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ABSTRACT.

In 1966, Helge Tverberg proved that given a number of classes m and a dimension d,
there is a minimum constant NT (Km, d) where Km is the complete graph on m nodes, such
that for any point configuration, there is a partition of the configuration into m subsets
whose convex hulls have nonempty intersection.

Put another way, we can say that the intersection graph of this particular partition
of points is the complete graph. In this thesis, I consider the generalization of Tverberg’s
Theorem to trees with small number of vertices. I present a computational algorithm
which, by enumeration of all order types of small point sets, definitively provides the
minimal number of points necessary for this particular graph.

In this senior thesis, I will present the details of my work with Professor Jesús De
Loera, and discuss the peculiarities of the various graphs of small numbers of vertices. In
particular, I will provide exact values or bounds on the Tverberg numbers for all trees on
5 or fewer vertices.
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CHAPTER 1

Introduction

In this thesis, we will examine a problem from discrete geometry which describes the
interaction between the convex hulls of the partitions of finite point sets in the plane.
This is a problem which has been of interest since Helge Tverberg proved that when given
enough points in the plane (3n − 2), it is always possible to partition the points into n
classes such that the convex hull of every pair of sets intersects.

To better characterize the nature of the intersections between convex hulls of con-
stituent sets of a partition, we will introduce the notion of the intersection graph which
generalizes the concepts which Tverberg studied. Then, after reviewing basic topics from
convex geometry, we will establish the main topic of interest, the Tverberg number of a
graph, which will state the minimum number of points needed to generate this intersection
graph. Later on, we will introduce a computational method by which we can then explicitly
enumerate all point sets to establish the Tverberg numbers for small graphs.

1.1. Basic Definitions

To more formally establish this concept, we review some definitions from convex geom-
etry.

Definition 1. A set K ⊂ Rn is convex if and only if for any x1, x2 ∈ K, we have
that (1− λ)x1 + x2 ∈ K.

From this notion we define the convex hull:

Definition 2. Given a set A ∈ Rn, the convex hull of A is defined as

conv(A) = {λ1x1 + . . .+ λkxk|x1, . . . , xk ∈ A,
k∑
i=1

λi = 1, λi ≥ 0, i = 1, . . . , k}.

Equivalently, the convex hull is the smallest convex set which contains A.

Central to our study of intersection graphs is the partition which we define here.

Definition 3. Let X ∈ Rd be a set of points. A set A = {A1, . . . , An} is a partition
of X if we have that

(1) For i = 1, . . . , n, Ai ⊂ X.
(2) For i 6= j, Ai ∩Aj = ∅, i.e., the sets are disjoint.
(3)

⋃n
i=1Ai = X, i.e., every point in X is included in some Ai.

1
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Figure 1. The First 8 Star Graphs

In addition, we introduce these concepts which will be of use later on.

Definition 4. A finite set of n points are in general position if no three points are
collinear. They are in convex position if no point is in the interior of the convex hull of
all the points, equivalently if the points form the vertices of a convex polygon.

For our purposes, we will only consider sets of points in general position.
We also review some definitions from graph theory which will be referred to throughout

the thesis.

Definition 5. Let G = (V,E) be a graph. A sequence of vertices v1, . . . , vn is a path
if vi is adjacent to vi+1 for all i = 1, . . . , n− 1. It is a cycle if v1 = vn.

Now we define some special types of graphs which will be studied later on.

Definition 6. A tree is a connected graph without any cycles.

Definition 7. The star graph Sn of order n is the tree on n vertices with 1 ”central”
vertex having degree n− 1 and the remaining n− 1 vertices having degree 1.

For examples of star graphs, see Figure 1.

Definition 8. The path graph Pn is a tree with two vertices of degree 1 and the
remaining n− 2 vertices of degree 2.

For examples of path graphs, see Figure 2.

1.2. Intersection graphs

Given a set of n points X = {x1, . . . , xn} and a partition of X into m classes, we can
consider geometrically how each of the components of the partition interact, in particular
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Figure 2. The First 4 Path Graphs

whether two given sets intersect. To study this behavior, we define the notion of an
intersection graph:

Definition 9. Let X = {x1, . . . , xn} be a finite set of n points and A = {X1, . . . , Xm}
be a partitioning of the points into m classes. Let G be a graph on m vertices v1, . . . , vm.
We say that G is the intersection graph of the partition A on X if for i 6= j, we have
that vi is adjacent to vj if and only if conv(Xi)∩ conv(Xj) 6= ∅, i.e., the convex hull of the
respective sets intersect. We denote the intersection graph of a given set of points X and
a partition A on X by IG(X,A).

For an example of a point configuration in the plane, a partition on the points, and
the intersection graph of the partition, observe the colored point set and its induced graph
in Figure 3. We plot the convex hulls of each set to better demonstrate the intersection of
the sets. Note how the presence of the singleton set that is disjoint from the convex hulls
of the other sets leads to a disconnected graph.

1.3. Early results

The study of these types of partitions has led to some results regarding the minimal
number of points to be guaranteed a partition inducing certain intersection graphs. The
simplest of these results comes from Johann Radon.

Theorem 1. (Radon’s Theorem): Any set of d+ 2 points in Rd can be partitioned
into two disjoint sets whose convex hulls intersect.

Proof. Let A be a set of d+ 2 points in Rd. For a ∈ A, we let

(
a
1

)
denote the vector

with the first d components equal to those of a and the d + 1-th component equal to 1.

If we consider the set

{(
a
1

)
|a ∈ A

}
, we note that this is a set of d + 2 vectors in Rd+1
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Figure 3. A point configuration of 8 points with a given coloring and its corre-

sponding intersection graph. In the intersection graph, vertex 1 corresponds to the

blue points, vertex 2 to the green points, vertex 3 to the red point, and vertex 4

to the black point.

meaning the set is not linearly independent. Hence, there exists αi not all 0 such that(
0
0

)
=

d+2∑
i=1

αi

(
ai
1

)
.

Equality of the last component of the vectors tells us that
∑
αi = 0 which implies that

there exist positive and negative values of αi. Let I be the set of indices i for which αi is
positive and J the set of indices j where αj is negative. Then we can write∑

i∈I
αi

(
ai
1

)
=
∑
i∈J

(−αi)
(
ai
1

)
.

Then let t =
∑

i∈I αi =
∑

i∈J(−αi) and dividing both sides by t, we can write

z :=
∑
i∈I

αi
t
ai =

∑
i∈J

−αi
t
ai.

If we choose our partition as X = {ai, i ∈ I} and Y = A \ X, we see that the left hand
side of the above is in conv(X) as by definition of t,

∑ αi
t = 1, and similarly the right

hand side is in conv(Y ). Letting z =
∑

i∈I
αi
t ai =

∑
i∈J

−αi
t ai, we see z is a point which is

in the intersection of the convex hulls of partitioned sets and so we have a partition with
nonempty intersection.

�

In particular, in 2 dimensions only 4 points are needed to have a guaranteed partition
such that the convex hulls of a partition into two sets intersect. The two cases which
may occur are shown in Figure 4. In terms of intersection graphs, we can say that the
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Figure 4. Two Radon Partitions of 4 Points

connected graph on two vertices can always be induced by a set of at least d+ 2 points in
d dimensions.

Bryan John Birch considered a generalization of this result which showed that for any
3N points in the plane, there is a way to partition the points into N 3-point sets such that
all the triangles have a point in common [8]. He later was able to strengthen this result
and tighten the bound by showing that any 3N − 2 in the plane can be partitioned into
N sets whose convex hulls each intersect. Birch conjectured the following result in higher
dimensions which was later proven by Helge Tverberg in 1966 [7]:

Theorem 2. (Tverberg’s Theorem): Let d ≥ 1, k ≥ 2. For any set of N points,
N ≥ (d + 1)(k − 1) + 1, there exists a partition of the points into k subsets such that all
the convex hulls of the subsets intersect at a single point.

In terms of intersection graphs, we can understand this as stating that the complete
graph on k vertices is always possible to create with (d+ 1)(k − 1) + 1 points in Rd. Note
that this reduces to Birch’s amount when considering points in the plane.

1.4. Tverberg numbers

We now define the central motivation for the thesis.

Definition 10. Let G be any simple graph. We define the Tverberg number
NT (G, d) of this graph to be the minimal number of points in Rd such that for all n ≥
NT (G, d), for any set X of n points in general position, there exists a partition A on X
such that IG(X,A) = G. If no such number exists then the Tverberg number of the graph
is not defined.

In this thesis, we are only considering points in the plane, and so any reference to a
Tverberg number for a given graph G will refer to NT (G, 2) which will be written NT (G).

From this definition, we immediately have the following two results, the first from
Radon’s Theorem, and the second from Tverberg’s Theorem:

Lemma 1. The Tverberg number of the path on two vertices is 4.

Lemma 2. The Tverberg number of the complete graph on n vertices is 3n− 2.

We note that it may be possible that for a certain graph, for any point configuration
on n points, there exists a partition which induces the intersection graph. However, for
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m > n, there may exist a point configuration for which the graph is impossible to induce
with any partition. For these graphs we would have NT (G) > n. We do not know of the
existence of such graphs, but we do not doubt their existence.

Finally, we allude to the existence of graphs which are impossible to induce by any
partition on any point set. There are various examples for which no point configuration
can induce these particular graphs. Theorem 1.1 in [6] implies the existence of such graphs.
There also exist graphs for which certain point configurations are guaranteed not to be able
to induce these graphs. These also do not have well-defined Tverberg numbers, although
perhaps under a restricted class of point configurations, these would realize a finite number.

1.5. Bounds on Tverberg numbers

For certain simple graphs, some results have been determined which can provide a
bound on the Tverberg number.

In particular, for any given tree on n vertices, we have the following result from Pro-
fessor Jesús De Loera, Tommy Hogan, and Professor Deborah Oliveros:

Theorem 3. Given a tree G on n vertices. Then if we have 2n points in R2 in convex
position, there exists a partition of the points which will induce the tree G. Furthermore,
for any other point in R2, there exists a subset in the partition which the point can be added
to without changing the intersection graph.

With this result, one only needs enough points to guarantee that 2n points are in
convex position. From Erdös and Szekeres [4], there is a number f(n) for any given n
which ensures the existence of a subset of the points with n points in convex position.
These results together imply that the Tverberg number for any tree is less than f(2n).
Unfortunately, this bound is very weak as f(n) ≥ 1 + 2n−2 [4].



CHAPTER 2

Enumeration of point sets

In this section, we present our method for enumeration of all possible point configura-
tions to determine the Tverberg Numbers of given small graphs.

2.1. Order types

We are able to find lower bounds for the Tverberg Number of small graphs via an
enumeration of all point sets, and determining for each point set which partitions can be
induced. Obviously, as there are infinitely many point configurations in the plane, an
explicit enumeration is impossible; however, there is a way to classify the combinatorial
properties of small point sets (whether line segments through points cross, possible trian-
gulations, etc.) into a finite number of point configurations. One way of classifying point
configurations is through the order type of a set.

Definition 11. The order type of a set of points in general position {x1, . . . , xn}
in R2 is mapping that assigns each ordered triple i, j, k in {1, . . . , n} the orientation of
the points xi, xj , xk. We then say that two point sets are equivalent if there is a bijection
between the sets that preserves the order type.

For example, on four points, there are two order types, one with one point contained in
the interior of the convex hull of the other three and the other with all four points in convex
position. One of these configurations is shown in Figure 1. Its order type can be computed
as assigning the triples (1, 2, 3), (1, 3, 4), (1, 4, 2), (2, 3, 1), (2, 1, 4), (2, 3, 4), (3, 4, 2), (3, 1, 2),
(3, 4, 1), (4, 2, 1), (4, 2, 3), and (4, 1, 3) to -1 for counter-clockwise orientation and the re-
maining ordered triples to 1 for clockwise orientation.

The order type encodes various combinatorial properties of point sets. If two point
sets have the same order type, then if two segments cross in one set, their corresponding
segments in the other order set should cross. If we have a valid triangulation in one set, it
remains valid when mapped onto the other set. More importantly for our purposes, if two
point sets have the same order type, then the intersection graphs induced by the two sets
remain the same. This can be observed by the following proof from Tommy Hogan. This
proof uses Carathéodory’s theorem which we state here as well.

Theorem 4. (Carathéodory’s Theorem): If a point x ∈ Rn is in the convex hull of a
set P , then x can be written as a convex combination of at most n+ 1 points of P .

7
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Figure 1. This point configuration has one of two order types on four points

Now we present the proof that the intersection graph on a given partition for an order
type is the same for all point sets of that order type.

Proposition 1. Suppose S1 and S2 are planar sets in general position with the same
order type, and let σ be a bijection from S1 to S2 that preserves the orientation of any
triple in S1. Then any partition of S1 and the corresponding partition of S2 via σ have the
same intersection graph.

Proof. It suffices to show that if conv(x1, . . . , xn) ∩ conv(y1, . . . , ym) 6= ∅ for some
x1, . . . , xn, y1, . . . , ym ∈ S1 then conv(σ(x1), . . . , σ(xn)) ∩ conv(σ(y1), . . . , σ(ym)) 6= ∅. By
Carathéodory’s theorem we may assume (after taking subsets) that n = m = 3. Then
conv(x1, x2, x3) and conv(y1, y2, y3) are intersecting triangles. If two edges of the triangles
intersect the corresponding edges in conv(σ(x1), σ(x2), σ(x3)) and conv(σ(y1), σ(y2), σ(y3))
also intersect. Otherwise one triangle contains the other in it’s strict interior. This situation
is equivalent to the following: for each edge of the exterior triangle all four of the remaining
points in x1, x2, x3, y1, y2, y3 lie on the same side of that edge. This property is preserved
under σ since two points c1, c2 are on the same side of an edge ab if and only if a, b, c1 and
a, b, c2 have the same orientation. �

Oswin Aichholzer, et. al., have provided a catalog of representative point configurations
for all order types up to n = 10 [2]. Their method of generating each order type is done
by generating a list of candidates of “pseudo order types” and then group these candidates
into equivalence classes based on their order types. Then, they realize an actual point set
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Number of Points Number of Sets

3 1
4 2
5 3
6 16
7 135
8 3315
9 158817
10 14309547
11 2334512907

Table 1. Number of Sets with a Given Order Type

for each possible class of order type until they reach the required number of order types,
which is known from the literature. This catalog of point configurations can be found in
[1].

They have used these point configurations to test small cases for determining questions
of isomorphisms between triangulations and the number of triangulations as well as the
crossing number of complete graphs and problems related to finding Hamiltonian cycles on
complete graphs. As can be seen in Table 1, the number of order types grows exponentially,
so enumeration of order types for n > 10 is out of the question (in part because Aichholzer
has not provided so large a quantity in his database).

2.2. Partitions

Given a point set of n points we are interested in all the ways which we are able to
partition this point set into m unlabeled subsets. The amount of ways in which we can
partition this set in such a manner is known as the Stirling number of the second kind
and we denote this value by

{
n
m

}
. For example all the ways to partition the set of 4 elements

{1, 2, 3} into two parts are {{1}, {2, 3}}, {{2}, {1, 3}}, {{3}, {1, 2}} and so
{

3
2

}
= 3.

One simple property that can be derived regarding this quantity is that{
n+ 1

m

}
= m

{
n

m

}
+

{
n

m− 1

}
.

To see this, we note that to count the number of ways to partition n+ 1 objects, we have
two choices for where to put the n+1-th object: we can place it in its own singleton set, in
which case we have to partition the remaining n objects into m−1 sets, or we partition the
n objects into k sets and then we have m choices for where to include the n+ 1-th object.
In the first case we have

{
n

m−1

}
partitions and in the second we have m

{
n
m

}
partitions.

With the base cases
{

0
0

}
= 1 and

{
n
0

}
=
{

0
n

}
= 0 for n > 0, we can define Stirling Numbers

for all n,m ≥ 0. We include a table of all the values up to n = k = 10 in Table 2.
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Table 2. Stirling Numbers up to n = m = 10. Each row represents a value for n

and each column a value for m

0 1 2 3 4 5 6 7 8 9 10

0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0 0 0 0
3 0 1 3 1 0 0 0 0 0 0 0
4 0 1 7 6 1 0 0 0 0 0 0
5 0 1 15 25 10 1 0 0 0 0 0
6 0 1 31 90 65 15 1 0 0 0 0
7 0 1 63 301 350 140 21 1 0 0 0
8 0 1 127 966 1701 1050 266 28 1 0 0
9 0 1 255 3025 7770 6951 2646 462 36 1 0
10 0 1 511 9330 34105 42525 22827 5880 750 45 1

As n grows large, it was shown in [5] that we have a rough estimate for fixed m that{
n
m

}
∼ mn

m! . This shows that the growth is exponential for fixed n, so we should expect
that the explicit enumeration of partitions quickly becomes computationally intractable.

2.3. Enumerating partitions over each of the possible order types

Using the classification from [2] of all order types, it is relatively straight forward to
determine all possible different graphs which can be induced by partitioning a given point
set by brute force enumeration. It is just a matter of listing all possible partitions into
k subsets and then determining the intersection graph from checking the intersection of
convex hulls. An explicit algorithm for producing the intersection graph of a point set X
and a partition σ into k sets is given in Figure 2.

We also present the method used for determining if two given convex sets intersect.
The method used to compute the convex hull and for determining if a point is contained
in a polygon or if polygons intersect are MATLAB routines.

An alternative implementation based on checking the feasibility of the linear program
defined by adjoining the representations of the convex polygons by inequalities was also
considered and implemented. This was deemed to run slower than the MATLAB functions
for determining the intersection of polygon edges however.

Checking if a graph has a Tverberg Number of n now simply is a matter of enumerating
all order types and checking for every single one if there is a single partition which induces
that graph.
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function IntersectionGraph(X,σ, k)
Let A ∈ {0, 1}k×k
for i = 1, . . . , k do

for j = i, . . . , k do
if i = j then

Ai,i = 0
else

if Intersects(σ−1(i), σ−1(j)) then
Ai,j = Aj,i = 1

else
Ai,j = Aj,i = 0

end if
end if

end for
end for

end function

Figure 2. Algorithm for Computing the intersection graph of a given partition σ

of a point set X onto k subsets.

function Intersects(X, Y )
CX ← conv(X), CY ← conv(Y )
if |CX | < |CY | then

Swap CX and CY
end if
if |CX | = 2 and |CY | = 2 then

LX ← Line(CX), LY ← Line(CY )
return SegmentIntersect(LX , LY )

else if |CX | > 2 and |CY | = 1 then
return InPolygon(CY , CX)

else
return EdgeIntersect(CY , CX) or InPolygon(CY , CX) or InPolygon(CX , CY )

end if
end function

Figure 3. Algorithm for determining if the convex hulls of two given sets X and

Y intersect
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Figure 4. Way to Partition a Set to Induce the Graph S4

2.4. Heuristics for decreasing enumeration time

Enumerating all possible order types is a gargantuan task so in the case of certain
graphs, some heuristics can be applied to decrease the large amount of cases to check.

2.4.1. Eliminating order types. For some graphs, certain point configurations can
be very easy to partition into subsets which induce the graph. On a given star graph Sn,
if we are considering m points {xi} and if the convex hull of those points has m − n + 1
vertices, then we can immediately give a partition where we take any n− 1 points on the
interior of the convex hull and create n− 1 different singleton sets A1, . . . , An−1 and have
the rest of the points belong to one set An. We see that conv(An) = conv({x1, . . . , xn})
and so it intersects every singleton set, but no singleton set intersects any other, so we get
Sn. See Figure 4 for an example of how this partition would appear on 8 points whose
convex hull has 3 vertices.
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With this fact in mind, we can first check if the convex hull of a set has fewer than a
m−n+ 1 vertices and then we immediately have a partition. Performing this check allows
for the elimination of over half of the order types to check.

2.4.2. Eliminating partition types. On certain graphs, we can further reduce the
amount of work to be done by eliminating partitions for which it is impossible to actually
induce that graph with. This allows for some minor reductions in the amount of cases to
consider as well.

For example, suppose we are attempting to generate the path graph P4 using 8 points.
We can enumerate all the partitions of 8 points into 4 sets to get the following list:

8 = 5 + 1 + 1 + 1

= 4 + 2 + 1 + 1

= 3 + 3 + 1 + 1

= 3 + 2 + 2 + 1

= 2 + 2 + 2 + 2

We argue that we have the following result:

Proposition 2. The only possible partitions of eight points which can induce P4 are
3 + 3 + 1 + 1, 3 + 2 + 2 + 1, and 2 + 2 + 2 + 2.

Proof. To eliminate certain partitions, we argue first that to induce a tree graph,
any singleton set must be mapped to a vertex of degree 1, as it must be contained in the
interior of another set. If it were mapped to a vertex of degree greater than 1, then that
singleton set must be contained in convex hulls of two separate subsets in the partition
which would then imply that the convex hulls of those two subsets intersect as well and
our graph would have a 3-cycle as a subgraph contradicting that it is a tree. Since there
are only two vertices of degree 1 in P4, and three singleton sets in the partition 5 + 1 + 1
+ 1, we can eliminate this possibility.

We can also eliminate the partition 4 + 2 + 1 + 1, as this would require in the path
graph that a doubleton set would be adjacent to a singleton set. This means that the
point in the singleton set would be located on the line segment connecting the points in
the doubleton set which is not possible for points in general position. Therefore we can
rule out this possibility.

The only remaining possibilities are 3 + 3 + 1 + 1, 3 + 2 + 2 + 1, and 2 + 2 + 2 +
2. �

With these improvements, we can reduce the number of partitions to check by slightly
under half in most cases.





CHAPTER 3

The Tverberg number for all trees with 5 or fewer vertices

In this chapter, we hope to enumerate the Tverberg number or a bound on the Tverberg
Number for all trees with 5 or fewer vertices. In certain cases, this will be done by appealing
to basic theorems, in others by giving an explicit construction, and others by exhaustion
of the possibilities through enumeration of all possible order types.

3.1. A lower bound on NT (G)

First we wish to give a lower bound on the Tverberg number NT (G) when G is a tree.

Proposition 3. For a connected graph G on n > 1 vertices, we have that the Tverberg
number NT (G) ≥ 2n.

Proof. To prove this result, we simply need to show that for any number of points
less than 2n, we can come up with a point configuration for which inducing the graph is
impossible.

Suppose we can only use m points with m < 2n. We will arrange these points in convex
position. By the pigeonhole principle, if we partition our m points into n disjoint subsets,
there must be at least one subset that is a singleton set. Since the graph is connected,
the vertex representing this point is adjacent to at least one other vertex implying that
this singleton is contained within the convex hull of another subset. However, this is a
contradiction as we have put the points in convex position. Therefore we must have that
NT (G) ≥ 2n. �

Figure 1. All trees on five vertices or less

15
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In particular, this result must hold for any tree as well. We will find that this result is
tight for certain trees and not tight for other trees.

3.2. Star Graphs

Using a simple argument based only on Radon’s Theorem, we can arrive at an upper
bound for star graphs.

Proposition 4. T (Sn) ≤ 3n− 2.

Proof. We prove this by induction on n. For n = 1, the partition of 1 point to get S1

is obvious.
Now assume the result is true for n. We need to show that it is possible to construct a

partition for any 3n+ 1 points. Given 3n+ 1 points, we order them by their x-coordinate.
By rotating the axes, we can assume that no two points have the same x-coordinate. We
take the 3n− 2 points with smallest x-coordinates and using the induction hypothesis, we
construct a partition {A1, . . . , An} which induces Sn. Without loss of generality, assume
that A1 is the central vertex of the star graph.

Let x ∈ A1 and let x1, x2, x3 be the three remaining points with largest x-coordinate.
By Radon’s theorem there is a way to partition these four points into two sets with inter-
secting convex hulls. Let X, Y be such a partition and let x ∈ X. Y intersects A1 ∪X but
does not intersect any of Ai, 2 ≤ i ≤ n as every point in Y has larger x coordinate than
any point in Ai. Then we see {A1 ∪X,A2, . . . , An, Y } is a partition which will induce the
graph Sn. �

Using this argument, we have a constructive algorithm for producing a partition in-
ducing Sn when given 3n−2 points. An example partition on 19 points is shown in Figure
2.

Figure 2. A partition of 19 points to give S7
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We can improve this bound to show that in fact 2n points is enough to be guaranteed a
partition inducing Sn. We give an explicit construction of such a partition in the following
proof.

Proposition 5. For any star graph Sn with n > 1, we have that NT (Sn) = 2n.

Prior to proving this statement, we will find the following lemma to be useful.

Lemma 3. Given 2n + 2 points X ∈ R2 in general position in the plane. Let `pq
denote the line segment between points p and q. If there exists p, q ∈ X that divide the
remaining points into two sets A,B each of size n such that for a ∈ A, b ∈ B, we have
that `ab intersects `pq, then it is possible to pair off elements ai ∈ A, bi ∈ B, such that for
i, j = 1, . . . , n, i 6= j, `aibi does not intersect `ajbj .

Proof. Suppose we have points p1 and p2 and partition the remaining points into A
and B. Let ` be the line between p1 and p2. To pair off the points, we consider the vertices
of conv(A ∪ B). Since ` separates the points of A and B, we must have that there are
a pair of adjacent vertices of conv(A ∪ B) such that one, a1, is a member of A and the
other b1, a member of B. The segment between this pair cannot intersect the segment
between any other pair of points as this segment forms the boundary of the convex hull.
We pair off these two points and then consider conv(A \ {a1} ∪ B \ {b1}). We see that
` separates A \ {a1} and B \ {b1}, so we can repeat this argument to pair off a2 and b2.
Continuing in this fashion until we have paired off all the elements, we will have a pairing
(a1, b1), (a2, b2), . . . , (an, bn) where `aibi does not intersect `ajbj for i 6= j. �

Now we prove the proposition.

Proof. Let A ∈ R2 be a collection of 2n points in general position in the plane. Our
goal will be to find a pair of points which can separate the remaining points into two sets
of equal sets so we can apply the above lemma. This will not always be possible, so we will
try to make the size of the two sets as close as possible.

To do this, we will consider the vertices of the convex hull of A. We pick arbitrarily a
vertex p1 of conv(A) and order the remaining vertices p2, . . . , pk in counter-clockwise order
where k is the number of vertices. For i = 2, . . . , k, we divide the remaining points of A
into two sets Bi, Ci where Bi is the set of points in A to the left of `p1pi and Ci is the set
of points to the right of `p1pi . We note that the size of Bi decreases from 2n− 2 to 0 as i
increases and the size of Ci increases from 0 to 2n− 2.

We consider two cases. The first case is that there exists i such that |Bi| = |Ci| =
n − 1 and then we can apply the above lemma as the line segment between every pair of
points in Bi × Ci intersects `p1pi since `p1pi separates Bi and Ci. Then we have a pairing
(b1, c1), . . . , (bn−1, cn−1) where for any two pairs the segments do not intersect, but each
intersects `p1pi . Then the partition {{b1, c1}, . . . , {bn−1, cn−1}, {p1, pi}} is a partition which
induces the star graph Sn. For an example of this case and how to partition the points,
see Figure 3.
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Figure 3. In the first case, there is a partition which divides the remaining points

into two sets of equal size. Then we can pair off points such that the segment

connecting them intersects the dividing line, but no other segment.

Figure 4. Finding a central dividing set of a given point configuration. In the

right image, the right region indicates Bi+1, the central region represents I and

the left region is Ci. We see |Bi+1| = 7, |I| = 2, and |Ci| = 8.

The second case is that there does not exist such an i. In this case, we find i such
that |Bi| > |Ci| and |Bi+1| < |Ci+1|. We will choose as a subset which will form the center
vertex of our star graph to be D = {p1, pi, pi+1}. See Figure 4 for a depiction of this central
triangle.

To construct the remaining subsets in our partition, we first count the number of points
in each of the Bi and Ci. If we let I denote the interior of Bi \ Bi+1, then we see that
|Bi+1| = |Bi|− |I|− 1 and |Ci+1| = |Ci|+ |I|+ 1. This is because we are moving the points
from the interior of conv({p1, pi, pi+1}) and the point pi from Bi to Ci+1. Now we can
pair off points from Bi+1 and Ci to form disjoint segments which will intersect conv(D)
using the above lemma, and every point in the interior I can be a singleton set which will
intersect conv(D) but not any of the segments since the points are in general position.
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Figure 5. Coloring the points to induce the star partition. In the left image, we

pair up points on either side of the triangle and add singleton sets on the interior

to get 9 sets which intersect with the central triangle. However, there still remains

one point not assigned which can be added to the central set without introducing

new intersections.

If we let m = min(|Bi+1|, |Ci|), we pair off the points, {{b1, c1}, . . . , {bm, cm}} so that
the segments between any two points do not intersect but each intersects the central trian-
gle. Note that this set may be empty as one of |Bi+1| and |Ci| may be 0. Then to fill out the
remaining subsets, we add singleton sets {{x1}, . . . {xn−1−m}} from the interior I. After
constructing these sets, there may be points remaining Y , which are still unassigned. These
can be added to the set D without introducing new intersections since D already intersects
every set. Then our final partition is {D ∪ Y, {b1, c1}, . . . , {bm, cm}, {x1}, . . . , {xn−1−m}}.
For a depiction of this method of constructing the partition, see Figure 5. This pro-
cedure will work provided that there are enough points on the interior and on either
side of the triangle to have n − 1 intersecting sets. Therefore, if we can show that
m+ |I| = min(|Bi+1|, |Ci|) + |I| ≥ n− 1, we will be done.

Note for any i, we have |Bi| + |Ci| + 2 = 2n just by counting the points in each set.
Then since |Bi+1| = |Bi| − |I| − 1 and |Bi| > |Ci|, we can write

|Bi+1| > |Ci| − |I| − 1 = 2n− 3− |Bi| − |I|.

Substituting in again |Bi| = |Bi+1|+ |I|+ 1 and rearranging, we get

|Bi+1| > n− 2− |I| ≥ n− 1− |I|.

Using that |Ci+1| > |Bi+1|, |Bi+1| = |Bi| − |I| − 1 and that |Ci+1| = |Ci|+ |I|+ 1 we get

|Ci| > |Bi| − 2|I| − 2.

Since |Bi|+ |Ci|+ 2 = 2n, we can write the above as

|Ci| > n− 2− |I| ≥ n− 1− |I|.

Then we have that the number of intersections we can have is min(|Bi+1, |Ci|)+ |I| ≥ n−1
which is exactly enough to form the star graph on n vertices. �
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3.3. Path Graphs

We can use same type of argument as used to derive an upper bound on the Tverberg
Number of star graphs to get an upper bound on path graphs although a little more care
is required to ensure that two sets do not intersect by mistake.

Proposition 6. NT (Pn) ≤ 3n− 2.

Proof. As before we will proceed by induction, but we will use a slightly stronger
induction hypothesis. For any 3n−2 points we can partition the points to induce the path
graph on n vertices. Let x1, x2, x3 denote the points with the three largest x-coordinates,
and let An and An−1 denote the sets in the partition corresponding to the endpoint of the
path and the vertex adjacent to the endpoint, respectively. Then An ⊂ {x1, x2, x3} and
{x1, x2, x3} ⊂ An−1 ∪An.

For n = 1, the partition to induce P1 is obvious. Now we assume our induction
hypothesis is true for n. Given 3n+ 1 points, we can take the 3n− 2 points with smallest
x-coordinates and partition the points into sets {A1, A2, . . . , An} to have the path graph
Pn. We label the sets so that they are in the same order as the vertices on the path,
i.e., A1 ∩ A2 6= ∅, . . . , An−1 ∩ An 6= ∅. By our induction hypothesis, of the 3n − 2 points,
the points with three largest x-coordinates, are in either An−1 or An with at least one of
them, say x ∈ An. Then with the remaining 3 points and x, by Radon’s Theorem, we can
construct a partition into two sets X,Y so that X ∩ Y = ∅. Assume x ∈ X.

Now we claim that the partition {A1, . . . , An−1, An ∪X,Y } satisfies the claims of the
induction hypothesis. By induction hypothesis, the first n sets induce Pn and since X∩Y 6=
∅, we have that Pn+1 is at least a subgraph of the intersection graph. We just need to check
the addition of new points do not intersect any unwanted sets. Y only intersects An ∪X
as it is comprised of points from the three largest x-coordinates. Similarly, since An ∪X
is among the 6 points with the largest x-coordinates and of the 6 points, those not in
An ∪X, are in the sets An−1 or Y . So we can only have that An ∪X intersects An−1 and
Y . Therefore we have a partition given Pn+1. �

This proof gives a constructive algorithm for finding a partition inducing Pn given
3n− 2 points. For an example of these constructions see Figure 6.

We can further generalize this argument to a special type of graph which is essentially
a “path of stars.”

Definition 12. A Star Path Graph is a tree for which all vertices are degree 1
except for those on a given path of vertices.

Note that there may be multiple paths which serve as the path for a given star graph.
For an example star path graph, see Figure 7.

Proposition 7. For any star path graph G on n vertices, NT (G) ≤ 3n− 2.

Proof. We proceed by induction on the length of the path of the graph. We use a
slightly stronger induction statement where if we order the points by x coordinate and v
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Figure 6. A partition of the same 19 points in Figure 2 to give P7

Figure 7. A star path graph on 9 vertices. One path that may act as a central

path is (1, 5)

is the last vertex on the path and is adjacent to k vertices, then the last 3k + 3 points are
in the sets corresponding to v or the vertices adjacent to it and no points prior to that
correspond to the set v. If the length is 1, we have just the star graph for which the result
holds.

Assume the result holds if the path is of length m. We consider star path graphs which
have paths of length m + 1. Let G be such a graph with n vertices. We consider the
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endpoint of the path vm+1 and the vertex prior vm. If we consider the subgraph of G
consisting of the path v1, . . . , vm and all vertices adjacent to it except vm+1, this is a star
path graph with a path of length m. Let p denote the number of vertices of this graph.
By inductive hypothesis, we can represent this graph using 3p− 2 points.

Now given 3n− 2 points, construct the subgraph on the 3p− 2 points with the small-
est x coordinates. We will have partition {A1, . . . , Ap} where we take A1 to be the set
corresponding to vm. Then take a point x ∈ A1 and the next largest 3 points to have a
Radon partition X,Y with x ∈ X. Our new partition will be {A1 ∪X, . . . , Ap, Y }. Y will
correspond to the vertex vm+1 and will not intersect any of the other sets due to having
larger x coordinates. In addition A1 ∪X will not intersect any new sets by how we have
arranged the points due to the inductive hypothesis. Now as in the proof of Proposition
4, we can add new sets by considering 3 points in iteration for each of the other vertices
adjacent to vm+1. Since there were n − p vertices and we used 3 points for each, in total
we used 3p− 2 + 3(n− p) = 3n− 2 points. This is the desired number. �

3.4. Enumeration of trees

Figure 8. S1, The only graph on one vertex

3.4.1. S1. For completion’s sake, we start with this obvious result.

Proposition 8. NT (S1) = 1.

Proof. For any number of points, there is only one class to put them in which gives
the graph on one vertex. Thus, the minimal amount of points is 1. �

Figure 9. S2, the only connected graph on two vertices

3.4.2. S2.

Proposition 9. NT (S2) = 4.

Proof. By Radon’s Theorem, we know we can construct this graph with 4 points.
This is minimal by Proposition 3. �
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Figure 10. S3, the only connected graph on three vertices

3.4.3. S3.

Proposition 10. NT (S3) = 6.

Proof. We can appeal to Proposition 5 to determine that the minimal number of
points needed is 6. �

We have enumerated all order types and display partitions which induce S3 for each of
them in Table 1.

Figure 11. P4, the path on 4 vertices

3.4.4. P4.

Proposition 11. NT (P4) = 9.

Proof. Interestingly enough, after explicit enumeration of all order types on eight
points, there exists exactly one point configuration for which it is impossible to generate
P4. This point configuration is displayed in Figure 12. For every other point configuration,
we found a partition which induced the path graph on four vertices. From this we assert
that NT (P4) ≥ 9.

After an enumeration of all order types on 9 points, we found a partition inducing P4

for every single order type showing that 9 points is in fact sufficient to construct the path
on four vertices. �
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Table 1. Partitions inducing S3 for all order types on 6 points
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Figure 12. A point configuration which cannot be partitioned to induce P4

Table 2. Coordinates of the points for which it is impossible to generate P4

x y

222 243
238 13
131 50
154 105
166 145
134 106
174 188
18 51

Figure 13. S4, the star on 4 vertices

3.4.5. S4.



26 3. THE TVERBERG NUMBER FOR ALL TREES WITH 5 OR FEWER VERTICES

Proposition 12. NT (S4) = 8.

Proof. This follows from Proposition 5. In addition, we have enumerated all order
types on 8 points and found a partition which would induce S4. �

Figure 14. P5, the path on 5 vertices

3.4.6. P5.

Proposition 13. 10 ≤ NT (P5) ≤ 13

Proof. The lower bound comes from Proposition 3 and the upper bound comes from
6. �

Figure 15. S4, the star on 5 vertices

3.4.7. S5.

Proposition 14. NT (S5) = 10.

Proof. This follows from Proposition 5. �

Figure 16. The Y graph on 5 vertices

3.4.8. Y .

Proposition 15. 10 ≤ NT (Y ) ≤ 13

Proof. We note that this is a star path graph and so applying Proposition 7 we have
an upper bound of 13. The lower bound comes from Proposition 3. �



CHAPTER 4

Future directions

In this chapter, we list different ways upon which this study can be expanded on.
First, there are plenty ways in which the algorithm for enumerating the order types can

be expanded upon. Methods of improving upon our algorithm for enumeration include:

• Applying algorithms specific to certain classes of graphs. As of right now, it is
primarily a brute force algorithm with a few heuristics applied to reduce the size
of the search space. There certainly exist more methods specific to larger graphs
which may be utilized to reduce the search space in order to examine larger graphs.
• Parallelization of the enumeration of order types. The algorithm is naively paral-

lelizable, being a brute force enumeration. Applying this algorithm onto a cluster
would significantly decrease the time of execution.

There also are problems of complexity which emerge regarding computing the Tverberg
number.

• Is the problem of computing the Tverberg Number of a given graph in NP?
• Is determining if a point configuration can induce a certain graph in NP?

Our study has also been restricted to two dimensions. The problem of computing
Tverberg numbers naturally generalizes to multiple dimensions. We have these questions
regarding higher dimensions:

• How is the Tverberg number of a graph related to the number of dimensions
on which the point set exists in? Tverberg’s Theorem gives results for complete
graphs, but the question remains for trees as to how the number is related to the
dimension of the space.
• Is there a way to enumerate point configurations in 3 or more dimensions to

determine the Tverberg Number?

There also exist natural questions bounding the number of partitions which will induce
a certain graph. For example from the survey [3], the conjecture is stated that every set
(r−1)(d+1)+1 points in Rd has at least (r−1)!d Tverberg partitions. Could a lower bound
on the number of partitions of star graphs and path graphs exist relating the number of
points to the number of partitions?

These and other questions would constitute valuable research to gaining a deeper un-
derstanding of the nature of the partitioning a given set and the interaction between how
the convex hulls of the partition.
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APPENDIX A

MATLAB Code

In this section, we present the MATLAB code which was used to enumerate all parti-
tions for all order types on a given number of points. All MATLAB scripts and functions
can be made available on request.

31
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function i n t e r s e c t = h u l l i n t e r s e c t (P1 , P2)

% HULL INTERSECT

% Determines i f two convex h u l l s i n t e r s e c t

% Args :

% P1 : N X 2 matrix l i s t i n g p o i n t s in counter−c l o c k w i s e order

% P2 : M X 2 matrix l i s t i n g p o i n t s in counter−c l o c k w i s e order

% Returns :

% i n t e r s e c t : Boolean i n d i c a t i n g i f the s e t s i n t e r s e c t

n1 = s ize (P1 , 1 ) ;

n2 = s ize (P2 , 1 ) ;

% We swap i f |P1 | < |P2 |
i f n1 < n2

tmp = P1 ;

P1 = P2 ;

P2 = tmp ;

n1 = s ize (P1 , 1 ) ;

n2 = s ize (P2 , 1 ) ;

end

i f n1 == 1 && n2 == 1

i n t e r s e c t = a l l (P1 == P2 ) ;

e l s e i f n1 == 2 && n2 == 1

i n t e r s e c t = (norm(P1 ( 1 , : ) − P2) + norm(P1 ( 2 , : ) − P2) == norm(P1 ( 1 , : ) − P1 ( 2 , : ) ) ) ;

e l s e i f n1 > 2 && n2 == 1

% I f one i s contained in the other

i n t e r s e c t = inpolygon (P2 ( 1 , 1 ) , P2 ( 1 , 2 ) , P1 ( : , 1 ) , P1 ( : , 2 ) ) ;

e l s e i f n1 == 2 && n2 == 2

% I f l i n e s i n t e r s e c t

i n t e r s e c t = ˜isempty ( po ly2poly (P1 ’ , P2 ’ ) ) ;

e l s e i f n1 > 2 && n2 == 2

e d g e i n t = i s i n t e r s e c t (P1 ’ , P2 ’ ) ;

i n t e r s e c t = e d g e i n t ;

end

end

Figure 1. Routine for determining if the convex hulls of two point sets intersect
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function [ i n t g raph ] = i n t e r s e c t i o n g r a p h ( points , groups )

% INTERSECTION GRAPH

% Computes the i n t e r s e c t i o n graph o f a po in t s e t g iven a p a r t i t i o n

% Args :

% p o i n t s : n X 2 matrix o f the p o i n t s

% groups : n X 1 matrix o f the c l a s s each po in t i s in

% Returns :

% i n t g r a p h : The i n t e r s e c t i o n graph

po int groups = s p l i t a p p l y (@( x ){x} , po ints , f indgroups ( groups ) ) ;

[ n , ˜ ] = s ize ( po int groups ) ;

h u l l s = c e l l (n , 1 ) ;

for i =1:n

group = po int groups { i } ;

i f s ize ( group , 1) < 3

h u l l s { i } = group ;

else

h u l l s { i } = group ( convhul l ( group ) , : ) ;

end

end

adj matr ix = zeros (n ) ;

% Construct the Adjacency Matrix

for i =1:n

for j =1: i−1

h u l l 1 = h u l l s { i } ;

h u l l 2 = h u l l s { j } ;

i n t e r s e c t = h u l l i n t e r s e c t ( hu l l1 , h u l l 2 ) ;

i f i n t e r s e c t

% Using symmetry o f the matrix

adj matr ix ( i , j ) = 1 ;

ad j matr ix ( j , i ) = 1 ;

end

end

end

i n t g raph = graph ( ad j matr ix ) ;

end

Figure 2. Routine for determining the intersection graph of a point set given a

partition
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function [ bool , rep ] = has graph ( points , g , p a r t i t i o n s )

% HAS GRAPH

% Checks i f a po in t s e t can be p a r t i t i o n e d to induce a g iven graph .

% I t does t h i s by enumeration o f p a r t i t i o n s , s t o p s i f a p a r t i t i o n i s found .

% Args :

% p o i n t s : N X 2 matrix o f p o i n t s

% g : The graph to induce

% p a r t i t i o n s : An M X N matrix l i s t i n g a l l p a r t i t i o n s o f the p o i n t s

% Returns :

% boo l : t rue i f p a r t i t i o n i s found

% rep : The p a r t i t i o n o f the p o i n t s which was found

bool = f a l s e ;

rep = f a l s e ;

num part i t i ons = s ize ( p a r t i t i o n s , 1 ) ;

for i =1: num part i t i ons

in t g raph = i n t e r s e c t i o n g r a p h ( points , p a r t i t i o n s ( i , : ) ’ ) ;

i f isomorphism ( int graph , g )

bool = true ;

rep = p a r t i t i o n s ( i , : ) ;

break

end

end

end

Figure 3. Routine for determining if any partition of a point set will induce a

given graph
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function [ v a l i d p a r t i t i o n s ] = f i n d v a l i d p a r t i t i o n s (n , k , p a r t i t i o n s )

% FIND VALID PARTITIONS

% Function f o r enumerating a l l v a l i d p a r t i t i o n s o f n i n t o k p a r t s

% Each p a r t i t i o n generated w i l l be unique .

% Args :

% n : The number to break i n t o k p a r t s

% k : The number o f p a r t s broken i n t o

% p a r t i t i o n s : An m X k matrix l i s t i n g where each row l i s t s a v a l i d

% p a r t i t i o n i n t o k p a r t s in decreas ing order

% Returns :

% v a l i d p a r t i t i o n s : A matrix o f a l l v a l i d p a r t i t i o n

p count = s ize ( p a r t i t i o n s , 1 ) ;

a l l p a r t i t i o n s = nproduct ( 1 : k , n ) ;

num part i t i ons = kˆn ;

v a l i d p a r t i t i o n s = zeros ( s ize ( a l l p a r t i t i o n s ) ) ;

counts = zeros (1 , k ) ;

l = 1 ;

for j = 1 : num part i t i ons

p a r t i t i o n = a l l p a r t i t i o n s ( j , : ) ;

% Count each element

for i =1:k

counts ( i ) = sum( p a r t i t i o n==i ) ;

end

counts = sort ( counts ) ;

v a l i d = f a l s e ;

% I f matches one o f v a l i d p a r t i t i o n s , can add i t

for m=1: p count

i f a l l ( counts == p a r t i t i o n s (m, : ) )

v a l i d = true ;

break

end

end

% This i s to e l i m i n a t e p a r t i t i o n s which are j u s t r e l a b e l l i n g o f

% other p a r t i t i o n s .

for m=1:k−1

i f find ( p a r t i t i o n == m, 1) > find ( p a r t i t i o n == m+1, 1)

v a l i d = f a l s e ;

break

end

end

i f v a l i d

v a l i d p a r t i t i o n s ( l , : ) = p a r t i t i o n ;

l = l +1;

end

end

v a l i d p a r t i t i o n s = v a l i d p a r t i t i o n s ( 1 : l −1 , : ) ;

end

Figure 4. Routine for generating all valid partitions of n points into m subsets
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function [ graphs , counts , r eps ] = a l l i n t e r s e c t i o n s ( po ints , k )

% ALL INTERSECTIONS

% Enumerates a l l p a r t i t i o n s o f a po in t se t , and genera te s a l l p o s s i b l e

% i n t e r s e c t i o n graphs which can be induced by the po in t s e t .

% Args :

% p o i n t s : N x 2 matrix o f p o i n t s

% k : The number o f c l a s s e s in the p a r t i t i o n

% Returns :

% graphs : A c e l l a r r a y o f each graph generated up to isomorphism

% counts : The counts o f each graph

% reps : A r e p r e s e n t a t i v e p a r t i t i o n inducing the graph

n = s ize ( po ints , 1 ) ;

graphs = c e l l ( 1 ) ;

counts = c e l l ( 1 ) ;

r eps = c e l l ( 1 ) ;

num graphs = 0 ;

p a r t i t i o n s = nproduct ( 1 : k , n ) ;

num part i t i ons = kˆn ;

for i =1: num part i t i ons

% I f i s a v a l i d p a r t i t i o n

i f s ize ( unique ( p a r t i t i o n s ( i , : ) ) , 2) ˜= k

cont inue

end

g = i n t e r s e c t i o n g r a p h ( points , p a r t i t i o n s ( i , : ) ’ ) ;

found = f a l s e ;

% Find a graph isomorphic to g

for j =1:num graphs

i f isomorphism (g , graphs { j })

counts { j } = counts { j } + 1 ;

found = true ;

break

end

end

i f ˜ found

% I f not isomorphic to any , c r e a t e a new c e l l f o r t h i s isomorphism

% c l a s s .

graphs {num graphs+1} = g ;

counts {num graphs+1} = 1 ;

reps {num graphs+1} = p a r t i t i o n s ( i , : ) ;

num graphs = num graphs + 1 ;

end

end

end

Figure 5. Routine for determining all possible intersection graphs which can be

induced by a given point set



A. MATLAB CODE 37

% This s c r i p t w i l l enumerate a l l order t y p e s on 8 p o i n t s and attempt to f i n d a

% p a r t i t i o n which w i l l induce the path graph on 4 v e r t i c e s .

% I t w i l l generate p l o t s o f p a r t i t i o n s f o r each success

% and p l o t s o f the p o i n t s f o r each f a i l u r e .

set (0 , ’ D e f a u l t F i g u r e V i s i b l e ’ , ’ o f f ’ ) ;

% F i l e with a l l order t y p e s

fp = fopen ( ’ otypes08 . b08 ’ ) ;

% Path graph on 4 v e r t i c e s

g = graph ( [ 0 1 0 0 ; 1 0 1 0 ; 0 1 0 1 ; 0 0 1 0 ] ) ;

num points = 8 ;

po in t s = {} ;

count = 0 ;

% Generate v a l i d p a r t i t i o n s

path par t s = [ 2 2 2 2 ] ;

v a l i d p a r t i t i o n s = f i n d v a l i d p a r t i t i o n s (8 , 4 , path par t s ) ;

i = 0 ;

while ˜ feof ( fp )

xs = fread ( fp , num points ∗2 ) ;

xs = reshape ( xs , 2 , [ ] ) ’ ;

disp ( xs ) ;

% Check i f graph i s p o s s i b l e to induce

[ bool , r eps ] = has graph ( xs , g , v a l i d p a r t i t i o n s ) ;

% I f not found

i f ˜ bool

f = figure ( ’ v i s i b l e ’ , ’ o f f ’ ) ;

plot ( xs ( : , 1 ) , xs ( : , 2 ) , ’ o ’ ) ;

f i l ename = sprintf ( ’ path4 2 / notfound %d . png ’ , i ) ;

saveas ( f , f i l ename ) ;

close ( gcf )

else

p lo t g roups ( xs , reps ’ ) ;

f i l ename = sprintf ( ’ path4 2 / found %d . png ’ , i ) ;

saveas ( gcf , f i l ename ) ;

close ( gcf ) ;

end

i = i +1;

end

Figure 6. An example script for enumerating all order types to find a point set

which cannot induce the path graph on 4 vertices


