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Abstract

We consider neighborhood growth dynamics on the Hamming plane. Each vertex
on the Hamming plane is assigned an initial state, occupied or empty. A vertex x
becomes occupied if the pair consisting of the counts of occupied vertices along the
horizontal and vertical lines through x lies outside a fixed Young diagram, Z. An
initial set of occupied vertices spans for Z if after some number of iterations of the
growth dynamics the entire Hamming plane is occupied. We study sets that take a
long time to span for a fixed Z. We give an upper bound on the maximal spanning
time that is quadratic in the side length of the bounding square of Z. We also give
a lower bound of (s−1)1/2, where s is the side length of the largest square contained
in Z.

1 Introduction

Neighborhood growth dynamics [GSS] is a discrete time growth process that describes
how an initial set of vertices on the Hamming plane grows over time. The Hamming plane
is defined as the graph with vertex set Z2 and an edge between any two vertices that differ
in a single coordinate. For simplicity we consider growth restricted to Z2

+. Percolation
and growth processes on Hamming graphs are addressed in [BBLN,GHPS,Siv,Sli].

We use the notation and definitions introduced in [GSS]. For a, b ∈ N, define the
discrete a × b rectangle as Ra,b = ([0, a − 1] × [0, b − 1]) ∩ Z2

+. The set Z =
⋃

(a,b)∈I Ra,b

consisting of the union of rectangles over a set I ⊆ N2 is called a zero set. The cases when
Z = ∅ and Z is infinite are also allowed, however in this paper we consider only finite
zero sets. Thus zero sets are equivalent to Young diagrams in the French notation.

Fix a zero set Z. Let A ⊆ Z2
+ be a set of vertices and x ∈ Z2

+ a vertex. Let Lh(x)
and Lv(x) denote the horizontal and vertical lines through x, respectively. We define the
neighborhood of x by N(x) = Lh(x) ∪ Lv(x). The row and column counts of x are given
by

row(x,A) =
∣∣Lh(x) ∩ A

∣∣ and col(x,A) = |Lv(x) ∩ A| .
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Figure 1: Example of neighborhood growth dynamics.

Define the ordered pair of row and column counts of x by (u, v) = (row(x,A), col(x,A)).
The neighborhood growth transformation T : 2Z2

+ → 2Z2
+ is determined by a zero set Z

and is described by the following neighborhood growth rule. Fix a zero set Z and an initial
set of vertices A ⊆ Z2

+. If x ∈ A, then x ∈ T (A). If x /∈ A, then x ∈ T (A) if and only if
(u, v) /∈ Z.

Given an initial set of vertices A ⊆ Z2
+ and a neighborhood growth transformation

T , we can define a discrete time trajectory. The set of vertices at time t ≥ 0 is defined
by At = T t(A). The vertices in At are called occupied and the vertices in Act are called
empty. The set A ⊆ Z2

+ is inert if T (A) = A. Define the set of eventually occupied
vertices by A∞ = T ∞(A) =

⋃
t≥0At. The set A spans if A∞ = Z2

+. We also say that a
subset B ⊆ Z2

+ is spanned if every vertex in B is occupied. Figure 1 shows an example of
neighborhood growth dynamics.

We discuss the history and some previous results of neighborhood growth dynamics.
There are several special cases of neighborhood growth. The simplest case is called line
growth, introduced as line percolation by Bollobás et al. [BBLN], and is given by rect-
angular zero sets Z = Ra,b for a, b ∈ N. Another special case is called L growth, given
by L shaped zero sets consisting of the union of two rectangles Z = Ra,b ∪ Rc,d, where
a, b, c, d ∈ N such that a > c and d > b.
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The most well studied type of neighborhood growth is called threshold growth [GG].
It was first introduced as bootstrap percolation by Chalupa, Leath, and Reich. Growth is
defined by an integer θ ≥ 1 called the threshold, such that a vertex x becomes occupied
when its neighborhood count is at least θ. Threshold growth on the Hamming plane is
given by triangular zero sets Z = {(u, v) : u+ v ≤ θ − 1}.

Bootstrap percolation is usually studied in a random setting, where the vertices of the
initial set A are chosen independently at random with probability p. The main question
is to determine the value of p such that spanning occurs with probability at least 1/2.
This is called the critical probability and is denoted by pc. Aizenman and Lebowitz [AL]
initiated the study of the classic bootstrap percolation, where the growth process occurs
on the n×n grid, denoted by [n]2, with threshold θ = 2. The first main result was proven
by Holroyd [Hol], who showed that pc = π2/(18 log n) + o(1/ log n). Gravner, Holroyd,
and Morris [GHM] obtained bounds on the second term, and Balogh, Bollobás, Duminil-
Copin, and Morris [BBDM] extended these results and determined pc for all [n]d and θ.
Other variants have also been studied. Balogh and Bollobás [BB] addressed bootstrap
percolation on the hypercube and Bollobás, Duminil-Copin, Morris, and Smith [BDMS]
studied bootstrap percolation with drift.

Extremal problems are also of great interest. It is a well known result that the smallest
spanning sets have exactly size n for the classic bootstrap percolation. For bootstrap
percolation on [n]d with θ = 2, Balogh, Bollobás, and Morris [BBM] found that the
smallest spanning sets have size dd(n − 1)/2e + 1. Smallest spanning sets have also
been studied by Riedl [Rie2] for bootstrap percolation on trees and by Balogh, Bollobás,
Morris, and Riordan [BBMR] on hypergraphs. The largest size of inclusion-minimal
spanning sets is addressed by Morris [Mor] for the classic bootstrap percolation and by
Riedl [Rie1,Rie2] on hypercubes and on trees.

In this paper we study the extremal quantity M(Z), called the maximal spanning time
for Z, defined by

M(Z) = max{min{t ∈ N : T t(A) = Z2
+} : A ∈ A}

where A is the set of all spanning sets of Z.

Benevides and Przykucki [BP] showed that the maximal spanning time is equal to
13n2/18 + O(n) for the classical bootstrap percolation model. For neighborhood growth
on the Hamming plane, Gravner, Sivakoff, and Slivken [GSS] found that the upper bound
for M(Z) is factorial in the length of the longest row or column of Z.

We now state our main results. The first theorem shows that the upper bound for
M(Z) depends on the size of the bounding square Rm,n of Z, while the second theorem
shows that the lower bound depends on the size of the largest square contained in Z.
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Theorem 1.1. For any zero set Z such that Z ⊆ Rn,n,

M(Z) ≤ 4n2 + 2n+ 2.

Theorem 1.2. Let Rs,s be the largest square such that Rs,s ⊆ Z. Then

M(Z) ≥ (s− 1)1/2.

The paper is organized as follows. In Section 2 we introduce some notation, definitions,
and lemmas which we use throughout the paper. In Section 3 we prove Theorem 1.1. Next
we prove results on M(Z) for special cases of neighborhood growth in Section 4. Finally
in Section 5 we prove Theorem 1.2.

2 Preliminaries

In this section we prove some lemmas that we use throughout the paper. We first introduce
some notation and definitions.

Let Z be a Young diagram and k ∈ N. We define the Young diagrams obtained by
removing the k leftmost columns or k bottommost rows of Z, respectively, by

Z↓k = {(u, v − k) : (u, v) ∈ Z, v ≥ k},
Z←k = {(u, v − k) : (u, v) ∈ Z, u ≥ k}.

The Young diagram obtained by shifting Z diagonally by k is defined by

Z↙k =
(
Z←k

)↓k
.

We also define the outside boundary of a Young diagram Z by

∂o(Z) = {(x, y) ∈ Z2
+ \ Z : (x− 1, y) ∈ Z or (x, y − 1) ∈ Z}.

Given two Young diagrams Y1, Y2, we define the grid sum of Y1 and Y2 by

Y1 � Y2 = Z2
+ \ [(Z2

+ \ Y1) + (Z2
+ \ Y2)].

Observe that Y1 � Y2 is also a Young diagram. Moreover the grid sum is commutative.
See Figure 2 for an example of the grid sum.

Let A ⊆ Z2
+ be a finite set. We denote the projections of A onto the x-axis and y-axis

by πx(A) and πy(A), respectively.

In order to prove Theorem 1.2, we introduce a generalized version of neighborhood
growth dynamics. The enhancements ~r = (r0, r1, . . .) ∈ Z∞+ and ~c = (c0, c1, . . .) ∈ Z∞+
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Figure 2: Example of grid sum.

are weakly decreasing sequences of non-negative integers which increase row and column
counts, respectively, by fixed values. We call ~r the row enhancements and ~c the col-
umn enhancements. Then enhanced neighborhood growth dynamics is given by the triple
(Z, ~r,~c), which defines a growth transformation Tenhanced as follows:

Tenhanced(A) = A ∪ {(i, j) ∈ Z2
+ : (row((i, j), A) + rj, col((i, j), A) + ci) /∈ Z}.

Note that enhanced growth given by (Z,~0,~0) is equivalent to standard neighborhood
growth given by Z, but we do not differentiate between the two.

Given a pair of enhancements (~r,~c), we can form a pair of Young diagrams (R, C) where
the row counts of R is given by ~r and the column counts of C is given by ~c. Furthermore
given a pair of Young diagrams (R, C), we can also extract a pair of enhancements (~r,~c)
by setting rj equal to the jth row of R and ci equal to the ith column of C. Thus for
simplicity we will use R to denote the row enhancements ~r, and similarly we use C to
denote the column enhancements ~c.

In this paper we consider enhanced growth starting from enhancements R and C only.
That is, the initial set of occupied vertices is empty. We say that the pair of enhancements
(R, C) span for a zero set Z if ∅ spans for (Z,R, C). We let Aenhanced denote the set of
all pairs of enhancements (R, C) that span for Z.

Fix a zero set Z. Given A ∈ A, we define the spanning time of A under the growth
dynamics T as

T (Z, A) = min{t ∈ N : T t(A) = Z2
+}.

Similarly given enhancements (R, C) ∈ Aenhanced, we define the spanning time of (R, C)
under the enhanced growth dynamics Tenhanced as

Tenhanced(Z,R, C) = min{t ∈ N : T tenhanced(∅) = Z2
+}.
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By the definition above we can rewrite M(Z) as

M(Z) = max{T (Z, A) : A ∈ A}.

We define an analogous extremal quantity for enhanced growth. The maximal spanning
time for enhanced growth starting from enhancements (R, C) is given by

Menhanced(Z) = max{Tenhanced(Z,R, C) : (R, C) ∈ Aenhanced}.

We now state and prove several useful lemmas. The first two lemmas give us inequali-
ties that relate the maximal spanning time for Z to the maximal spanning time for small
perturbations of Z.

Lemma 2.1. Let τ(A) denote the earliest time that a row or column of A is spanned.
Define α = α(Z) = maxA∈A{τ(A)}. For any zero set Z,

M(Z) ≤ α + max
{
M
(
Z↓1
)
,M

(
Z←1

)}
.

Proof. Let A ∈ A. Then Aα contains at least one spanned row, R, or at least one spanned
column, C. Since A is a spanning set for Z, Aα \ R is a spanning set for Z↓1 or Aα \ C
is a spanning set for Z←1. Furthermore, Aα spans in at most max

{
M
(
Z↓1
)
,M (Z←1)

}
time steps. Therefore M(Z) ≤ α + max

{
M
(
Z↓1
)
,M (Z←1)

}
.

Lemma 2.2. For any zero set Z,

M(Z) ≥ max
{
M
(
Z↓1
)
,M

(
Z←1

)}
, (1)

Menhanced(Z) ≥ max
{
Menhanced

(
Z↓1
)
,Menhanced

(
Z←1

)}
. (2)

Proof. Suppose that max
{
M
(
Z↓1
)
,M (Z←1)

}
= M (Z←1). Let A be a spanning set for

Z←1. Consider the set A′ = A ∪ C ∈ A, where C is a fully spanned column such that
A ∩ C = ∅. Then A′ is a spanning set for Z that spans in at most M(Z) steps. Since A′

contains a fully spanned column, T (Z, A′) = T (Z←1, A). Therefore M(Z) ≥M (Z←1). If
instead we have that max

{
M
(
Z↓1
)
,M (Z←1)

}
= M

(
Z↓1
)
, then by symmetry M(Z) ≥

M
(
Z↓1
)
. In any case this proves (1).

For (2) suppose that max
{
Menhanced

(
Z↓1
)
,Menhanced (Z←1)

}
= Menhanced (Z←1). Let

R′ = (r0, . . . , rn, 0, 0, . . .) and C ′ = (c0, . . . , cm, 0, 0, . . .) be enhancements that span for
Z←1. Define R = (r0 + 1, r1 + 1, . . . , rn + 1, 1, 1, . . .) and C = C ′. Let A′t and At denote
the set of occupied vertices at time t under the dynamics (Z←1,R′, C ′) and (Z,R, C),
respectively.

We use induction to show that At = A′t for all t ≥ 0. The base case A0 = A′0 = ∅
holds. Suppose At = A′t for some t ≥ 0. Let x = (i, j) be a vertex that is not in At, and
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hence not in A′t. Then (row(x,A′t) + rj, col(x,A′t) + ci) ∈ Z←1 if and only if (row(x,At) +
rj + 1, col(x,At) + ci) ∈ Z. This shows that x ∈ At+1 if and only if x ∈ A′t+1. Therefore
Tenhanced(Z←1,R′, C ′) = Tenhanced(Z,R, C), and we have Menhanced(Z) ≥Menhanced (Z←1).

If instead we have max
{
Menhanced

(
Z↓1
)
,Menhanced (Z←1)

}
= Menhanced

(
Z↓1
)
, then

by symmetry Menhanced(Z) ≥Menhanced

(
Z↓1
)
. In either case (2) holds.

Several proofs in this paper require us to construct enhancements that span for a given
zero set and so we need an easy method to check if spanning occurs. The next lemma
gives a useful criterion to determine whether a pair of enhancements (R, C) span for a
zero set Z.

Lemma 2.3. Fix a zero set Z. The enhancements (R, C) span for Z if and only if

Z ⊆ R� C.

Proof. Suppose Z ⊆ R� C. Let m = |πx(C)| and n = |πy(R)|. Let ui,j = (rj + i, ci + j).
Then

{ui,j : 0 ≤ i ≤ m, 0 ≤ j ≤ n} ⊆ Z2
+ \ (R� C).

Suppose the vertex x = (i, j) is occupied at some time t > 0. Every vertex to the left of and
below x must also be occupied by time t. Let xv = (i, j+ 1) and xh = (i+ 1, j). Then the
sites (col(xv, At)+ci, row(xv, At)+rj+1) = ui,j+1 and (col(xh, At)+ci+1, row(xh, At)+rj) =
ui,j+1 lie outside of R� C. This implies that the vertices xv and xh must be occupied by
time t+ 1. Since (0, 0) is occupied at t = 1, every vertex in Z2

+ becomes occupied. Thus
(R, C) span for Z.

If Z 6⊆ R�C, there exists k ∈ [0,m] and ` ∈ [0, n] such that uk,` ∈ Z. Suppose vertex
x = (k, `) /∈ At for some time t > 0. Let (u, v) denote the row and column counts of x.
Then u ≤ r` + k and v ≤ ck + `, which implies that (u, v) lies in Z. Thus x /∈ At+1 and
so x never becomes occupied. Moreover every vertex x′ = (k′, `′) with k < k′ and ` < `′

never becomes occupied. Therefore spanning does not occur.

We introduce the notion of thin sets as a way to connect enhanced neighborhood
growth to standard neighborhood growth. A set A ⊆ Z2

+ is thin if for every vertex x ∈ A,
either row(x,A) = 1 or col(x,A) = 1. That is, no other vertices of A lie either on the
horizontal line through x or the vertical line through x.

Given enhancements (R, C), we define the canonical thin set with respect to (R, C) as
the thin set A constructed by populating column i with ci occupied vertices and row j
with rj occupied vertices such that A ∩ Rm,n = ∅, where m is the index of the first zero
row enhancement and n is the index of the first zero column enhancement. See Figure 3
for an example.
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Figure 3: The canonical thin set with respect to enhancements
R = (3, 2, 1, 1, 0, 0, . . .) and C = (2, 1, 1, 1, 0, 0, . . .).

In order to relate lower bounds on Menhanced(Z) to M(Z) we consider spanning by
thin sets. For any pair of finite row and column enhancements, (R, C), that span under
the dynamics Tenhanced, the canonical thin set with respect to (R, C), Bthin = Bthin(R, C),
will span under the dynamics T . However, the spanning time for Bthin under T might be
faster than the spanning time for (R, C) under Tenhanced. In the following lemma, we use
thin sets to show that lower bounds on Menhanced(Z↙1) are also lower bounds on M(Z).

Lemma 2.4. For any zero set Z,

Menhanced

(
Z↙1

)
≤M(Z).

Proof. Let (R, C) denote a pair of enhancements with row counts (r0, · · · , rn−1) for R
and column counts (c0, · · · , cm−1) for C. Suppose further that rn−1 = cm−1 = 1. If (R, C)
span for Z then the shifted enhancements (R′, C ′) where R′ = R←1, C ′ = C↓1 will span for
Z↙1. Let R1 and C1 denote the Young diagrams obtained by modifying ~r and ~c so that
r0 = c0 = ∞. We show that the spanning times T (Z,R1, C1) and Tenhanced(Z↙1,R′, C ′)
are the same.

LetA′t andA1
t be the sets of occupied vertices at time t for (Z↙1,R′, C ′) and (Z,R1, C1),

respectively. By induction on t, we show that A′t = A1
t for all t ≥ 0. Therefore (R′, C ′)

span for Z↙1 if and only if (R1, C1) span for Z and the spanning times are the same.

The base case A′0 = A0 = ∅ is satisfied. Suppose A′t = A1
t for some t ≥ 0. Let

x = (i, j) be a vertex not in A′t, and hence not in A1
t . Define k = col(x,A1

t ) = col(x,A′t)
and ` = row(x,A1

t ) = row(x,A′t). Then (rj + `, ci+k) /∈ Z if and only if ((rj−1)+ `, (ci−
1) + k) /∈ Z↙1. This implies that x ∈ A′t+1 if and only if x ∈ A1

t+1 and the spanning times
are the same.

Let Bthin denote the canonical thin set for the pair (R, C). The proof will follow if we
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can show

T (Z, Bthin) ≥ Tenhanced(Z,R1, C1). (3)

Let Bt = T t(Bthin) and B∗t = Bt ∩ Rm,n. Similarly let A∗t = At ∩ Rm,n. Since rn−1 =
cm−1 = 1, if (m− 1, n− 1) ∈ A∗t then t ≥ Tenhanced(Z,R1, C1). We claim that for all t > 0,

A∗t = B∗t . (4)

We proceed by induction on t. The base case is satisfied as B∗t = A∗t = ∅. Suppose for
some t > 0, B∗t = A∗t . Let x = (i, j) ∈ Rm,n\B∗t . If

row(x,At) + rj = row(x,Bt) (5)

col(x,At) + ci = col(x,Bt) (6)

then x ∈ B∗t+1 implies x ∈ A∗t+1. By the induction hypothesis row(x,A∗t ) = row(x,B∗t ).
Therefore if row(x,Bt\B∗t ) = rj then (5) holds. By the construction of Bthin we know that
row(x,Bt\B∗t ) ≥ rj. For each row, sites in that row outside of Rm,n ∪B0 will not become
occupied before a site in same row that is contained in Rm,n as the column counts for
sites outside of Rm,n will be less than or equal to the column counts of sites in the same
row inside Rm,n. Therefore if x ∈ Rm,n is not occupied then no site in that row outside of
B0 ∪ Rm,n will be occupied and row(x,Bt\B∗t ) = rj. Similarly col(x,Bt\B∗t ) = ci so (6)
also holds. Equations (5) and (6) combined imply (4) which in turn implies (3).

3 Upper Bound on M(Z)

The previous upper bound for M(Z) is factorial in the size of the longest row or column
of Z [GSS]. We improve this result and show that if Z is bounded by an n × n square,
then the upper bound for M(Z) is quadratic in n.

Proof of Theorem 1.1. Fix a zero set Z contained in an n × n square Rn,n. Let A be a
spanning set for Z and let At denote the set of occupied vertices at time t, with A0 = A.
At each time t > 0, at least one new vertex is occupied until the entire Hamming plane
is spanned. Let τ = T (Z, A) denote the spanning time for A. For 0 < t ≤ τ , let
Bt = At \ At−1.

After n vertices become occupied in a fixed row or column, the row or column must
become spanned by the next step. For every t and every u ∈ Bt, there are at most 2n other
times t′ 6= t when a vertex in the neighborhood of u may become occupied. Therefore if
τ ≥ 2n(2n+ 1), there exists at least 2n vertices {ui}2ni=1 such that no two ui and uj are in
the same row or column and each ui becomes occupied by time tn = 2n(2n+ 1).
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Let (ri, ci) denote the row and column counts for vertex ui at time tn − 1. Since ui
becomes occupied either at or before time tn, (ri, ci) /∈ Z.

For 1 ≤ i ≤ 2n, let (xi, yi) denote the coordinates of the site ui. For 1 ≤ i, j ≤ 2n
let vij = (xi, yj) and wij = (xj, yi). At time tn at least one of the pairs (rj, ci) or (ri, cj)
lies outside of Z, so at least one, or both, of vij or wij must be occupied by time tn. For
1 ≤ i ≤ 2n, let

Vi =

(
2n⋃
j=1

{vij}

)
∩ Atn and Wi =

(
2n⋃
j=1

{wij}

)
∩ Atn .

All vertices in Vi lie in the same column and all vertices in Wi lie in the same row.
Let Mi denote the larger of Vi and Wi, and let Li denote the row or column that contains
Mi. Each Mi must contain at least n vertices, and hence by time tn + 1 each Li must be
spanned. Of the 2n different Li, at least n must be rows or at least n must be columns. In
either case, the entire Hamming plane is spanned by time tn + 2. Therefore we conclude
that M(Z) ≤ 4n2 + 2n+ 2.

4 Special Cases

In this section we prove results on M(Z) for special cases of neighborhood growth. In
particular, we find exact results on M(Z) for line growth and we obtain upper and lower
bounds on M(Z) that are of the same order for L growth.

We start by addressing line growth. First we make a preliminary observation. Let
Z = Rm,n be a rectangular zero set. If a vertex x becomes occupied then its row count
is at least m or its column count is at least n, which imply that Lh(x) or Lv(x), or both,
are spanned. That is, spanning occurs rows or columns at a time.

We first prove a lemma that describes the spanning behavior in line growth. In par-
ticular it shows that either some number of rows and columns get spanned at the same
time, or spanning alternates between some number of rows at time t followed by some
number of columns at t+ 1.

Lemma 4.1. Let Z = Rm,n and let A ⊆ Z2
+. If Lh(x) ∈ T 2(A)\T (A), then there exists at

least one vertex y ∈ Lh(x) such that Lv(y) ∈ T (A)\A. Similarly, if Lv(x) ∈ T 2(A)\T (A),
then there exists at least one vertex y ∈ Lv(x) such that Lh(y) ∈ T (A) \ A.

Proof. Suppose Lh(x) ∈ T 2(A) \ T (A). Then row(x, T (A)) ≥ m and row(x,A) < m.
There exists at least one vertex y ∈ Lh(x) such that y ∈ T (A) \A. Since row(y, A) < m,
we must have that col(y, A) ≥ n. This implies Lv(y) ∈ T (A) \A. By symmetry the same
argument holds if we first suppose Lv(x) ∈ T 2(A) \ T (A).
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It is interesting to note that we obtain different values for M(Z) depending on whether
Z is a rectangular zero set or a square zero set. However in either case we show that M(Z)
is linear in the side length of Z.

Proposition 4.2. If Z = Rm,n, with m 6= n, then M(Z) = 2 min{m,n}.

Proof. Without loss of generality, assume m > n. Let A be a spanning set for Z. At least
one row or one column is spanned at every time step. By Lemma 4.1, there are at least
n− 1 spanned rows and columns at t = 2n− 2. At t = 2n− 1, every column containing
at least one vertex that lies outside of the n− 1 spanned rows and n− 1 spanned columns
becomes spanned. There must be at least m spanned columns at t = 2n − 1. If not
then spanning does not occur, contradicting the fact that A is a spanning set. Therefore
spanning occurs at t = 2n. This gives us the upper bound M(Z) ≤ 2n.

For the lower bound consider the enhancements R = (m − 1,m − 2, . . . , 1) and C =
(n, n− 1, . . . , 1). By Lemma 2.3, (R, C) span for Z. Let A be the canonical thin set with
respect to (R, C). Then A spans for Z and one can check that A spans in 2n steps. Thus
M(Z) ≥ 2n.

Proposition 4.3. If Z = Rn,n, then M(Z) = 2n− 1.

Proof. Let A be a spanning set for Z. At least one row or one column is spanned at each
time step. By t = 2n − 3, there are at least n − 1 spanned columns or at least n − 1
spanned rows. Without loss of generality, assume that there are at least n − 1 spanned
rows. At t = 2n − 2, every column containing at least one occupied vertex outside of
the n − 1 spanned columns is spanned. There must be at least n spanned columns at
t = 2n − 2. If not then spanning does not occur, contradicting the fact that A is a
spanning set. Therefore spanning occurs at t = 2n − 1. This gives us the upper bound
M(Z) ≤ 2n− 1.

For the lower bound, consider the enhancements R = (n, n − 1, . . . , 1) and C = (n −
1, n− 1, . . . , 1). By Lemma 2.3, (R, C) span for Z. Let A be the canonical thin set with
respect to (R, C). Then A spans for Z and one can check that A spans in 2n − 1 steps.
Thus M(Z) ≥ 2n− 1.

We now turn our attention to L growth. We first prove the following useful lemma
that describes the spanning behavior of L growth.

Lemma 4.4. Let Z = Ra,b ∪Rc,d and let A be a set of vertices in Z2
+. In every two time

steps at least one column or row is spanned.

Proof. Suppose x ∈ T 2(A)\T (A). There exists y ∈ N(x) such that y ∈ T (A)\A. Suppose
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y ∈ Lh(x). Then either col(y, A) ≥ d, or b ≤ col(y, A) < d and c ≤ row(y, A) < a.

If col(y, A) ≥ d, then column Lv(y) becomes spanned in T (A) and we are done.
Otherwise, b ≤ col(y, A) < d and c ≤ row(y, A) = row(x,A) < a. We must have that
col(x,A) < b and col(x, T (A)) ≥ b. There exists z ∈ Lv(x) such that z ∈ T (A) \A. Then
col(x,A) = col(z, A) < b which implies that row(z, A) ≥ a. Thus row Lh(z) becomes
spanned in T (A).

In any case, at least one row or column becomes spanned in T (A). The same argument
holds for the case when y ∈ Lv(x).

Although we are unable to obtain an exact result on M(Z), we find upper and lower
bounds that are of the same order. In particular given an L shaped zero set Z = Ra,b∪Rc,d,
the upper and lower bounds are linear in b or c.

Proposition 4.5. If Z = Ra,b ∪Rc,d, then

2 min{b, c} ≤M(Z) ≤ 2(b+ c)

Proof. Without loss of generality assume b ≤ c. By Lemma 4.4 at least one row or column
is spanned in every two steps, and Lemma 2.1 gives us

M(Z) ≤ 2 + max
{
M
(
Z←1

)
,M

(
Z↓1
)}

We prove the upper bound by induction. If Z←1 = Ra,b ∪ R0,d = Ra,b or Z↓1 =
Ra,0∪Rc,d = Rc,d, Proposition 4.2 implies that M(Ra,b) ≤ 2 min{a, b} ≤ 2b and M(Rc,d) ≤
2 min{c, d} ≤ 2c, and thus the base case holds.

Now assume that the upper bound holds for M (Z←1) and M
(
Z↓1
)
. Observe that

Z←1 = Ra−1,b∪Rc−1,d and Z↓1 = Ra,b−1∪Rc,d−1. By the inductive hypothesis M (Z←1) ≤
2(b+ c− 1) and M

(
Z↓1
)
≤ 2(b− 1 + c). Therefore

M(Z) ≤ 2 + max
{
M
(
Z←1

)
,M

(
Z↓1
)}

≤ 2 + 2(b+ c− 1)

= 2(b+ c)

which proves the upper bound.

For the lower bound, we consider two cases. Without loss of generality assume b ≤ c.
First suppose a− c > b and d− b > c. On the first step, span b rows. Then Z↓b = Rc,d−b.
By repeated applications of Lemma 2.2, M(Z) ≥M(Rc,d−b) = 2c.

Otherwise suppose a− c ≥ b or d− b ≥ c. On the first step, span c− b columns. Let
Z ′ = Z←c−b = Ra−c+b,b ∪Rb,d. We claim that M(Z ′) ≥ 2b.

12
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Figure 4: A zero set that lies below a discrete −1 slope line and
intersects the line at the site (5, 3).

To show this, consider the enhancements R = (n, n−1, . . . , 1) and C = (b, b−1, . . . , 1),
where n = max{a−c+b, d}. By Lemma 2.3, (R, C) span for Z. Let A be the canonical thin
set with respect to (R, C). One can check that A spans in 2b steps. Hence M(Z ′) ≥ 2b.

Again by Lemma 2.2, M(Z) ≥ M(Z ′) ≥ 2b. In any case M(Z) ≥ 2 min{b, c} which
proves the lower bound.

5 Lower Bound on M(Z)

Recall from Lemma 2.4 that a lower bound on Menhanced(Z↙1) is also a lower bound on
M(Z). Thus in order to prove Theorem 1.2, we first find a lower bound on Menhanced(Z).
We start by restricting our attention to zero sets that are contained below a discrete −1
slope line and intersect the line in at least one site. See Figure 4 for an example. The
following lemma gives us a lower bound on Menhanced(Z) for this type of zero set.

Lemma 5.1. Let L be the discrete line x+y = c for some constant c. If for all (i, j) ∈ Z,
i+ j < c and there exists Rm,n ⊆ Z such that m+ n− 1 = c, then

Menhanced(Z) ≥ 2 min{m,n}.

Proof. Assume without loss of generality that m ≥ n. Consider the enhancements R =
(m − 1,m − 2, . . . , 1) and C = (n, n − 1, . . . , 1). Then R � C is the Young diagram
{(x, y) : x+ y ≤ m+ n− 2}. For all sites (x, y) on L, the site (x− 1, y − 1) is in R� C.
Then Z ⊆ R� C and Lemma 2.3 implies that (R, C) span for Z.
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One can check that (R, C) spans Rm,n in 2 min{m,n} + 1 steps when m 6= n and
2n steps when m = n. Thus Tenhanced(Rm,n,R, C) ≥ 2 min{m,n}. Since Rm,n ⊆ Z,
Tenhanced(Z,R, C) ≥ Tenhanced(Rm,n,R, C) and the result follows.

For any zero set Z there exists a largest square, Rs,s, contained in Z. The next
proposition gives a lower bound on Menhanced(Z) that is dependent on the size of this
square.

Proposition 5.2. Let Rs,s be the largest square such that Rs,s ⊆ Z. Then

Menhanced(Z) ≥ s1/2.

Proof. Let kr and kc denote the largest number of rows and columns, respectively, in Z
that are all of the same length and least length s. If kr < s1/2, then there are at least s1/2

rows of different lengths in Z. Let (R, C) be enhancements such that R = Z and C = ∅.
Then rows with different lengths are spanned at different times, which gives a spanning
time of at least s1/2. Similarly if kc < s1/2, there are at least s1/2 columns of different
lengths in Z. Setting R = ∅ and C = Z gives a spanning time of at least s1/2.

Otherwise suppose kr ≥ s1/2 and kc ≥ s1/2. Let a and b denote the number of columns
longer than the kc repeated columns and the number of rows longer than the kr repeated
rows, respectively. Define Z ′ = (Z←a)↓b. Let L be a line with slope −1 that passes
through the site (m,n) /∈ Z ′ such that (m − 1, n − 1) ∈ Z ′ and Z ′ lies below L. Then
m ≥ kc and n ≥ kr. By Lemma 5.1, Menhanced(Z ′) ≥ 2 min{kr, kc} ≥ s1/2. By Lemma
2.2, Menhanced(Z ′) ≤Menhanced(Z).

Therefore we may conclude that

Menhanced(Z) ≥ s1/2.

Proof of Theorem 1.2. If Rs,s ⊆ Z, then Rs−1,s−1 ⊆ Z↙1. The theorem then follows from
Lemma 2.4 and Proposition 5.2.
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