
Computation on Polyhedral Arrangements and
its Applications on Lifting Regions

By: Peijun Xiao

Faculty advisor: Matthias Köppe

Senior thesis

June 2017

UNIVERSITY OF CALIFORNIA, DAVIS

COLLEGE OF LETTERS AND SCIENCE

DEPARTMENT OF MATHEMATICS

-i-



ii

Abstract iii

Acknowledgments iv

Chapter 1. A Hierarchy of Polyhedral Arrangements 1

1.1. Polyhedral Arrangements 1

1.2. Polyhedral Dissections 1

1.3. Polyhedral Complexes 5

1.4. Polyhedral Triangulations 8

1.5. A Hierarchy of Polyhedral Arrangements 9

Chapter 2. Computation on Polyhedral Arrangements 12

2.1. Bucket Method 12

2.2. Sage Code 13

2.3. Experiments 16

Chapter 3. Regular Triangulations 22

3.1. Regular Triangulations of Point Configurations 22

3.2. Polyhedral Triangulations of Polyhedral Arrangements 23

3.3. Sage Code and Examples 23

Chapter 4. Applications on Volumes of Lifting Regions 26

4.1. Background 26

4.2. Sage Code and Examples 28

Bibliography 34

Contents



ABSTRACT iii

Abstract

In this thesis, we introduce the definition of polyhedral arrangements and develop a computational

method to arrange the polyhedra. Furthermore, we explore possible ways to define a polyhedral

dissection of a polyhedral arrangement, and we provide the definitions of polyhedral complexes

and polyhedral triangulations. We review regular triangulations of point configurations. We show

that there exist a hierarchy of polyhedral arrangements. Every polyhedral complex is a polyhedral

dissection; every polyhedral triangulation is a polyhedral complex. At the end of the thesis, we

apply polyhedral arrangements to the study of lifting regions, a topic in the theory of cut-generating

functions. We provide Sage code to compute the volumns of lifting regions that are assigned to a

torus.



ACKNOWLEDGMENTS iv

Acknowledgments

I would like to thank my thesis advisor, Matthias Köppe, for giving me this research opportunity

and for all of his encouragement, advice, and support throughout this project. I would also like to

thank Yuan Zhou, a graduating Ph.D. student in the Department of Mathematics at UC Davis, for

her generous support and help throughout the project. I would like to thank Shuidie Yao for her

encouragement and support throughout the research.



CHAPTER 1

A Hierarchy of Polyhedral Arrangements

1.1. Polyhedral Arrangements

Definition 1.1.1. A polyhedral arrangement A is a collection of polyhedra in Rn.

The collection of polyhedra for a polyhedral arrangement does not need to be a finite set. We call a

polyhedron p of a polyhedral arrangement A an element of the polyhedral arrangement. A more

well-studied arrangement in literature is the hyperplane arrangement. A hyperplane arrangement

is defined as a collection of affine hyperplanes in a vector space V ∼= Kn where K is a field [Sta04].

Similarly, the collection of affine hyperplanes for a hyperplane arrangement can possibly be infinite

[Par12]. In optimization, hyperplane arrangements are applied in algorithm design for the least

distance problem [FP09]. In this thesis, polyhedral arrangements are used as a geometrical tool to

study lifting regions, a topic in the theory of cut-generating functions. This topic will be introduced

in Chapter 4.

1.2. Polyhedral Dissections

In the study of geometry, one is interested in decomposing a polyhedron efficiently. For example,

given a d-dimensional cube, a dissection of the cube is defined as a decomposition of the cube into

d-dimensional simplices whose interiors are pairwise disjoint but that do not necessarily intersect

in a common face [Sen13]. Inspired by the dissection of a d-dimensional cube, we are interested in

developing a definition of the dissection of more than one polyhedron.

First, we need to clarify some terms. Given some geometrical objects X and Y :

(i) a dissection consisting of X and Y means that X and Y are elements of the dissection.

(ii) a dissection of X means that the union of the elements of the dissection is X.

1



(a) Intersection has dimension −1 (b) Intersection has dimension 0

(c) Intersection has dimension 1

(d) Intersection has dimension 2

Figure 1.1. Cases that two square have different intersections

For example, the dissection of a d-dimensional cube consists of some d-dimensional simplices. In

this chapter, we are interested in defining when a polyhedral arrangement is called a polyhedral

dissection of itself.

Example 1.2.1. The easiest example to start with is a polyhedral arrangement consisting of two

squares p and q. There are four cases to discuss:

(1) Square p and square q does not intersect. The polyhedral arrangement in Figure 1.1a is an

example of this case.

(2) Two squares intersect, and their intersection has dimension 0, i.e., a point. The polyhedral

arrangement in Figure 1.1b is an example of this case.

(3) Two squares intersect, and their intersection has dimension 1, i.e., a line segment. The poly-

hedral arrangement in Figure 1.1c is an example of this case.

2



(4) Two squares intersect, and their intersection has dimension 2. The polyhedral arrangement in

Figure 1.1d is an example of this case.

For Case (1), obviously, the polyhedral arrangement is a dissection of itself, since the squares do

not intersect with each other. The polyhedral arrangements are dissections of themselves in both

Case (2) and Case (3), because those cases occur only if the squares intersect at their boundaries.

The squares are still “complete” if we “tear” the squares apart from their intersection. However, we

can’t “tear” the squares apart from each other in Case (4). Therefore, the polyhedral arrangement

is not a polyhedral dissection of itself in Case (4).

By observation of the dimensions of the intersections, assume all the elements from a polyhedral

arrangement have the same dimension, we derive a criterion to check if the polyhedral arrangement

is a polyhedral dissection of itself: if any two different elements p and q from the polyhedral

arrangement satisfies

dim (p ∩ q) < min (dim (p))

If there exists two elements p and q from the polyhedral arrangement that have different dimen-

sions, then the following condition is one possible way to determine if a polyhedral arrangement A

is a polyhedral dissection of itself: every pair of different elements p, q of A satisfies

dim (p ∩ q) < min (dim (p) , dim (q))

We refer this condition as the dimension condition.

Example 1.2.2. The elements from each polyhedral arrangement in Figure 1.2a and Figure 1.2b

have different dimensions. The polyhedral arrangement in Figure 1.2a is constructed with the unit

cube colored in yellow and a wide rectangle with vertices (0, 0, 1), (0, 3/2, 1), (1, 0, 1), (1, 3/2, 1) col-

ored in green. The intersection of the wide rectangle and the cube is the upper face (has dimension

2) of the cube. The relative interior of the upper face is in the relative interior of the wide rectan-

gle. These two objects are “glued” together, hence, the polyhedral arrangement is not a polyhedral

dissection of itself.

3



(a) A cube with a wide rectangle (b) A cube with a thin rectangle

Figure 1.2. Elements have different dimensions

Consider another polyhedral arrangement in Figure 1.2b which is constructed with the unit cube

colored in yellow and a thin rectangle with vertices (0, 1, 1), (0, 3/2, 1), (1, 1, 1), (1, 3/2, 1) colored in

green. Since the intersection of the cube and the thin rectangle is the edge which has dimension 1

less than 2, therefore, the polyhedral arrangement is a polyhedral dissection of itself.

Rather than using the dimension condition, we found that using the notion of the intersection

of the relative interiors of the polyhedra is a better way to define a polyhedral dissection.

Lemma 1.2.1. Given two polyhedra p and q, denote the relative interior of a polyhedron p as

relint(p), then (i) implies (ii):

(i) relint(p) ∩ relint(q) = ∅;

(ii) dim(p ∩ q) < min(dim(p), dim(q)).

By Lemma 1.2.1, we can replace our previous dimension condition by the new relative interior

condition: a polyhedral arrangement A is a polyhedral dissection of itself if any two different

elements p, q of A satisfies relint(p) ∩ relint(q) = ∅.

If we use the relative interior condition, we can take care of situations that the dimension

condition can’t take care of.

Example 1.2.3. Consider the polyhedral arrangement in Figure 1.3. The polyhedral arrangement

is constructed by a line segment with end points (1, 1/2), (2, 1/2) and another line segment with end

4



Figure 1.3. This is not a polyhedral dissection consisting of two line segments

points (3/2, 0), (3/2, 1). Both of the line segments have dimension 1, and their intersection is a

point at (2/3, 1/2) which has dimension 0. This implies that the polyhedral arrangement satisfies

the dimension condition. However, this polyhedral arrangement violates the relative interior

condition, because the intersection of the lines is a point rather than an empty set. The relative

interior condition determines that this polyhedral arrangement is not a polyhedral dissection.

In general, if there exists some elements of a polyhedral arrangement A that have different dimen-

sions, the we define a polyhedral dissection of A as the following:

Definition 1.2.1. A polyhedral arrangement A in Rn is called a polyhedral dissection of itself

if every pair of different elements p, q of the polyhedral arrangement satisfying

relint(p) ∩ relint(q) = ∅

1.3. Polyhedral Complexes

Recall that a polytope is in the form p = {x ∈ Rd : Ax ≤ b} where A ∈ Rn×d and a vector

b ∈ Rn.

Definition 1.3.1. [AZ14] A face of a polytope p is subset f ⊆ p of the form

f = p ∩ {x ∈ Rd : aTx = b}
5



(a) A polyhedral dissection of two triangles

(b) A polyhedral arrangement of a square,
two points and a line inside the square is
not a polyhedral dissection

Figure 1.4. Example and non-example of polyhedral dissections

where aTx ≤ b is a linear inequality which is valid for all points x ∈ p.

Lemma 1.3.1. Every face of a polytope is itself a polytope.

Proof. Given a polytope p = {x ∈ Rd : Ax ≤ b} where A ∈ Rn×d and a vector b ∈ Rn, and a

face f = p ∩ {x ∈ Rd : aTx = b}. Then construct A′ ∈ R(n+2)×d with the first n rows of A′ are the

rows of A, and the last two rows of A′ are the vectors a and −a. Also construct b′ ∈ Rn+2 with

the first n entries are the entries of b, and the last two entries are b and −b. Then the face f is

also a polytope in the form f = {x ∈ Rd : A′x ≤ b′}. �

We can use the same technique in the proof of Lemma 1.3.1 to prove that every face of a polyhedron

is itself a polyhedron.

Recall a finite abstract simplicial complex is a finite set A together with a collection ∆ of

subsets of A such that if X ∈ ∆ and Y ⊆ X, then Y ∈ ∆. Every element δ ∈ ∆ is called a

simplex of ∆. A simplex of an abstract simplicial complex is a maximal simplex if it is maximal

with respect to set inclusion [Koz08].

6



A geometric version of a simplex is geometric n-simplex, which is defined as a convex hull of

a set A of n + 1 affine independent points in RN , for some N ≥ n [Koz08]. The convex hulls of

the subsets of A are called subsimplices of σ [Koz08]. Notice that simplices are the simplest

of polyhedra which are points, line segments, triangles, tetrahedra, etc. [DRS10]. The geometric

version of an abstract simplicial complex is called a geometric simplicial complex. A geometric

simplicial complex K in RN is a collection of simplices in RN such that every subsimplex of a

simplex of K is a simplex of K and the intersection of any two simplices of K is a subsimplex of

each of them [DRS10].

Since we are studying geometrical objects in this thesis, from now on, all simplicial complexes mean

geometric simplicial complexes, and all simplices mean geometric n-simplexes.

We change “subsimplex” to “face” and “simplex” to “polyhedron” in the definition of geometric

n-simplex to derive the definition of a polyhedral complex as the following:

Definition 1.3.2. [BHK16] A polyhedral complex C is a polyhedral arrangement in Rn such

that

(i) every face of a polyhedron in C is itself a polyhedron in C;

(ii) the intersection of any two polyhedra p and q in C is a face of p and of q;

A polyhedron of C is called a face of the polyhedral complex [BHK16]. Notice that by Lemma

1.3.1, every face of a polyhedron is a polyhedron, and property (i) of Definition 1.3.2 states that

every face of a polyhedron in a polyhedral complex is a polyhedron in the complex. Therefore,

our definition of a face of a polyhedral complex does not conflict with the definition of a face of a

polyhedron. Property (ii) of Definition 1.3.2 is called face-to-face [BHK16].

Every polyhedron has an empty face. A face of a polyhedral complex C is called a vertex if it has

dimension 0. A face of C of dimension i is an i-face of C [BHK16]. A face of polyhedral complex

is called maximal if it is maximal with respect to set inclusion. With this definition of maximal

faces, we define a polyhedral complex C to be pure if all maximal faces have the same dimension.

The polyhedral complexes in Figure 1.7 are pure. The polyhedral complex in Figure 3.2e is not

pure.

7



1.4. Polyhedral Triangulations

Triangulations is an important topic in computational geometry and have many applications in

algebra, computer science, combinatorics and optimization [DRS10]. To study triangulations,

besides the concepts of simplicial complexes introduced in section 1.3, we also need to study point

configurations. Recall a point configuration is a finite collection of points A = {a1, a2, · · · , ad}

in Rn with non-repeated labels [DRS10].

Definition 1.4.1. [DRS10] A triangulation of a point configuration A in Rn is a collection of

n-simplices where the vertices of the simplices are points in A that satisfies the following properties:

(1) (Union Property) The union of all these simplices equals conv(A).

(2) (Intersection Property) Any pair of these simplices intersects in a common face.

Notice that this definition of triangulation is of a point configuration, rather than of a polyhedral

arrangement. Our goal is to develop a definition of a polyhedral triangulation of a polyhedral

arrangement.

By observation, the n-simplices in Definition 1.4 are analogs of maximal faces of a polyhedral

complex. The intersection property in Definition 1.4 is an analog of the face-to-face property of a

polyhedral complex. Inspired by those analogs, we derive the definition of polyhedral triangulation

of a polyhedral arrangement as the following:

Definition 1.4.2. A polyhedral triangulation T of a polyhedral arrangement A in Rn is a

polyhedral complex C of A such that every maximal face of C is a simplex.

Since the faces of a simplex are still simplices, then every face of a polyhedral triangulation is sim-

plex. By observation, the collection of the simplices from a polyhedral triangulation is a simplicial

complex.

Notice that a polyhedral triangulation of a polyhedral arrangement is not the same as a polyhedral

triangulation of the unions of polyhedra of the same polyhedral arrangement.

8



(a) A polyhedral arrangement A of two thin
rectangles

(b) A polyhedral triangulation of A in Fig-
ure 1.5a

(c) The union of elements of A in Figure
1.5a

(d) A polyhedral triangulation of the square
in Figure 1.5c

Figure 1.5. Examples of a polyhedral triangulation of a polyhedral arrangement
and a polyhedral triangulation of the union of elements for the same polyhedral
arrangement

Example 1.4.1. Figure 1.5a gives a polyhedral arrangement with two thin rectangles as elements.

Figure 1.5c is a square. It is the union of the elements of the same polyhedral arrangement. Figure

1.5b and Figure 1.5d show that a polyhedral triangulation of a polyhedral arrangement is different

from a polyhedral triangulation of the union of the elements of the same polyhedral arrangement.

1.5. A Hierarchy of Polyhedral Arrangements

Lemma 1.5.1. Every polyhedral complex is a polyhedral dissection.

Proof. Given a polyhedral complex C. Consider condition (ii) in the definition of a polyhedral

complex: the intersection of any two polyhedra p and q in C is either empty or is a face of p and

9



Figure 1.6. A hierarchy of polyhedral arrangements

of q. To show C is a polyhedral dissection, we want to show that if p and q are different polyhedra

in C, then relint(p) ∩ relint(q) = ∅.

Suppose p and q are different polyhedra in C. If the intersection of them is empty, then obviously

relint(p) does not intersect with relint(q). If the intersection i is a face of p and of q, since p and q are

different, then we know the intersection i intersects with p and q at the corresponding supporting

hyperplanes of p and of q by the definition of a face of a polytope in Definition 1.3.1. Since the

supporting hyperplanes are not in the relative interior of p (of q), then relint(p)∩ relint(q) = ∅. �

By our definition of polyhedral dissections, polyhedral complexes, and polyhedral triangulations

with Lemma 1.5, we conclude that there is a hierarchy of polyhedral arrangements as Figure 1.6

shows.

Example 1.5.1. Figure 1.7a is a polyhedral arrangement with three elements: a white rectangle, a

yellow triangle, and a thick black line segment that crosses through the triangle and the rectangle.

Because of the line segment, the polyhedral arrangement is not a polyhedral dissection.

The polyhedral arrangement in Figure 1.7b has three elements: a white rectangle, a yellow triangle

and an orange triangle. This polyhedral arrangement is a polyhedral dissection, but not a polyhedral

complex, because the rectangle intersects with the yellow triangle at the line segment with endpoints

10



(a) a polyhedral arrangement
(b) a polyhedral dissection, but not a poly-
hedral complex

(c) a polyhedral complex, but not a poly-
hedral triangulation

(d) a polyhedral triangulation

Figure 1.7. Examples of polyhedral arrangements, polyhedral dissections, polyhe-
dral complexes and polyhedral triangulations

c and f , but the line segment is not a face of the rectangle. Therefore, this polyhedral dissection

violates the face-to-face condition to be a polyhedral complex.

The polyhedral arrangement in Figure 1.7c consists of three triangles, a trapezoid and their faces.

This polyhedral arrangement is a polyhedral complex, because it satisfies the face-to-face condition.

However, it is not a polyhedral triangulation, since the trapezoid is not a simplex.

The polyhedral arrangement in Figure 1.7d consists of five triangles and their faces. This polyhe-

dral arrangement is a polyhedral triangulation, because the polyhedral arrangement is a polyhedral

complex, and all elements in the polyhedral complex are simplices.

11



CHAPTER 2

Computation on Polyhedral Arrangements

2.1. Bucket Method

In the study of polyhedral arrangements, we have to do lots of calculations on the elements, such as

checking if two elements from a polyhedral arrangement intersect or not or finding all the polyhedra

from the polyhedral arrangement that contain a given point.

To optimize the speed of those calculations, we need to find a proper data structure to efficiently

store and retrieve the information of the elements of polyhedral arrangements. Recall that in the

study of data structures, bucket sort is an efficient method to distribute the elements of a 1-D

array into numbers of buckets. Once the data structure is initialized, the time to retrieve the

information of an element of the array from the bucket is O(1).

Since a polytope can be represented as a convex hull of some points in Rn, then the buckets in

our data structure have to be hypercubes in Rn to store a polytope by its represented points. By

convention, we refer to those hypercubes as buckets, and we refer to the hypercube that is composed

of the buckets as a grid.

Given a polyhedral arrangement, we set up a grid based on the sizes of the elements and the

number of the elements. We then specify the width of the buckets and partition the grid into

buckets. Subsection 2.2.1 provides more details on how a grid is set up. After we set up the grid,

we assign coordinates to label the buckets of the grid.

Example 2.1.1. A real life example of a grid partitioned by high dimensional buckets is the Rubik’s

cube in Figure 2.1. The Rubik’s cube is a grid composed of 27 buckets. We denote the lower-left

red bucket as (0, 0, 0) and the upper-right blue-yellow bucket as (2, 2, 2).

12



Figure 2.1. The Rubik’s cube are partitioned into 27 3-D buckets.

Once we set up the grid, the next step to initialize the data structure is to find a fast way to

distribute the information of the elements of the polyhedral arrangement into the buckets. Instead

of using searching methods that are based on comparisons between the information of the elements,

a more efficient way to distribute the information of elements is based on digital tree search

[Knu98]. Given a table of records, digital tree search forms a binary tree. While the argument is

not in the table, a new node that containing the argument is inserted into the tree in the appropriate

place [Knu98]. The advantages of digital tree search are saving memory space at expense running

time and easy to process the search.

Based on digital tree search, we introduce the so-called bucket method to initialize the data

structure in storing information of elements from a polyhedral arrangement. The bucket method

is illustrated in algorithm 1. We proceed the bucket method on every element of a polyhedral

arrangement and make hash tables to store the information of the elements. Once we finish running

the bucket method on every element of the polyhedral arrangement, we say that the data structure

is initialized.

2.2. Sage Code

2.2.1. Set up a grid.

Based on the dimension of the space, the class called ‘Grid’ constructs a square, a cube, or a

hypercube composed of buckets that contain all the elements of the polyhedral arrangement. The

class ‘Grid’ is used for bucket method in the class ‘PolyhedralArrangement’. Notice that a grid in

the class ‘Grid’ does not need to be a standard hypercube [0, 1]d for some dimension d. The grid

can be a hypercube in [a, b]d for some a, b ∈ R.

13



input : A polytope p, selection (default as None)
1 if selection has not been assigned then
2 selection ← all buckets of the grid;

3 end

4 lower left ← the lower-left bucket of the selection;

5 upper right ← the upper-right bucket of the selection;

6 if selection intersects with p then
7 if lower left == upper right then
8 add lower left as a key to bucket contents and p as the value;

9 add p as a key to polyhedral buckets and lower left as the value;

10 else
11 choose the longest side of selection;

12 cut selection into two hyperplanes through the longest side;

13 obtain two new selections, selection A and selection B;

14 call Bucket Method (selection A);

15 call Bucket Method (selection B);

16 end

17 end

Algorithm 1: Bucket Method(p, Selection)

(1) ‘ init ()’ takes the following five parameters to construct a ‘Grid’ instance:

(a) the number of the polyhedra n;

(b) the ambient dimension d of the polyhedra;

(c) the coordinates of the lower-left point of the grid;

(d) the width w of each bucket;

(e) the side length s of the grid.

(2) ‘cut selection’ is a method for bucket method. The inputs of the method are lower-left

bucket and the upper-right bucket of a selection. The method finds the longest side of the

selection, and cuts the selection through the longest side into two new selections. If the

sides have equal lengths, then this method cuts the selection through the side on the first

dimension. For example, choose the entire Rubik’s cube in Figure 2.1 as a selection. The

lower-left bucket is (0, 0, 0), and the upper-right bucket is (2, 2, 2). We pass this selection

to ‘cut selection’, and the method returns a selection with lower-left bucket (0, 0, 0) and

14



upper-right bucket (0, 2, 2), and another bucket with lower-left bucket (1, 0, 0) and upper-

right bucket (2, 2, 2).

2.2.2. Construct a polyhedral arrangement.

The class called ‘PolyhedralArrangement’ constructs a polyhedral arrangement from a list, tuple,

or a set of polyhedra. In the following paragraphs of this subsection, “elements” means the el-

ements of the polyhedral arrangement. All the elements are required to have the same ambient

dimension.

Construction:

(1) ‘ init ()’ constructs a polyhedral arrangement of its elements and sets up a ‘Grid’ in-

stance, grid.

By default, the grid has the same ambient dimension as the elements of the polyhedral

arrangement. Denote the ambient dimension as d. The lower-left coordinates of the grid

is the coordinates of the lower-left point among the union of vertices of each element. For

each element of the polyhedral arrangement, we calculate the maximum and the minimum

of each coordinate, and find the offset of the maximum and the minimum. The largest

offset we have found is set to be the side length of the grid. Finally, the width of each

bucket in the grid is a rational number approximated from s
d√n . Experiments are needed

to show that this number of buckets will give the best performance time for the bucket

method.

(2) ‘collection dict()’ returns a dictionary whose keys are the dimension of the elements and

whose values are the elements that have that dimension.

(3) ‘grid contents()’ calls the bucket method method and returns a dictionary whose keys are

buckets and whose values are a set of elements that intersect with the buckets.

(4) ‘polyhedron buckets()’ calls the bucket method and returns a dictionary whose keys are

the elements and whose values are a set of buckets that intersect with the elements.

(5) ‘in buckets(p)’ returns a set of buckets that the element p intersects with.

15



(6) ‘update dictionaries for a polyhedron(p, selection)’ is the bucket method on an element p.

In the step of checking if a selection intersects with the element p, ‘update dictionaries

for a polyhedron(p, selection)’ calls ‘ set up linear programming for intersection (p, selec-

tion)’ to set up an linear programming problem (LP) in Sage. If the LP has no feasible

solutions, then the selection and p do not intersect.

Once the LP is set up, every time the new selection is passed into the search, ‘up-

date dictionaries for a polyhedron(p, selection)’ calls ‘ update variables bounds()’ to use

the lower-left bucket and the upper-right bucket of the new selection to update variables

bounds of the existing LP. This warm-starting step of the LP is crucial, because it signif-

icantly reduces the running time for the bucket method method.

(7) ‘update dictionaries()’ runs the bucket method for each element of the polyhedral arrange-

ment and updates the two dictionaries ‘polyhedron buckets’ and ‘grid contents’.

Computation:

(1) ‘ contains (p)’ checks if a polyhedron p is an element of the polyhedron arrangement.

(2) ‘intersect(p, q)’ checks if two elements p and q intersects with each other.

(3) ‘is polyhedron in polyhedron(p, q)’ checks if an element p is in another element q of the

polyhedral arrangement. An element p is said to be in another element q if all vertices of

p are contained in q. Notice that p does not need to be in the polyhedral arrangement.

(4) ‘point in polyhedra(pt)’ returns a list of polyhedra from the elements of the polyhedral

arrangement that contain the given point pt.

(5) ‘polyhedron contains point(p, pt)’ checks if an element of the polyhedral arrangement p

contains a given point pt.

2.3. Experiments

2.3.1. Check Intersection.

16



To test the efficiency of bucket method method, we perform experiments in checking if two polyhedra

intersect. First we randomly generate 100 polyhedra with a fixed ambient dimension d. Then we

randomly choose 100 pairs of polyhedra from the generated polyhedra. We check if any pairs of

polyhedra p and q intersect with each other or not by the following three methods:

(1) Use Sage function ‘p.intersection(q)’ to compute the intersection and check if the intersec-

tion is an empty polytope. Denote this method as Sage intersection;

(2) Use the inequalities and equations of the representations of p and q to construct a linear

programming problem with objective function 0, and check if the linear programming is

non-feasible. Denote this method as lp intersection;

(3) Construct a ‘PolyhedralArrangement’ instance with the 100 pairs of polyhedra as the

elements of the polyhedral arrangement. After running the bucket method method, obtain

two sets of buckets that contain p and q respectively. If the sets of buckets don’t intersect,

then p and q do not intersect. Otherwise, use the linear programming method stated

before to check if p and q intersect. In this method, we assume that the data structure

has already been initialized; i.e., we do not count the time for constructing the polyhedral

arrangement and running the bucket method method in analyzing the performance for

this method. We denote this method as PA intersection. PA stands for polyhedral

arrangement.

Table 2.1. Intersections of 100 pairs of polyhedra

100 pairs dimension 1 dimension 2 dimension 3 dimension 4
buckets 83 buckets 100 buckets 125 buckets 256

methods CPU time CPU time CPU time CPU time
mean variance mean variance mean variance mean variance

Sage intersection 0.0340 0.0000 0.0767 0.0001 0.1847 0.0009 1.3504 0.0179
lp intersect 0.0345 0.0000 0.0662 0.0001 0.1359 0.0008 0.4468 0.0007

PA intersect 0.1650 0.0002 0.1562 0.0008 0.1969 0.0002 0.2859 0.0002
construct PA 2.7576 0.8699 2.0534 0.3591 2.7476 0.3748 2.0434 0.0213

We also want to know the time it takes to initializing the data structure. At the first columns in

Table 2.1, the row “construct PA” stands for constructing an ‘PolyhedralArrangement’ instance and

initializing the data structure. For the following columns, we have the results for four experiments

on four sets of polyhedra with ambient dimensions varied from 1 to 4.

17



In the result of each experiments, we include the number of buckets used in constructing the

polyhedral arrangements by setting the width of each bucket as d
√
n. n is the number of elements

in the polyhedral arrangement, and d is the ambient dimension of the polyhedra.

By observation, Sage intersection is the slowest method. For ambient dimension 1 to 3, lp intersection

performs better than PA intersection. PA intersection only needs roughly half of the time than

lp intersection to check intersection when the ambient dimension is 4. However, we observe that

it takes significant time in initializing the data structure.

Next, we raise the testing number of polyhedra from 100 to 200, and then from 200 to 300. We

also raise the number of pairs of polyhedra to tested from 100 to 200, and then from 200 to 300.

Since Sage intersection has been observed as the slowest method, we do not include this method

in our experiments.

Table 2.2. Intersections of 200 pairs of polyhedra

200 pairs dimension 1 dimension 2 dimension 3 dimension 4 dimension 5
buckets 140 buckets 187 buckets 216 buckets 256 buckets 243

methods CPU time CPU time CPU time CPU time CPU time
mean variance mean variance mean variance mean variance mean variance

lp intersect 0.0626 0.0000 0.1488 0.0012 0.2651 0.0007 0.9595 0.0194 7.1631 1.0527
PA intersect 0.5940 0.0010 0.5044 0.0016 0.5476 0.0008 0.6687 0.0098 0.2078 0.0028

construct PA 15.5813 3.0829 9.3947 0.3217 12.6268 0.3164 4.7964 0.0438 3.5028 0.0222

Table 2.3. Intersections of 300 pairs of polyhedra

300 pairs dimension 1 dimension 2 dimension 3 dimension 4 dimension 5
buckets 198 buckets 289 buckets 343 buckets 625 buckets 1025

methods CPU time CPU time CPU time CPU time CPU time
mean variance mean variance mean variance mean variance mean variance

lp intersect 0.1062 0.0000 0.1912 0.0004 0.4199 0.0002 1.6217 0.0023 10.4348 1.1544
PA intersect 1.2680 0.0102 1.0153 0.0008 0.9858 0.0017 1.2327 0.1888 0.1641 0.0002

construct PA 46.8352 27.2894 24.5346 2.3484 36.1479 3.0201 14.4418 0.4312 6.7237 0.1002

From Table 2.2 and Table 2.3, we have similar observations: PA intersection performs better

than lp intersection when the ambient dimensions is equal or greater than 4.

2.3.2. Find point containment.

Another experiment we have done is to check which polyhedra from a large set of polyhedra

contain a given point. Similar to the experiment in 2.3.1, we randomly generate 300 polyhedra in

a hypercube [0, 1]d with a fixed ambient dimension d. Then we randomly choose 300 points in the

18



hypercube. In the experiment, we compare the CPU-time in running the following two methods

on those polyhedra and points:

(1) Use Sage function ‘p.contains(pt)’ check if a polyhedron p from the collection of polyhedra

contains the point pt. Iterate this step over all polyhedra in the collection. Denote this

method as Sage contain;

(2) Construct a ‘PolyhedralArrangement’ instance with the 300 pairs of polyhedra as the

elements of the polyhedral arrangement. First we calculate which bucket contains the given

point pt. Denote this bucket as bk. After initializing the data structure, we look for which

polyhedra intersect with bk by looking up bk’s values in the dictionary “grid contents”.

Denote this set of polyhedra that intersect with bk as possible polyhedra. Finally, we

use the Sage function ‘p.contains(pt)’ to check if a polyhedron p from possible polyhedra

contains the point pt. We denote this method as PA contain. PA stands for polyhedral

arrangement.

Table 2.4. Find containment with size range 1
2

300 polyhedra dimension 1 dimension 2 dimension 3 dimension 4
size range = 1 / 2 buckets 148 buckets 324 buckets 343 buckets 625

methods CPU time CPU time CPU time CPU time
mean variance mean variance mean variance mean variance

Sage contain 3.2529 0.0086 7.7579 0.1700 7.8048 0.0343 9.5154 1.0115
PA contain 0.6065 0.0128 0.4847 0.0007 0.6808 0.0308 0.9927 0.0268

construct PA 9.7630 6.2639 16.3038 0.5057 14.0755 0.5256 15.6958 0.9973

Table 2.5. Find containment with size range 1
10

300 polyhedra dimension 1 dimension 2 dimension 3 dimension 4
size range = 1 / 10 buckets 198 buckets 289 buckets 343 buckets 625

methods CPU time CPU time CPU time CPU time
mean variance mean variance mean variance mean variance

Sage contain 4.4914 0.0986 7.1304 0.0153 8.1357 0.1549 9.2963 0.0495
PA contain 0.2765 0.0019 0.1185 0.0000 0.1181 0.0002 0.1060 0.0000

construct PA 8.7568 2.1597 5.3033 0.4453 5.8926 0.3821 4.4077 0.1187

In this experiment, we introduce a new parameter size range, which restricts the size of the

randomly generated polyhedra. Denote size range as s. To randomly generate a polyhedron, we

first randomly pick a point in the hypercube as the center of the polyhedron. Denote the center

point as c = (c1, c2, · · · , cd). Then we pick vertices such that every coordinate vi of each vertex

is randomly chosen from [ci − s, ci + s] ∩ [0, 1]. In other words, the vertices are chosen from a

19



(a) 50 polyhedra generated with
size range 1

10

(b) 50 polyhedra generated with
size range 1

2

Figure 2.2. Examples of how size range affects the size of polyhedra in [0, 1]2

hypercube that is centered at c with the side of length 2s. We then use those vertices to generate

a polyhedron. Repeat the process until we get 300 randomly generated polyhedra.

Figure 2.2 gives an example on how size range affects the sizes of 50 polyhedra in [0, 1]2. By

observation, the smaller the size range is, the more likely that the polyhedra separated from each

other in the [0, 1]d hypercube. From Table 2.4 and Table 2.5, we observe that the smaller the

size range is, the less time it takes to initialize the data structure.

In general, Sage contain is slower than PA contain. The gaps between the CPU-time for these

two methods grow larger as the ambient dimension of the polyhedra increases. As we just discussed,

it takes less time to initialize PA contain when size range is small. Therefore, the time we save

in using PA contain instead of Sage contain can easily to compensate the time we spend on

initializing PA contain when size range is small. This result is not surprising, because our bucket

method performs well in arranging polyhedra when the polyhedra are small or have big gaps among

each other.

20



Overall, if a set of polyhedra is randomly generated, then PA contain is a faster method than

Sage contain to check which polyhedra from the set contain a given point.

21



CHAPTER 3

Regular Triangulations

3.1. Regular Triangulations of Point Configurations

Recall that a point configuration is a finite collection of points A = {a1, a2, · · · , an} in Rd

with non-repeated labels [DRS10]. [DRS10] shows that every point configuration has at least

one triangulation. In particular, every point configuration has so-called regular triangulations

[DRS10].

To construct a regular triangulation, first we pick a height function ω : A → R such that every

ai ∈ A is assigned with a weight ωi. Then the lifted point configuration [DRS10] in Rn+1 is

represented in the form

Aω :=

 a1 a2 · · · an

ω1 ω2 · · · ωn


Literally, a lifted point configuration is a point configuration being lifted to one dimension higher

by assigning weights ω to all the points in the point configuration. We denote the lifted point

configuration of A as Aω.

Given a point configuration A, we compute a face structure of the polytope p = conv(Aw). A

lower face of a lifted point configuration Aω is a face of p that is visible from below of p [DRS10].

We also define a regular subdivision of a point configuration A produced by w to be the set of

lower faces of the lifted point configuration Aω [DRS10].

To get a triangulation of a point configuration A, we first lift up the point configuration by weight

functions ω, then we project the polytope p = conv(Aw) down to get its lower face. Notice that the

collection of projected lower faces satisfies the three properties in Definition 1.4.2 for triangulation

of point configuration, if we assign generic weights to the point configuration, and the projections

of the lower faces form a triangulation of a point configuration [DRS10].

22



We say a triangulation of a point configuration A in Rn is called regular if it can be obtained

by projecting the lower envelope of a lifting of A to Rn+1. Notice that a regular triangulation of

a point configuration A is a particular case of a regular subdivision of A when the weights are

generic).

3.2. Polyhedral Triangulations of Polyhedral Arrangements

Inspired by the idea of regular triangulation of a point configuration, we want to explore if we could

use the same ways to construct a polyhedral triangulation of a polyhedral arrangement. First, for

each element of the polyhedral arrangement, we take its vertices to form a point configuration,

and construct a regular triangulation for the point configuration. We repeat this step for all the

elements of the arrangement. Finally, we take the union of the regular triangulations. However,

as Figure 3.1 shows, this way of construction does not guarantee a polyhedral triangulation of a

polyhedral arrangement.

Example 3.2.1. Figure 3.1a gives a polyhedral arrangement of a square and two line segments.

Figure 3.1b shows the union of regular triangulations of point configurations of the vertices lists of

elements of 3.1a. Figure 3.1b is composed of two triangles and two line segments.

Figure 3.1b is not a polyhedral triangulation of Figure 3.1a, because the intersection point (1/2, 1/2)

of the two line segments is not included. This violates the face-to-face condition of a polyhedral

complex. By Definition 1.4.2, every polyhedral triangulation of a polyhedral arrangement has to be

a polyhedral complex of the polyhedral arrangement.

We have not found a way to make a polyhedral arrangement into a polyhedral triangulation. More

study is needed on this topic in the future.

3.3. Sage Code and Examples

The code to compute a regular triangulation of a point configuratoin is in the class ‘PolyhedralAr-

rangement’.

23



(a) A polyhedral arrangement of a square and
two line segments

(b) The union of regular triangulations of
some point configurations

Figure 3.1. Examples of regular triangulations of point configurations do not guar-
antee a polyhedral triangulation of a polyhedral arrangement. Notice that each point
configuration for the regular triangulations in Figure 3.1b is the list of the vertices
of an element of the polyhedral arrangement in Figure 3.1a

1. ‘regular triangulation(pt config, dim)’ takes two inputs: a point configuration ‘pt config’, and

the dimension ‘dim’ of the polyhedron that we want to triangulate. The method first computes

the weight of each point in the point configuration plus some perturbation to each weight. Then

the method constructs a polyhedron as same as the original polyhedron except that the weight

gives an extra dimension to each vertex of the original polyhedron. Finally, the method projects

the new polyhedron onto the faces with dimension ‘dim’. Those faces are the lower faces of the

lifted point configuration. The union of those faces forms a regular triangulation of the point

configuration.

2. ‘weight(p1, p2)’ computes the weight of two points p1 and p2. The weight is defined as the square

of the Euclidean distance between p1 and p2.

3. ‘ small perturbation(list)’ first finds the minimal value of the elements in a list. Denote the

minimum as m. Then the method constructs a list of random rational numbers in [m∗10−8,m∗

10−5] as the perturbation list of the input list. This method is used in ‘regular triangulation’ to

assign perturbations to the weight function.

24



(a) A polyhedral complex composed by
three squares from top, bottom and left

(b) The triangulations of the point con-
figurations of the polyhedra in polyhe-
dral arrangement in Figure 3.2a

(c) A polyhedral arrangement of em-
bedded triangles in 3D (Example 2.2.5
in [DRS10])

(d) The triangulations of the point
configurations of the polyhedra in the
polyhedral arrangement in Figure 3.2c

(e) A cube and a square forms a non-
pure polyhedral complex

(f) The triangulations of the point con-
figurations of the polyhedra of polyhe-
dral complex in Figure 3.2e

Figure 3.2. Examples of triangulations of the point configurations of the polyhedra
in some polyhedral arrangements

25



CHAPTER 4

Applications on Volumes of Lifting Regions

4.1. Background

In the study of integer programming, a convex set is called lattice-free if there is no integral points

in its interior [BC09]. A lattice-free convex set is maximal if it is inclusion-maximal in the class

of lattice-free convex sets [Wag11].

Example 4.1.1. The triangle in Figure 4.1a has vertices (0, 1), (−3, 0), (3, 0). This triangle is

lattice-free, but not maximal lattice-free, because it is contained in the triangle in Figure 4.1b. The

triangle in Figure 4.1b is maximal lattice-free, because it is maximal with respect to set inclusion.

In the theory of cut-generating functions, we are interested in studying the so-called lifting regions.

To define a lifting region of a maximal lattice-free convex set B ∈ Rn corresponding to a f ∈ B,

we define PF (f,B) = conv(f ∪ F ) for each facet F of B [AB14].

For each z ∈ F ∩ Zn and each facet F , we define a spindle

SF,z(f,B) = PF (f,B) ∩ (z + f − PF (f,B))

In addition, we define the union of all spindles arising from the facet F as

RF (f,B) =
⋃

z∈F∩Zn

SF,z(f,B)

We refer the set of all facets of B as Facets(B).

26



(a) A triangle that is lattice-free but not maximal

(b) A triangle that is maximal lattice-free

Figure 4.1. Examples of lattice-free triangles

Definition 4.1.1. [AB14] If B is a maximal lattice-free polytope and f ∈ B, then the lifting

region R(f,B) associated with the point f is defined as

R(f,B) =
⋃

F∈Facets(B)

RF (f,B)

Equipped with the natural Lebesgue measure that assigns volume 1 to torus Tn = Rn/Zn [BCK12],

researchers are interested in the volume of the lifting region R(f,B)/Zn, i.e., the region R(f,B)

is sent onto the torus Tn [AB14]. We denote the volume of the lifting region R(f,B)/Zn as

volTn(R(f,B)/Zn).

By observation, a compact set X ⊆ Rn covers Rn by lattice translations, i.e., X + Zn = Rn,

if and only if volTn(X/Zn) = 1 [BCK12]. Researchers have been interested in what kinds of

maximal lattice-free convex sets B with what values of f will give volTn(R(f,B)/Zn) = 1. Another

question about the volumes of the lifting regions is whether there exists a relation between f and

volTn(R(f,B)/Zn) for a given B.

Theorem 4.1.1. [AB14] Let B ⊂ Rn be a maximal lattice-free polytope. The function f →

volTn(R(f,B)/Zn), acting from B to R, is the restriction of an affine function.

27



Theorem 4.1.1 is a generalization of Theorem 4 in [BCK12], which states that if B ⊂ Rn is a

maximal lattice-free simplicial polytope and f ∈ B, then volTn(R(f,B)/Zn) is an affine function

of the coordinates of f .

In [BCK12], Corollary 1 states that the set { f ∈ B | volTn(R(f,B)/Zn) = 1 } is a face of B.

This implies that the minimum and maximum of volTn(R(f,B)/Zn) are found when f is on some

vertices of B.

4.2. Sage Code and Examples

(1) ‘is lattice free(B)’ checks if a polyhedronB is lattice-free. This method first callsB.integral

points() in Sage to obtain the integral points on B, then checks if none of those points is

in the interior of B.

(2) ‘is maximal lattice free(B)’ checks if a polyhedron B is maximal lattice-free by checking

that B is lattice-free and every facet of B has at least one lattice point in its relative

interior.

(3) ‘lifting region(B, f)’ constructs the lifting region R(f,B) in the ways as Definition 4.1.1

states.

(4) ‘pick f(B)’ returns a random f in B.

(5) ‘translate lifting region(B, lr)’ constructs R(B, f)/Zn on the unit cube [0, 1]d, where d is

the ambient dimension of B. This method returns R(B, f)/Zn as a ‘PolyhedralArrange-

ment’ instance. The method first makes some lattice translations on R(f,B) and truncates

them to the unit cube by taking non-empty intersections with the cube.

(6) ‘find volume of lifting region(B, lr)’ computes volTn(R(B, f)/Zn) by using inclusion-exclusion

property on the volumes of the elements in the polyhedral arrangement constructed by

‘translate lifting region(B, lr)’.

(7) ‘lifting graphics(B, f=None)’ plots the lifting region lr of R(B, f). If f is not given, then

the method picks an f by calling ‘pick f(B)’. The method also plots R(B, f)/Zn which is

28



constructed by ‘translate lifting region(B, lr)’. The method shows the value of f and the

corresponding volume, volTn(R(B, f)/Zn) in the graph.

Readers can use the Sage code to construct lifting regions and the translated lifting regions that

intersected with a unit cube. Readers can also use the code to calculate the volumes of the lifting

regions that are sent to the torus to better study lifting regions in the theory of cut-generating

functions.

In the following pages, we will provide the lifting graphics on some 2-D and 3-D examples. For

2-D examples, the lattice-free convex set B is colored in yellow. The lifting regions are colored in

orange, and the translated lifting regions that interesect with the unit cube are colored in red. For

3-D examples, the boundary of the lattice-free convex set B is colored in blue. The lifting regions

are all colored in red. The gray points are the integral points of the bounding box of B.

29



(a) Lifting graphics for the convex set in Figure 4.1a

(b) Lifting graphics for the convex set in Figure 4.1b

Figure 4.2. Lifting graphics for some 2-D lattice-free polytopes in Figure 4.1

30



(a) Lifting graphics for the example in Figure 1(a) in [BCK12]

(b) Lifting graphics for the example in Figure 1(b) in [BCK12]

Figure 4.3. Lifting graphics for some 2-D polytopes from literature

31



(a) Lifting graphics for a simplex denoted as M1 in
Theorem 2.2 in [Wag11] with randomly generated
f

(b) Translated lifting regions of the convex set in
Figure 4.4a that interesect with the unit cube

Figure 4.4. Lifting graphics for a 3-D simplex in [Wag11]

32



(a) Lifting graphics for a pyramid denoted as M8 in
Theorem 2.2 in [Wag11] with randomly generated
f

(b) Translated lifting regions of the convex set in
Figure 4.5a that interesect with the unit cube

Figure 4.5. Lifting graphics for a pyramid in [Wag11]

33



Bibliography

[AB14] G. Averkov and A. Basu, On the Unique-lifting Property, Proceedings of IPCO (2014), 76—-87.

[AZ14] M. Aigner and G. M. Ziegler, Proofs from the book: Fifth edition, 2014.

[BC09] V. Borozan and G. Cornuéjols, Minimal Valid Inequalities for Integer Constraints, Mathematics of Opera-

tions Research 34 (2009), no. 3, 538–546.

[BCK12] A. Basu, G. Cornuéjols, and M. Köppe, Unique Minimal Liftings for Simplicial Polytopes, Mathematics of

Operations Research 37 (2012), no. 2, 346–355.

[BHK16] A. Basu, R. Hildebrand, and M. Köppe, Light on the infinite group relaxation I: foundations and taxonomy,

4or 14 (2016), no. 1, 1–40, 1410.8584.

[DRS10] J. A. De Loera, J. Rambau, and F. Santos, Triangulations, Algorithms and Computation in Mathematics,

vol. 25, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[FP09] C. A. Floudas and P. M. P. M. Pardalos, Encyclopedia of optimization, Springer, 2009.

[Knu98] D. E. Knuth, The Art of Computer Programming Volume 3. Sorting and Searching, Addison Wesley 3

(1998), 829.

[Koz08] D. Kozlov, Combinatorial Algebraic Topology, vol. 21, 2008.

[Par12] L. Paris, K(π,1) conjecture for Artin groups, arXiv.org 23 (2012), no. 2, 361–415, 1211.7339.

[Sch98] A. Schrijver, Theory of linear and integer programming, Wiley, 1998.

[Sen13] M. Senechal, Shaping space: Exploring polyhedra in nature, art, and the geometrical imagination, vol. 1,

Springer New York, New York, NY, 2013.

[Sta04] R. Stanley, An introduction to hyperplane arrangements, Lecture notes, IAS/Park City Mathematics Insti-

tute (2004), 110.

[Wag11] C. Wagner, Maximal lattice-free polyhedra : finiteness and an explicit description in dimension three, (2011),

arXiv:1010.1077v2.

34


	Abstract
	Acknowledgments
	Chapter 1. A Hierarchy of Polyhedral Arrangements
	1.1. Polyhedral Arrangements
	1.2. Polyhedral Dissections
	1.3. Polyhedral Complexes
	1.4. Polyhedral Triangulations
	1.5. A Hierarchy of Polyhedral Arrangements

	Chapter 2. Computation on Polyhedral Arrangements
	2.1. Bucket Method
	2.2. Sage Code
	2.3. Experiments

	Chapter 3. Regular Triangulations
	3.1. Regular Triangulations of Point Configurations
	3.2. Polyhedral Triangulations of Polyhedral Arrangements
	3.3. Sage Code and Examples

	Chapter 4. Applications on Volumes of Lifting Regions
	4.1. Background
	4.2. Sage Code and Examples

	Bibliography

