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1 Introduction

With current technological advances, text classification has become a widely explored problem in the field of
machine learning. in this case study we will be examining the effectiveness of such text classification methods
on mathematical papers by Fields Medalist authors. it is our hope that analysis techniques give results that
allow us as readers to recognize authors of each paper without having to read the papers themselves. The
success of such methods would also mean that concepts important to specific authors can be conceptualized
by a machine, which aids in our ability to learn about a given Fields Medalist without reading about him or
her. Furthermore, news analysts have been applying these very machine learning methods to find patterns
in news articles. In such cases, words that are deemed relevant to a topic or are heavily covered in the news
are used to summarize the important events at a particular time.

It should be noted that this method utilizes certain features, such as the length and content of each paper,
to automatically categorize the documents with good accuracy. We proceed by first parsing the papers into
a text summarization matrix, which keeps track of the frequency of each word in every paper. This matrix
is then subjected to two different methods, namely LASSO, a convex optimization method, and a network
centrality method. It is my hope that analysis of these two methods, along with the creation of a third,
hybrid method for text summarization will provide us a good way to differentiate which method works under
a given circumstance.

2 Modeling and Solving the Problem

2.1 Data

We start by doing some basic preprocessing of our data. Our dataset consists of 185 Fields Medal Papers
for 20 Fields Medal professors who work on various topics such as topology, partial differential equations,
statistics, and so on. The texts are converted to lowercase, and punctuations and numbers are removed.
Additionally, certain low-information words, known as stopwords, such as “for” and “the” are ignored.

After preprocessing the data, we form X, termed the text summmarization matrix. We let D := {1,2,...,n}
be the set of documents indexed by the integers, and let P be the set of one-word and two-word phrases in
our dataset. Then, we have X € R"*P, where n = |D| and p := |P| with | - | being the cardinalities. The
elements of X are denoted by z;; which is the number of times phrase j € P appears in document ¢ € D.
The columns are said to be the features and the rows are the documents. Hence, X is a features-document
matrix, which we simply call our features matrix.

However, it may be preferrable to rescale X to reduce the probability that our feature selection methods will
select an insignificant term. The two rescaling approaches that will be compared are known as the L? and
the term frequency-inverse document frequency (if-idf) rescaling techniques, as seen in [1]. These methods
help reduce the variance and weight of high-frequency features (see [2]).

Let X = [mﬁé)] € R"™P be a L? rescaled version of X when its columns are normalized under the L2
norm:
o _ Lij ) (1)
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Let X®) = [a:i?] € R™*P be a tf-idf rescaled version of X when it is rescaled as follows:

p n
xg) = J%Jlog(g), where ¢; = inj and d; = Z 1{z;; > 0}, (2)
v J j=1 i=1

where 1{z;; > 0} is an indicator function equal to 1 when z;; > 0 and equal to 0 otherwise.

Now, we form a vector y = [y1,%a, .-, ¥n]? for the classification. To do this, we define a subject of interest
known as the query. In our case, we are interested in certain professors, so our query is a professor’s name.
If document i = 1,2,...,n is written by the professor of interest, then y; et 1, otherwise y; “' 1. For

simplicity, we denote the set of documents related to the query (i.e. written by the professor of intersest) as
Dy.

2.2 Corpus-Based Stop Word Lists

We now introduce the concept of stop words, or low information words we can remove from the features
matrix without negatively impacting our selection of sparse summarizers. Typical stop words such as “the”
or “and” are necessary grammatically, but typically add very little information. For example, most internet
search engines have developed lists of several hundred typical stop words that are automatically removed
from search queries prior to running the search algorithm. The reason is words like “the” show up far too
often to help determine if a particular webpage relates to the query or not.

Unfortunately, in subject specific corpora like ours, these pre-made stop word lists often contain words that
are rarely, if ever, used, such as the word “anybody”. At the same time, there are many words that in a
mathematical context can be thought of as stop words, such as “function”, even though the same words
would be very informative in a corpus consisting of a random selection of English documents. Below we
describe a method that deals with these issues by creating a corpus-specific stop word list, allowing us to
eliminate thousands of terms from our features matrix. See [3] for full details of the method.

Creating the Stop Word List Building the stop word list takes two steps. First we create a small list
of representative stop words. In the second step we use our representative list to find the rest of the stop
words in the corpus. From a machine learning point of view, the representative list is our training data we
use to classify the rest of the stop words.

3 Feature Selection Methods

We now discuss the feature selection methods for obtaining our summarizers. The two feature selection
methods we use are least absolute shrinkage and selection operator (LASSO), and LI1-penalized logistic re-
gression (L1LR). These different methods will reveal some important words that a single method on its own
would not have found. We note that we discuss the four methods using the unweighted matrix X, however,
they can also be applied to X and X®.

Lil-penalized Linear Regression (LASSO) is a widely-used feature selection model which is based off
of Least Square Linear Regression (LSLR). LSLR is a well-known method used to find a linear relationship
between an explanatory variable and a response variable (see [4]). In our case, each y; in the y vector
is a response variable, and the entries in the corresponding " row of the X matrix are the p explanatory
variables. That is, the y vector is the response vector and the X matrix is the explanatory matrix. Assuming



a linear relationship between y and X, we write y as a linear combination of the p columns of X plus some
error terms:

y=XB+.

The coefficient vector 3 := [51, B2, - ., BP]T is the parameter of interest. Thus, by linear relationship, we
mean that y is linear in 3 (see [5]). The intercept vector 4 is constant. The way to estimate (3,-) is through
minimizing the sum of square of the error terms:

(8,%) = arg min ||y — X3 - |1

A naive approach for choosing a small number of features is by to select the B; > € for a selected € > 0. The
corresponding features can be selected as the summarizer. However, this result from LSLR is difficult to
interpret, because an excessive number of coefficients will potentially end up statistically significant. Since
our goal is to find a sparse set of features to summarize the documents, we could simply choose the first few
features corresponding to the most significant coefficients from the LSLR result. Yet, those features are not
representative empirically. In theory, the reason is that the result from LSLR is largely influenced by the
outliers since all of the p phrases are included in the linear combination. To minimize the effect of outliers,
we penalize them by adding a L;-norm penalty term: A Z§=1 |B;]. The resulting objective function is called

the LASSO: .
([3,'?):arg%li‘?Hy—Cﬁ—'yHQ—i—)\ZWjL where A > 0. (3)

j=1

Here, A is a penalty parameter which can force B to be sparse. The higher the A, the more sparse B is.
Implicit in (3) is that there is a trade-off between the sum of square of the errors and the nonzero coefficients
in ,@ If a coefficient’s existence cause the sum of square of the errors to be large, it will be regularized to
zero. Due to this trade-off, most of the coefficients will turn out to be zero as desired [4]. Note that the
intercept 7 is not penalized. If it is, the intercept will get close to zero, which indicates that the number of
times when y; takes on 1 equals to the number of times when y; takes on -1. An easy way to see this is to
consider a special case where the C' matrix is a zero matrix. Then, the intercept is the average of the y;’s.
This average being close to zero indicates that y; takes on 1 or -1 for approximately an equal number of
times. In our case, this is not true since y;’s typically equal -1, so we do not penalize v (see [1]).

Lil-penalized Logistic Regression (L1LR) is another type of regression analysis, but is specifically
designed for classification in which the response variable is categorical. Our case is a binary logistic regression
since each entry of the response vector y only takes on 1 or -1. The parameter of interest is the probability
of y; being 1, written as P(y; = 1), in each sample (see [6]). We would first try to directly write P(y; = 1)
as a linear combination of the features represented by the i*" row of X:

Plyi=1)=a;"B+7, (4)

Ti1 B
where x; = 3= , and v is a constant (see [6]).

xip ﬂp
One problem for this model is that the right hand side can take values greater than 1 or less than 0, while
the probability on the left hand side cannot. A remedy is to take the natural logarithm of the probability

ratio:
P(y; = 1)
P(y; = —1)

This is called logit(P(y; = 1)), which can match the range of the right hand side of (4). Moreover, logit(P(y; =
1)) is symmetric, i.e. logit(P(y; = 1)) = —logit(P(y; = —1)) as explained in [6].
Now we can model logit(P(y; = 1)) as a linear combination of the features:

P(y; = 1)
P(y; = —1)

In

=z; B +7.



Since it is more intuitive to think in terms of probabilities, we solve for P(y; =

with 1 — P(y; = 1):
Py, =1)

— 2T
IHW = T; ﬁ""}/
P(yi = 1) _ T
T—Pyi=1) = exp(xz;” B+7).
Py =1) = :

1+ exp(—(x:T8+ 7))

This is called the logistic model. Similarly, we can also solve for P(y; = —

exp(—(x" B + 7))
1+ exp(—(z; T8 +7)

Py, =-1) =

The general form of the probability for y; is

() = exp(yi(z:"8 + 7))
Y T+ exp(yi(TB+ 7))

If 2,78+~ =0, P(y;) is 0.5, which means that it is equally possible for y; to take 1 or -1 .

1) by substituting P(y; =

(5)

If w'LTIG""V = 17

P(y; = 1) and P(y; = —1) are 0.73 and 0.27 respectively. If ;73 4+ v = —1, the reverse holds. When
x; T8+~ > 1, P(y; = 1) quickly converges to 1. When z;73 + v < —1, P(y; = 1) quickly converges to 0.
The region in between is ambiguous, meaning that y; is not strongly likely to take one side [7].
In order to estimate the parameter 3 from this logistic model, we will use the technique of maximizing the
log-likelihood. Likelihood is the probability that a particular sample can occur given different values of the
parameter in the model (see [8]). In our case, the sample is the set of documents D, and the parameter is
B. Since D is given, the parameter 3 that can maximize the likelihood of D can be found. For simplicity,
each document in D is assumed to be independent, meaning that the occurrence of one document does not
affect the probability of the others (see [8]). Then the likelihood function for D is

n

HP(yi)-

i=1

By taking the logarithm, we obtain the so-called log-likelihood function:

log H P(y;) = Z log P(y;)

exp(yi(x; 1B+ 7))
B Z STt exp(yi(z:1B8 + 7))

1

=3
; BT F exp(—yi (@B +7))

=— Z log(1 + exp(—yi(z;i" B+7)))-

=1

We maximize the log-likelihood function or, equivalently, minimize the negative of it:

arg min log(1 + exp(—y; (x; T8 + .
gM; g p(—yi(z:" B +7)))

In order to force 3 to be sparse, the Li-norm penalty term is added (see [1]). Thus, the complete objective

function for L1LR is

n p
(B,%) = arg Igi};Z log(1 + exp(—yi(@:"B+7)) + A Y _ |B51.
Ti=1 j=1

(6)



Although the original purpose of L1LR is to classify the new samples based on the features selected, we are
only interested in the selected features themselves. Though these features can be used for classification, we
will only consider them as summarizers. As shown above, L1LR, in theory, may give better results because
of the binary nature of our experiment.

3.1 Convex Optimization

We now explain how the L1LR and LASSO objective functions can be solved by noting that they are
convex. A set is convex if the line segment connecting two arbitrary points of the set completely lies inside
the set. Examples of a convex set in R? include squares, circles, ellipsoids and so on [9]. Mathematically, if
a set V C R™ is convex, for any x,y € V and any 6 with 0 < 6 < 1, we have

bz +(1—-0)yeV.

A function f : R™ — R is convex if the domain of f, written as D(f), is a convex set and if for all z,y € D(f)
and 0 <6<1

f(Oz+ (1= 0)y) < 0f(x) + (1 —0)f(y).

Function —f is then concave [10]. Convex sets and a convex function f : D(f) — R can be connected
through the epigraph of the function f, which is defined as

epi(f) = {(z,y)lz € D(f), f(z) < y}.

This can be used to show that a function is convex, according to the following theorem.

Theorem 1. A function f: D(f) — R is a convex function if and only if epi(f) is a conver set.

The penalty term in the LASSO and L1LR objective functions is a sum of the absolute functions, which can
be written as f(z) = |z|. Since epi(f(z)) is a convex set, f(z) is a convex function. The penalty term, which
sums the absolute functions, is also convex due to the following theorem.

Theorem 2. If f,g: D(f) — R are conver functions, then the sum of f and g is also a convex function.

Next theorem is useful to prove that the complete LASSO and L1LR objective functions are convex.

Theorem 3. Let f: D(f) — R have a continuous second derivative. f is convex on the conver set D(f) if
and only if f"(x) >0 for all x € D(f).

The LASSO objective function without a penalty term is

argrggllly—Xﬁ—vl\Q, (7)

which is convex. Equation (7) can be viewed as a sum of functions in the form of f(z) = z2. Since f(z)" = 2,
(7) is convex by Theorem 2 and 3.

The L1LR objective function without a penalty term can also be proved to be convex. Let us rewrite the



log-likelihood function as

log [T Ply:) = = 3 _log(1 + exp(—yi(@i" B+ 7))

=1

==Y f@"B+)

i=1

where f is the logistic loss function in a form of

f(z) =14 exp(—=2).

Then,
’r eXp(—Z)
1@ == 1+ exp(—=2)

"o exp(—z)
TE) = T espoan

Since f(z)” > 0, the logistic loss function is convex by Theorem 1. The log-likelihood function is then
concave. Thus, we take the negative of it to make it convex so that we can use convex optimization methods
to solve it [10]. If we add the penalty term, the complete LASSO and L1LR objective functions are proved
to be convex.

Convex optimization The standard form of a general optimization problem is

minimize fo(x)
subject to fi(x) > 0,i=1,2,...,m.

The optimal solution is the z € R™ that can minimize the objective function fy(x) with constraints. Note
that the constraints can also be strictly equal.

The convex optimization problem requires that the objective function and the inequality constraint func-
tions are convex, and that the equality constraint functions are linear. An important feature described
in the following theorem distinguishes the convex optimization problems from the general optimization
ones [10].

Theorem 4. If fo : D(f) — R is a convex function, then every local optimum is a global optimum.

Consequently the global minimum of the LASSO and L1LR objective functions are guaranteed. Also, note
that our objective functions are unconstrained. One method to solve an unconstrained convex optimization
problem is Newton’s method [10]. According to Newton’s method, the optimal solution for our case is the
3 such that

0 0

Vf(B) =0, where Vf(8) = (

Here f(-) refers to the LASSO and L1LR objective functions without the penalty term, because the Newton’s
method requires differentiability. Since the penalty term makes the objective functions not differentiable. To
solve the objectives including the penalty terms, an efficient alternative can be to use the cyclical coordinate
descent method which can be seen in [11].



4 Network Centrality

To contrast the methods presented by convex optimization, we now examine a different approach to text
analysis, namely that of network theory. With networks, we can hope to exploit the ” community structures”
that appear to be ever present in mathematical papers, as well as gain a visual understanding of how concepts
presented by each author are related.

4.1 Preliminary Network Theory

Basic network theory dictates a collection of nodes and edges. We can model a given mathematical paper with
the nodes and edges representing nouns and verbs respectively. This establishes an acceptable framework
with which we can derive meaning. We can first examine how to approach network theory mathematically.
Given a network with a set of nodes V' and a set of edges E, we can use a matrix to describe the way in
which our network N behaves. Take, for example three nodes A, B, and C representing three friends, all
of whom wish to give gifts to one another. We label each edge 1 to denote whether one of the friends has
given a gift to the other. Suppose then that A gives B and C a gift. As such we can generate the following
matrix,

N '
\\A/ B/ )
B C
A0
B |0 0 1
4 Clo 1 0
&) -

Figure 1: Building an adjacency matrix

We note here that this represents a directed matrix, as the act of A giving B a gift does not necessarily
imply that B gives A a gift. With this simple understanding of how a network works, we can now construct
our network.

4.2 Building our Network

To establish our network of Field’s Medalists, we first note that our graph will be undirected. That is to say
the edges between each node will represent the distance each node is from the other. For our experiments,
we chose a distance of 50, as it allowed for many nodes to remain unconnected, yet shows distinctly when
two nodes are related. A strictly frequency-based approach, this method of counting gives us an idea of
whether concepts are related. i.e. if two words appear closely very frequently, it is likely they are related.
We present a few of the generated networks below.
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Figure 2: Network of Martin Hairer

From this network we can observe that notable concepts of Field’s Medalist Martin Hairer include ”noise”,
”homogeneities”, and ”particles”. This is indicated by the amount of edges it has connecting it to other

nodes.
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Figure 3: Network of Manjul Bhargava

Likewise, Manjul Bhargava’s network indicates that important concepts to him include ”binary”, ”cubic”,
”descriminant” , and "reducible”, as they appear to be central nodes by which the majority of other words
connect to each other. This important observation leads us to examine the idea of a community established

by concepts in more depth.



4.3 Communities

This notion of ”community” is explored by an algorithm called community detection that exploits significant
groupings among a set of nodes [12]. With this algorithm we can classify nodes into naturally occurring
communities of a network.

An intuitive and very visual approach to community detection involves simply identifying nodes with higher
edge weights outside the group. A key observation would be to look for groups of nodes that are internally
well connected but sparsely connected to other nodes.

To measure the innerconnectivity, we apply a tool called modularity. To understand this tool, we consider
a random network split into two networks with matching total edge weights. Formulating these networks as
matrices, A; and As. we have that modularity will be the difference between the number of edges between
the same group of nodes in A; and As. The expected number of edges between a node 7 and a node j
is ik,

2m
, where k; is the degree of node i and k; the degree of node j. m is the total weight of edges in A. We can
use this tool to create a matrix of modularity values, B, where each entry in B will be

kik;

Bii =4 =55

. This will then allow us to partition our graph into two communities. Using this method, we can inductively
achieve additional partitioning. For every entry in B we have the difference in edge weights between A; and
As. Determining a partition requires that we find the eigenvalues {1, g, ..., A} of our modularity matrix.
Taking the largest eigenvalue Ay;q of B, we examine the value of its corresponding eigenvector vy;q. If its jth
value ,vp;g; > 0, node j belongs to the first of the two communities. And vice versa if vy, < 0, it belongs
to the second. Iteratively applying this process generates two distinct communities.

4.4 Centrality

Having successfully categorized a set of communities within our network we now turn our attention to finding
the most ”important” nodes of our network. We do this with a concept called a centrality measure. To
briefly explain, we can characterize ”importance” of a node by the influence it has on other nodes in the
network. We will discuss four types of centrality measures used to classify important nodes, weighted degree
centrality, closeness centrality, betweenness centrality, and an algorithm called PageRank.

4.4.1 Weighted Degree Centrality

The weighted degree of a node n is the sum of the weight of all its edges. For a unweighted network, this is
the number of edges for any given node. The weighted degree of any node n is given by

|
deg(n) = 3 Bl
i=1

where |E| is the number of edges of n and w; is the weight of the ith edge. Thus we can also attain the
average weighted degree,

|
deg(n;
Avggeg = g N|7gjff )

J=1



where |N| is the number of nodes in the network. Average weighted degree gives an idea as to how our
network is connected on average. Weighted degree centrality measures which nodes are most important
based on their degrees.

4.4.2 Closeness Centrality

Next we measure importance using closeness centrality. Closeness centrality is a measure of the average
distance from a given node to all other nodes. In network theory, the distance between two nodes is a
measure of how many edges are between them on the shortest path. If two nodes are connected by an edge,
the distance between them is 1. If there are two edges on the shortest path between them, the distance is
2, and so on. Let n; and n; the ith and jth nodes in a network. Let d(ni;nj) be the distance between
nodes ¢ and j. Again, let |[N| denote the number of nodes in the network. Then, every node n; is assigned
a closeness

|
=Y N R
Ch, 2 I

Here, notice that the lower the closeness value is, the more important a node is. This is because a node with
lower closeness is closer (has a shorter average distance) to all other nodes in the network. In this way, it is
more central. To make the measure consistent with other centrality measures, we change the closeness C,;,
to (1 — C,,) for each node. Then, like the other measures, higher closeness value refers to a more important
word.

4.4.3 Betweenness Centrality

Betweenness centrality measures the number of shortest paths passing through a given node. That is, if
we look at all the shortest path between all pairs of nodes, betweenness centrality of node ni measures the
proportion of those paths which must pass through ni to those that do not. The betweenness B of node ni
is given by
|
ning(n;
Bn,; — Z N‘O—( J k( 1))

2 N g

where o(n;ny) is the number of shortest paths between nodes nj and ny, and o(n;ni(n;)) is the number of
shortest paths between n; and n; which pass through node n;. The higher the proportion of shortest paths
passing through a node, the more important that node is by betweenness centrality.

4.4.4 PageRank

Utilized by Google, PageRank is an algorithm which uses probabilities to determine the importance of nodes.
It was developed by Larry Page for the purpose of ranking webpage importance based on the structure of
hyperlinks between them. Consider a network A, and suppose that a random walker is moving between the
nodes of A. Intuitively, the PageRank of a node n; in A, call it PR(n;), is the likelihood that the random
walker will land on n;. Since it is a probability, the PageRank of a node will between 0 and 1. If a node
has .5 PageRank, there is a 50 percent chance of the walker landing on that node. Consequently, a node’s
importance is boosted if that node has high ranking neighbors. Those high ranking neighbors, in turn, are
also boosted if they have high ranking neighbors. In this way, the ranking of a single node is in balance with
all other nodes in the network. Let B,, be the set {b1,02,...,b,} of all nodes which are connected to n,.

10



Then, the PageRank of node n; is given by

PR(b;
PR('”/L) = Z L(;)j) fOI‘j = 1727~--7N
bjEBi J

where PR(b;) is the PageRank of b; , and L(b;) is the number or edges emanating from b; . This tells as
that the PageRank of a node is the average sum of the PageRank of its neigh- boring nodes. Notice that the
PageRank of node n; is dependent on the PageRank of all neighboring nodes to n; . Then, our definition is
recursive. To establish a starting point, we choose one node ny to give a

fixed PageRank value to, then define all other PageRank values in terms of PR(ny). We then normalize to
ensure that the probabilities are still between 0 and 1.

5 Experimental Results

We implemented the convex optimization of LASSO with and without a weighted matrix. ¢fidf and (2
weightings were incorporated into the term-frequency matrix. We also implemented the aforementioned
centrality measures as well as the PageRank algorithm to see how different the results were. Below we list
the top ten words returned by each method.

It should be noted that the convex optimization methods produced similar results to the network cen-
trality measures. As we lack a control set, it is hard to say as to the accuracy in our methods for classifying
concepts, but this correlation would seem a likely indicator that the terms discovered are important concepts
to the authors.

11
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