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In this paper, we are studying the polynomials in n variables which behave

nicely under permutation of variables. The study in n variables polynomials

which could be widely applied in many areas including representation the-

ory, algebra and physics. We start with some basic notions like symmetric

polynomials which do not change the value under permutations (for example:

x21 + x22), and anti-symmetric polynomials which only change the sign of the

value under permutations (for example: x21 − x22) to illustrate how permuta-

tions work as well as some other properties of these polynomials. Then we

will focus on more interesting examples like Garnir polynomials which can be

expressed in terms of Young diagrams. Garnir polynomials are polynomials

of the form (xi − xj) · ... · (xs − xt), they have many interesting properties. In

this paper, we mainly care about Garnir polynomials which only involve four

variables at a time, and study the dimension of their span.

1 Symmetric polynomials

Symmetric polynomials have the same value at any permutations.

Definition 1.0.1. A polynomial f(x1, ..., xn) is a symmetric polynomial if for all permutations

φ, f(x1, ...xn) = f(xφ(1), ...xφ(n)).
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We define the polynomials of ek as follows:

ek(x1, x2, ..., xn) =
∑

1≤j1<j2<...<jk≤n
xj1 ...xjk

For k from 1 to n, we can define the following elementary symmetric polynomials:

e1(x1, x2, ..., xn) =
∑

1≤j≤n
xj

e2(x1, x2, ..., xn) =
∑

1≤j<k≤n
xjxk

...

en(x1, x2, ..., xn) = x1x2...xn

Clearly, ek is symmetric for all k and n.

Theorem 1.0.2. Every symmetric function in x1 . . . xn is a polynomial in the elementary sym-

metric polynomials ek .

Proof. We first define an order on monomials that xa11 x
a2
2 ...x

an
n < xb11 x

b2
2 ...x

bn
n

if an < bn;

or an = bn and an−1 < bn−1;

or an = bn, an−1 = bn−1 and an−2 < bn−2;

and so on...

For any s = xa11 x
a2
2 ...x

an
n and t = xb11 x

b2
2 ...x

bn
n , s and t are always comparable, so either s = t,

or s > t or s < t.

For a given symmetric polynomial, we can always find a maximal monomial xj11 x
j2
2 ...x

jn
n , and

we can always find a product of elementary symmetric polynomials ek such that xj11 x
j2
2 ...x

jn
n is

also the maximal in it.

For example, given x21x
3
2x

4
3 is the maximal element, we can construct a polynomial by multi-

plying e3(x1, x2, x3) · e3(x1, x2, x3) · e2(x1, x2, x3) · e1(x1, x2, x3)=(x1x2x3)2 · (x1x2 + x1x3 +

x2x3) · (x1+x2+x3). Multiplying the leading term in each elementary symmetric polynomial,

we get (x1x2x3)2 · (x2x3) · (x3) = x21x
3
2x

4
3, which gives the maximal element as we desired.
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For a symmetric polynomial f(x1, ..., xn), if xa11 x
a2
2 ...x

an
n is the leading term, we know that

a1 ≤ a2 ≤ a3 ≤ ... ≤ an. Since f is symmetric, we can always make this inequality hold.

If we subtract this product from the original symmetric polynomial, it is obvious that the max-

imal element in the new polynomial is strictly smaller than the maximal element in the old

one. Since the number of elements smaller than the maximal element is finite, by subtracting

these polynomials again and again, the original polynomial will eventually become 0 in a finite

number of steps. Hence, all symmetric polynomials are polynomials in ek.

2 Antisymmetric polynomials

Antisymmetric polynomials change the sign and keep the value at any permutations. In other

words:f(x1, ..., xi, ..., xj, ..., xn)=−f(x1, ..., xj, ..., xi, ..., xn).

Theorem 2.0.1. W =
∏
i<j

(xi − xj) is antisymmetric.

Proof. Let f(x1, ..., xs, ..., xt, ..., xn)=
∏
i<j

(xi − xj) and we permute xs and xt. Denote the new

polynomial by f(x1, ..., xt, ..., xs, ..., xn). We can find out that the two polynomials have some

common factors which do not involve xs, xt, and those which have one of them but the other

variable is before both of xs, xt or after both of them. Denote them as C1=
∏

i,j 6=s,t
(xi − xj) and

C2=
∏

m=s or t,n>s,t
(xm − xn), C3=

∏
n=s or t,m<s,t

(xm − xn) Replace the common factors and we get

f(x1, ..., xs, ..., xt, ..., xn)=C1·C2·C3·[(xs−xs+1)...(xs−xt−1)][(xs+1−xt)...(xt−1−xt)](xs−xt)

and f(x1, ..., xt, ..., xs, ..., xn)=C1 · C2 · C3 · [(xt − xs+1)...(xt − xt−1)][(xs+1 − xs)...(xt−1 −

xs)](xt − xs). There are exactly (t− s+ 1) factors in the first bracket and second bracket, and

they are negative value of each other, this leaves us the last factor (xs − xt) and (xs − xt).

So,f(x1, ..., xs, ..., xt, ..., xn)=(−1)2(t−s+1)+1f(x1, ..., xt, ..., xs, ..., xn).

It gives f(x1, ..., xs, ..., xt, ..., xn)=−f(x1, ..., xt, ..., xs, ..., xn) as we designed to have.
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Theorem 2.0.2. Every antisymmetric polynomial f can be written as f(x1, x2, ..., xn) = W ·

g(x1, x2, ..., xn) where W is define in Theorem 2.0.1 and g is symmetric.

Proof. First, we want to prove that f is divisible by (xi − xj) for all i < j.

Assume that xi = xj , then f(x1, ..., xi, ..., xj, ..., xn) = f(x1, ..., xj, ..., xi, ..., xn).

In addition f is antisymmetric, we have: f(x1, ..., xi, ..., xj, ..., xn) = −f(x1, ..., xj, ..., xi, ..., xn).

Combining above two equations gives f(x1, ..., xi, ..., xi, ..., xn) = 0. So f is divisible by

(xi − xj) and therefore divisible by W .

We rewrite the equation as f(x1,x2,...,xn)
W

= g(x1, x2, ..., xn), since both f(x1, x2, ..., xn) and W

are antisymmetric, we know that g(x1, x2, ..., xn) does not change the value under permutations.

Hence g is symmetric.

3 Young Diagrams

A Young diagram is a combinatorial object useful in representation theory.

A Young diagram is a subset of (Z+)2, such that if (i, j) is contained in it, then all (a, b) are

contained for a ≤ i, b ≤ j.

(3,3) As we can see, since (3,3) is contained in this Young diagram,

then (a, b) is also contained for a ≤ 3, b ≤ 3.

Definition 3.0.1. A Young tableau is a way to fill the diagram with numbers from 1 to n (n is

the number of boxes).

Definition 3.0.2. A standard Young tableau is a Young tableau such that the numbers in the

same row and column are in increasing order from bottom to top and left to right.
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The following is an example of Young diagram (4,3,1) and one of its Young tableau and one

of its standard Young tableau.

5 8 2 6

4 3 7

1

Young diagram Young tableau

1 2 4 6

3 5 7

8

<
<

< <

<

<

<

<

<

standard Young tableau

4 Garnir Polynomials

Suppose that T is a standard Young tableau.

Definition 4.0.1. We define Garnir polynomial by the equation GT =
∏

i above j
(xi − xj).

In the following case, G(a, b, c, d) = (xb − xa)(xd − xc)

a

b

c

d

e

In the following theorem, we only consider Young diagrams with rows of length (n− 2, 2).

Theorem 4.0.2. If we permute the variables G(a, b, c, d) → G(a′, b′, c′, d′) ⇒ linear span Vn

of all G(a, b, c, d) is preserved by permutations. (so Vn is a representation of Sn).

Theorem 4.0.3. The basis in Vn is given by G(a, b, c, d) such that the corresponding Young

tableaux are standard. (so a < b < d, a < c < d, c < e, and we can have several e′s)

Theorem 4.0.4. The number of standard Young tableaux is equal to n(n−3)
2

.

Theorem 4.0.2 is clear. Let’s prove Theorem 4.0.3:
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Proof. In order to prove Theorem 4.0.3, we want to prove that the Garnir polynomials we

generated from any four numbers in the first 2 by 2 square can be written as the span of Garnir

polynomials which correspond to standard Young tableaux.

We have the following equivalence relations:

1.Exchange numbers in the same column is antisymmetric.

a

b

c

d

e

< −−− >

b

a

c

d

eT T ′
GT = −G′T↔

2.Exchange the entire column is symmetric.

a

b

c

d

e

< −−− >

c

d

b

a

eT T ′
GT = G′T

↔

↔

By using these two relations, we could at least ensure a < b, c < d and a < c in the following

Young tableau.

a

b

c

d

e

< <

<

?

If b < d, then this Young tableau is standard; we need to discuss the case b > d.

We construct a relation as follow:

a

b

c

d

e
+

a

c

d

b

e
−

a

d

c

b

e
= 0

(xb − xa)(xd − xc) + (xc − xa)(xb − xd)− (xd − xa)(xb − xc) = 0

Since we know that b > d > c > a, one can check that the second and the third Young tableaux

are standard.

From the previous steps, we could always make d > b > a and d > c > a.
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a

b

c

d

e

< <

<

<

?

Last, we need to check whether c < e. If c < e, it is standard, so we need consider the case that

e < c. We construct a relation as follow:

a

b

c

d

e
−

a

b

e

d

c
+

a

b

e

c

d
= 0

(xb − xa)(xd − xc)− (xb − xa)(xd − xe) + (xb − xa)(xc − xe) = 0

Since we know that d > b > a, d > b > c > e, one can check that the second and the third

Young tableaux are standard.

Hence, Theorem 4.0.3 is proved.

Next, we want to prove Theorem 4.0.4:

Proof. We will prove it by induction. First, we check the base case that only has 4 variables.

As shown below, there are 2 standard Young tableaux of 4 variables.

1

2

3

4

1

3

2

4

Assume there are n(n−3)
2

standard Young tableaux for n variables. We now check the number of

standard Young tableaux of (n+ 1) variables.

It is true that the biggest number (n+1) can only be placed on the rightmost blank, so we divide

it into two cases.

7



· · · n+ 1

case 1

· · ·

n+ 1

1

x

case 2

For case 1, the number of standard Young tableaux are the same as the case for n variables,

which is n(n−3)
2

.

For case 2, the smallest number 1 is definitely filled in the left bottom corner, and we only

need to choose the number for x. As long as number x is chosen, the remaining numbers will

automatically filled in the remaining blanks in a line in an increasing order. Hence, it is (n− 1)

choices.

Sum up these two cases, n(n−3)
2

+ (n− 1) = (n+1)(n−2)
2

.

We get (n+1)(n−2)
2

standard Young tableaux as we desired to have.

5 Hook Length

Before we introduce Hook Length formula, we define aλ(i, j) and lλ(i, j) as follow:

Suppose that (i, j) is the box in a Young diagram,

aλ(i, j)=number of boxes to the right of (i, j);

lλ(i, j)=number of boxes above (i, j).

Definition 5.0.1. The Hook Length formula for the Young tableau is express by:

Hλ =
n!∏
hλ(i,j)

, where hλ(i, j) = aλ(i, j) + lλ(i, j) + 1.

Example 5.0.2. For the following Young diagram (6,4,3,1), we have the hλ(i, j) in the boxes

as follow:

8



1

4

6

9

2

4

7

1

3

6

1

4 2 1

Then the Hook Length formula Hλ =
n!∏
hλ(i,j)

= 14!
22·3·43·62·7·9

=50050

Theorem 5.0.3. The number of standard Young tableaux of shape λ is equal to Hλ.

This theorem is known in general, here we prove it for any two-row Young diagram.

Proof. Consider a Young diagram with row lengths k and l (k < l).In the Pic 5.1, n = k+ l, the

product of hook length for the first row is
∏
hλ(2, j) = k! and the product of the hook length

for the second row is
∏
hλ(1, j) =

(l+1)!
l−k+1

. By calculation,

Hλ =
(k + l)! · (l − k + 1)

k!(l + 1)!

.

Let dim(k, l) be the number of standard Young tableaux with row lengths k and l.

Knowing that the largest number can only be filled in the rightmost coordinate for standard

Young tableaux, we can get the relation that: dim(k, l) = dim(k − 1, l) + dim(k, l − 1).

Check the relation by replacing by Hook Length formula,

Right Hand Side= (k+l)!·(l−k+1)
k!(l+1)!

Left Hand Side= (k+l−1)!·(l−k+2)
(k−1)!(l+1)!

+ (k+l−1)!·(l−k)
k!(l)!

Now checking RHS-LHS, first we multiply each factor by (k−1)!l!
(k+l−1)! , then

(k−1)!l!
(k+l−1)! (RHS-LHS)= (k+l)(l−k+1)

k(l+1)
− l−k+2

l+1
− l−k

k
= 0

Since (k−1)!l!
(k+l−1)! 6= 0, we have RHS=LHS.

Last, we check the base case k = 1:

RHS= (l+1)!·(l−1+1)
(l+1)!

= l
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LHS= (1+l−1)!·(l−1+2)
0!(l+1)!

+ (1+l−1)!·(l−1)
1!(l)!

= (l+1)!
(l+1)!

+ l!·(l−1)
(l)!

= 1 + (l − 1) = l

It also gives RHS=LHS, which shows this relation is correct.

· · ·

· · ·

· · · 1l + 1 l-k+2

1k

Pic 5.1

Corollary 5.0.4. For the Young diagram with row length (l1, l2, ..., ln),(li > lj for i < j), the

number of standard Young tableaux is

(
n∑
i=1

li)!
∏
i<j

(li − lj + j − i)

n∏
i=1

((li + n− i)!)

by applying the Hook Length Formula.

One can apply Hook Length Formula to prove the above corollary.

6 Application and Related Questions

Here is a question that many of us are familiar.

Suppose there is a 2 by 2 square and we denote the top-left corner A, bottom-right corner B,

(a) how many ways to walk from A to B? (b) How many ways to walk from A to B such that

the whole path is under the diagonal AB?
A

B

For question(a), we have the following 6 ways:
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(1) (2) (3)

(4) (5) (6)

For question (b), we have 2 ways, they are (4) and (5) in question (a).

How is this problem related to Young tableaux?

Consider the 2 by 2 Young diagram, fill the numbers 1,2,3,4. Then we find each number from 1

to 4, if the number is in the top row, we move right, and if the number is in the bottom row, we

move down. Since we are moving 2 steps right and 2 steps down, we will eventually goes to B.

Following are the corresponding Young tableaux to question (a). (There are more than one cor-

responding Young tableau to each path in (a), but we arrange the order, so that each row is in

increasing order from left to right.

(4)

1

2

3

4

(5)

1

3

2

4

(6)

2

1

3

4

(1)

3

1

4

2

(2)

2

1

4

3

(3)

1

2

4

3

We can find that (4),(5) is standard.
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Theorem 6.0.1. For an n by n square, the path from top-left corner to bottom-right corner

under the diagonal is corresponding to the 2 by n standard Young tableau.

Proof. We denote each vertex (a, b) for a is the number of boxes to the left and b is the number

of boxes above it. Hence, we have top-left vertex as (0,0), and bottom-right vertex as (n, n),

while moving from (0,0) to (n, n) takes n steps right and n steps down, totally 2n steps.

As we want the whole path under the diagonal, the vertices (a, b) we pass should have the

property that a ≤ b.

In the standard Young tableaux, in the same column, the top number is always larger than the

bottom number. So the number of steps we move right cannot be larger than the number of

steps we move down, this is equivalent to a ≤ b.
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