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ABSTRACT. In this senior thesis, we classify 1-Lattice Maximal Pyramids and Prisms
up to unimodular transformation. 1-Lattice Maximal polytopes are important objects in
convex geometry and �nd applications in algebra and optimization. To do this, we de�ne
a canonical position for polytopes to limit the search area. We then analyze the base of
the polytopes and determine which are too big to be the bases. This creates a bounding
box where the desired polytopes can be found. Finally we create two algorithms, one that
searches through the bounding box to �nd all the possible polytopes inside and another
that analyzes the results and deletes equivalent polytopes.



Contents

Chapter 1. Introduction 1
1.1. Background and Motivation 1
1.2. Basic De�nitions 1
1.3. Previous Research 2
1.4. Canonical Position 4

Chapter 2. Pyramids 7
2.1. Methodology 7
2.2. Lemmas 8

Chapter 3. Prisms 13
3.1. Triangular Prisms 13

Chapter 4. Bounding the Height of Pyramids and Prisms 19
4.1. Introduction 19

Chapter 5. Results 23

Bibliography 33

iii





CHAPTER 1

Introduction

1.1. Background and Motivation

Back in elementary school many of us learned the names of certain shapes�triangle,
square, hexagon, etc. We learned that these shapes were called polygons and may have
practiced drawing them at one time or another. Further on in math, we learn about three
dimensional shapes such as pyramids and prisms, which fall under the category of shapes
known as polytopes. The precise mathematical de�nition of a polytope in R3 is the convex
hull of four or more a�nely independent points in R3. A lattice polytope is one whose vertices
are all points with integer coordinates. Polytopes can be beautiful geometric shapes, but
their uses do not just stop at their appearance; studying their nature and behavior can
aid us in numerous applications. There are many uses, both practical and theoretical, for
lattice polytopes in various aspects of mathematics and applied mathematics that drive
our research of this topic. In integer optimization, some algorithms use k-lattice bodies
as representation of their solutions making these shapes valuable in helping to �nd integer
solutions to these problems. Lattice polytopes also have uses in both algebraic and convex
geometry. They aid in �nding special ways to �triangulate� geometric bodies as well as
easily estimating the number of integer points in a geometric body. An explicit example
in number theory where lattice polytopes are useful is the Frobenius problem, which is
the problem of giving change in di�erent ways when you have coinages of various speci�c
amounts.

1.2. Basic De�nitions

Now that we have established some background information regarding polytopes, some
basic de�nitions regarding lattice polygons will be provided. The integer lattice in R3 is
the set of all points with integer coordinates and a lattice point is a point with integer
coordinates. A lattice pyramid in R3 is a pyramid whose vertices are lattice points in R3.
A lattice prism is the Minkowski sum of a polygon with a line segment. We say a lattice
prism or pyramid is consideredmaximal if it contains at least one lattice point in the relative
interior of each of its facets. This paper will give an explicit classi�cation of both 1-lattice,
which means it contains one lattice point in its interior, maximal prisms and pyramids up
to integer unimodular transformations.
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2 1. INTRODUCTION

Figure 1. Lattice prism and lattice pyramid�Note: These are not in canonical position

An a�ne transformation T (v) = Av + x0 is integer unimodular if both A and x0 have
integer entries and det(A) = ±1. For example, the transformation

(1.1) Tv =

1 2 3
0 −4 1
0 3 −1

 ,+

12
3



is an integer unimodular transformation. Since integer unimodular transformations preserve

both volume and the number of lattice points in a set, the classi�cation of 1-lattice maximal
pyramids and prisms will be done up to integer unimodular transformations. Given lattice
pyramids or prisms S1, S2, we say that they are lattice equivalent if there exists an integer
unimodular transformation T such that T (S1) = S2. Having lattice equivalent polytopes is
essential to bounding the search area as it allows us to make use of canonical position.

If a polytope S has one of its facets contained in the z = 0 plane, then this facet will be
called the base of the polytope. For pyramids, the vertex of S which is not contained in the
base will be called the apex of S and the height of S will be the z-coordinate of its apex.
For prisms, the height will be denoted the same as pyramids but there is no apex; instead
there is a top facet the same shape as the base but not contained in the z = 0 plane.

1.3. Previous Research

Because of the myriad application that lattice polytopes have in mathematics, di�erent
mathematicians have been studying the existence and behaviors of lattice polytopes for
centuries. Out of this compilation of research has come several historical milestones that
were useful in formulating the methodology to �nd maximal one-lattice polytopes. Three
important mathematicians that made discoveries speci�cally relevant to canonical position
were Pick, Scott and Rabinowitz. In 1889 G. Pick related the area of a convex lattice
polygon to the number of interior and boundary points resulting in Pick's formula. This,
along with Scott's bound, which P.R. Scott discovered in 1979, and bounds the number of
boundary points in a k-lattice polygon, were used in the proof for 2D canonical position
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[4]. This proof was in turn part of the proof for canonical position in 3D. The work of
Rabinowitz, namely the x-axis lemma, was also useful in the proof of canonical position [3].
The other relevant discoveries have to do speci�cally with polytopes and were useful in
shaping the thought process when in the beginning stages of classi�cation. For example, in
1991 J.C. Lagarias and G.M. Ziegler proved that for each k there are �nitely many k-lattice
polyhedra up to unimodular transformation, an important fact as otherwise we could not
even classify these polyhedra. Lastly, in 2011 G. Averkov et al showed that there are 12
di�erent lattice-free polyhedra. This paper in particular was useful as it showed us what
such lattice-free polyhedra looked like and gave an example of classifying polyhedra [1].

One important previous paper and research project was on lattice simplices. This
research was conducted by a team of undergraduates that I worked with for part of the
summer. Their work dealt with lattice simplices, the convex hull of four a�nely independent
lattice points. Much of their methodology is similar to classifying pyramids and prisms,
though there are some di�erences by virtue of having di�erent shapes. They were able
to classify all one-lattice simplices. They came to the result that there are 11 1-Lattice
simplices [2]. Here is a table of their results.

No. p h k µ

1 12 0 3 2

2 8 0 4 2

3 6 0 6 2

4 8 2 4 2

5 6 0 3 3

6 6 1 3 3

7 4 0 2 4

8 4 1 1 4

9 4 1 2 4

10 4 0 4 4

11 3 0 2 6

Given p, h ∈ N and k ∈ Z the triangle with vertices (0, 0, 0), (p, 0, 0) and (k, h, 0) will
be denoted as 4(p, k, h). Also note that µ=height of the simplex. In addition to the
classi�cation of simplices, part of their proof for canonical position is needed to �nish the
3-dimensional proof of canonical position.

Lemma 1.3.1 (x-axis lemma). Let P be a lattice polygon, e an edge of P , and A,B the
endpoints of e. Let `(e) be the interior length. If `(e) = p, then there exists an integer
unimodular transformation that maps A into the origin, B into (p, 0) and maps all the
remaining vertices of P into points above the x-axis. [3]

Using Rabinowitz's x-axis lemma, it can be proven that
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Lemma 1.3.2. Every lattice polygon P is lattice equivalent to a lattice polygon in canon-
ical position. [3]

Proof. Let p be the largest integer length of the edges of P . By the x-axis lemma, P
is lattice equivalent to a polygon P ′ that has the segment with endpoints (0, 0) and (0, p)
as an edge and all its vertices above the x-axis. Since integral unimodular transformations
preserve the number of lattice points in a given set, the base of P ′ has the biggest integer
length of its sides. Applying the necessary shears about the x-axis, we can assume all the
vertices of P ′ have non-negative y-coordinate.

Let (k, h) be the vertex of P ′ that follows clockwise from the origin. Let a, r ∈ Z with
r ∈ {0, . . . , h − 1} be such that k = ah + r and let F be the shear about the x-axis of
magnitude −a. Then

F (k, h) = (ah+ r − ah, h) = (r, h).

All the vertices of the polygon F (P ′) have non-negative x-coordinate because they are on
the right of the line determined by the points (0, 0), (r, h). Then, P is lattice equivalent to
F (P ′), which is in canonical position.

2

Figure 2. Example of Lattice Simplex

1.4. Canonical Position

Canonical Position is one of the most important aspects of the classi�cation process as
it is the foundation of our ability to create a bounding box that lattice polytopes will be
found in. Thus, it merits its own section to properly de�ne and also to prove that it is a
valid position to shifts the lattice polytopes to.

Definition 1.4.1. A lattice polygon P will be in canonical position if

(1) Every point (x, y) ∈ P is such that 0 ≤ x, 0 ≤ y.
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(2) The edge of P with largest integer length lies on the positive x-axis with one
endpoint on the origin.

(3) The vertex that follows clockwise from the origin has coordinates (r, h) with h ∈ N ,
r ∈ {0, . . . , h− 1}.

The edge that lies on the x-axis will be called the base of the polygon.

Definition 1.4.2. A lattice polytope P will be in canonical position if

(1) Its base is a polygon in canonical position.
(2) The apex of the polytope has the coordinates (i, j, u) where i and j are between 0

and u− 1.

Figure 3. Left-Canonical Position, Right-Not Canonical Position

It can be shown that every pyramid and prism is integer equivalent to one in our
canonical position. This then makes it possible to just look at the �rst quadrant when
bounding the bases of the polytopes. This occurs in two steps: the �rst step was done
by the simplices group and is a proof that the shape can be rotated and translated to the
desired position from a 2d perspective. It was shown above. The second step addresses
the issue of adding a third dimension and shows that a base �oating in R3 can be brought
down to the xy axis.

Lemma 1.4.3. Suppose u an v are two vectors in Z3 with integer length one. Then there
exists an integer unimodular transformation T such that Tu = (1, 0, 0) and Tv = (p, q, 0)
for some p, q ∈ Z.

Proof.

Write u = (x, y, z). If z 6= 0, then consider the matrix

Tu =

1 0 0
0 a b
0 −c d

 ,

where c = z
gcd(y,z) , d = y

gcd(y,z) , and a, b are the Bézout coe�cients for d and c, respectively.

Then

detTu = ad+ bc = gcd(c, d) = 1.
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That is, Tu is an integer unimodular transformation Note that the z-coordinate of Tuu is
− zy

gcd(y,z) +
yz

gcd(y,z) = 0.

Thus we may assume without loss of generality that z = 0. Similarly, we may assume
that y = 0. Because u has integer length one, it follows that u = (1, 0, 0).

We must now �nd a unimodular integer transformation T such that Tu = u and Tv
has z-coordinate zero.

Write v = (x, y, z). Let

Tv =

1 0 0
0 a b
0 −c d

 ,

where c = z
gcd(y,z) , d = y

gcd(y,z) , and a, b are the Bézout coe�cients for d and c, respectively.

Then
detTv = ad+ bc = gcd(c, d) = 1.

That is, Tv is an integer unimodular transformation Note that the z-coordinate of Tvv
is − zy

gcd(y,z) +
yz

gcd(y,z) = 0. Note also that Tv(1, 0, 0) = (1, 0, 0). Thus Tv is the desired

transformation.
2

The following sections will use canonical position for their classi�cations.



CHAPTER 2

Pyramids

2.1. Methodology

We now begin by �nding the bounds or the base of our polytopes, starting with pyra-
mids. We do this by looking at slices of our pyramid at di�erent levels. These slices will
be smaller than the base of our pyramid. If any of these slices contains more than one
integer point, it is too big, implying the base will be too big as well, since we are looking for
pyramids with only one lattice point in their interiors. We will start with some de�nitions
in regards to this methodology of slices.

Definition 2.1.1. Let S be a polytope with height µ, then the slice of S at level j, for
j ∈ {0, . . . , µ}, is the intersection of S and the plane z = j. It will be denoted by Tj .

In particular, T0 is the base of the polytope. It is also important to note that for a
given j,

(2.1) Tj = (1− j

µ
)T0 +

j

µ
A,

where A is the apex of S. Logistically, we know all 1-lattice polytopes have height greater
than or equal to 2 since otherwise there would be no interior lattice point.

Figure 1. A Simplex and its Level One Slice [2]

7
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The method for obtaining the possible bases for a quadrilateral pyramid is similar to
that for simplices. Bounds will be determined by �tting either a triangle or parallelogram
that is too big inside the quadrilateral base, or the level one slice. This will creates bounds
for the base of the polytope. This gives rise to several di�erent cases depending on the
shape of the base.

Theorem 2.1.2. Every maximal, 1-lattice pyramid is lattice equivalent to one in the
box with the dimensions (30 + (31

√
2))× 31× 18

This theorem is based o� of the following lemmas which divide the theorem into cases
based o� of the placement of the vertices of the base of the polytope. Speci�cally, the four
cases depend on where the vertices are located. These proofs hold for a quadrilateral with
a base of any shape. Though many of the pictures are quadrilaterals, only one lemma is
speci�c to a quadrilateral.

2.2. Lemmas

These lemmas are used to prove our main theorem. They are based o� of the possible
shapes for the base.

Lemma 2.2.1. Given a base of a pyramid, P in canonical position, �gure 2, let v0, v1, . . . , vs−1
be the vertices of P , labeled in a clockwise order starting with v0 = (0, 0). If v1 is on the
y-axis and v2y = v1y , then x+ 2b ≤ 12 and h ≤ 31 where x= righthand bound and b=base.

Proof. This case is a trapezoid as v1v2 is parallel to the x-axis. Let ABCD be the
parallelogram located inside the trapezoid with one side on the y axis and the top side the
same as the top of the trapezoid. If this parallelogram has dimension 3 + ε ×3+ε, it will
contain two lattice points inside it. Then, when scaled by 1/2, the smallest T1 slice, there
will be a lattice points inside making the base too big. This situation will happen if the
point 2/3 from the x-axis on CD is greater than four or, in other words, if

(2.2)
x+ 2b

3
4.

Therefore, to prevent this

2b+ x

3
4,

2b+ x ≤ 12,

Thus x+ 2b must be less than or equal to 12. 2

Lemma 2.2.2. Given a quadrilateral base of a pyramid, P seen in �gure 3, let v0, v1, . . . , vs−1
be the vertices of P , labeled in a clockwise order starting with v0 = (0, 0). If v1 is on the
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Figure 2. Lemma 2.2.1

y-axis and v2y 6= v1y then the slope of the line BC ≥ 1 and x ≤ g where g is the intersection
of the slope and the line y=31.

Proof. If B is on the y axis it must be on an integer point. Thus, the y value will be
≥ 1 and slope will both be 6= 1. If positive, the slope will eventually intersect the height
bound of y = 31 for the bases. If negative, it will intersect the x axis. The x-value of this
intersection will be the bound for the x-value of the vertices. If positive, the least value the
slope can then be is 1. This will then yield the furthest possible bound for x since other
slopes will intersect y = 31 at a smaller x-value. Using the formula for slope, with slope
equal to 1, and known points (0, y) and (x, 31) yields

1 =
31− y
x

,

x = 31− y,

y ≥ 0 so x ≤ 31. 2

Lemma 2.2.3. Given a base of a pyramid, P, �gures 4,5, and 6, let v0, v1, . . . , vs−1 be
the vertices of P , labeled in a clockwise order starting with v0 = (0, 0). If v1 is not on the
y-axis then x ≤ 30 + (31

√
2).

Proof. Let quad ABCD be the base of the quadrilateral pyramid with A on the origin.
Let AD be the line segment from A to D. Consider the triangle ABC. Let d be the distance
from C to AB. By the x-axis lemma, there exists a single unimodular transformations such
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Figure 3. Lemma 2.2.2

that AB is on the x-axis and C is the apex of the triangle. This new triangle,4(A′B′C ′), will
be lattice equivalent to4(ABC) and d will become d', the height of the new triangle. Since
AB is getting mapped to the x-axis, the length will be the same or shrink as unimodular
transformations preserve integer length. Since they also preserve area, d will either stay
the same or grow larger, to preserve the area of 4(ABC). This yields the inequality

(2.3) d ≤ d′ ≤ 31.

The bound for the x distance between C and B can be derived by looking at 4(BCE)
which is the triangle. C and B will be farthest apart when ∠CBE is at a 45 degrees which
would give a 45,45,90 triangle as CE is perpendicular to BC. The inequality is now

(2.4)
Cx√
2
≤ d ≤ d′ ≤ 31,

Cx ≤ 31
√
2. This is combined with the fact that the furthest x-value of B is 30 because

of the nature of canonical position. Thus, the right-most bound for the base is 30+(31
√
2).

2
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4

Figure 4. Lemma 2.2.3

Figure 5. Lemma 2.2.3
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Figure 6. Lemma 2.2.3



CHAPTER 3

Prisms

The methodology for prisms is the same as for pyramids and the lemmas are proven in
much the same manner. The only di�erence is that instead of looking at the T1 slice of the
prism, we can analyze the base directly as we do not have to worry about dilations as we
do for pyramids. We will state and prove the dimensions of the bounding box as we did for
the pyramids. Notice how much smaller they are then the bounds for pyramids.

Theorem 3.0.4. Every 1-lattice maximal prism is lattice equivalent to one found in the
bounding box (11 + (12

√
2))× 12× 6.

The proof for this theorem is in cases as the pyramid theorem was.

3.1. Triangular Prisms

Lemma 3.1.1. In a triangular prism the the length of the prism base is always less than
or equal to four.

Proof. As the triangular base is a lattice polygon and maximal, it must contain an
interior lattice point. Therefore, the height of the triangle cannot be one, as no integer
point would be inside the triangle if it was. This means that the height is always greater
than two. The smallest possible height for a triangle is two. Let 4(A,B,C) be a triangular
base with base length �ve and height two. Then a parallelogram with height two and base
length four will always be able to �t inside. Thus, the base length of the triangular base is
always less than four. 2

This now gives di�erent cases for the possible con�guration of the triangular base de-
pending on the base length. Looking at these various cases and taking the largest bounds
provides the bounding box that the computer will use to search for triangular prisms. Case

1: The length of the base of the triangle is equal to one. In this case h ≤ 6. This is because
otherwise a triangle of the form 4(1, k, h) with h ≥ 6, k ∈ {0, . . . h − 1} would �t inside
and that was proven in lemma 3.12 to contain two lattice points.

Case 2: 2 ≤ b ≤ 4. In this case look at triangular base 4(p, k, h) and let b be the length
of base and (r, h) be the coordinate of the top point. We then look at a parallelogram inside

13
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the triangle. This parallelogram has height α and base length

(3.1) y = (α/h) · r + (1− α/h) · b.

Knowing that the base is less than or equal to four we now solve for h. We know that we
want the parallelogram to have dimensions 1 + ε× 2 + ε, otherwise it is too big. So α ≤ 2
and y ≤ 2. We can now plug in those values and solve for h.

(1− α

h
) · b < 2,

α ≤ h− h

b
,

1− 1

b
≥ 2

h
,

h ≥ 2b

b− 1
,

Since this would make the base too big

(3.2) h ≤ 2b

b− 1
≤ 4.

So h ≤ 4 when b 6= 2. 2
The bounding box for triangular prism can be calculated from these bounds and is

4× 12× 6.

3.1.1. Prisms With Bases with More than Three Sides. Now we move on to
prisms with bases that are not triangular. These, like the pyramids, are divided into four
cases based on the position of the vertices, with di�ering bounds for each. The method of
proof to show each bound is the same as it was for the pyramids. The numbers are di�erent
however because of the lower height bound for prisms.

Lemma 3.1.2. Given a base of a prism, P, let v0, v1, . . . , vs−1 be the vertices of P , labeled
in a clockwise order starting with v0 equal to (0, 0). If v1 is on the y-axis and v2y = v1y ,
then x+ b ≤ 4 and h ≤ 12 where x is right-hand bound, b is the length of the base and h is
the height of the base.

Proof. This case is a trapezoid as v1v2 is parallel to the x-axis. Let ABCD be the
parallelogram located with one side on the y axis and the top side the same as the top of
the trapezoid. If this parallelogram is 2 + ε ×1+ε, it will contain two lattice points inside
it, making the base too big. This will happen if the point halfway on the line CD is greater
than two as then the top will contain a rectangle. Or, in other words, if

(3.3)
x+ b

2
≥ 2.

Therefore x+ b must be less than or equal to four. 2
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Figure 1. Triangular Prism Base

Figure 2. Lemma 3.1.2

Lemma 3.1.3. Given a quadrilateral base of a prism, P, let v0, v1, . . . , vs−1 be the vertices
of P , labeled in a clockwise order starting with v0 = (0, 0). If v1 is on the y-axis and
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Figure 3. Lemma 3.1.3

v2y 6= v1y then the slope of the line BC is greater than or equal to 1 and x ≤ g where g is
the intersection of the slope and the line y=12.

Proof. If v1 is on the y axis it must be on an integer point. The slope of the line
connecting v1 and v2 will then also be an integer because of the properties of maximality.
Thus, the y value and slope will both be greater than or equal to one and eventually the
slope will intersect the height bound of y=12 for the bases. The x-value of this intersection
will be the bound for the x-value of the vertices. The least steep the slope can then be is
one. All other slopes are steeper so intersect y=12 at a smaller value. Using the formula
for slope and known points (0,y) and (x,12) yields

1 =
12− y
x

,

x = 12− y,

y ≤ 12 so x ≤ 12.
2

Lemma 3.1.4. Given a quadrilateral base of a prism, P, let v0, v1, . . . , vs−1 be the vertices
of P , labeled in a clockwise order starting with v0 = (0, 0). If v1 is not on the y axis then
x ≤ 11 + (12

√
2).

Proof. Let polygon P be the base of the pyramid with v0 on the origin. Let AD
be the line segment from A to the rightmost vertex. Consider the triangle ABC. Let d
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Figure 4. Lemma 3.1.4

be the distance from C to AB. By the x-axis lemma, there exists a series of unimodular
transformations such that AB is on the x-axis and C is the apex of the triangle. This new
triangle, 4(A′B′C ′), will be lattice equivalent to 4(ABC) and d will become d', the height
of the new triangle. Since AB is getting mapped to the x-axis, the length will be the same
or shrink as unimodular transformations preserve integer length. Since they also preserve
area, d will either stay the same or grow larger, to preserve the area of 4(ABC). This
yields the inequality

(3.4) d ≤ d′ ≤ 11.

The bound for the x distance between C and B can be derived by looking at 4(BCE)
which is the triangle. C and B will be farthest apart when ∠CBE is at a 45 degrees which
would give a 45, 45, 90 triangle as CE is perpendicular to BC. The inequality is now

(3.5)
Cx√
2
≤ d ≤ d′ ≤ 11,

Cx ≤ 11
√
2. This is combined with the fact that the furthest x-value of B is 12 because

of the nature of canonical position. Thus, the rightmost bound for the base is 11+ (12
√
2).

2





CHAPTER 4

Bounding the Height of Pyramids and Prisms

4.1. Introduction

Now that we have established the bounds for the length and height of the base of our
polytopes we need to �nd bounds for the height of the polytope itself. We do this by looking
at di�erent cases based on. We can do these proofs for pyramids and prisms at the same
time.

Consider the following three polygons:

(Ta) (Tb) (Tc)

Note that Tc is not actually a triangle. Each of these three polygons is a possible base for
our pyramid our prism. Moreover, for bases that are larger and have more side, one of these
three can �t inside the larger base so the bounds derived from looking at these shapes will
still hold.

Lemma 4.1.1. For α ∈ [0, 1],

(1− α)T ◦a = R2 \

(
−αTa +

{(1
3
2
3

)
,

(2
3
1
3

)})
mod Z2,(4.1)

(1− α)T ◦b = R2 \
(
−αTb +

(1
2

0

))
mod Z2,(4.2)

(1− α)T ◦c = R2 \

(
αTc +

(1
2
1
2

))
mod Z2.(4.3)

Here are pictures that illustrate this lemma:

19



20 4. BOUNDING THE HEIGHT OF PYRAMIDS AND PRISMS

Lemma 4.1.2. Suppose T is a pyramid with a base of Ta, Tb, or Tc and height h > 18.
Then T contains at least two interior lattice points.

Proof. Let T be such a pyramid; let

xy
h

 be the apex of T . Note that h > 12. There

are three cases:

(a) In this case, the base of T is Ta. Note that for any k ∈ [0, h],

T ∩ {z = k} =
(
1− k

h

)
Ta +

k

h

(
x

y

)
.

Either T contains an interior lattice point at height one or it does not.
(1) Suppose that T ∩ {z = 1} contains an interior lattice point. If T ∩ {z = 2}

contains an interior lattice point, then we are done. Thus, suppose T ∩{z = 2}
does not contain an interior lattice point. That is,(

0

0

)
/∈
(
1− 2

h

)
T ◦a +

2

h

(
x

y

)
mod Z2,

−2

h

(
x

y

)
/∈
(
1− 2

h

)
T ◦a mod Z2

−2

h

(
x

y

)
∈ −2

h
Ta +

{(1
3
2
3

)
,

(2
3
1
3

)}
mod Z2, (by lemma 4.1.1)

−6

h

(
x

y

)
∈ −6

h
Ta +

{(
1

2

)
,

(
2

1

)}
mod Z2,

−6

h

(
x

y

)
∈ −6

h
Ta mod Z2.
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Because h > 18, − 6
hTa does not intersect − 6

hTa +

{( 1
3
2
3

)
,
( 2

3
1
3

)}
. Thus − 6

hTa ⊆(
1− 6

h

)
T ◦a . Hence

−6

h

(
x

y

)
∈
(
1− 6

h

)
T ◦a mod Z2,(

0

0

)
∈
(
1− 6

h

)
T ◦a +

6

h

(
x

y

)
mod Z2,(

0

0

)
∈ (T ∩ {z = 6})◦ mod Z2.

So T contains an interior lattice point at height six.
(2) Suppose that T ∩ {z = 1} does not contain an interior lattice point. Using

a similar argument, it can be shown that T contains interior lattice points at
heights three and six

(b, c) In this case, the base of T is Tb or Tc. Either T contains an interior lattice point at
height one or it does not. If it does, a similar argument to part (a) shows that T
contains an interior lattice point at height four. If it does not, a similar argument
to part (a) shows that T contains an interior lattice point at height two and an
interior lattice point at height four.

In all cases, T contains at least two interior lattice points. 2

Theorem 4.1.3. Let P be a maximal integral 1-lattice polytope in canonical position
(i.e., the xy-plane contains lattice-point-maximala face of P ). Then the height of P (on the
z-axis) is no greater than 12.

Proof. Let P be such a polytope. Suppose for a contradiction that the height of P is
greater than 12. Consider the base of P , P ∩ {z = 0}.

Because P is maximal, P ∩ {z = 0} contains at least one interior lattice point. Conse-
quently, there is an integral 1-lattice polygon contained in P ∩ {z = 0}.

By [1], any integral 1-lattice polygon may be unimodularly transformed such that it
contains at least one of the following integral 1-lattice polygons, each containing the origin
as an interior point:

(Ta) (Tb) (Tc)

Apply such a transformation to P . Note that the transformation does not change the height
of P . Let a be the apex of P ; note that the z-coordinate of a is greater than 12.

Observe that some polygon T0 is contained in P ∩ {z = 0}, where T0 is either Ta, Tb,
or Tc. Note that conv(T0, a) is a pyramid with a base of Ta, Tb, or Tc and a height greater
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than 12. By lemma 4.1.2, conv(T0, a) contains at least two interior lattice points. Since
conv(T0, a) ⊆ P , P contains at least two interior lattice points. This is a contradiction.

Therefore P has height no greater than 12. 2



CHAPTER 5

Results

After running the code, produced with help from graduate student Reuben La Haye,
we were able to obtain the following results regarding 1-lattice maximal pyramids and
prisms.There are

• 14 1-lattice maximal quadrilateral pyramids.
• 5 1-lattice maximal triangular prisms.
• 3 1-lattice maximal quadrilateral prisms.

Here are the pictures of the shapes, not including the simplices which were already
classi�ed. The clear dots are the lattice points in the facets and the bold dot is the interior
lattice point.
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