if a
quasi-periodic function is symmetric.

3.3 Sage Code

3.3.1 Construction of a Quasi-Periodic Function

The class function called ‘PiecewiseQuasiPeriodic’ constructs a continuous quasi-periodic
function from a list of (interval,function) pairs.

‘ init ()’ assigns an object with its period, its linear and periodic terms decomposed from
the quasi-periodic function.

‘ call ()’ evaluates a value of the quasi-periodic function at x.

1. If x is in the interval which is defined from the list of pairs, the function is evaluated
at x.

2. If x is outside of the interval which is defined from the list of pairs, x is shifted to an
appropriate point in the interval. The linear and periodic terms decomposed from the
function are evaluated at the shifted x. A value of the quasi-periodic function at x is
the sum of these values with the appropriate factor.

12

‘normalized periodic function’ normalizes a periodic term decomposed from the quasi-
periodic function. Break-points are shifted in [0, 1] and function values are normalized in
the way that the difference of the maximum and minimum values is 1.

‘plot()’ plots the quasi-periodic function on a given interval.

1. If the minimum value of x is not given or quasiperiodic extension is False, the
minimum value of x is set to zero. If the maximum value of x is not given or
quasiperiodic extension is False, the maximum value of x is set to the sum of the
minimum value of x and the period of the function.

2. By computing break-points and function values of the first repetition on the given
interval from the left, the quasi-periodic function will be plotted with appropriate
increases in break-points and function values at each repetition until break-points reach
the maximal values of x.

3.3.2 Minimality/Strong Minimality Test

Assume that S = Z+ and f satisfies Assumption 1. Let π : R → R be a continuous quasi-
periodic function.

‘quasiperiodic minimality test’ tests if the quasi-periodic function π is minimal.

1. π(0) = 0, π(−1) ≤ 0 and π(−f) = 1 are checked using the ‘ call ()’ method de-
fined the class ‘PiecewiseQuasiPeriodic.’ The condition π(−f) = 1 comes from the
symmetric condition with r = 0.

2. The conditions for subadditive and symmetric are checked using the normalized peri-
odic function decomposed from the quasi-periodic function.

‘quasiperiodic strong minimality test’ tests if the quasi-periodic function π is strongly min-
imal.

1. π(−1) = 0 are checked using the ‘ call ()’ method defined the class ‘Piecewise-
QuasiPeriodic.’

2. Minimality of π is checked using the function ‘quasiperiodic minimality test’. The
condition π(−f) = 1 is also checked in the function.

4 Group and Lifting functions

4.1 The conversion between group and lifting functions

Group and lifting functions appear in the two different papers ([4] and [2]). In the paper
written by Dey and Richard, they are called group-space representation and lifting-space
representation, respectively. In the paper written by Miller, Li, and Richard, group and
lifting functions are called group representation and standard representation, respectively.

13

Definition 19 (Lifting function). Let r, f ∈ [0, 1). Given a valid function π : R → R, the
lifting function of φ : R→ R is defined as φ(r) = r − f · π(r). See Figure 5.

Figure 5: Lifting function φ.6

Definition 20 (Superadditive). A function π : R → R is superadditive if π(r1 + r2) ≥
π(r1) + π(r2) for all r1, r2 ∈ R.

Definition 21 (Group function). Let r, f ∈ [0, 1). Given a superadditive lifting function

φ : R→ R, the group function π : R→ R is defined as π(r) = r−φ(r)
f

. See Figure 6.

Figure 6: Group function π with f = 1
7
.7

Group Functions with Multiple f Values

When there are more than one possible f values in a group function, different super-additive
lifting functions are obtained from the group function with a given f value by the conversion.
Figure 7 shows a group function with two possible f values. Figure 8a and 8b show two
different lifting functions corresponding to the conversion from the group function with the
specific f values. When the opposite conversion (from lifting functions to group functions)
is performed, however, it may not give back the original group function depending on values

6phi = superadditive lifting function from group function(mlr cpl3 d 3 slope(1/7, 1/7))
7f n = group f unction f rom superadditive lif ting f unction(cpl3 f unction(1/7, 1/7, 1/4, 1/12))
8h = multiplicative homomorphism(gmic(f = 4/5), 2)

14

Figure 7: Group function π with f = 2
5

and 9
10

.8

(a) f = 2
5 .

9 (b) f = 9
10 .

10

Figure 8: Lifting function φ from Figure 7 with two different f .

of f chosen. For instance, the conversion from Figure 8a (obtained with f = 2
5
) to a group

function with f = 9
10

gives a group function that takes the function value 4
9
, instead of the

function value 1, at f = 2
5

and 9
10

. On the other hand, the original group function will be
obtained by choosing f = 2

5
. This suggests that it is necessary to choose a proper f to obtain

a desirable group function.

4.2 CPL-3 function

In Miller, Li, and Richard’s paper ([4]), they focus on continuous piecewise linear lifting
functions (CPLn functions). In this section, we will look at the case for n = 3, CPL3

functions.

Definition 22 (CPL3 function). Let f ∈ (0, 1). Let z = (z1, z2, z3) ∈ R3
+ and θ =

(θ1, θ2, θ3) ∈ R3
+ be such that

∑3
j=1 zj = 1−f

2
and

∑3
j=1 θj = 1

2
. Then, a continuous piecewise

lifting function, a CPL3 function φ(u), is defined as

φ(r) =

0, if r ∈ [0, f]∑i−1

j=1 θi + θi
zi

(r − f −
∑i−1

j=1 zi), if r ∈ (f +
∑i−1

j=1 zi, f +
∑i

j=1 zi]

1−
∑i

j=1 θi + θi
zi

(r − 1 +
∑i

j=1 zi), if r ∈ (1−
∑i

j=1 zi, 1−
∑i

j=1 zi−1]

9phi = superadditive lifting function from group function(h, f = 2/5)
10phi = superadditive lifting function from group function(h, f = 9/10)

15

See Figure 5 or 8a.

In the paper, only CPL3 functions with z1 = z2 are studied because of the significant reduc-
tion in the number of cases under the condition. Note that CPL3 functions are continuous and
nondecreasing. The partition of the interval on [0, 1] is [0, f, f + z1, f + 2z1, 1−2z1, 1− z1, 1].
Values of break-points (f + 2z1) and (1− 2z1) can be the same depending on values of z1.

4.2.1 Extreme Valid Functions

Group functions that are converted from CPL3 functions yield strong valid inequalities for
the infinite group problem. At the beginning of section 1.1, it is mentioned that minimal valid
functions are stronger than non-minimal valid functions. Moreover, extreme valid functions
are stronger than minimal valid functions since they are a subset of minimal valid functions.
As a result, extreme valid functions are considered to be strongest among all of these valid
functions.

Definition 23. A valid function π is extreme if it cannot be written as a convex combination
of two other valid functions, i.e., π = 1

2
(π1 + π2) implies π = π1 = π2. See Figure 6.

Figure 9: Example of non-extreme function π.11

In the paper, there are 14 extreme points for infinite group problem. The cases for extreme
points a, h, k, l, o, p, q, and r are two-slope functions. The cases for extreme points b, c and
g are three-slope functions. The first two cases have the same extreme conditions with the
function called Dey–Richard–Li–Miller’s backward 3-slope function. The case for extreme
point f is two- or three-slope functions depending on its parameter values. Extreme functions
corresponding to each of extreme points can be constructed in two different ways: (1) from
break-points and slopes, and (2) from the conversion to group functions from CPL3 functions.
In order to check each of the cases described in the paper, functions constructed using the
methods (1) and (2) are checked to be equal functions.

Corrections in the Case l and p

Extreme functions for the case for l and p cannot be constructed from their break-points
and slopes given in the paper. The table below summarizes the given slopes in the paper.

11extremality test(group f unction f rom superadditive lif ting f unction(cpl3 f unction(1/7, 1/7, 1/4, 1/12)),
show plots = True)

16

Interval [0, f] [f, f + z1] [f + z1, f + 2z1] [f + 2z1, 1− 2z − 1] [1− 2z1, 1− z1] [1− z1, 1]
Slopes s1 s2 s3 s4 s5 s6

l 1
f

2
2f−1

−4z1
2z1(1−2f)

s2 s3 s2

p 1
f

2
2f−1

s1
2z1−10z1f+f

f(1−2f)(4z−1−1+f)
s1 s2

The unavailability of constructing the extreme functions was first realized by comparing fig-
ures obtained from the method (1) with the given precise figures in the paper. Since figures
constructed by the method (2) are the same as the given figures, it was suspected that some
of the given slopes were not correct. By comparing slopes obtained from the method (1) and
(2), the incorrect slopes were found. The incorrect slopes are s3 for the case l, and s4 for the
case p. The correct slopes were found by using the definition of CPL3 function with z1 = z2

and the formulas of θ1, θ2 for the cases l, p given in the paper, and the conversion from CPL3

functions to group functions.

For the case l, θ1 = z1
1−2f

and θ2 = 2z1−f
2−4f

.

From the definition of CPL3 function, the function φ on [f + z1, f + 2z1] is defined as

φ(r) = θ1 + θ2
z2

(r − f − z1)

From the equation defined in Definition 21, a group function π is defined as

π(r) =
r−(θ1+

θ2
z2

(r−f−z1))

f

By evaluating at the end points, we have (f + z1,
f+z1−θ1

f
) and (f + 2z1,

f−2z1−θ1−θ2
f

).
Then, the slope of the function π from the two points is given by

z1−θ2
fz1

=
z1−(

2z1−f
2−4f

)

fz1
= 1−4z1

2z1(1−2f)

Therefore, the correct slope for the case l is 1−4z1
2z1(1−2f)

.

Similarly, the correct slope for the case p was computed, and it is 8z1f−2z1−f(1−2f)
f(1−2f)(1−4z1−f)

.

Unsolved Problem in the Case k

For the case k, when the break-points (r0 +2z1) and (1−2z1) are equal, the break-points and
slopes given in the paper do not seem to construct a correct function. This was suspected
from the fact that the function constructed from the given slopes does not match with the
function constructed from the definition of CPL3 function with the values of θ1, θ2 given in
the paper. Unlike the case l and p, there are no typos of the given slopes. It could suggest
that the values of θ1, θ2 could be incorrect. This problem has not been solved yet.

4.3 Sage Code

4.3.1 Conversions between Group and Lifting Functions

‘superadditive lifting function from group function()’ converts a superaditive lifting func-
tion φ (a superadditive quasiperiodic function) from a group function π (a subadditive peri-
odic function). If f is not given, it is computed using find f() from the group function π.

17

‘group function from superadditive lifting function()’ convert a group function π (a sub-
additive periodic function) from a lifting function φ (a superadditive quasiperiodic function).
If f is not given, it is the value of f when the difference of φ(f) − f is minimized over the
interval.

4.3.2 Construction of a CPL-3 function

‘cpl3 function()’ constructs a CPL3 function from four inputs. Note that r0 = f . The
function is a quasi-periodic function which inherits all properties of ‘PiecewiseQuasiPeriodic.’
If the conditions for parameters and the definition of CPL3 function are satisfied, it will
construct a CPL3 function. If break-points (r0 + 2z1) and (1− 2z1) are the same, (1− 2z1)
will be removed from the set of break-points.

4.3.3 Extreme Functions in the Literature

‘mlr cpl3 . . . ()’ constructs a group function corresponding to an extreme point,
a, b, c, d, f, g, h, k, l, n, o, p, q, and r, which yields an extreme valid function if the conditions
for extremality are satisfied. ‘mlr cpl3 . . . ()’ takes values of r0, z1 and conditioncheck as
inputs. Note that r0 = f .

1. For d, f, g, k, l, o and p cases, if z1 is not given, it is computed using an equality condition
for extremality. For the other cases, z1 must be given as input. If parameter conditions
for a CPL3 function are satisfied, a function will be constructed.

2. If conditioncheck = True, the conditions for extremality are checked. If parameter
conditions satisfy the extremality condition, an extreme function will be constructed.
If conditioncheck = False, conditions for extremality are not checked.

3. If break-points (r0 + 2z1) and (1− 2z1) are the same, (1− 2z1) and the corresponding
slope will be removed from the set of break-points and slopes.

5 Parametric Search

The parametric search is to compute a parameter region of a given function where functions
with given parameter values have the same minimality or extremality conditions. The region
is obtained from a set of inequalities and equalities for the parameters that derived based
on the valid inequalities. Computing the set of inequalities and equalities to obtain the
corresponding parameter region is performed using unpublished version of the software ([3])
developed by Yuan Zhou, a Ph.D student in the Department of Mathematics at UC Davis.

In this section, the following functions were used for one, two, or three parameter cases:
GMIC (Gomory mixed integer cut) for one parameter case, Gomory–Johnson’s 2-Slope func-
tion for two parameter case, and Gomory–Johnson’s Forward 3-Slope function for three pa-
rameter case ([3]). Each of these functions takes an input called conditioncheck. Under
‘conditioncheck = False,’ parameters do not need to satisfy parameter conditions for ex-
tremality. This produces a set of inequalities and equalities that construct a parameter region

18

where functions can be constructed. On the other hand, under ‘conditioncheck = True’ pa-
rameters must satisfy parameter conditions for extremality. This produces a region where
functions are extreme. Under ‘conditioncheck = False,’ calling ‘minimality test()’ or
‘extremality test()’ to see if functions with specific parameter values are minimal or ex-
treme, can restrict parameter conditions and thus produces a larger set of inequalities and
equalities. It can result in a smaller parameter region than the constructible region. This
smaller parameter region differs depending on given parameter values and partitions the
entire minimal or extreme regions. Since extreme functions must be minimal, parameter
conditions of extreme functions can be more strict than that of minimal functions.

5.1 Maple Experiment

A set of inequalities and equalities are solved using Maple software in Sage.

Depending on an order of parameters given, solutions are expressed in different forms. The
most left side of parameters in a list has the priority, i.e., in the case of two parameters,
[f, λ], the parameter f has the priority over λ.

5.1.1 Number of parameters vs. CPU-time for a set of unsimplified inequality

. Number of unsimplified inequalities
Function Construction Minimality test Extremality test
GMIC 3 8 10

Gomory–Johnson’s 2-Slope 4 35 44
Gomory–Johnson’ Forward 3-Slope 7 86 116

For each of these functions, the number of inequalities increases in the order of constructible,
minimal, and extreme conditions. The number of inequalities increases exponentially for
minimal and extreme conditions as the number of parameters increases. It can be suspected
that a CPU-time for solving a set of inequalities increases with the conditions and number
of parameters.

Note: A CPU-time measured is the time obtained for the first run using ‘timelimit()’ in
Maple. Once an expression is evaluated for the first time, it seems that the CPU-time
needed to evaluate the same expression becomes shorter. Therefore, each CPU-times mea-
sured was obtained from the first run. Depend on a expression, a CPU-time varies in a wide
range in each run.

The amount of CPU-time spent on evaluating the set of inequalities using the Maple function
‘solve()’ was set to 600 seconds.

CPU-time
Function Construction Minimality test Extremality test
GMIC 0.136 0.250 0.269

Gomory–Johnson’s 2-Slope 0.216 Exceeded Exceeded
Gomory–Johnson’ Forward 3-Slope 0.744 Exceeded Exceeded

19

The result above shows the necessity of simplifying a large set of inequalities and equalities
so that Maple software can solve within a reasonable time period.

We will look closely at the case of Gomory–Johnson’s 2-Slope/Minimality test and /Ex-
tremality test to examine the relation between number of inequalities and CPU-time. For
the both cases, starting from the original set of inequalities, some number of inequalities were
being deleted each time until 6 inequalities remained which are the inequalities to produce
the simplified inequalities examined in the next section.

Minimality test
Number of inequalities 35-33 32 27 22 17 12 6

CPU-time Exceeded 1448.471 854.406 139.364 41.600 6.758 1.172

Figure 10: Number of inequalities vs. CPU-time: Gomory–Johnson’s 2-Slope/Minimality
test.

Extremality test
Number of inequalities 44-29 28 21 14 6

CPU-time Exceeded 846.895 98.498 14.862 3.850

Figure 11: Number of inequalities vs. CPU-time: Gomory–Johnson’s 2-Slope/Extremality
test.

Figures 10 and 11 show that the CPU-time increases exponentially with the number of
inequalities.

20

5.1.2 Number of parameters vs. CPU-time for a set of simplified inequalities

Simplified inequalities are obtained from a set of unsimplified inequalities by the use of
unpublished version of the software ([3]).

Number of simplified inequalities
Function Construction Minimality test Extremality test
GMIC 3 3 3

Gomory–Johnson’s 2-Slope 4 6 6
Gomory–Johnson’ Forward 3-Slope 7 11 11

Comparing with the table of ‘Number of unsimplified inequalities,’ the number of inequalities
for constructible condition does not change but these for minimal and extreme conditions
are significantly reduced.

The table below and figure 12 show CPU-time for solving a set of simplified inequalities with
different numbers of parameters.

CPU-time
Function Construction Minimality test Extremality test
GMIC 0.175 0.178 0.182

Gomory–Johnson’s 2-Slope 0.267 0.851 1.312
Gomory–Johnson’ Forward 3-Slope 0.831 56.32 104.183

As we can see from the table and figure, for one parameter case, there are no significant
differences in the CPU-times obtained from sets of unsimplified or simplified inequalities.
However, there are significant CPU-time differences for two and three parameters between
the case of unsimplified or simplified inequalities. In addition, the CPU-time increases rapidly
from two to three parameter cases.

Figure 12: Number of parameters vs. CPU-time.

5.1.3 Priority of parameters vs. CPU-time

Depending on the priority of parameters, CPU-time can vary within the same function. As
an example, the table below shows CPU-time for the Gomory–Johnson’s 2-Slope function
with two different priorities.

21

Priority CPU-time
Construction Minimality test Extremality test

f 0.267 0.597 0.693
λ 0.125 0.416 0.508

When f is the priority over λ, the solution to the set of inequalities is given by one set of
simplified inequalities. In the construction case, the solution is

[[λ < 1, 0 < λ, f < 1, λ/(λ+ 1) < f]]

When λ is the priority over f , however, the solution to the same set of inequalities is given
by two sets of simplified inequalities. In the construction case, the solution is

[[f < 1/2, 0 < f, λ < −f/(f − 1), 0 < λ], [f < 1, 1/2 <= f, λ < 1, 0 < λ]]

This difference in number of sets of simplified inequalities could contribute to CPU-time for
solving the set of inequalites within the same function.

5.2 Parameter Regions

As in the above section, GMIC function was used for one parameter case. For two parameter
case, Gomory–Johnson’s 2-Slope and Dey–Richard–Li–Miller’s backward 3-slope functions
were examined. As described at the beginning of this section, ‘conditioncheck = False’ pro-
duces a region where functions are constructible with given parameters. ‘Conditioncheck =
True’ produces a region where functions are extreme with given parameters. The combina-
tion of ‘conditioncheck = False’ and ‘minimality test()’ or ‘extremality test()’ produces a
region where functions with specific parameter values are minimal or extreme.

5.2.1 One Parameter Case

1. GMIC function

Conditioncheck Parameter Region
False and True 0 < f < 1

The result shows that every function constructed with a given f will be extreme.
Therefore, the function must also be minimal. The parameter region can be further
divided based on minimality or extremality conditions with a specific parameter value.
The table below summarizes the partitions of minimal and extreme parameter regions.

Parameter Region
0 < f < 1

2

f = 1
2

1
2
< f < 1

Every function constructed with a value f ∈ (0, 1
2
) have the same minimal and extreme

properties. Similarly, any functions constructed with a value f ∈ (1
2
, 1) have the same

minimal and extreme properties.

22

(a) Constructible
parameter region.12

(b) Extreme pa-
rameter region.13

Figure 13: Gomory–Johnson’s 2-Slope function.

(a) Partitions for minimal pa-
rameter region.

(b) Partition for extreme pa-
rameter region.

Figure 14: Gomory–Johnson’s 2-Slope function.

5.2.2 Two Parameters Case

1. Gomory–Johnson’s 2-Slope function

Conditioncheck Parameter Region

False 0 < λ, λ
λ+1

< f < 1

True 0 < λ < 1, λ
λ+1

< f < 1

Figure 13a is the constructible parameter region while Figure 13b is the extreme pa-
rameter region for the function. As we can see from the figures, the extreme parameter
region is smaller than the constructible parameter region. The minimal parameter
region is the same as the extreme parameter region in this case since functions with λ
greater than 1 take a value greater than 1.

12g = plot region([0 < lam, lam/(lam+ 1) < f, f < 1], (f, 0, 1), (lam, 0, 3/2), plot points = 500)
13g = plot region([0 < lam, lam < 1, lam/(lam+ 1) < f, f < 1], (f, 0, 1), (lam, 0, 3/2), plot points = 500)

23

(a) Parameter region for
construction.14

(b) Parameter region for ex-
tremality.15

Figure 15: Dey–Richard–Li–Miller’s backward 3-slope function.

Figure 14b shows the partitions of the extreme region, and Figure 14a shows the
partitions of the minimal region. By comparing these two figures, it is seen that
the extreme region is more divided than the minimal region. This tells us that the
parameter conditions are more strict for extreme functions than minimal functions.

2. Dey–Richard–Li–Miller’s backward 3-slope function

Conditioncheck Parameter Region
False 0 < f < 1, f < q < 1

2
(f + 1)

True 0 < f < 1
3
, f < q < 1

4
(f + 1)

Figure 15a is the constructible parameter region while Figure 15b is the extreme pa-
rameter region for the function. Unlike part(a), the extreme parameter region is much
smaller than the constructible parameter region. In this case, the minimal parameter
region is the same as the constructible parameter region.

Figure 16b shows the partitions of the extreme region, and Figure 16a shows the
partitions of the minimal region. By comparing these figures, it is seen that the extreme
parameter region is contained in the minimal parameter region. Again, this shows that
the parameter conditions for extreme functions is more strict than the conditions for
minimal functions.

5.3 Sage Code

‘solve inequalities via maple()’ solves a set of inequalities and equalities via Maple software
in sage. It takes three arguments; a set of inequalities and equalities, a list of parameters, and
a time-limit (seconds) of evaluating a set of inequalities and equalities. The Maple function
‘solve()’ is used to solve the set.

14g = plot region([0 < f, f < 1, f < bkpt, bkpf < f/2 + 1/2], (f, 0, 1), (bkpt, 0, 1), plot points = 500)
15g = plot region([0 < f, f < 1, f < bkpt, bkpf < f/4 + 1/4], (f, 0, 1), (bkpt, 0, 1), plot points = 500)

24

(a) Partitions for minimal pa-
rameter region.

(b) Partition for extreme pa-
rameter region.

Figure 16: Dey–Richard–Li–Miller’s backward 3-slope function.

1. If a time-limit is not given, the set is evaluated without a time restriction.

2. If a time-limit is given, the set is evaluated within the time-limit if possible; otherwise
an error message is received.

Difficulties of interfacing to Maple software

1. All inequalities and equalities have to be converted into strings in order to use the
Maple function ‘solve()’ in sage.

2. The Maple function ‘timelimit()’ in sage does not work properly in the form of

maple.timelimit(time, expression)

The upper limit of CPU-time is applied after the expression is evaluated. In order to
set the limit of CPU-time of evaluating the expression, we need to call ‘timelimit()’ in
the form of

maple(“timelimit(time, expression)”)

6 Conclusions

By considering the generalization of the Gomory–Johnson infinite group relaxation model
by Yildiz and Cornuéjols with the case n = 1 and S = Z+, we developed a computational
method of testing the minimality and strong minimality conditions for quasi-periodic func-
tions. These conditions for quasi-periodic functions can be checked from function values,
subadditive, and symmetric conditions. The decomposition of a quasi-periodic function into
a linear and a periodic functions allowed to check subadditive and symmetric conditions for
the quasi-periodic function by using the existing software for valid functions in Gomory–
Johnson model.

25

There were a couple of interesting findings in the conversion between group and superadditive
lifting functions. First of all, converting between a superadditive lifting function and a group
function requires with more than one possible f values require a specific f value chosen so
that a desired result will be obtained. Next, there were incorrect slopes for group functions
from CPL3 functions given in the paper. Also, when two of break-points are equal, a group
functions from CPL3 function for the case k does not seem to be constructed correctly. This
needs a further investigation to be solved. This could suggest a further investigation on the
case when extreme parameter conditions are not checked (,.i.e, conditioncheck=False) and
on the relation between the definition of CPL3 function and the conversion.

For the parametric search, there were limitations of solving a large set of inequalities using
Maple software and therefore needed a computational method of simplifying the set of in-
equalities and equalities. My investigations of Maple software and its limitations prompted
Yuan Zhou to develop a computational simplification method based on polyhedral compu-
tations. Using the new software developed by her, simplifying the large set of inequalities
significantly reduced number of inequalities and consequently computational time. Since the
priority of parameters can also affect computational time, it may be useful to know what
order of parameters produce the least number of inequalities. For CPU-time measurements,
there needs a further investigation in the interfacing to Maple software in Sage to under-
stand why CPU-time varies in a wide range for some expressions. As a result of simplified
inequalities, parameter regions were plotted according to the strength of valid inequalities.
These parameter regions were further divided depending on specific parameter values of
given functions.

Acknowledgments

I would like to thank my faculty advisor, Matthias Köppe, for giving me this research
opportunity and for all of his encouragement, advice, and support throughout this project.
I’d also like to thank Yuan Zhou, a Ph.D student in the Department of Mathematics at UC
Davis, for her generous support throughout the project.

26

References

[1] Willian J. Cook. In Pursuit of the Traveling Salesman. Princeton University Press, 2012.

[2] Santanu S. Dey and Jean-Philippe P. Richard. Relations between facets of low- and high-
dimensional group problems. Mathematical Programming, 123(2):285–313, June 2010.

[3] Chun Yu Hong, Matthias Köppe, and Yuan Zhou. Sage program for computation
and experimentation with the 1-dimensional Gomory–Johnson infinite group problem.
https://github.com/mkoeppe/infinite-group-relaxation-code, 2014.

[4] Lisa A. Miller, Yanjun Li, and Jean-Philippe P. Richard. New inequalities for finite
and infinite group problems from approximate lifting. Naval Research Logistics (NRL),
55(2):172–191, 2008.

[5] Sercan Yildiz and Gérard Cornuéjols. Cut-generating functions for integer variables.
2014.

27

