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Abstract. We construct an explicit bijection between rigged configurations and rooted planar
trees, which we prove is the composition of the the bijection defined by Kerov, Kirillov, and Reshi-
tikhin between rigged configurations and Dyck paths and the bijection between Dyck paths and
rooted planar trees defined by the planar code.

1. Introduction

Like most ideas in mathematics, the original discovery of the Catalan numbers has multiple
stories. Indeed these numbers were named after Eugene Catalan, a nineteenth century mathemati-
cian from Belgium; however, two different mathematicians from the eighteenth century have been
attributed the discovery of the Catalan numbers. A Chinese mathematician by the name of Antu
Ming discovered these numbers by studying trigonometric identities and power series in about 1730,
though his book was completed by his students and published in 1839. The connection between
the work of Antu to Catalan numbers was discovered by Luo Jianjin in [Luo13]. In 1751, Euler
also discovered these numbers while working with triangulations of convex polygons. For more
information on the history of the Catalan numbers, see [Kos09, Sta15].

No matter the origins, over the centuries the list of objects found to be enumerated by the
Catalan numbers, known as Catalan objects, has grown to over 200 objects. Richard Stanley
recently provided an extensive narrative of the properties and applications of the Catalan numbers
[Sta15]; he lists 214 combinatorial interpretations of the Catalan numbers as exercises. Some of the
interesting exercises are rooted trees with each vertex having either zero or two children (complete
binary trees), peaks of height one in all Dyck paths from (0, 0) to (n, n), and ballot sequences,
which are sequences of length 2n of 1’s and −1’s such that the number of 1’s is equal to the number
of −1’s and every partial sum is non negative.
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We focus on two well known families of the Catalan objects, Dyck paths and rooted planar trees.
Since these two objects are proven Catalan objects, there exists a bijection between them. We recall
a natural bijection between Dyck paths and rooted planar trees which essentially reads Dyck paths
as the planar code for rooted planar trees from [Sta99]. Dyck paths are a particularly interesting
family of objects since many natural statistics can be used to define the q, t-Catalan polynomials,
which can be found in [Hag08].

In this thesis, we describe certain rigged configurations from the special case type A
(1)
1 of the

Kerov-Kirillov-Reshitikhin bijection given in [KKR86] as Catalan objects which surprisingly do
not appear in the list given in [Sta15]. One natural statistic on rigged configurations known as
cocharge came out of the study of the partition function of the XXZ spin 1/2 Heisenberg spin
chain [HKO+02, HKO+99] and the work of Kerov, Kirillov, and Reshetikhin [KKR86, KR86]. This
statistic is specifically important in physics and statistical mechanics, and we are interested in them
since cocharge corresponds to the statistic major index on Dyck paths through the KKR bijection.

We give an explicit bijection π between rigged configurations and rooted planar trees. We also
prove that the bijection π is equivalent to the composition of the two aforementioned bijections.
The bijection π constructs the partition ν underlying the rigged configuration a row at a time
and immediately sets the rigging of the row. This makes the algorithm defined by π simpler
than the algorithm defined by the KKR bijection, since the KKR bijection constructs a rigged
configuration (ν, J) based on a Dyck word one step (or at least one box of the Young diagram)
at a time and requires multiple computations of the riggings throughout the process. Also, the
recursive description of the KKR bijection obscures many properties of the Dyck paths. The main
advantage of constructing and proving the new direct bijection π is that these properties will no
longer be obscured through the new bijection. As a consequence of our bijection, we can show that
many natural statistics on Dyck paths have natural interpretations on rigged configurations.

This thesis is organized as follows. In Section 2 we provide a background on the Catalan numbers.
In Section 3, we recall the necessary definitions concerning rigged configurations. Section 4 will be
concerned with the concepts of rooted planar trees and the planar code of a rooted planar tree.
In Section 5, we recall the Catalan objects Dyck paths and some interesting statistics on these
objects. In Section 6, we construct a bijection between rigged configurations and rooted planar
trees and prove that this completes a commutative diagram between these three Catalan objects.
In Section 7, we define the q-analogue, consider the q, t-Catalan polynomials and how we can
interpret these polynomials using area and bounce, describe the fermionic formula, and describe
possible future reasearch.

Acknowledgements

I would like to thank my advisor Anne Schilling and Travis Scrimshaw for their invaluable
guidance and many discussions of the proof of the bijection and the writing of this thesis. Many
of the computations and pictures were done using [SCc08, S+14] which aided in the drawing of
examples, especially regarding Dyck paths.

2. Catalan Numbers

Here we give a brief definition, a few interesting properties and a few well-known examples of
Catalan numbers found in [Kos09, Sta15]. We define the nth Catalan number by

(2.1) Cn :=
1

n+ 1

(
2n

n

)
,
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where
(

2n
n

)
is the binomial coefficient. More generally, the binomial coefficient is(

m

n

)
=

m!

n!(m− n)!
.

The first few Catalan numbers are 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796. A Catalan object
is an object that is enumerated by the Catalan numbers. A consequence of Euler’s work with
triangulation of n+ 2-gons is the following recursion satisfied by the Catalan numbers:

(2.2) C0 = 1, Cn =
4n− 2

n+ 1
Cn−1.

We can derive Equation (2.1) by using Equation (2.2):

Cn =
4n− 2

n+ 1
Cn−1 =

(4n− 2)

(n+ 1)

(4n− 6)

n
Cn−2 = · · · = 4n− 2

n+ 1

4n− 6

n

4n− 10

n− 1
· · · 6

3
· 2

2
C0

= 2n
(2n− 1)(2n− 3)(2n− 5) · · · 3 · 1

(n+ 1)!
=

2n(2n)!

2n(n+ 1)!n!
=

1

n+ 1

(
2n

n

)
.

If we use Sterling’s approximation for factorials, which is n! ∼ (ne )n
√

2πn, then we can find an
approximation of Cn:

Cn =
1

n+ 1

(
2n

n

)
=

(2n)!

(n+ 1)(n!)2

∼
(2n
e )2n

√
2π · 2n

(n+ 1)(ne )2n · 2πn
=

22n

(n+ 1)
√
nπ

∼ 22n

n
√
nπ

=
4n

n3/2
√
π
.

Now we give three examples of well-known Catalan objects from [Sta15].

Example 2.1. We describe the triangulations of a convex n+2-gon and give some examples. Given
a convex n+ 2-gon where n is a positive integer, a triangulation of such a polygon is a division into
triangles. These triangulations are Catalan objects.

n = 2

n = 3

Example 2.2. A sequence of parentheses is said to be valid if for every open parenthesis, “(”,
there is a close parenthesis, “)”, and when considering a part of the sequence, the number of
open parentheses is greater than the number of close parentheses. The set of sequences of valid
parentheses is a Catalan object.
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n = 2

()() (())
n = 3

()()() ()(()) (())() (()()) ((()))
Example 2.3. The number of ways for 2n people sitting around a table to shake hands without any
arms crossing is also enumerated by the Catalan numbers. This is also equivalent to non-crossing
partitions.

n = 2

n = 3

3. Rigged Configurations

In this section, we describe the Catalan objects which are a special case of rigged configurations

of type A
(1)
1 from [KKR86, Sch03]. For this concept, we need to recall a few definitions from [KSS02,

Sta12, Sag01].
A partition of a positive integer is a finite sequence of positive integers ν = (ν1, ν2, . . . , νm) such

that νi ≥ νi+1. We say νk, for some k, is a part of ν. The size of the partition |ν| = ν1+ν2+· · ·+νm,
and we denote by ν ` n if |ν| = n. The length of ν is m and denoted `(ν). These sums can be
represented pictorially in many different ways. We represent them in a Young diagram as a collection
of rows of boxes such that the length of the kth row corresponds to νk. We use English convention
which has the rows in weakly decreasing order from top to bottom and left aligned. The number
of rows of length j in a partition ν is the multiplicity of j which we denote as mj(ν) and we simply
write mj when there is no danger of confusion.

Example 3.1. The Young diagram corresponding to the partition of 14 = 5 + 4 + 2 + 2 + 1.

We denote (km) as the partition of length m and each row has length k, i.e. an m× k rectangle.
Let ν be a partition. Let µ be a partition such that the Young diagram of µ can sit completely
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inside of ν, that is `(µ) ≤ `(ν) and νi ≥ µi for all 1 ≤ i ≤ `(µ). A skew partition ν/µ is the set of
boxes in ν which are not in µ.

Example 3.2. Let ν be as in Example 3.1 and let

µ = .

Then

ν/µ = .

Definition 3.3. A rigged configuration is the multiset of (i, x), where i is the length of a row and
x is the corresponding label or rigging, which we denote as (ν, J), where ν is a partition comprised
of the i and J is the set of labels x. Let RC(k;w), where k ∈ Z>0 and w ∈ Z≥0, be the multiset of
rigged configurations (ν, J) satisfying the following conditions:

(1) for all (i, x) ∈ (ν, J), we have 0 ≤ x ≤ pi(ν), where pi(ν) is the vacancy number

pi(ν) := k − 2

`(ν)∑
j=1

min(νj , i),

(2) the weight w of (ν, J) is wt(ν, J) := k − 2|ν| = p∞(ν).

Example 3.4. We give an example of a rigged configuration in RC(24; 0):

0

2

3

13

7

0

4

8

14

14 .

The corigging of (i, x) ∈ (ν, J) is pi(ν)− x. A row (i, x) ∈ (ν, J) is called singular if the rigging
is equal to the vacancy number, that is pi(ν) = x. We can express the vacancy numbers as

pi(ν) = k − 2

∞∑
j=1

min(i, j)mj(ν).

Definition 3.5. Let (ν1, J1) ∈ RC(k1; 0) and (ν2, J2) ∈ RC(k2; 0). We define the interweaving
(ν1, J1) · (ν2, J2) ∈ RC(k1 + k2; 0) as the multiset of all (i, x) ∈ (ν1, J1) and (i, pi(ν1) + x) for
(i, x) ∈ (ν2, J2).
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Let (ν, J) = (ν1, J1) · (ν2, J2). We show that the riggings of (ν, J) are given by the coriggings of
(ν2, J2). Note that mj(ν) = mj(ν1) +mj(ν2) for all j ∈ Z>0, and so

(3.1)

pi(ν) = k − 2
∞∑
j=1

min(i, j)mj(ν) = k1 + k2 − 2
∞∑
j=1

min(i, j)
(
mj(ν1) +mj(ν2)

)

= k1 + k2 − 2

 ∞∑
j=1

min(i, j)mj(ν1) +
∞∑
j=1

min(i, j)mj(ν2)


= k1 − 2

∞∑
j=1

min(i, j)mj(ν1) + k2 − 2

∞∑
j=1

min(i, j)mj(ν2) = pi(ν1) + pi(ν2).

Then for a rigging x coming from (ν2, J2), we have

pi(ν)− (pi(ν1) + x) = pi(ν1) + pi(ν2)− pi(ν1)− x = pi(ν2)− x.

Thus (ν, J) is constructed essentially by adding the two partitions together and keeping the riggings
of (ν1, J1) and the coriggings of (ν2, J2).

Example 3.6. This is an example of the interweaving of two rigged configurations (ν1, J1) ∈
RC(14; 0) and (ν2, J2) ∈ RC(22; 0). Let

(ν1, J1) =
0

1

7

0

4

8

, (ν2, J2) =

0

4

0

8

0

4

8

14

.

Then

(ν1, J1) · (ν2, J2) =

02

01

62

42

11

162

71

0

2

6

12

12

22

22

, (ν2, J2) · (ν1, J1) =

02

21

42

91

02

211

82

0

2

6

12

12

22

22

,

where the subscript denotes which rigged configuration a particular rigging comes from. Notice
that we have (ν1, J1) · (ν2, J2), (ν2, J2) · (ν1, J1) ∈ RC(36; 0)

Lemma 3.7. The interweaving operation · : RC(k1; 0)×RC(k2; 0) −→ RC(k1+k2; 0) is well-defined.

Proof. It is sufficient to check that (ν, J) = (ν1, J1) · (ν2, J2) is a rigged configuration in RC(k1 +
k2; 0). By Equation (3.1), we have pi(ν) = pi(ν1) + pi(ν2) ≥ pi(ν1), pi(ν2). By construction, we
have that mi(ν) = mi(ν1) +mi(ν2). Since wt(ν, J) = 0 and wt(ν, J) = k − 2 |ν| by Definition 3.3,
we have k− 2 |ν| = 0. Since the riggings x for (i, x) ∈ (ν1, J1) do not change through interweaving,
we have x ≥ 0. Also, since x ≤ pi(ν1) ≤ pi(ν), the riggings are weakly less than pi(ν). Since the
corigging pi(ν2) − x for (i, x) ∈ (ν2, J2) change to pi(ν1) + x through the interweaving and since
x ≤ pi(ν2), then pi(ν) = pi(ν1) + pi(ν2) ≥ pi(ν1) + x. Also, since x ≥ 0 and pi(ν1) ≥ 0, then
0 ≤ pi(ν1) + x. Therefore, (ν, J) is a valid rigged configuration in RC(k1 + k2; 0). �

6



Now we describe a statistic on a partition ν which arose from statistical mechanics called cocharge.
Cocharge is defined as

cc(ν) =

∞∑
i,j=0

min(i, j)mimj ,

where mi is the multiplicity of i in ν. Now we can define the cocharge on a rigged configuration as

cc(ν, J) = cc(ν) + |J |

where |J | is the sum of all riggings in (ν, J).

Example 3.8. In this example, we enumerate the set of rigged configurations RC(8; 0).

(1)

0

0

0

0

0

0

0

0 (2)

0

2

2

0

2

2 (3)

0

2

0

0

2

2 (4)

0

2

1

0

2

2

(5)

0

4

0

4 (6)

0

0

0

0

2

2 (7)

0

0

0

0 (8)

0

1

0

0

2

2

(9)

0

1

1

0

2

2 (10)

0

3

0

4 (11)

0

0

0

4 (12)

0

1

0

4

(13)

0

2

0

4 (14) 00

4. Rooted Planar Trees

In this section, we describe the combinatorial objects which we call rooted planar trees, ordered
trees or (rooted) plane trees. First we recall some well-known definitions and ideas from graph
theory, specifically regarding trees. We follow [Sta12] for the definitions and theorems of rooted
planar trees.

A graph is a tuple G = (V,E) where V is a set whose elements are called vertices and E is a
set of pairs of vertices {v, u} called edges. We call two edges adjacent if they share a vertex, and a
path with length `, P`, is a set of ` edges which are adjacent. For the purposes of this thesis, we
will not allow multiple edges between adjacent vertices. The degree of a vertex u, denoted deg(u),
is the number of vertices v in which there is exactly one edge between u and v.

A tree is a graph where there is a unique path between any two vertices. A tree is called rooted
if there exists a unique minimal vertex which is labeled the root.

Let a be a vertex of a tree T . We say a vertex b is a child of a if {a, b} is an edge of T and the
path from the root to a is contained in the path from the root to b. We say a is the parent of b. A
leaf is a node with no children.

A rooted planar tree T is a rooted tree where there is a fixed ordering on the children of every
node. For convention, we let the root node be the uppermost node on the tree and all children
strictly below the root. We let T rpn be the set of all rooted planar trees with n edges.

Definition 4.1. The planar code of a rooted planar tree is the sequence of 1’s and 2’s which is a
recording of the tracing around the outside of a rooted planar tree starting at the right side of the
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root where a 1 denotes a step with exactly one edge length from a parent node to a child node and
a 2 denotes a step with exactly one edge length from a child node to a parent node.

Every edge of a rooted planar tree has a 1 and a 2 assigned to it, and the number of 1’s is greater
than or equal to the number of 2’s for every step in the sequence. Also, if they are equal then the
planar code brings us back to the root.

Example 4.2. The following is an example of the rooted planar tree in T rp4 with planar code
11212212.

1

1
2

12

2

12

Definition 4.3. A branch is a path b in T from a leaf v to a vertex u such that v 6= u and
deg(u) 6= 2, and all vertices a 6= u, v of b satisfy deg(a) = 2 in T .

Some statistics on a rooted planar tree T are the depth of a rooted planar tree which is the length
of the longest embedded path starting at the root and the number of leaves, which we denote as
d(T ) and v(T ) respectively.

Example 4.4. This is an example of a rooted planar tree in T rp14 . The paths with dashed lines are
branches of length 1, 2, and 3 respectively.

Definition 4.5. Let T1 and T2 be two rooted planar trees. We define T1 · T2 by concatenating T2

to T1 at the roots of the trees with the branches of T1 completely to the right of the branches of
T2.

Example 4.6. This example shows how the definition for T1 · T2 works. Let

T1 = , T2 = .
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Then we have

T1 · T2 = , T2 · T1 = .

Lemma 4.7. The planar code of T = T1·T2 is the sequence (a1, . . . , an, b1, . . . , bk) where (a1, . . . , an)
is the planar code of T1 and (b1, . . . , bk) is the planar code of T2.

Proof. By the definition of T1 · T2 we get that all the branches of T1 are completely to the right
of the branches of T2. Then all the elements of the planar code of T1 will come before all the
elements of the planar code of T2. Thus, if we let the planar codes for T1 and T2 be (a1, . . . , an)
and (b1, . . . , bk) respectively, then the planar code for T is (a1, . . . , an, b1, . . . , bk). Therefore, we get
the desired sequence for the planar code of T . �

Example 4.8. We enumerate the set of rooted planar trees in T rp4 .

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14)
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5. Dyck Paths

In this section, we give definitions and statistics surrounding Dyck paths from [Hag08]. Also, we
describe the KKR bijection between Dyck paths and rigged configurations, the bijection between
Dyck paths and rooted planar trees, and examples of how these bijections work.

Given an n× n box, the main diagonal is the line y = x where x ∈ [0, n].

Definition 5.1. A Dyck path of length 2n is a lattice path which starts at (0, 0) and ends at (n, n),
where each step is either a unit north step or a unit east step and stays weakly above the main
diagonal. Given a fixed n, we denote the set of all Dyck paths of length 2n by D2n.

From the definition, it is easy to see that in a Dyck path, the number of north steps is equal
to the number of east steps. A Dyck paths can also be represented as a Dyck word, which is a
sequence of n 1’s and n 2’s such that a 1 represents a unit step north and a 2 is represents a unit
step east. We will abuse notation and equate Dyck paths and Dyck words.

Example 5.2. This example is a Dyck path D ∈ D16 with Dyck word 1211121122212212.

Definition 5.3. Let D1 and D2 be two Dyck paths with lengths 2n and 2m respectively. We define
D1 ·D2 as a concatenation of the two Dyck paths such that the first step D2 follows immediately
after the last step of D1.

This definition is well-defined, since the resulting path stays weakly above the main diagonal and
the path starts at (0, 0) and ends at (2n+ 2m, 2n+ 2m).

We abuse notation and define 1 ·D · 2 as an increase of the length of a Dyck path by 2 by adding
an north step at the beginning of the path and an east step at the end of the path.

We recall some noteworthy statistics on Dyck paths: area, bounce, dinv, and major index. We
define the area sequence of a Dyck path D by a = (a1, a2, . . . , an), where ai is the number of boxes
between the Dyck path and the main diagonal in row i going from bottom to top. The area statistic
of a Dyck path is

(5.1) area(D) =

n∑
i=1

ai

where ai is the ith element in the area sequence.
The bounce path starts at (n, n) and travels west along the Dyck path until it turns south, and

then travels south to the main diagonal. From the main diagonal the bounce path then travels
west until it runs into the Dyck path going south. The bounce path repeats this process until it
reaches (0, 0). Define the bounce statistic as

(5.2) bounce(D) =

k∑
i=1

bi,

10



where bi is where the bounce path hits the main diagonal and k is the number of times the bounce
path hits the main diagonal after leaving (n, n).

To compute dinv, we consider the area sequence {a1, . . . , an}. The dinv is the size of the set
{aj − ai | i < j, aj − ai ∈ {0, 1}}.

The major index of a Dyck word D = w1 . . . w2n is defined as

maj(D) =
∑

wi<wi+1

i.

The peaks of a Dyck path D are the places in the Dyck word where a 1 immediately precedes
a 2. The height of D is the number of units above the line y = x where the highest peak is. We
denote these statistics as p(D) and h(D) respectively.

Example 5.4. Consider D from Example 5.12.

0

0

1

2

2

3

1

0

The bounce path of D is in gray, and the area sequence is {0, 0, 1, 2, 2, 3, 1, 0}. This gives us the
following:

area(D) =0 + 0 + 1 + 2 + 2 + 3 + 1 + 0 = 9,

bounce(D) =1 + 2 + 5 + 7 = 15,

dinv(D) =1 + 2 + 1 + 2 + 2 + 3 + 2 = 13,

maj(D) =1 + 5 + 8 + 12 + 15 = 41,

p(D) = 5,

h(D) = 4.

Definition 5.5 (KKR bijection). Let Φ : D2n → RC(2n; 0). Then the algorithm of Φ goes
through the Dyck word D of a Dyck path D defined by using a map δ : {1, 2} × RC(k;w) →
RC(k+ 1;w+ 1)tRC(k+ 1;w− 1). For each 2 in D a box is added to the largest singular string,
and the algorithm of Φ computes the vacancy number and makes the string singular again.

The following proposition is a direct result of the KKR bijection from [KKR86, KR86].

Proposition 5.6. |RC(2n; 0)| = Cn.

The following theorem is a result of the KKR bijection and [HKO+02, HKO+99].

Theorem 5.7. Let D be a Dyck path and Φ(D) = (ν, J). Then maj(D) = cc(ν, J).

Define ∗ : D2n −→ D2n to be the map that exchanges 1’s and 2’s and reverses the result. This is
equivalent pictorially to reversing the Dyck path. Let θ : RC(L;λ) → RC(L;λ) be the involution
that preserves the partition and sends riggings to coriggings [SS06].

Theorem 5.8 ([SS06]). Φ intertwines the maps ∗ and θ.
11



The following is the commutative diagram for Theorem 5.8.

D2n
Φ //

∗
��

RC(2n; 0)

θ
��

D2n
Φ // RC(2n; 0)

Theorem 5.8 shows that Φ−1(D∗) is the rigged configuration with riggings equal to the coriggings
of Φ−1(D).

Example 5.9. Example of the KKR bijection

∅ 7−→∅
1 7−→∅

11 7−→∅
112 7−→ 11

1121 7−→ 12

11212 7−→ 1
1

1
1

112122 7−→ 0
1

0
2

1121221 7−→ 0
1

1
3

11212211 7−→ 0
1

2
4

112122111 7−→ 0
1

3
5

1121221112 7−→
0

1
4

2
4
4

11212211122 7−→
1
0

1

1
1
5

112122111221 7−→
1
0

1

2
2
6

1121221112212 7−→
1
0

1
5

1
1
5
5

11212211122121 7−→
1
0

1
5

2
2
6
6

112122111221212 7−→

1
0

1
5
5

1
1
5
5
5

1121221112212122 7−→

0
0

1
5
5

0
2
6
6
6

Lemma 5.10. Let D be a Dyck path which has at least one return to the main diagonal away from
the endpoints. Let (ν, J) be the rigged configuration corresponding to D through the KKR bijection.
Let s be the step of D which creates a return to the main diagonal. Then the lengths and riggings
of the rows of (ν, J) created up to s through the algorithm of the KKR bijection will not change for
any step after s.

Proof. A 2 in D through the algorithm for the KKR bijection adds a box to the longest singular
string and makes the row singular. When the path of D returns to the main diagonal, the next
step must always be an up step, so a 1. Through the KKR bijection, an up step will always make
any singular string non-singular, since an up step increases all of the vacancy numbers by one, but
all the riggings stay the same. Thus, when the path does go east and a box is added, no string is
singular, so a new row must be created. Let λ be the partition after step s, and let t be a number
of steps in D such that s < t. It is clear that t ≥ 2 · |µ|, where µ is the partition after step t. So,
let x be the rigging of an arbitrary row with length k which came from before the return to the
diagonal with pk(µ) as the vacancy number of this row length. Also we have that the number of

12



boxes added after s is less than or equal to twice the number of steps taken from s to t. Thus we
have that

pk(µ) = t− 2 ·
`(µ)∑
j=1

min(µj , k) > s− 2 ·
`(λ)∑
j=1

min(λj , k) ≥ x.

Thus, only when D returns to the main diagonal does a row from λ have a chance at being singular
again, but the next step is an up step, so a 1, thus non-singular. Therefore, the claim is proved.

�

We now define ψ : T rpn −→ D2n as the map which reads the planar code from Definition 4.1 as
a Dyck word.

Proposition 5.11. The map ψ : T rpn −→ D2n is a bijection.

Proof. It follows directly from Definition 4.1 that the number of 1’s is greater than or equal to the
number of 2’s at each intermediate step, since if the are equal, the planar code brings us back to
the root node, and from the root node, we cannot take a step closer to the root node. Since a Dyck
path is uniquely equivalent as a Dyck word, we only have left to check that a given planar code
corresponds to a unique rooted planar tree. This is clear from the definition of a rooted planar tree,
since there is a fixed ordering on the children in a rooted planar tree. Therefore ψ is a bijection. �

Example 5.12. This example enumerates the set of all Dyck paths in D8.

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14)

The examples at the end of Sections 3, 4, and 5 are all the n = 4 examples of each of the
respective combinatorial objects. In particular, the Dyck path (i) of Example 5.12 corresponds to
the rigged configuration (i) of Example 3.8 through the KKR bijection, and the Dyck path (i) of
Example 5.12 corresponds to the rooted planar tree (i) of Example 4.8 through the bijection ψ
given in Proposition 5.11.
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6. The Bijection

In this section, we define a map which is algorithmic in nature between rooted planar trees and
rigged configurations, and we prove that this map is a bijection. Also, we prove that this map is the
composition of the two bijections in the previous section, and we state some interesting corollaries.

Definition 6.1. Let p be a path in a graph of length ` with distinguished endpoint v0. A node a
is called k-valid if attaching a path q of length k at a by an endpoint of q creates a path from v0

which has length at most `. We say a node a in a rooted tree T is k-valid if there exists a path p
in T from the root to a leaf such that a is k-valid in p with the distinguished node p being the root
of T .

Definition 6.2. Let (ν, J) ∈ RC(2n; 0) be a rigged configuration. We define the map π by the
following algorithm. The algorithm of π starts with ν1, that is we start with the longest row of
ν, with T0 = ∅ and does the following. Consider a row i with length νi with the corresponding

rigging xi. Let T̃i−1 denote the induced tree of all νi-valid nodes in Ti−1. When tracing around the

outside of T̃i−1 starting at the right side of the root, we count nodes from 0. We call each encounter
with a node during this tracing procedure a position (note, each node can have multiple positions
associated to it). The map π adds a branch of length νi to the position on Ti−1 corresponding

to the xith position on T̃i−1. Denote the resulting tree by Ti. Then π repeats with i + 1 unless
i = `(ν). Then π(ν, J) = T`(ν).

Note that there is no ambiguity in where we add the branch of length νi at a node a. This

follows from the fact that the paths in Ti−1 \ (T̃i−1 \ {a}) from a to leaves all have length νi, thus
correspond to the same rooted planar tree after the branch is added.

Example 6.3. The following is an example of one step of the bijection π. We consider the bottom
row of the rigged configuration which has length 2 and rigging 8. This rigged configuration maps
to the rooted planar tree where the gray branch corresponds to the bottom row. The numbers
around the tree illustrate the positions counted in the tracing procedure.

0

1

8

0

4

8
7−→

0

1
23

4

5

6

7

8
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Example 6.4. This is an example of how the algorithm of π executes on a rigged configuration.

∅ 7−→

00 7−→

0
1

0
4 7−→

0
1

8

0
4
8 7−→

0
1

8
5

0
4
8
8 7−→

0
1

8
5

11

0
4
8
8

16

7−→

0
1

8
5

11
2

0
4
8
8

16
16

7−→

Theorem 6.5. Let π : RC(2n; 0) −→ T rpn be the map given by Definition 6.2. Then π is a bijection.

Proof. Consider a rigged configuration (ν, J) ∈ RC(2n; 0) with the underlying partition ν. We show
π is a bijection by induction on `(ν).

The base case is when ν is the empty partition, thus (ν, J) is the empty rigged configuration.
This corresponds to a tree with just the root node. Thus, we have pi = 0 for all i ∈ Z>0. If we
add a row of arbitrary length k to (ν, J), the rigging of the row and the vacancy number of the row
length are both 0. This corresponds to adding a branch of length k to the tree with just the root
node. There is only one way to add this branch through π, and so the base case is proved.

For the inductive step, we assume that (ν, J) is a rigged configuration where all rows of ν have
length at least k ∈ Z>0. Let T = π(ν, J) and note the shortest branch of T has length at least k.

We now add a row of length k to ν to show the induction step holds. Let µ = ν/k`(ν), and note
that µ is an actual partition. Notice that pk(ν) = 2|µ|. We need that on each path (not necessarily
a branch) bj corresponding to a row νj that there are 2µj k-valid nodes. We label the vertices of
bj by (v0, . . . , vνj ) where v0 is the node at the end of the branch closest to the root node and vνj
is the leaf node. Note that the vertices v0, . . . , vµj are all k-valid with v0 as the distinguished node
since bj has length νj = µj + k.

We consider adding the new branch only to the left side of bj . The number of nodes on bj is
νj + 1, but we skip v0 as to not over count since v0 will be counted on the path to which bj is
attached. Also, by construction we have that νj = µj + k. Since the resulting tree must have
paths with length at most νj then, we have counted the number of k-valid nodes on the left side
and is exactly νj − k = µj . Now we consider the other side of the branch, and this case is similar.
However, we skip vµj since adding it to vµj on this side would not create a distinct tree, but we do
count v0 if µj 6= 0 since adding it here creates a distinct tree that was not counted on the path to
which bj is attached. Note if µj = 0, then adding it to the left of bj is the same as adding it to the
right of bj . Therefore, we have counted 2µj positions on the jth branch.
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By adding one for the root node since it is not counted on b1, the total number of positions are

1 +

`(µ)∑
j=1

2µj = pk(µ) + 1.

Now let ρ : T rpn −→ RC(2n; 0) such that given a rooted planar tree, ρ decomposes the tree
starting from the branch of the smallest length and constructs a row (i, x) of a rigged configuration
(ν, J) at a time. Consider a tree with shortest branch of length k. By considering how many k-valid
nodes there are from the root node to the node where the branch starts, we get the rigging for that
row. We have already shown that there are exactly pk(ν) + 1 k-valid nodes, thus the rigging which
we get for each row will be between 0 and pk(ν). If there is only one branch of length k we are
done. If there are multiple branches of length k, we construct the corresponding rows in the rigged
configuration and reorder so that the riggings are weakly decreasing. This can always be done since
we count the nodes which any branch of length k is added to once. If we choose a branch with
other branches of length k between it and the root nodes, then there are no k-valid nodes on the
other length k branches. Thus nothing changes again. Hence we can choose any branches of similar
lengths in any order and reorder in the rigged configuration. By the construction of this inverse
map, each branch of the resulting tree corresponds with a row of the rigged configuration, and so
the map π is surjective. Therefore, ρ = π−1 since an arbitrary step of the algorithm defined by ρ is
the inverse of the complementary step of the algorithm defined by π, and the map π is a bijection.

�

Theorem 6.6. Let Φ : RC(2n; 0) −→ D2n be the map defined by the KKR bijection, ψ : D2n −→
T rpn be the map which interprets the Dyck word as the planar code, and π : RC(2n; 0) −→ T rpn be
the bijection from Theorem 6.5. Then the following diagram commutes.

RC(2n; 0)
Φ //

π

##

D2n

ψ

��

T rpn
Proof. To show that these bijections commute, we use induction on n.

First, we consider the base case when n = 0. Then we only have the empty Dyck path, which
trivially corresponds to the empty rigged configuration and the rooted planar tree with only the
root node. Thus our claim holds for the n = 0 case.

Now we assume our claim holds for all k < n. We fix a D ∈ D2n, and let ψ(D) = T ∈ T rpn
and Φ−1(D) = (ν, J) ∈ RC(2n; 0). We consider two cases. The first case is if only the endpoints
of D touch the main diagonal, and the second case is if D has at least one return away from the
endpoints to the main diagonal. This is sufficient since every Dyck path has a return.

Case 1: Assume the first return of D is the endpoint. Consider the Dyck word D and let D = 1·D′·2.
Then we get D′ has semi-length 2(n − 1). Thus by induction hypothesis, Φ−1(D′) = (ν ′, J ′) and
ψ(D′) = T ′ correspond under π. So we determine the rigged configuration (ν, J) we get from D
through the KKR bijection. Since D has an extra 1 at the beginning, if y is the vacancy number
of a row at a step m, then the vacancy number of a row at step m+ 1 of D is exactly y+ 1. Thus,
at a step of the algorithm of Φ−1(D) where a box is added to a singular string the rigging of that
string will increase by one from a similar step in the algorithm of Φ−1(D′). This shows that all
the riggings of the construction of (ν, J) are increased by one from construction of (ν ′, J ′) up to
the final step. By the algorithm of the KKR bijection, we know that just before the final step
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the vacancy number and rigging of the longest row are both 1, thus the row is singular. We now
consider the final step, where we must add a box to the longest singular string and again make it
singular making both the vacancy number and rigging 0. This row, call it ν1 will be strictly the
longest singular string of (ν, J) with rigging 0. Therefore, the partition of (ν, J) has a box added
in the longest row, and the riggings of all but the longest row have increased by one.

Now we determine the rooted planar tree T ′ we get from D′ under the map ψ. The Dyck word
of D gives us the planar code for T which has k edges and k + 1 nodes. Recall that D′ = 1 ·D · 2,
and if we use D′ as the planar code for T ′, then clearly T ′ has k + 1 edges and k + 2 nodes. Also,
the node which is added to T using D′ as the planar code is the new root node, and the edge that
is added is attached to the node which was the root of T . Thus we add a new node 1 and and
every node other than 0 is increased by one.

Now we check that these are the two objects which correspond to each other through Theorem 6.5.
T clearly gives the shape of (ν, J) since the longest path corresponds to the longest row of our rigged
configuration. Since the added edge and node is added to the root node, each branch position on
the tree increases by one, except the position of the longest branch which stays 0. This increase in
branch position corresponds to the rigging of (ν, J). Thus the maps commute for the first case.

Case 2: Let D be a Dyck path which has at least one return to the main diagonal away from the
endpoints. Thus we can write D = D′ ·D′′, where D′ and D′′ are non-empty Dyck paths. By the
inductive hypothesis, D′ and D′′ correspond to T ′ and T ′′ respectively under ψ and (ν ′, J ′) and
(ν ′′, J ′′) respectively under Φ, and T ′ and T ′′ correspond to (ν ′, J ′) and (ν ′′, J ′′) respectively under
π.

Now we show that when we concatenate the Dyck paths the maps still commute. When we join
the two Dyck paths, we must preserve order, so we must attach D2 to the right side of D1. We
show that

(6.1) Φ−1(D) = Φ−1(D′) · Φ−1(D′′) = π−1(ψ(D′) · ψ(D′′)) = π−1(ψ(D)).

We first show that ψ(D′) · ψ(D′′) = ψ(D). This is clear by considering the Dyck path sequence
as the planar code. Since D = D′ · D′′ and the last node of D′ is the first node of D′′, then
ψ(D′) · ψ(D′′) = ψ(D) and π−1(ψ(D′) · ψ(D′′)) = π−1(ψ(D)).

Now consider (ν ′, J ′) and (ν ′′, J ′′) with partitions ν ′ and ν ′′; also, let (ν, J) = (ν ′, J ′) · (ν ′′, J ′′).
We interweave the rows of (ν ′′, J ′′) into (ν ′, J ′) according to row length.

Lemma 3.5 shows the rows and riggings coming from (ν ′, J ′) in (ν, J), are unchanged. However,
the vacancy number pi(ν

′) will increase based on the number of rows of (ν ′′, J ′′) which are longer
than i. Also, the rows (i, x) which come from (ν ′′, J ′′) change to (i, pi(ν

′) + x). It follows from
Lemma 5.10 that Φ−1(D′) = (ν ′, J ′). Also, we have D∗ = (D′′)∗ · (D′)∗. We know that taking a
reversed Dyck path through the KKR bijection will give us same partition, but the riggings of the
reverse direction will be the coriggings of the forwards direction by applying (θ ◦Φ◦∗)(D2n), where
θ and ∗ are from Theorem 5.8. So by Lemma 5.10 we know that once Φ−1(D′′) is interweaved back
into Φ−1(D′) the riggings supplied by (i, x) ∈ Φ−1(D′′) will be pi(ν

′) + x. Therefore, Φ−1(D) =
Φ−1(D′) · Φ−1(D′′).

Now we show that Φ−1(D′ · D′′) = π−1(ψ(D′ · D′′)). Recall that by induction hypothesis, the
diagram commutes for D′, T ′ and (ν ′, J ′) and for D′′, T ′′ and (ν ′′, J ′′). Once interweaved together,
the rows (i, x) supplied by (ν ′, J ′) will be unchanged, and the rows (y, j) supplied by (ν ′′, J ′′) will
have partition unchanged and riggings pi(ν

′) + y. Also, for a branch b′ of length `′ on T ′, the
number of `′-valid nodes will increase by the number of `′-valid nodes of T ′′. Analogously, for a
branch b′′ of length `′′ on T ′′ the number of `′′-valid nodes will increase by the number of `′′-valid
nodes of T ′. Thus, Φ−1(D′) · Φ−1(D′′) = π−1(ψ(D′) · ψ(D′′)). Therefore, we have shown (6.1).
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Finally, since the two cases are sufficient for considering all Dyck paths of a given length, we
have shown that ψ ◦ Φ = π.

�

Now we can see that the examples at the end of Sections 3, 4, and 5 illustrate the commutative
diagram for the n = 4 case of each of the combinatorial objects. In particular, the Dyck path
(i) of Example 5.12 corresponds to the rigged configuration (i) of Example 3.8 through the KKR
bijection which corresponds to the rooted planar tree (i) of Example 4.8 through the bijection π
given in Theorem 6.5 (i.e

Example 3.8(i)
Φ //

π

''

Example 5.12(i)

ψ

��

Example 4.8(i)

for all i in {1, . . . , 14}).

Corollary 6.7. Let D be a Dyck path, T = ψ(D), and (ν, J) = π−1(T ). Then

h(D) =d(T ) = ν1,

p(D) =v(T ) = `(ν).

Proof. These equalities follow by considering Φ(D) = π−1(ψ(D)), and following the construction
of the two bijections. Indeed, let D have height h(D). Let ri and si be the number of occurrences
of 1 and 2, respectively, before the ith position in the planar code. Let T = ψ(T ). It is clear that
h(D) is equal to the depth of T . Since the algorithm of π−1 makes the lengths of the branches of
T the lengths of the rows of (ν, J), d(T ) = ν1.

Let D have p(D) peaks. Since a peak is exactly when a 1 in the Dyck word is followed immediately
followed by a 2, and the same criteria must be satisfied for T to have a leaf, then p(D) = d(T ).
Since the number of leafs is also the number of branches, and π−1 makes each branch a row of ν,
then d(T ) = `(ν). Therefore the equalities are proved.

�

7. Further Research

It was our hope that by giving an explicit commutative diagram that we might be able to interpret
the statistics bounce or dinv of Dyck paths in either rooted planar trees or rigged configurations.
This might have been helpful proving the symmetry of the q, t-Catalan numbers combinatorially.
These ideas have not come to fruition yet; however, in future projects we could consider other
Catalan objects and construct bijections from Dyck paths with the desired results. For more
information on the q, t-Catalan numbers, see [Hag08].

q-analogue. Let 0 < q < 1, and let n ∈ Z≥0. The q-analogue of n is

(7.1) [n] :=
1− qn

1− q
= (1 + q + q2 + · · ·+ qn−1).

The q-analogue of n! is

(7.2) [n]! := [n] · [n− 1] · · · [1].
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The q-analogue of binomial coefficients is

(7.3)

[
n
k

]
=

[n]!

[k]![n− k]!
.

One natural q-analogue and equivalence from [Mac04, FH85] of Cn is given by

Cn(q) =
1

[n+ 1]

[
2n
n

]
=

∑
D∈D2n

qmaj(D).

The fermionic formula from [HKO+02, HKO+99] is

M(k,w; q) =
∑

ν∈C(k;w)
wt(ν)=w

qcc(ν)
∏
i

[
mi + pi
mi

]
,

where C(k;w) is the set (without repetition) {ν | (ν, J) ∈ RC(k;w)}. Note that

M(k,w; q) =
∑

(ν,J)∈RC(k;w)

qcc(ν,J)
∏
i

[
mi + pi
mi

]
.

By Theorem 5.7 and the fact that

[
mi + pi
mi

]
is the generating function of partitions in a p×m box

where p,m ∈ Z>0, we have∑
D∈D2n

qmaj(D) =
∑

(ν,J)∈RC(2n;0)

qcc(ν,J)
∏
i

[
mi + pi
mi

]
.

Thus, we have that
Cn(q) = M(2n, 0; q),

giving a fermionic interpretation of the Catalan numbers. In particular, when q = 1 we have

M(2n, 0; 1) =
∑

(ν,J)∈RC(2n;0)

(1)cc(ν,J)
∏
i

(
mi + pi
mi

)

=
∑
ν`n

∏
i

(
mi + qi
mi

)
=

1

n+ 1

(
2n

n

)
= Cn.

where qi(ν) =
∑`(ν)

j=1 min(νj− i, 0) (i.e., the number of boxes strictly to the right of the ith column).

q, t-Catalan Numbers. By considering the statistics area and bounce of Dyck paths, we can get
a combinatorial formula for the q, t-Catalan numbers. The formula for the q, t-Catalan numbers
denoted Cn(q, t), given and proved in [Mac04], is

(7.4) Cn(q, t) =
∑

D∈D2n

qarea(D)tbounce(D).

Theorem 7.1. Let Cn(q, t) be the defined as in Equation (7.4). Then Cn(q, t) = Cn(t, q).

It has been proven algebraically by using diagonal harmonics [Hag03, GH01, GH02]. However,
it is an open problem to show this combinatorially.

Open Problem 7.2. Construct an explicit bijection Ξ : D2n −→ D2n such that area(D) =
bounce(Ξ(D)) and bounce(D) = area(Ξ(D)).

It would be interesting to determine an interpretation of area, bounce, and dinv on rigged
configurations, especially if the statistics could help in solving Open Problem 7.2.
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