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Abstract

We propose a new model for classifying microbiota based on CIGAR strings depicting indels and
mismatches for 16S gene sequences. To test this model, we used the sequences found in the Green Genes
database consisting of 23,662 aligned sequences and 237,880 unaligned sequences. We aligned the target
sequences against consensus sequences generated by selecting the mode base pairs at each position for
all aligned sequences under each of the 207 unique Orders. This resulted in 209,587 successfully aligned
sequences against 180 of the 207 consensus sequences with on average 1322 alignments per reference. The
resulting SAM files generated, on average, a 1433 dimensional feature set for each of the sequences with
39 non-null descriptors defining an insertion, deletion, or mismatch. These features defined the input
for a Convolutional Neural Network following an architecture of 3 convolutional layers, a final deeply
connected layer, and ReLu activation functions. The resulting model demonstrated similar accuracy to
the RDP classifier with area of 0.719, 0.733, and 0.825 under the ROC curves for predicted Order, Family,
and Genus respectively. Moreover, the model produced a likelihood for unclassifed sequences’ taxonomic
rank and was robust against incorrect alignments. We demonstrated that a new type of algorithm using
CIGAR string information held up against the RDP classifier while offering a mechanism for determining
the taxonomic rank of unknown sequences by taking advantage of the advances made in Deep Learning
and Machine Vision.
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Domain
Eukarya

Kingdom
Animalia

ivora
Family
Canidae

Genus

Vulpes

Species
Valpes vulpes

Red fox (Vupes wilpes)

Figure 1: Taxonomic rank for all living beings. From top to bottom, the lower level is a subset of the higher.

1 Introduction

The microbes within the human gut have shown to play a substantial role in human psychological and
physiological health, and also impact metabolic and immune functions. For example, intestinal inflammation
is commonly believed to be associated with reduced bacterial diversity[1]. Moreover, excessive Fusobacterium
has been linked to tumourigenesis [2] and irretable bowel syndrome [3], and there are some studies that show
high levels of Firmicutes and low levels of Bacteroidetes have been found in mice with obesity [4]. Hence,
the ability to indentify human gut microbiota has become increasingly important. Furthermore, algorithms
that can efficiently and accurately classify this bacterial taxonomic heirarchy (See Figure 1) have become
a focus in computational genetics. The 16S rRNA gene has become vital in this task as it is universally
present across bacteria. Moreover, this gene can easily be amplified with universal primers, and is highly
conserved except for nine hypervariable regions V1 — V9 [5]. An example of a classification algorithm that
trains on the 16S rRNA hypervariable regions is the Ribosomal Database Project (RDP) classifier.

1.1 RDP Classifier

The RDP classifier is an algorithm that was developed using a Naive Bayes classifier approach to classifying
bacterial rRNA sequences based on a large database [6]. The RDP classifier uses k-mers, or words, of 6 to
9 base pairs, and identifies these sub-sequences within N reference sequences following standard Natural
Language Processing (NLP) mechanisms. The positions of these matches are ignored and only frequency of
each word is considered. The Bayesian aspect of the algorithm comes from the word-specific and taxonomy-
specific prior probabilities. For the word-specific priors, let W = {wy,ws, -+ ,wq} be the set of all k-mers
and n(w;) be the number of sequences with w; as an element, then we denote

n(w;) + 0.5
Plw) = (N)—i—l

as the prior probability for a specific word w;. Moreover, for a genus G of M sequences and m(w;) of those
sequences containing w;, we have

m(w;) + P(w;)

P(w;|G) =

(wil@) M+1

Then the naivety of the algorithm comes from assuming independence between seperate words, which implies
that the probability of a partial sequence {ws, w2, - ,ws} C S being in a given genus G is

P(s|G) = [[ P(wil@)

w; €S

The RDP classifier then impliments Baye’s Rule to find the probability that this sequence is a member of
the genus G as P(G|S) [6]. To get more levels of a bacterial taxonomy, the RDP classifer would first classify
the Kingdom, then traverse the taxonomic ranks down to the species level. This traversal also leads to
compounded likelihood, or bootstrap confidence estimations, within each level of the taxonomy.



The Naive Bayes model used in the RDP classifier provides two limitations in its construction. First, it
assumes that the probability of finding a word w; in a genus G is indpendent of finding a word w; in that
same genus. This assumptions relies on the fact that the size of G is generally substantially larger than w,,
since if |G| = |w;| then it very clear that w; € G, implies w; ¢ G provided w; # w;. Moreover, because
this model traverses each level of the taxonomy in a single run, the likelihood of correctly predicting a given
taxonomic rank must be less than or equal to the likelihood that it correctly predicted the parent rank.

1.2 OTU Clustering

As the database for bacterial sequences grew larger, the RDP and other 16S classifiers were unable to effi-
ciently handle the substantial amount of data. Especially when some higher-level structure for the bacteria
is unknown or is inconsistent[6], a solution to this problem is to first reduce the amount of the data before
classifying using phylogenetic clustering. Phylogenetic clustering clusters sequences into Operational Taxo-
nomic Units (OTUs) which define equivalence classes under some similarity metric with each class annotated
by its representative’s taxonomic rank.

OTU clustering algorithms measure the similarity between two sequences by aligning those sequences
against each other and measuring the percent of matches. Historically, OTUs are defined by a 97% alignment
match between species based on an empirical study in 2005 by Konstantinidis and Tiedje[7]. Once a set of
representatives are determined, a seperate classification method is used to determine the taxonomy of each
representative such as Naive Bayes[6] (Supervised) or Random Forest[8] (Unsupervised). There have been
many concerns with OTU clustering algorithms, as the 3% similarity threshold ignores multiple substitutions
occuring at the same location due to evolution[9], and it generally underestimates the number of substitutions
when compared with an evolutionary metric such as multiple sequence aligment (MSA)[10]. For example,
some the E.Coli genomes can range anywhere from 1 to 4.5 million base pairs; contradicting this 3% similarity
threshold. However, the advancements in deep learning and big data allow us to classify large datasets
without the need for dimensionality reduction techniques such as OTU clustering.

1.3 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are many layered Artificial Neural Networks (ANN) that have
revolutionized image classification and deep learning. Based on Fukushima’s Neocognitron in 1980, CNNs
allow for training of complex inputs by focusing on local connectivites between neurons, or nodes, of the
network[11]. This drastically reduces complexity as each layer’s nodes do not need to connect to every node
of the previous layer as in a ANN. The CNN works by using a convolutional filter to break an image down into
relatively much smaller overlapping regions, training the model on these regions, and then pooling them back
together. This process often repeats multiple times with various transformations, or filters, being applied to
each layer before training. Moreover, this tiling architecture of the model allows it to be translation invariant,
as the weights of the CNN are trained on the individual regions rather than the image as a whole[12]. This
invariance allows for important artifacts of the feature space to be recognized at any point within this space;
such as a function group within a 16S gene sequence.

One of the key features of a CNN is the filters, or activation functions, used to transform the data at each
layer of the network. Each filter processes the image so that the next layer can begin to recognize specific
patterns within each image. Generally the first filter is a Convolutional filter that combines the neighboring
pixels into a single pixel which not only reduced the dimensionality of the image but can also smooth out
any noisy pixels that don’t match their neighbors. Figure 2 shows an example of a 5 x 5 filter reducing a
32 x 32 image into a 28 x 28 image. Table 1 shows some filters that are commonly used in the other CNN
layers.



Filter Abbr. Definition

Sigmoid Function o 1/(1+e7)
Inverse Tangent tanh tanh(z) = 20(22) — 1
) exp(b;+w;x)
Softmax Si(x) S, cap(b; Tw,7)
Rectified Linear Unit  ReLu max(0, x)
Max Pooling Pool  a;; =max{z;;li € [i —a,i+al,j € [j—a,j+al}

Fully Connected Full A Fully Connected Layer as in a traditional ANN

Table 1: Example filters and activation functions for neural networks. The sigmoid, tanh, and Softmax activation
functions are artifacts from ANNs, while Pooling, ReLLU, and Fully Connected are filters often used in CNNs to refine
an image into its underlying structure.

For traditional multi-layered neural networks, it was often found that the fully connected layers lead to high
computational complexities and poor error rates[13]. CNNs were an exception to this rule, although its still
relatively unclear as to why. In 1989, LeCun et al advanced CNNs using error gradients and demonstrated
outstanding performace on handwriting recognition[14], setting the path for modern day CNNs to continue
to be at the forefront of modern day deep learning. One hypothesis for CNNs success is that the localization
of the neurons causes the error gradients to propagate without compounding error as they do with ANNs.
Moreover, the addition of generative filters, such as rectified linear units and pooling, has led to outstanding
results on the Caltech-101 dataset not just handwriting recognition [15].

input neurons
00000 first hidden layer

Figure 2: The first layer of a CNN is traditionally the convolutional layer which applies a convolutional filter to the
input feature vector. In this visualization we see a 5 X 5 convolutional filter being applied to an input 32 x 32 image.
The result is a (32— (5 — 1)) x (32 — (5 — 1)) = 28 x 28 image as the last 4 columns/rows of the image do not have
enough remaining entries to apply the filter. [16]

2 Models and Methods

Current alignment techniques rely on a known reference sequence for each species which is a luxury we do
not often have with 16S gene microbiota. To avoid this we propose a method that aligns sequences against
consensus sequences generated by consolidating the sequences of similar taxonomic rank. Then the alignment
meta data, such as the CIGAR string that specifies how the target sequence aligned, can generate a thorough
set of features for building a predictive model. Thus allowing us to classify microbes without any knowledge
of their taxonomic rank a priori.



2.1 Consensus Sequence

In designing the Consensus Sequence, we had to consider developing a reference sequence that produced
enough alignments to train on while ensuring these alignments had enough unique features that our model
could recognize their differences. The consensus sequence were focues around the different branches of the
taxonomic heirarchy for the 16S gene, as depicted in Figure 1. By consolidating all the sequences under a
given Order, Family, or Genus we could guarantee that sequences within this class would only differ from the
consensus sequence at the most relevant functional groups, thus generating CIGAR strings with mismatches
displaying the most relevant information about each sequence.

We used the sequences available at the Green Genes 16s RNA Genes Database to compile our consensus
sequences. This dataset consists of 23,662 sequences with full taxonomic rank, including 207 unique Orders,
354 unique Families, and 1067 unique Genuses. To construct the consensus sequence we selected all sequences
of a given Order, Family, or Genus and built a synthetic sequence that consisted of the most common base
among all the aligned sequences at each base. Figure 3 shows an example of a consensus sequence constructed
from the three aligned sequences. We constructed a set of consensus sequences for all sequences in each Order,
Family, and Genus which produced 207, 354, and 1067 unique consensus sequences respectively.
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Figure 3: The consensus sequences were generated by selecting the mode base pair among all the aligned sequences
of a given taxonomic Order, Family, or Genus. This figure illustrates 3 example sequences being consolidated into a
single consensus sequence. Notice that the first and last base pair do not carry into the consensus sequence because
the majority of the sequences had no base pairs at that position.

Green Genes also provided 237,880 unique unaligned sequences with either partial or full taxonomic rank
defined. We then explored how well each of the unaligned sequences aligned to our consensus sequences.
There were a few important details for determining which consensus sequences were going to be the best
for our final model. First, we wanted to ensure that the highest percentage of target sequences would align
to our consensus sequences. It was also important that there was minimal supplementary alignments, and
that each alignment produced sequences near the expected 1500 base pair length after clipping. Moreover,
we wanted a balanced spread of alignments so that we didn’t end up with 90% of the target sequences
aligning to one reference and the rest split among remaining references. Table 2 shows a summary of these
characteristics for each of the groups of consensus sequences as well as the result of re-aligning the sequences
after removing references that matched less than 200 and 2000 targets during the alignment process. The
process we used to align the sequences is described in the following section. We concluded that the Order,
untrimmed, concensus sequences for the model would produce the ideal results. This choice is primarily
based on the CIGAR length as that dictates how many features we will have to build a predictive model
off of; however, the number of aligned sequences was also an important factor as it gives a higher chance of
target sequences not being thrown out.

2.2 Feature Set Generation

We used the a Burrows-Wheeler Alignment tool (BWA), based on the Burrows-Wheeler Transform (BWT),
to align the target sequences against the consensus sequences. BWA “mimics the top-down traversal on a
prefix trie generated from genome with a relatively small memory footprint”[17]. Specifically, we used the
BWA-MEM algorithm since both the reference and target sequences were on the shorter side at around 1500
base pairs. We also compared with Bowtie aligner, but found no significant change in alignments or accuracy
but saw a huge increase in computational time.



Rank # Aligned # Unique Ref Avg. # per Ref CIGAR Length
Order 209587 180 1321.56 26.77
Order 200 189855 74 3214.60 26.70
Order 2000 215487 43 5490.86 26.84
Family 43906 351 677.72 14.08
Family 200 49200 175 1359.3 14.31
Family 2000 86114 24 9776.04 16.27
Genus 46227 1030 230.95 12.15
Genus 200 56110 228 1043.34 13.17
Genus 2000 112202 22 10659.27 17.37

Table 2: This table depicts statistics for the aligments against specific consensus sequences. The Rank column
lists on which taxonomic class we built the consensus sequences against; Order, Family, or Genus. It also defines if
certain references were removed due to having less than 200 or 2000 matched sequences. # Aligned is the number
of sequences that matched to a single reference sequence and # Unique Ref is the number of unique reference
sequences that aligned to at least one target sequence. The Avg. # per Ref column is the average number of
non-supplementary sequenes that aligned to each reference sequence and CIGAR Length is the average number of
non-numeric characters in the CIGAR strings (i.e 3M2D would have lenth 2). We clearly see that removing referene
sequences causes the number of unique references to decrease and number of alignments per reference to increase,
but this increases the length of the CIGAR string. Likely because it causes the sequences that would normally align
to the removed references to force an alignment against a less ideal reference; increasing the number of indels or
mismatches.

Once we aligned the target sequences against the consensus reference sequences, we obtained a set of .sam
files. These .sam files provided information about each alignment including CIGAR and MD strings. The
CIGAR strings map out how each base pair of the target sequence aligns against the most similar reference
sequence, and the MD string provided insert and deletion information as described in Table 3. Our model
is built on the idea that theses CIGAR and MD strings contain enough information to accurately predict
the target sequence’s taxonomy, and the featureset used in our predictive model is generated entirely from
these fields combined with the position (POS) tag.

To convert this information into a featureset we had to parse the CIGAR string into something a model
could train. Since we designed the reference sequences in a way that only the dissimilar base pairs should be
informative, we focused on labeling the Inserts, Deletes, and Substitutions against the consensus sequence.
To convert this information into informative features, we defined a featureset the length of the consensus
sequence and then each of these features would be valued one of D if there was a deletion from the reference
sequence, A, C, T, or G if one of these base pairs was inserted from the target sequence, or an X if a region
presented a mismatch. Any other event, such as a match, soft-clip, or hard-clip was simply left as a NULL
value for that feature. An example of a feature set generated from the alignment of a target sequence to a
given reference sequence is outlined in Figure 4.

Reference: ACCTGCCTT_CCGC Features
Target: CCAACTTG_CTTGCCGC %{®:®3XJ®J®JDJQJQJQJGJQJQ!QJQ}
CIGAR: 3S2M1S2M1D3M114M & Nul

Figure 4: The process of converting from a CIGAR string to a feature set for a given target sequence/reference
sequence pair. Notice that soft-clippings and matches are ignored as they do not provide any unique information
for each sequence. Inserts are also labeled as the specific SNP that is inserted as for many variants a single SNP or
MNP dictates a functional group. Moreover, this causes most of the features to be null values, which could needlessly
increase the complexity of many machine learning models.



Description

alignment match (can be a sequence match or mismatch)
insertion to the reference

deletion from the reference

skipped region from the reference

soft clipping (clipped sequences present in target sequence)
hard clipping (clipped sequences not present in target sequence)
padding (silend deletion from padded reference)

sequence match

sequence mismatch

M vmwZ o~ 29

Table 3: A Table Depicting Sam File Informaiton [18]

The average consensus sequence was 1443 base pairs, and by aligning against these synthetic reference
sequenes we obtained on average of only 39 indels or mismatches for each target sequence. This left our
featureset consisting of nearly all NULL values. This allowed for us to train the model on only 39 char-
acteristics so long as we can handle the 1400 NULL values in a way that does not significantly add to the
complexity of the model.

2.3 Convolutional Neural Network

Our decision to use a Convolutional Neural Network (CNN) to classify the microbes was due to the nature
of the generated feature set. Because the each sample had mostly NULL features, we needed a model
that could would pick out only the relevent characteristics of each extended CIGAR string and not increase
significantly by the NULL features. CNNs are traditonally used for image recognition and are able to discern
the relevant pieces of an image and then combine these pieces in order to classify that image. This is achieved
by subsequent convolutions and max pooling layers to first consolidate neighboring pixels and then select
the maximal pixel value in this consolidation. Using this layering mechanism we can select out only the
relevant funcitonal groups. Then the sum total of these functional groups provides a likelihood of being a
certain microbe, just as an image requires a nose, two eyes, and a mouth to be considered a face. Moreover,
since aligning to a consensus sequence simply picked out the unique sections for each microbe, this allowed
our CNN to solely focus on the relevant groups that uniquely differentiate each microbe. Figure 5 depicts
the parsed CIGAR strings as images after hashing any strings and assigning numeric values to D and X. In
this image we see that these images become more similar as we traverse the taxonomic heirarchy, lending
support to the effectiveness of a CNN for prediction. For our CNN chose an architecture given by

Convgxg = RelLu = Pool — Convssxzs =— RelLu — Pool — Full = ReLu = QOut

Using this architecture allowed us to the divide the CIGAR string into the seperate functional groups that
dictate which species it refers to then use a regular Neural Network to classify on only those functional
groups.

3 Results and Analysis

This model hinged on three main assumptions. First, aligning against the consensus sequences would
group the target sequences into the most similar sequences. Second, parsing the CIGAR string would produce
enough features to classify the sequences without having too many redundant features shared between all the
sequences in a given group. Finally, the Convolutional Neural Network could take advantage of the sparsity
of the features for effeciency and maintain high prediction accuracy based solely on the main functional
groups of each sequence.



Species

Figure 5: These are the image representation of the featuresets generated for a specific Family, Genus, and Species.
The family depicted is PRR-10 and we see that each of the 4 images is significantly different. The genus is Planococcus
and the images begin to converge to a similar view. The species is Rhizobiummesosinicum and the images are nearly
exactly the same. The convergence of the images show that by the Species level, the relevant indels and mismatches
should be indentical allowing for the CNN to train on.

3.1 Consensus Sequence Alignment

How the target sequences aligned against the consensus sequences is displayed in Figure 7 at the end of the
paper. Each symbol represents a target sequence, and the color & shape of the symbol depicts the first point
along the intended reference sequence’s taxonomy that the target and reference match. Only Bacteria are
shown in this tree, so sequences that don’t match until the Kingdom level are considered unmatched. A
pattern that arose is that the reference sequences with the most target alignments for a given order consensus
sequence were the least likely to match order to order. Figure 8 shows just the sequences that did not match
at the order level. A possible remedy for this is to generate consensus sequences at the Family or Genus level
for orders that had many more matches than some threshold number. However, the accuracy did not show
any trend when plotted against the number of target sequences that aligned for each reference sequence.
Thus, when the sequences aligned against the wrong order, it did not significantly impact the effectiveness
of the model.

3.2 Comparison with RDP

This algorithm was designed to be an alternative for pre-existing classification algorithms such as the RDP
classifier. We compared the accuracy of our model to the RDP using the 16S green genes data base sequences.
The ROC curves at Figure 6 show the accuracy of the Humidor when trying to predict Order, Family,
and Genus for the target sequences, and the RDP classifier’s resulting accuracy. These ROC curves show
Sensitivity vs. 1-Specificity where Sensitivity is the True Positive Rate (TPR) and Specificity (SPC) is the
True Negative Rate given by

TP TP
TPR =" = ——
= = TP+ N
TN TN
SPC ==

N TN+ FP

where T'N and TP are the negative and positive samples correctly identified as negative or positive respec-
tively, and FFP and F'N are Type 1 and Type 2 error rates. Note that positive and negative samples indicate
a binary classification, so these statistics are computed based on an average one vs. all method where TP is



exactly computed as

T, =0T; =c

|C|Z||Z {0 e

where z; is the predicted value and c is one of the values of all the classes C' for some Taxanomic rank.
These ROC curves show that both the Humidor and RDP classifers produce similar results when trying to
classify on Genus, Order, or Family Ranks.
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Figure 6: This shows ROC curves for both the Humidor and RDP classifiers[20]. We see that for Order, Family,
and Genus we have similar area under the curves. For the RDP model, the taxonomic heirarchy must be followed
in order, so error in the higher ranks is propagated to the lower ranks. Thus from Phylum to Genus, the accuracy
is decreasing. For the Humidor model, each rank under the consensus rank is classified seperately and thus this
restriction does not apply as shown in the right ROC curve.

3.3 Conclusion

The Humidor classifer uses the advances of image detection to create an alignment based classifcation
algorithm that trains on CIGAR strings. By initially implimenting the Burrows-Wheeler alignment algorithm
against consensus sequences, the target sequences are first divided by their most probable Order, then we
obtain CIGAR strings with only the most informative variants for each Family, Genus, or Species. The ROC
curves showed that Humidor performs similarly to the RDP classifier and the CNN model has been tuned
to handle huge datasets without the need of clustering to reduce dimensionality. Moreover, in the event
of being unable to classify the Species of a given sequence, the likelihood measures could be traced up the
heirarchy to determine the most likely Genus, Family, or Order instead.

Future work would warrant refining a procedure for handling uncertain or unclassified predictions. The
OTU clustering algorithms suffer from having to generalize every possible Species. However, by first mini-
mizing the number of samples that have to be clustered with Humidor, a more data-oriented approach can
be made with the clustering algorithm. For example, using spectral clustering or diffusion maps to cluster on
the underlying structure of the data since most of the biological variances would be handled by the Humidor
classifier. Furthermore, as the study of CNNs develops, more effort can be placed in providing a specialized
CNN architecture.
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Phylum (ID) Class (ID) Order (ID) Ref Match

Acidobacteria (24) Acidobacteria(class) (104) Acidobacteriales (138) +38 M Class
Solibacteres (34) Salibacterales (76) +115 M Kingdom
Actinobacteria(63)  Actinobacteria(class) (86) Acidimicrobiales (18) o1 miss I Order
Actinomycetales (72) o0 o216 I Phyllum
Bifidobacteriales (100) 0100
Coriobacteriales (39) [=F]
Rubrobacterales (106) Qe
Aquificae (49) Aquificae(class) (97) Aquificales (74) 074 X189
11) 162) (179) 0179
Bacteroidetes (79) Bacteroidia (12) Bacteroidales (122) X7X MX44 X6BXHK O XX XX X198 XXX245
Flavebacteria (2) Flavobacteriales (143) 20C XXX XE8X X M XK X XX 206 XK 245
Sphingobacteria (52) Sphingobacteriales (160} K K35 KB MK X116 X XK 189 X220 245
Chlamydiae (31) Chiamydiag(class) (168)  Chiamydiales (118) o1us
Chlarobi (41) Chlorobia (99) Chlarobiales (35) O35
Chloroflexi (70) Chioroflexi(class) (11) Chioroflexales (54) 054
Herpetosiphonales (151) 0151
Dehalococcoidetes (132)  Dehalococcoidales (81) o8
Crenarchaeota(s)  Thaumarchaeota (19) Cenarchaeales (173) 0173
Nitrososphaerales (166) o166
Thermoprotei (112) Desulfurococcales (47) a7
Sulfolobales (71) o7
Thermoproteales (73) o7
Cyanobacteria (12)  Gloeobacterophycideae (.. Glosobacterales (139) 0139
Nostocophycideae (125)  Nostocales (140) o149
Oscillatoriophycideae Chroacoccales (254) +112 +149
(166) Oscillatoriales (217) + ++149
Synechococcophycideae  Pseudanabaenales (119) + ++140
(31) Synechococcales (207) 4+ ++149
Deferribacteres (21)  Deferribacteres(class) (96) Deferribacterales (170) 0170
Dictyoglomi (4) Dictyoglomia (120) Dictyoglomales (131) 0131
Euryarchaeota(38)  Archaeoglobi (170) Archacoglobales (186) o186
Halobacteria (174) Halobacteriales (113) + +3 ou3
2(107) et i2les (108) 0108
Methanococei (38) Methanocoecales (117) o117
Methanomicrobia (64) Methanocellales (31) (o1
Methanomicrobiales (50) 050
Methanosarcinales (16) (=313
Methanopyri (88) Methanopyrales (154) o154
Thermococci (13) Thermococeales (1) o1
Ther (7) Ther )] 02
Fibrobacteres (36)  Fibrobacteres(class) (173) Fibrobacterales (103) 0103
Firmicutes (7) Bacilli (129) Bacillales (25) [=F3 O+ 146 +180
Exiguobacterzles (137) 0137
Gemellales (192) 0192
Lactobacillzles (135) O1s [ FEY Oisz
Clostridia (29) Clostridiales (129) o+1s oss ++146 03191
Halanaercbiales (188) oss +148  O188
Natranaerobiales (180) 0180
Thermoanaerobacterales X+ 146 ozs
Ther (150) Ther €8 0146
Fusobacteria (8) Fusobacteria(class) (62)  Fusobacteriales (240) 0240
Lentisphaerae (44) Lentisphaerae(class) (114) Lentisphaerales (121) oe2
Nitrospirae (26) Nitrospira(class) (20) Nitrospirales (43} X 22043 X X230
Planctomycetes (71} Kueneniae (84) Kueneniales (8) o8
Planctomycea (45) Gemmatales (96) 0%
Pirellulales (21) on
Planctomycetales (164) oz 0164
Proteobacteria(50)  Alphaproteabacteria(181) Caulobacterales (223) O2z3
Kiloniellales (10) o1
Rhizobiales (178) O D223
Rhodobacterales (65) o1
Rhodospirilales (242) Ow
Rickettsiales (34) +a+20 +130 +220
sphingomonadales (127) o1
Betaproteobacteria(59)  Burknholderiales (136) 136
Hydrogenophilales (4} 04 o130
Methylophilales (165) o120
Neisseriales (244) oazs O2a4
Nitrosomonadales (252) o130
Rhodocyclales (208) o130
Deltaprotecbacteria (146) Bdellovibrionales (70) o7
Desulfobacterales (134) 0134
Desulfovibrionales (250) O x Xss OX O OXEise
Desulfuromonadales (182) 0182
Myxococcales {156) =4 0156
Syntrophobacterales (155) O [O1s60182
Epsilonprotecbacteria (26) Campylobacterales (27) + 027 e 0105 +224
Nautiliales (105) 0105
teria (35) Acidit 101) o1
Aeromanadales (51) o219
Alteromonadales (177) mezzo
Cardiobacteriales (3) o3
Chromatiales (141 o3 O ozzo
Enterobacteriales (219) oz19
Legionellales (215) o220 o
Methylococcales (220) 0220
Oceanospiriliales (203) o3 ooz o
Pasteurellales (85) [=F2t)
Pseudomonadales (256) o3 oo 60
Thiotrichales (13) 013 o220
Vibrionales (87) o219
Xanthomonadales (147) o3 01101 +130 O o220
Zetaproteobacteria (143)  Mariprofundales (69) 069
(@5) pirae (50) (110 o110
Leptospirae (74) Leptospirales (86) oss
Spirochaetes(class) (81)  Spirochaetales (111} D150 X180
Synergistetes (76)  Synergistia (106) Synergistales (66) X22 066
Tenericutes (32) Erysipelotrichi (158) Erysipelotrichales (3) 15 +56 X137 +198
Mollicutes (138) Acholeplasmatales (63) [=E3
Entomoplasmatales (158) 0198
Mycoplzsmatales (238) X 3 [O158 XIKI98 X 228
Thermi (37) Deinococci (72) Deinococcales (241) 0241
Thermales (37) X 03 X156
Thermotogae(84)  Thermotogae(class) (S6)  Thermotogales (62) 062 x93 X131 X189
i Methylacidiphil +6
Opitutae (148) Opitutales (126) 0126
Spartobacteria (85) Spartobacteriales (6) o6
T (79) T (195) +6
0 50 100 150 200 250
Reference’s Order

Figure 7: A heirarchy tree depicting the aligned sequences to each reference sequence.
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Phylum (1D)
Acidobacteria (24)

Actinobacteria (63)

Aquificae (49)
Bacteroidetes (79)

Cyanobacteria (12)

Euryarchaeota (38)
Firmicutes (7)

Lentisphaerae (44)
Nitrospirae (26)
Planctomycetes (71)
Proteobacteria (50)

Spirochaetes (25)
Synergistetes (76)
Tenericutes (32)

Thermi (37)
Thermotogae (B4)
Verrucomicrobia (33)

Figure 8: Another heirarchy depicting the aligned sequences, but the correctly aligned sequences are removed. We
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Flavobacteria (2)
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Dscillatoriophycideae
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Synechococcophycideas
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Clostridia (29)
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Order (ID)
Acidobacteriales (138)
Solibacterales (76)
Acidimicrobiales (18)
Actinomycetales (72)
Aquificales (74)
Bacteroidales (122)
Flavobacteriales (143)
Sphingobacteriales (160)
MNostocales (140)
Chroococcales (254)
Oscillatoriales (217)
Pseudanabaenales (113)
Synechococcales (207)
Halobacteriales (113)
Bacillales (25)
Lactobacillales (135)
Clostridiales (129)
Halanaerobiales (188)
Thermoanaerobacterales ..
Lentisphaerales (121)
Nitrospirales (43)
Planctomycetales (164)
Rhizobiales (178)
Rhodobacterales (65)
Rhodospirillales (242)
Rickettsiales (34)
Sphingormonadales (127)
Burkholderiales (136)
Hydrogenophilales (4)
Methylophilales (165)
Neisseriales (244)
Mitrosomonadales (252)
Rhodocyclales (208)
Desulfovibrionales (250)
Myxococcales (156)
Syntrophobacterales (155)

Epsilonproteobacteria (26) Campylobacterales (27)
Gammaproteobacteria (35) Aeromonadales (51)

Spirochaetes(class) (81)
Synergistia (106)
Erysipelotrichi (158)
Mollicutes (138)

Deinccocci (72)
Thermotogae(class) (56)
Methylacidiphilae (44)
Verrucomicrobiae (79)

Alteromonadales (177)
Chromatiales (141)
Legionellales (215)
Oceanospirillales (203)
Pasteurellales (85)
Pseudomonadales (256)
Thiotrichales (13)
Vibrionales (87)
¥anthomonadales (147)
Spirochaetales (111)
Synergistales (66)
Erysipelotrichales (9)
Acholeplasmatales (63)
Mycoplasmatales (238)
Thermales (37)
Thermotogales (62)
Methylacidiphilales (24)
Verrucomicrobiales (195)

Ref Match
M Class
M Kingdom
M Phylium

+38
+115
139
oico amZis
X 189

X7X HX 44 X68 X103 KK XX X198 XXX 245
MO KX X X68X X MM XA XK 206 XX 245
M M35 MeB MM M11e 2K 189 K 220X 245

148
4112 4149
+ ++149
+ 44149
+H 44149
+ +31
Ois O+4146 4180
Ois 0137 O1s2
O+1s5 oss ++146 D191
0oss + 146
¥ 4146
o4z
ez ¥ X230
Ozi
oo zz23
oio
gio
4O+ 20 +130 +220
oo
o130
o130
130
125
130
130
O X Xs5 O< O 0O xXEais2
020
O [Oise1s82
+ 10 +69 [QO105 +-z24
o219
o220
as O Ozz20
Oz 0O
a3 ooz O
Oz1s
as O Ozz20
bzzo
219
oz 101 4130 O Ozzo
0150 180
pra
15  +56 ¥ 137 4198
Ose
MM [1s8 X[X 201 228
¥ 20 ¥ 156
*93 X131 > 189
+6
+6
0 50 100 150 200 250
Reference’s Order

see that reference sequence with many alignments had the highest number of incorrect alignments.
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