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Abstract. A numerical semigroup S is an additive subgroup of the non-negative
integers. Previous works have developed the shifted numerical semigroup family Mn

which comes from adding n to each generator of S and appending n to the list of
generators. We further generalize this family of semigroups through the develop-
ment of a parametrized and shifted numerical semigroup Pn obtained from applying
weights to n before adding it to each generator of S. This paper generalizes several
results of shifted numerical semigroups, and by doing so, we also develop a weighted
factorization length and weighted delta set.
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1. Introduction

Numerical semigroups are additive semigroups of Z≥0, which are often written in
terms of a generating set, e.g.

S = 〈r1, . . . , rk〉 = {z1r1 + z2r2 + · · · zkrk | z1, . . . , zk ∈ Z≥0}
As we have studied in algebra, groups have an amazing habit of finding their way into
multiple branches of mathematics. Numerical semigroups, although more restricted
than general groups, are no different. They appear when solving multi-variable homo-
geneous and non-homogeneous linear equations, they arise naturally in optimization
as “knapsack problems,” and they are relevant when ordering chicken McNuggets from
McDonald’s, to name a few applications.

In order to better understand the object, and to explain the last application, consider
what is known as the “McNugget Semigroup.” The fast food restaurant McDonald’s
used to sell McNuggets in sets of 6, 9 or 20. Thus, if we do not want to overbuy, we
can only buy amounts of McNuggets that can be generated by these values. What if
we wanted 53 McNuggets? Is there a way to get exactly this amount, and if so, how
many of each pack size do we need to purchase? To answer these questions, we can
consider the numerical semigroup S = 〈6, 9, 20〉. From this, we can see that

53 = 4(6) + 1(9) + 1(20) = 1(6) + 3(9) + 1(20)

which gives us two ways to obtain our desired number of McNuggets: (4, 1, 1) and
(1, 3, 1). We can then use these “factorizations” and cost information to minimize the
overall price.

We study parametrized families of numerical semigroups of the form

Pn = 〈n,w1n+ r1, w2n+ r2, . . . , wkn+ rk〉
Our goal is to express semigroups of interest for large n. This generalizes families
considered in [5, 7] as well as several central properties. In the process, we introduce
the notion of weighted length and generalize results from [2].

To do so, each section builds upon its predecessor allowing us to work with slightly
more complicated families of numerical semigroups until we eventually arrive at the
parametrized numerical semigroup. Section 2 provides basic definitions and some initial
examples to create familiarity with our object in both theory and application. Section
3 introduces the concept of shifted numerical semigroups. Additionally, it introduces
theorems proven in [7] as well as some example applications of these properties. Section
4 is where we cover the central discovery of our paper, namely weighted factorization
length. This concept is at the heart of nearly every generalization in subsequent sec-
tions. Also, this is where we demonstrate the relationship between the generators
of our semigroup and an independent weight vector. Section 5 is where we present
our definition of a parametrized and shifted numerical semigroup. More importantly,
though, we offer an algorithm for taking any numerical semigroup and structuring it as
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a parametrized and shifted numerical semigroup. Section 6 gives more generalizations
of proven applications. Section 7 offers suggestions for further proving applications of
weighted length and parametrized numerical semigroup family.

The main takeaways from this paper are (i) the development of weighted factor-
ization lengths and (ii) an algorithm for viewing arbitrary numerical semigroups as
parametrized numerical semigroups.

Acknowledgements. I would like to thank Professor O’Neill for encouraging me to
start a research project as well as to complete an undergraduate thesis. Also, I would
like to thank each of my professors, TA’s, and teachers throughout my math career for
helping me learn about the wonderful world of mathematics.

2. Background

Numerical semigroups are powerful tools in linear algebra and optimization. Before
we start working with the objects themselves, we give several fundamental definitions,
concepts, and notation that will be used throughout the paper. For a thorough intro-
duction to numerical semigroups, see [8].

Definition 2.1. A numerical semigroup S is an additive subgroup of Z≥0. Typically
we denote S by a sequence of generators r1 < r2 < · · · < rk where

S = 〈r1, r2, . . . , rk〉 =
{
z1r1 + z2r2 + · · ·+ zkrk

∣∣z1, z2, . . . , zk ∈ Z≥0
}

We say S is primitve if gcd(r1, r2, . . . , rk) = 1.

Remark 2.2. In general, there is no reason why each generator needs to be distinct.
This becomes especially apparent when considering applications of numerical semi-
groups. For our purposes, if there are multiple ri = ri+1 = · · · = rj, then we can
consider grouping them together as a single generator to help with calculations.

Definition 2.3. For an element s ∈ S, a factorization of s is an expression of the form

s = z1r1 + z2r2 + · · ·+ zkrk

for zi ≥ 0. We define the set of factorizations of s by

Z(s) =
{
s = z1r1 + z2r2 + · · ·+ zkrk

∣∣z1, z2, . . . , zk ∈ Z≥0
}

Generally, a particular factorization is denoted as a k-tuple

z = (z1, z2, . . . , zk) ∈ Z(s)

The length of z is

|z| = z1 + z2 + · · ·+ zk

and the set of factorization lengths of s is

LS(s) = {|z| : z ∈ Z(s) with respect to S} = {factorization lengths of s respecting S}
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Example 2.4. Let S = 〈6, 9, 20〉 = {6a+ 9b+ 20c : a, b, c ∈ Z≥0}. Then,

26 = 6(1) + 9(0) + 20(1) ∈ S
As we can see, this is the only possible factorization of 26 ∈ S. Alternatively,

67 = 6(3) + 9(1) + 20(2) = 6(0) + 9(3) + 20(2) ∈ S
Thus, for z = (3, 1, 2) and z′ = (0, 3, 2), we have z, z′ ∈ Z(67) with

|z| = 3 + 1 + 2 = 6 > 5 = 0 + 3 + 2 = |z′|

In this example, there were two factorizations of differing lengths. This is not always
the case, though. Also, note that there is no restriction on the number of factorizations
an element s ∈ S can have. This is entirely dependent on the number of linear combi-
nations of the generators that equal s. Hence, it is possible for there to be exactly 1
or a multitude of factorizations. Moreover, there is no restriction on the factorization
lengths, so there can be several different factorizations of the same length, exactly one
at a particular length, or none with some length.

Example 2.5. Let S = 〈3, 5, 7〉. Then,

Z(27) =
{

(9, 0, 0)︸ ︷︷ ︸
length 9

, (4, 3, 0), (5, 1, 1)︸ ︷︷ ︸
length 7

, (0, 4, 1), (1, 2, 2), (2, 0, 3)︸ ︷︷ ︸
length 5

}
For the purposes of this paper, we need to look at properties of a particular type of

element, namely Betti elements. These are defined in terms of factorization graphs [5].
We will provide the same definition here, as well as a more intuitive notion through
examples.

Definition 2.6 ([5, Definition 3.1]). For a fixed numerical semigroup S and an element
s ∈ S, the factorization graph of s, denoted ∇s has vertex set Z(s), and two vertices
z, z′ ∈ Z(s) are connected by an edge whenever they have at least one generator in
common.

Example 2.7. Consider S = 〈3, 5, 7〉. From Example 2.5, the factorization graph of
27 ∈ S is included as Figure 1 at the top of this page. We can see that the factorizations
(9, 0, 0) and (0, 4, 1) are not connected directly.

We can think of the edges as relations between the generators. In this particular
case, we can see that there are the following minimal relations between the generators.

10 = 2(5) = 1(3) + 1(7)⇒ ((0, 2, 0), (1, 0, 1))

12 = 4(3) = 1(5) + 1(7)⇒ ((4, 0, 0), (0, 1, 1))

14 = 2(7) = 3(3) + 1(5)⇒ ((0, 0, 2), (3, 1, 0))

Notice that these relations have a special property where they do not “overlap” in their
factorizations. By this we mean that if we have two factorizations z and z′, then if some
zi > 0, then we are guaranteed that the corresponding z′i = 0. Thus these relations
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(9,0,0)

(5,1,1) (2,0,3)

(4,3,0)

(0,4,1)

(1,2,2)

Figure 1. For S = 〈3, 5, 7〉, this is the Factorization Graph of 27 from
Example 2.7.

(0,2,0) (1,0,1) (0,1,1) (4,0,0) (3,1,0) (0,0,2)

Figure 2. For S = 〈3, 5, 7〉, these are the Factorization Graphs of 10
(left), 12 (middle), and 14 (right) from Example 2.9.

are minimal in a sense, allowing us to move between factorizations. In fact, the special
elements whose factorizations encode minimal relations called “Betti elements.”

Definition 2.8. For a fixed numerical semigroup S, s ∈ S is a Betti element of S if
its factorization graph ∇s is disconnected. We define

B(S) = {s ∈ S | s is a Betti Element of S}.

Example 2.9. From Example 2.7, the Betti elements of S = 〈3, 5, 7〉 are

B(S) = {10, 12, 14}
and the factorization graphs are included above in Figure 2. Moreover, the missing
edges are precisely the minimal relations from Example 2.7.

Example 2.10. The Betti elements of S = 〈6, 9, 20〉 are B(S) = {18, 60}. The factor-
ization graphs are depicted in Figure 3.

Now that we have some basic mechanisms to discuss numerical semigroups as a
whole, we can start to examine them a bit more carefully. By definition, any numerical
semigroup S is an infinite set. One non-intuitive property, though, is that

∣∣Z≥0−S∣∣ is
finite when gcd(r1, . . . , rk) = 1. The next couple of definitions and examples relate to
this fact.

Definition 2.11. Define the Apéry set of x ∈ S as

Ap(S;x) = {s ∈ S : s− x ∈ Z \ S}
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(0,2,0) (1,0,1) (4,4,0) (0,0,3)

(1,6,0)

(7,2,0)

(10,0,0)

Figure 3. For S = 〈6, 9, 20〉, these are the Factorization Graphs of 18
(left) and 60 (right) from Example 2.10.

The Apéry set of S is Ap(S) = Ap(S; r1) where r1 is the smallest generator of S.

Definition 2.12. The Frobenius number of a primitive numerical semigroup S, denoted
F (S), is the largest integer not in S, i.e.

F (S) = max (Z≥0 \ S) .

For a non-primitive numerical semigroup T = dS with d ≥ 1, define F (T ) = d · F (S).

Remark 2.13. Notice the relationship between the Apéry Set of S and its Frobenius
number. Thus, by solving for the former, we immediately know the latter. This is not
always easy, though. In many cases, solving for the Apéry Set is quite computationally
expensive. Intuitively, we can understand that the larger the generators are, the larger
the “gaps” between each of the initial values in S. This means we need to compute
more values until these gaps disappear and we eventually obtain every value larger than
F (S). We will discuss runtimes and methods to decrease these times in the following
section. For now, we can look at some examples.

Example 2.14. Let S = 〈6, 9, 20〉. Now we can solve for Ap(S) = Ap(S; 6) using the
definition. First note that

S =

{
0, 6,9, 12, 15, 18,20, 21, 24, 26, 27,29, 30, 32, 33
35, 36, 38, 39,40, 41, 42, 44, 45, 46, 47, 48,49, . . .

}
From definition of S ⊆ Z≥0, we know that 0 ∈ Ap(S) because if we subtract any
generator, we get a value that is not in S. Now note that, 1, 2, 3, 4, 5 6∈ S by minimality
of 6 ∈ S. Since we are looking for values s ∈ S such that s ∈ S and s− 6 6∈ S, we can
iteratively add 6 to each value until we eventually land in S. We know this is possible
because

∣∣Z≥0 − S∣∣ is finite, so we are guaranteed to get values in S if we do this for
long enough.

We then get Table 1 on the following page. As we can see, we have obtained

Ap(S) = {0, 9, 20, 29, 40, 49}

which also tells us that F (S) = 49− 6 = 43.
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x mod 6 Values
1 1, 7, 13, 19, 25, 31, 37, 43,49,55,61, . . .
2 2, 8, 14,20,26,32, . . .
3 3,9,15,21, . . .
4 4, 10, 16, 22, 28, 34,40,46,52, . . .
5 5, 11, 17, 23,29,35,41, . . .

Table 1. Iterative method for Example 2.14, bolded values lie in
S = 〈6, 9, 20〉

Remark 2.15. This example gives us a basic method to compute Apéry sets. More-
over, we can see that there is a direct correspondence between elements of an Apéry
set and modular equivalence classes. This implies |Ap(S; s)| = s/ gcd(S) [8].

3. Shifted Semigroups

Using the objects defined in the previous section, we now develop the concept of
“shifting” a numerical semigroup which comes directly from [5, 7].

Definition 3.1. Let S = 〈r1, r2, . . . , rk〉 be a numerical semigroup and let n ∈ N. The
shifted numerical semigroup Mn is

Mn := 〈n, n+ r1, n+ r2, . . . , n+ rk〉
In this case, we will call n the shift parameter.

Remark 3.2. We can consider this shifting as a mapping where (S, n) 7→Mn.

Notice that our shifted semigroup Mn includes one additional generator n. This is
to ensure every numerical semigroup lies in exactly one shifted family.

Example 3.3. Let S = 〈6, 9, 20〉, n = 400, S ′ = 〈5, 8, 19〉, and n′ = 401. In order to
demonstrate the above point, suppose we do not add the shifting value to our list of
shifted generators. Notice

(S, 400) 7→ N400 = 〈406, 409, 420〉
(S ′, 401) 7→ N ′401 = 〈406, 409, 420〉

N400 = N ′401
Since N400 can be created from different initial generators and shifting values, we cannot
define a unique bijection between the semigroup and its shifted counterpart. On the
other hand, by adding the shifted value as a generator as in Definition 3.1, we ensure
the existence of such a bijection.

(S, 400) 7→M400 = 〈400, 406, 409, 420〉
(S ′, 401) 7→M ′

401 = 〈401, 406, 409, 420〉
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As we discussed in Section 2, running computations becomes more expensive as the
generators become larger and as the number of generators increases. Hence, if the
shifting value is significantly large, directly calculating properties of Mn (such as its
Apéry set) becomes computationally expensive. Immediately one can wonder about the
relationship between the original numerical semigroup S, the shifting value n, and the
resulted shifted numerical semigroup Mn. Again, this further justifies the importance
of including the shifting value as a generator of Mn. If we find ourselves in the scenario
of the above example, then it becomes very unclear as to which set of generators and
shifting values are important.

First, we will examine Apéry sets of shifted numerical semigroups. As presented in
[7], there is a crucial connection between the Apéry set of S and that of Mn.

Theorem 3.4 ([7, Theorem 3.3]). If n ∈ S satisfies n > r2k, then

Ap(Mn;n) = {i+ mS(i) · n|i ∈ Ap(S; dn)}
where d = gcd(S) and mS denotes the minimum factorization length in S. Moreover,

LMn(i+ mS(i) · n) = {mS(i)}
for each i ∈ Ap(S; dn).

Remark 3.5. At the heart of Theorem 3.4 is [2, Theorem 4.2] stating that m(n+rk) =
m(n) + 1 for n� 0 for the minimum factorization length function mS. This result will
be generalized for weighted lengths in Theorem 4.13.

Example 3.6. To see this relation, consider S = 〈3, 5, 7〉 and n = 50. Notice,
gcd(S) = 1 and n = 50 > 49 = 72 = r23. By definition, |Ap(M50; 50)| = 50, so we
will walk through the calculation of the first four elements. Using the GAP package
numericalsgps [6], we know that

{0, 51, 52, 3} ⊂ Ap(S; 1 · 50)

and the associated minimum factorizations are 0, 9, 8, and 1. Applying Theorem 3.4,

0 + 0 · 50 = 0 ∈ Ap(M50; 50)

51 + 9 · 50 = 501 ∈ Ap(M50; 50)

52 + 8 · 50 = 452 ∈ Ap(M50; 50)

3 + 1 · 50 = 53 ∈ Ap(M50; 50)

Remark 3.7. By definition, each a ∈ Ap(S;n) corresponds to the minimum value in
an equivalence class modulo n. We can see that the resulting value corresponds to the
same equivalence class. Let a ∈ Ap(Mn;n), then we can see that this is because

a mod n ≡ (i+ mS(i) · n) mod n ≡ i mod n

Therefore, because GAP orders the Apéry Set based on the equivalence class’s value
(i.e. 1 mod n, 2 mod n, . . ., (n − 1) mod n), these four values correspond exactly to
the first four values outputted for Ap(M50; 50).
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Proposition 3.8 ([2, Theorem 4.2]). If dn ∈ S and dn > F (S), then Ap(S; dn) =
{a0, . . . , an−1}, where

ai =

{
di if di ∈ S
di+ dn if di 6∈ S

and d = gcd(S). In particular, this holds whenever n > r2k as in Theorem 3.3.

Remark 3.9. Let us briefly walk through the intuition behind Proposition 3.8. In
order to do so, there are a couple cases to consider.

First, suppose di ∈ S. Since i < n and d > 0, we know di < dn. Thus, di− dn < 0
which tells us that di−dn 6∈ S. Hence, by definition, we must have that di ∈ Ap(S; dn).

Second, suppose that di 6∈ S. We must have that di + dn ∈ S because di + dn >
dn > F (S). Also, we know that (di + dn) − dn = di 6∈ S, so di + dn ∈ Ap(S;n) by
definition.

Example 3.10. Let S = 〈7, 11, 16〉, so Ap(S) = {0, 22, 16, 38, 11, 33, 27} and F (S) =
31. Let n = 40. Notice that S is primitive, so d = 1. Now we can calculate Ap(S; 40).

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 79

In the above presentation, the bold values are those in Ap(S; 40). Hence, we can see
the relationship between values in Ap(S; 40) and those that are not.

Example 3.11. Let S = 〈6, 9, 20〉, so Ap(S) = {0, 49, 20, 9, 40, 29} and F (S) = 43 =
49−6. Let n = 58. Notice that S is primitive, so d = 1. By definition, |Ap(S;n)| = 58,
so we will calculate a few elements.

0 ∈ S ⇒ a0 = 1 · 0 = 0

1 6∈ S ⇒ a1 = 1 · 1 + 58 = 59

2 6∈ S ⇒ a2 = 1 · 2 + 58 = 60

...

56 ∈ S ⇒ a56 = 1 · 56 = 56

57 ∈ S ⇒ a57 = 1 · 57 = 57
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n Mn GAP [6] Algorithm Times
50 〈50, 56, 59, 70〉 1 ms 1 ms
200 〈200, 206, 209, 220〉 30 ms 30 ms
400 〈400, 406, 409, 420〉 170 ms 170 ms
1000 〈1000, 1006, 1009, 1020〉 3 sec 1 ms
5000 〈5000, 5006, 5009, 5020〉 17 min 1 ms
10000 〈10000, 10006, 10009, 10020〉 3.6 hr 1 ms

Table 2. This table comes directly from [7, Table 1]. In this example,
S = 〈6, 9, 20〉.

Theorem 3.4 and Proposition 3.8 provide powerful algorithms for calculating Apéry
sets of shifted numerical semigroups with large shift parameter. Rather than needing
to do calculations with large generators of Mn, we can compute from those of S.
This drastically decreases the computation time necessary to find Apéry sets. Table 1
demonstrates the computational benefits of these algorithms. Note that in the table’s
example semigroup S, r2k = 202 = 400. In order to apply Theorem 3.4, we must have
that n > 400. This explains why the n = 400 case is not improved since 400 6> 400.
Moreover, since we already have the exact Apéry set, if follows that we can calculate
the Frobenius number of these “larger” sets faster using these algorithms.

4. Weighted Factorization Lengths

Thus far, we have only been considering semigroups of the form

S = 〈r1, r2, . . . , rk〉 Mn = 〈n, n+ r1, n+ r2, . . . , n+ rk〉
This form is rather restrictive, so one may ask what would happen if we apply “weights”
to our list of generators. In particular, if we have a vector of weights

w = (w1, w2, . . . , wk) ∈ Zk,
we get

S = 〈r1, r2, . . . , rk〉 Pn = 〈n,w1n+ r1, w2n+ r2, . . . , wkn+ rk〉
We will discuss the parametrized semigroups Pn in the following section. This section
will set the foundation for a generalization of future theorems by establishing a weighted
ordering (which we will refer to as a w-ordering) of the generators of S. The main
property shown here is that the minimum weighted length function mw upholds a
generalization of Remark 3.5.

Definition 4.1. Consider the numerical semigroup S = 〈r1, r2, . . . , rk〉 and weight
vector w = (w1, w2, . . . , wk) ∈ Zk. Given s ∈ S and a = (a1, a2, . . . , ak) ∈ Z(s), the
weighted length of a is

|a|w = a1w1 + a2w2 + · · ·+ akwk



PARAMETRIZED AND SHIFTED NUMERICAL SEMIGROUPS 11

and the set of weighted factorization lengths of s respecting S is

LS,w(s) = {|z|w : z ∈ Z(s) with respect to S}
Moreover, we define the following two maps

Mw : S 7→ N mw : S 7→ N
where Mw maps s ∈ S to its maximum weighted factorization length and mw maps
s ∈ S to its minimum weighted factorization length.

Remark 4.2. We can think of the standard length | · | as | · |w where w = (1, 1, . . . , 1)
since

|~a| = a1 + a2 + · · · + ak =
= a1(1) + a2(1) + · · · + ak(1) =
= a1w1 + a2w2 + · · · + akwk = |~a|w

Thus, we can think of this weighted length as a egeneralization of the usual factorization
length. Because of this, all of the previously proven properties still hold under this
notion with an assumed weight vector of w = (1, 1, . . . , 1).

Example 4.3. Let S = 〈5, 9, 13〉 and w = (2, 2, 3). Consider 60 ∈ S which has
factorizations

s ∈ Z(60) |s|w
(12, 0, 0) 12(2) + 0(2) + 0(3) = 24
(3, 5, 0) 3(2) + 5(2) + 0(3) = 16
(4, 3, 1) 4(2) + 3(2) + 1(3) = 17
(5, 1, 2) 5(2) + 1(2) + 2(3) = 18

Remark 4.4. At this time, we do allow our weights to be unrestricted in Z, so factor-
izations can have negative weighted length.

Example 4.5. Let S = 〈5, 9, 13〉 and w′ = (1,−2, 3). We then get a different set of
factorization lengths for 60 ∈ S.

s ∈ Z(60) |s|w′

(12, 0, 0) 12(1) + 0(-2) + 0(3) = 12
(3, 5, 0) 3(1) + 5(-2) + 0(3) = -7
(4, 3, 1) 4(1) + 3(-2) + 1(3) = 1
(5, 1, 2) 5(1) + 1(-2) + 2(3) = 9

Before proving any properties of this weighted length, we need several tools.

Definition 4.6. Let S = 〈r1, r2, . . . , rk〉 and w = (w1, w2, . . . , wk). Define the following

Πi :=
wi
ri

Additionally, we will define the following notation

ri ≤w rj if and only if Πi ≥ Πj
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Figure 4. For Example 4.8, minimum factorization length plot with
shifted values overlayed

ri <w rj if and only if Πi > Πj

When this kind of ordering is used, we will call it the w-ordering.

Remark 4.7. If every wi = 1, then this is the usual ordering on Z.

It is important to note that when the w-ordering is necessary, it will be specified in
the property statement. Now, we can examine what this ordering tells us about the
numerical semigroup.

Example 4.8. Let S = 〈9, 6, 20〉 and w = (2, 1, 3).
(Note that the generators and weight vector have been reordered based on w-ordering.)

Π1 = 6 · 2 · 20 = 240

Π2 = 1 · 9 · 20 = 180

Π3 = 6 · 9 · 3 = 162

Then for 400 ≤ n ≤ 500, we get the minimum weighted length plots in Figure 4
on the following page. For each point in the original weighted length graph (x, y), we
can map it to its corresponding shifted point (x + 20, y + 3). Thus, it satisfies the
relationship mw(x) = mw(x− 20) + 3.

Lemma 4.9. Fix a weight vector w = (w1, . . . , wk) ∈ Nk and a numerical semigroup
S = 〈r1, . . . , rk〉 which is minimally generated by r1 <w r2 ≤w · · · ≤w rk. If a, b ∈ Z(s)
for some s ∈ S where b = (b1, 0, 0, . . . , 0) and a = (0, a2, . . . , ak), then |b|w > |a|w.
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Proof: Consider the above setup where b = (b1, 0, 0 . . . , 0) and a = (0, a2, a3, . . . , ak).
Hence, b1r1 = a2r2 + · · ·+ akrk. Notice that

|a|w =
k∑
i=2

aiwi =
k∑
i=2

aiΠiri < Π1

k∑
i=2

airi = Π1 · b1r1 = b1w1 = |b|w

Therefore, we can conclude |b|w > |a|w. �

Lemma 4.10. Given a weight vector w = (w1, . . . , wk) and a numerical semigroup
S = 〈r1, . . . , rk〉 which is minimally generated by r1 ≤w r2 ≤w · · · ≤w rk−1 <w rk. If
a, b ∈ Z(s) for some s ∈ S where b = (0, 0, . . . , 0, bk) and a = (a1, a2, . . . , ak−1, 0), then
|b|w < |a|w.

Proof: Consider the above setup where b = (0, 0, 0 . . . , bk) and a = (a1, a2, a3, . . . , ak−1, 0).
Hence, bkrk = a1r1 + · · ·+ ak−1rk−1. Notice that

|a|w =
k−1∑
i=1

aiwi =
k−1∑
i=1

aiΠiri > Πk

k−1∑
i=1

airi = Πkbkrk = bkwk = |b|w

Therefore, we can conclude |b|w < |a|w. �
Finally, there is one lemma relating to modular arithmetic that we will need in the

proof of Theorem 4.12 and Theorem 4.13.

Lemma 4.11 ([2, Lemma 4.1]). Let k ≥ 0, and fix c1, c2, . . . , cr ∈ Z with r ≥ k. There
exists T ( {1, . . . , r} satisfying

∑
i∈T ci ≡

∑r
i=1 ci mod k.

Now we can examine properties of the weighted length just as we did with the original
notion of factorization lengths. The following results generalize from [2, Theorem 4.2,
Theorem 4.3].

Theorem 4.12. Given a weight vector w = (w1, . . . , wk) and a numerical semigroup
S = 〈r1, . . . , rk〉 which is minimally generated by r1 <w r2 ≤w · · · ≤w rk, the maximal
weighted length function Mw : S 7→ N satisfies

Mw(n) = Mw(n− r1) + w1

for all n > (r1 − 1)rk.

Proof. Fix n ∈ S and fix a = (a1, . . . , ak) ∈ Z(n), and suppose that a2 + . . .+ ak ≥ r1.
We will find a factorization with strictly larger weighted length. By definition of a
factorization, a1r1 + a2r2 + . . .+ akrk = n. Notice,

−a1r1 = (a2r2 + . . .+ akrk)− (a1r1 + a2r2 + . . .+ akrk) = (a2r2 + . . .+ akrk)− n,
So r1 | [(a2r2 + . . . + akrk) − n]. Hence, a2r2 + . . . + akrk ≡ n mod r1. Viewing this
sum as a2 + · · · + ak integers from {r2, . . . , rk}, Lemma 4.11 guarantees the existence

of b2, . . . , bk ≥ 0 such that (i) bi ≤ ai for each i > 1, (ii)
∑k

i=2 ai >
∑k

i=2 bi, and (iii)
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b2r2 + · · · + bkrk ≡ n mod r1. This implies b2r2 + · · · + bkrk < a2r2 + · · · + akrk, so
there exists b1 > 0 so that b = (b1, . . . , bk) ∈ Z(n). Notice,

b1r1 + b2r2 + · · ·+ bkrk = n = a1r1 + a2r2 + · · ·+ akrk

(b1 − a1)r1 = (a2 − b2)r2 + · · ·+ (ak − bk)rk
We can then apply Lemma 4.9 to the factorizaions (b1 − a1, 0, 0, . . . , 0) and
(0, a2 − b2, a3 − b3, . . . , ak − bk) which implies

(b1 − a1)w1 > (a2 − b2)w2 + · · ·+ (ak − bk)wk
meaning

b1w1 + b2w2 + · · ·+ bkwk > a1w1 + a2w2 + · · ·+ akwk
so |b|w > |a|w.

Now suppose that a2 + . . . + ak < r1. Since n > (r1 − 1)rk, we have a1 > 0. This
means a− e1 ∈ Z(n− r1), so

Mw(n− r1) ≥ |a− e1|w = (a1 − 1)w1 + a2w2 + . . . akwk = |a|w − w1,

and since a was maximal length, Mw(n− r1) = |a| − w1 is of maximal length. �

Theorem 4.13. Given a weight vector w = (w1, . . . , wk) and a numerical semigroup
S = 〈r1, r2, . . . , rk〉 minimally generated by r1 ≤w r2 ≤w · · · ≤w rk−1 <w rk, the
minimal weighted factorization length mw : S 7→ N satisfies

mw(n) = mw(n− rk) + wk

for all n > (rk − 1)rk−1.

Proof. Fix n ∈ S and fix a = (a1, . . . , ak) ∈ Z(n), and suppose that a1+ . . .+ak−1 ≥ rk.
We will find a factorization with strictly shorter weighted length. By definition of a
factorization, a1r1 + a2r2 + . . .+ akrk = n. Notice,

−akrk = (a1r1 + . . .+ ak−1rk−1)− (a1r1 + a2r2 + . . .+ akrk) = (a2r2 + . . .+ akrk)− n,
So rk | [(a1r1 + . . .+ak−1rk−1)−n]. Hence, a1r1 + . . .+ak−1rk−1 ≡ n mod rk. Viewing
this sum as a1 + · · · + ak−1 integers from {r1, . . . , rk−1}, Lemma 4.11 guarantees the

existence of b1, . . . , bk−1 ≥ 0 such that (i) bi ≤ ai for each i < k, (ii)
∑k−1

i=1 ai >
∑k−1

i=1 bi,
and (iii) b1r1 + · · · + bk−1rk−1 ≡ n mod rk. This implies b1r1 + · · · + bk−1rk−1 <
a1r1 + · · ·+ ak−1rk−1, so there exists bk > 0 so that b = (b1, . . . , bk) ∈ Z(n). Notice,

b1r1 + b2r2 + · · ·+ bkrk = n = a1r1 + a2r2 + · · ·+ akrk

(bk − ak)rk = (a1 − b1)r1 + (a2 − b2)r2 + · · ·+ (ak−1 − bk−1)rk−1
We can then apply Lemma 4.10 to the factorizations (0, 0, . . . , 0, bk − ak) and
(a1 − b1, a2 − b2, a3 − b3, . . . , ak−1 − bk−1, 0) which implies

(bk − ak)wk < (a1 − b1)w1 + · · ·+ (ak−1 − bk−1)wk−1
meaning

b1w1 + b2w2 + · · ·+ bkwk < a1w1 + a2w2 + · · ·+ akwk
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so |b|w < |a|w.
Now suppose that a1 + . . .+ak−1 < rk. Since n > (rk−1)rk−1, we must have ak > 0.

This means a− ek ∈ Z(n− rk), so

mw(n− rk) ≥ |a− ek|w = a1w1 + a2w2 + . . . (ak − 1)wk = |a|w − wk
and since a was maximal length, mw(n− rk) = |a| − wk is of minimal length. �

Corollary 4.14 follows immediately from the first portion of the proof of Theo-
rem 4.13. This is important for the proof of Lemma 5.5(a).

Corollary 4.14. Let w = (w1, . . . , wk) be a weight vector and S = 〈r1, r2, . . . , rk〉 be a
numerical semigroup minimally generated by r1 ≤w r2 ≤w · · · ≤w rk−1 <w rk. Suppose
n > (rk − 1)rk−1 and a = (a1, . . . , ak) ∈ Z(n). If a1 + · · · + ak−1 ≥ rk, then ∃b ∈ Z(n)
such that |b|w < |a|w with bk > 0.

Thus, we have explained the relationship demonstrated in Example 4.8. One imme-
diate question we can ask is, for the w-ordering, what happens when multiple Πi values
are equal? Although it has not been proven, it leads to the following conjecture.

Conjecture 4.15. In Theorem 4.13, the enforcement of a strictly larger rk generator
is unnecessary, and if there exists two maximal ri =w rj, then

mw(n) = mw(n− 1) + 1.

We will address this conjecture through the following example.

Example 4.16. Let S = 〈3, 5, 7〉 and w = (3, 5, 8). Then,

Π1 = 3 · 5 · 7 = 105

Π2 = 3 · 5 · 7 = 105

Π3 = 3 · 5 · 8 = 120

This scenario is quite different than the previous example since Π1 = Π2. When this
occurs, we have not distinguished between the orderings of S = 〈3, 5, 7〉 = 〈5, 3, 7〉.
Thus, if the conjecture holds, then Theorem 4.13 tells us that the minimum weighted
factorization length of our n value satisfies two equations.

mw(n) = mw(n− 3) + 3 and mw(n) = mw(n− 5) + 5

So, with x = n− 3, we get

mw(n− 3) + 3 = mw(n− 5) + 5

mw(x) = mw(x− 2) + 2

Now we have a third equation that our minimum factorization must satisfy. So, with
y = n− 2, we have

mw(n− 2) + 2 = mw(n− 3) + 3

mw(y) = mw(y − 1) + 1
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Figure 5. For Example 4.16, minimum factorization length plot with
shifted values overlayed

Therefore, up to renaming variables, we must have that mw(n) = mw(n − 1) + 1
which explains the minimum weighted length plots in Figure 5. For each point in the
original weighted length graph (x, y), we can map it to its corresponding shifted point
(x+ 1, y + 1). Thus, it satisfies the relationship mw(x) = mw(x− 1) + 1.

Remark 4.17. Notice that a similar method of cancellation can be used for any case
where multiple Πi values are minimal. Later we will restrict that the minimal Πi value
must be uniquely achieved, so this kind of a scenario will not be too big of a concern
to us.

5. Parametrized Numerical Semigroups

We have now built our way to the notion of parametrized semigroups. This “parametriza-
tion” comes from weighting our shifting value. This will be become clear through the
next few definitions and examples.

Definition 5.1. Let S = 〈r1, r2, . . . , rk〉 be a numerical semigroup, let
w = (w1, w2, . . . , wk) ∈ Zk>0 be a weight vector, and let n ∈ N. The parametrized
numerical semigroup Pn is

Pn := 〈n,w1n+ r1, w2n+ r2, . . . , wkn+ rk〉

Remark 5.2. Note that we are restricting our weights to be only positive integers.
If we do not, then it is possible that we can have negative generators for Pn. This
restriction simply ensures we stay within the realm of semigroups.
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Observation. With this format in place, we can algorithmically restructure any nu-
merical semigroup into this style. Let Φ = 〈g0, g1 . . . , gk〉 be an arbitrary numerical
semigroup.

1) Order and relabel the generators such that g0 < g1 < · · · < g` for 1 ≤ ` ≤ k. If there
exists some gi = gj where i 6= j, then we can disregard the redundant generator gj.

2) For each i 6= 1, divide gi by g1 using the Division Algorithm yielding some wi ∈ Z > 0
and ri ∈ Z ≥ 0 such that

gi = wig1 + ri

If ri = 0, then gi must be a multiple of g1, so we can disregard gi because every
value it contributes to can be replaced with multiples of g1.

3) Then for 1 ≤ t ≤ ` ≤ k, we can rewrite Φ as

Φ = 〈g0, w1g0 + r1, w2g0 + r2, . . . , wtg0 + rt〉
Therefore, each numerical semigroup lies in exactly one parametrized family. Notice
that this is similar to what was discussed in Remark 3.2.

Example 5.3. Let Φ = 〈37, 892, 355, 452〉. Then,

1) g1 = 37 < g2 = 355 < g3 = 452 < g4 = 892
2) r1 = 355 mod 37 = 22, w1 = 355−22

37
= 9

r2 = 452 mod 37 = 8, w2 = 452−8
37

= 12

r3 = 892 mod 37 = 4, w3 = 892−4
37

= 24
3) So,

Φ = P37 = 〈37, 9(37) + 22, 12(37) + 8, 24(37) + 4〉
which then tells us that S = 〈4, 8, 22〉 and w = (24, 12, 9) are the related semigroup
and weight vector written with the Π ordering.

Since we now have a way to associate weights with our generating values, this of-
fers an opportunity to use our concept of weighted lengths and the previously proven
properties. Hence, we have developed a method to “map down” any given numerical
semigroup to one with fewer generators and a related weight vector.

For the remainder of this section, we will focus on generalizing [5, Theorem 3.4].
This theorem is a technical result that sits at the center of the results proven in [5, 7],
and it will serve as a key property for generalizations in the following section.

In order to prove Theorem 5.7, we need the following lemma and notation.

Notation 5.4. Consider the weight vector w = (w1, . . . , wk) and numerical semigroup
S = 〈r1, . . . , rk〉. Let

W = max{w1, . . . , wk} R = max{r1, . . . , rk}
Additionally, for all numerical semigroups S in the remainder of the paper, we will
impose that the generators are listed so as to satisfy the w-ordering.
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Lemma 5.5. Fix a ∈ S = 〈r1, . . . , rk〉 such that

r1 ≤w r2 ≤w · · · ≤w rk−1 <w rk

Also fix s = (s1, . . . , sk) ∈ Z(a) and w = (w1, . . . , wk) ∈ Zk > 0. Then,

(a) If
∑k

i=1 si ≥ rk and sk = 0, then ∃s′ ∈ Z(a) such that |s′|w < |s|w and s′k > 0.
(b) If a > Wrk−1rk, then there is a factorization s′ ∈ Z(a) of minimal weighted length

such that s′k > 0.
(c) If a > Wr2k, then |s|w > Wrk.

Proof of (a). This follows immediately from Corollary 4.14. �

Proof of (b). To derive a contradiction, suppose that a > Wrk−1rk and s has minimal
weighted length but sk = 0. Thus,

Wrk−1rk < a = s1r1 + · · ·+ sk−1rk−1 = s1
w1

Π1

+ · · ·+ sk−1
wk−1
Πk−1

≤ |s|w ·
1

Πk−1

= |s|w ·
rk−1
wk−1

≤ rk−1
wk−1

W
k−1∑
i=1

si ≤ rk−1W
k−1∑
i=1

si

So,

rk <
k−1∑
i=1

si =
k∑
i=1

si

By (a), we know there exists a factorization b ∈ Z(a) with bk > 0 such that |b|w < |s|w.
Contradiction! Therefore, we can conclude that if a > Wrk−1rk and s has minimal
weighted length, then sk > 0. �

Proof of (c). Suppose a > Wr2k. Then,

Wr2k < a = s1r1 + · · ·+ skrk = s1
w1

Π1

+ · · ·+ sk
wk
Πk

≤ |s|w ·
1

Πk

= |s|w ·
rk
wk
≤ |s|w · rk,

so Wrk < |s|w. �

Example 5.6. Suppose we do not enforce that our weights are positive integers. Con-
sider S = 〈6, 9, 20〉, w = (1,−1,−2). Thus, r2k = 400, so (1, 0, 20) ∈ Z(406) but∣∣(1, 0, 20)

∣∣
w

= 1(1) + 0(−1) + 20(−2) = −39 6> 20 = rk

Hence, our claim only holds with this restriction.

Theorem 5.7. Suppose n > WR2 and let z and z′ be factorizations of a Betti element
β ∈ Pn with weight vector w = (w1, w2, . . . , wk) in different connected components of
∇β. If |z|w > |z′|w, then z0 > 0 and z′k > 0.
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Proof. We begin by noting that we construct Pn such that w0 = 1, and we cancel
all common generators in the factorizations of z and z′ so that there is no overlap in
non-zero factorization values. Now we can observe that

β − |z|wn = z0n+
k∑
i=1

zi(win+ ri)− (z0 + z1w1 + · · ·+ zkwk)n =
k∑
i=1

ziri

which yields an explicit bijection between factorizations of β ∈ Pn of length ` and the
factorizations of β − `n ∈ S of length at most `. Let s = (z1, . . . , zk) ∈ Zs(β − |z|wn)
and s′ = (z′1, . . . , z

′
k) ∈ Zs(β − |z′|wn) denote the factorizations in S corresponding to

z and z′, respectively. Notice that since |z|w > |z′|w, we have

β − |z′|wn ≥ β − (|z|w − 1)n = n+ β − |z|wn ≥ n > WR2 ≥ Wr2k

by Lemma 5.5(c) we know |s′|w > Wrk. Next, we claim some factorization in the same
connected component of ∇β as z′ has positive last component. If z′k > 0, then we are
done. Suppose this is not the case, i.e. z′k = 0. By the same reasoning as above and
our assumption on n, we have that

β − |z′|wn > Wrk−1rk

By Lemma 5.5(b) we know ∃s′′ ∈ ZS (β − |z′|wn) of minimal weighted length with
s′′k > 0. Notice,

β − |z′|wn = s′′1r1 + · · ·+ s′′krk

= s′′1r1 + · · ·+ s′′krk + (s′′1w1n+ s′′2w2n+ · · ·+ s′′kwkn)− (s′′1w1n+ s′′2w2n+ · · ·+ s′′kwkn)

= −|s′′|wn+ s′′1(w1n+ r1) + · · ·+ s′′k(wkn+ rk)

So,

β = |z′|wn− |s′′|wn+ s′′1(w1n+ r1) + · · ·+ s′′k(wkn+ rk)

= (|z′|w − |s′′|w)n+ s′′1(w1n+ r1) + · · ·+ s′′k(wkn+ rk)

This factorization z′′ = (|z′|w − |s′′|w, s′′1, . . . , s′′k) ∈ Z(β) of β under the above bijection
is connected to z′ in ∇β. In particular, it is important to note that z′′k = s′′k > 0. Since
z′ is connected to z′′, but z and z′ are in different connected components of ∇β, we

must have that zk = 0 or we could connect z and z′′. This means
∑k

i=1 si < rk or else
Lemma 5.5(a) would produce a factorization connected to z in ∇β with positive last
coordinate that we could connect to z′′. Thus,

|z|w > |z′|w ≥ |s′|w > Wrk > W

k∑
i=1

si ≥
k∑
i=1

siwi = |s|w

Hence, z0 = |z|w − |s|w > 0. By definition of z and z′ being in different connected
components, we must have that z′0 = 0. At this point, it is important to note that
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1) s′k = z′k = 0
2) |s′|w > Wrk ≥ rk

Hence, by Lemma 5.5(a), we must have that |s′|w is not minimal so |s′′|w < |s′|w
since we know |s′′|w is minimal. So,

|z′|w − |s′′|w > |z′|w − |s′|w ≥ |z′|w − |z′|w = 0

Thus, z′′0 > 0 which is a contradiction since we can then connect z and z′. Therefore
we must have that z′k > 0, and thus, we have proven the claim. �

6. The Main Theorem

In this section, our goal is to prove properties regarding the Apéry sets of our
parametrized numerical semigroups Pn. Primarily, we want to generalize Theorem
3.3, but we need several tools in order to do so. First, we need a generalization of
proposition 2.9 from [3], but this, in itself, requires several new definitions.

Definition 6.1. For a numerical semigroup S = 〈r1, . . . , rk〉 and s ∈ S, the delta set
of s is

∆(s) = {`i − `i−1 : i = 2, . . . , n} where LS(s) = {`1 < `2 < · · · < `n}

The selta set of S is

∆(S) =
⋃
s∈S

∆(s)

We now define an analogous weighted version of the delta set.

Definition 6.2. For a numerical semigroup S = 〈r1, . . . , rk〉, weight vector
w = (w1, . . . , rk), and s ∈ S, the weighted delta set of s is

∆w(s) = {`i − `i−1 : i = 2, . . . , n} where LS,w(s) = {`1 < `2 < · · · < `n}

The weighted delta set of S is

∆w(S) =
⋃
s∈S

∆w(s)

Remark 6.3. Delta sets provide information about possible factorization lengths. In
terms of this paper, though, we will be using them purely as a means for studying
Apéry sets of our parametrized semigroups.

The following is a generalization of [1, Lemma 3].

Lemma 6.4. If, for a semigroup S, ∆w(S) is non-empty, then min ∆w(S) = gcd ∆w(S).
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Proof. It is sufficient to show that d = gcd ∆w(S) ∈ ∆w(S). Let d1, . . . , dt ∈ ∆w(S).
Thus, there exists mi ∈ Z for i = 1, . . . , t such that d =

∑t
i=1midi. We must have that

there exists zi, z
′
i ∈ Z(si) for some si ∈ S such that |zi|w − |z′i|w = sgn (mi) di. Since zi

and z′i are factorizations of si, we must have that (zi+zi), (z
′
i+z′i) ∈ Z(2si). Also, note

that (zi+zi) = 2zi which can be evaluated by adding component-wise. Continuing this
pattern gives us that

∑t
i=1 |mi|zi,

∑t
i=1 |mi|z′i ∈ Z

(∑t
i=1 |mi|si

)
Additionally, using the

linearity of weighted length, we know∣∣∣∣∣
t∑
i=1

|mi|zi

∣∣∣∣∣
w

−

∣∣∣∣∣
t∑
i=1

|mi|z′i

∣∣∣∣∣
w

=
t∑
i=1

∣∣∣∣|mi|zi
∣∣∣∣
w

−
t∑
i=1

∣∣∣∣|mi|z′i
∣∣∣∣
w

=
t∑
i=1

|mi| (|zi|w − |z′i|w) =
t∑
i=1

|mi| · sgn(mi)di = d ≤ min ∆w(S)

Hence, we can see that we must have d ∈ ∆w(S), so min ∆w(S) ≤ d. Therefore, we
can conclude that min ∆w(S) = gcd ∆w(S). �

Remark 6.5. This lemma tells us that for d = min ∆w(S),

∆w(S) ⊆ {d, 2d, . . . , pd} for some p ∈ N,
a well-known property of ∆(S).

Now we can state a generalization of [5, Corollary 3.5] which follows from Theo-
rem 5.7.

Corollary 6.6. Suppose n > WR2, Pn is primitive, and d = min ∆w(〈r1, . . . , rk〉).
Any two factorizations z, z′ ∈ Z(β) of a Betti element β ∈ Betti(Pn) lying in different
connected components of ∇β satisfy

∣∣|z|w − |z′|w∣∣ ∈ {0, d}.
Proof. By Lemma 6.4 and Remark 6.5, |z|w − |z′|w ∈ dZ. We will show that if |z|w −
|z′|w ≥ 2d, then z and z′ must be in the same connected component of ∇β. Let
` = |z|w − |z′|w. Just as in the proof of Theorem 5.7, we know

β − |z|wn =
k∑
i=1

ziri ∈ S

Because of our bound on n, we know n ∈ S. Then, by the closure of S, we have that

(β − |z|wn) + (`− d)n = (β − |z′|wn− `n) + (`− d)n = β − (|z′|w + d)n ∈ S
Because of the bijection we established in Theorem 5.7, there must exist a factorization
z′′ ∈ Z(β) such that |z′′|w = |z′|w + d. By Theorem 5.7, we know that z′′0 > 0 and
z′′k > 0, so both z and z′ are connected to z′′ in ∇β. Hence, we must have that∣∣|z|w − |z′|w∣∣ ∈ {0, d} for z and z′ to be in different connected components. �

Lemma 6.7. Suppose n > WR2 If a and b are factorizations of some element m ∈ Pn
with |a|w < |b|w, then there is some factorization b′ such that |b|w = |b′|w where b′0 > 0.
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(1,2,8,4)

(3,3,9,2) (0,7,8,1)

(5,4,10,0)

(0,0,0,2) = (2,1,1,0)
(0,0,0,2) = (2,1,1,0) (5,0,2,0) = (0,3,0,1)

37

40

43
Weighted Length

Figure 6. Factorization chain from Example 6.8

Proof. Suppose a, b ∈ Z(m) for some m ∈ Pn such that |a|w < |b|w. By Corollary 6.6,
we have minimum relations that either maintain the weighted length or increase it by
exactly d = min ∆w(〈r1, . . . , rk〉). Since a and b are factorizations of the same element
with different lengths, we are guaranteed to have a minimal relation that increases the
factorization length. Moreover, by Theorem 5.7, we know that each such relation must
increase the first coordinate of the next factorization. We can “chain” these relations
together until we get the desired factorization b′ such that |b|w = |b′|w. �

Example 6.8. This example is meant to better illustrate the argument for Lemma 6.7.
Let S = 〈3, 5, 7〉, w = (2, 3, 2), and n = 150. Hence, P150 = 〈150, 303, 307, 455〉.
Consider m = 5032. Thus, we have that

a = (1, 2, 8, 4), b = (0, 7, 8, 1) ∈ Z(5032)

Notice that |a|w < |b|w since

|a|w = 1 + 2(2) + 8(3) + 4(2) = 37

|b|w = 0 + 7(2) + 8(3) + 1(2) = 40

Each Betti element provides a minimal relation, so, in general, the chains of factoriza-
tions are not unique. In this example, Betti (P150) = {910, 1212, 1364, 6750, 7061, 7209}
where

(0, 0, 0, 2), (2, 1, 1, 0) ∈ Z(910)

(5, 0, 2, 0), (0, 3, 0, 1) ∈ Z(1364)

Consider the factorization chain in Figure 6 at the top of the page. As we move from
a “towards” b, we first reach (3, 3, 9, 2) with length 40 = |b|w. Hence, we can let
b′ = (3, 3, 9, 2), and we are done.

Now we have enough tools to generalize Theorem 3.4.

Theorem 6.9. If n ∈ S satisfies n > WR2, then

Ap(Pn;n) = {i+ mS,w(i) · n|i ∈ Ap(S; dn)}
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where d = gcd(S) and mS,w denotes the minimum weighted factorization length in S.
Moreover, we have

LwPn
(i+ mS,w(i) · n) = {mS,w(i)}

for each i ∈ Ap(S; dn).

Proof. Let A = {i+ mS,w(i) · n|i ∈ Ap(S; dn)}. Because each element of
{ i
d

: i ∈ Ap(S; dn)} is distinct modulo n and gcd(n, d) = 1, we must have that each
element of Ap(S; dn) is distinct modulo n. It follows then that each element of A is
distinct modulo n because for all i ∈ Ap(S; dn),

i+ mS,w(i) · n ≡ i mod n

Hence, |A| = n, so we only need to show that A ⊆ Ap(Pn). Fix i ∈ Ap(S; dn) and let
a = i+ mS,w(i)n. If s ∈ ZS(i) has minimal weighted length, then

a = i+ mS,w(i)n = i+ |s|wn =
k∑
i=1

siri +

(
k∑
i=1

siwi

)
n =

k∑
i=1

si(win+ ri)

so a ∈ Pn. Hence each minimal factorization s ∈ ZS(i) corresponds to a factorization
of a ∈ Pn where the first component is zero. In fact, for each ` ≥ 0, there is a natural
bijection

{z ∈ ZPn(a) : |z|w = `} → {s ∈ ZS(a− `n) : |s|w ≤ `}
(z0, z1, . . . , zk) 7→ (z1, . . . , zk)

between factorizations of a ∈ Pn of length ` and factorizations of a− `n ∈ S of length
at most ` because

a = z0n+
k∑
i=1

zi(win+ ri) = |z|wn+
k∑
i=1

ziri

Now note that a − mS,w(i)n = (i + mS,w(i)n) − mS,w(i)n = i ∈ Ap(S; dn). When we
have ` > mS,w(i) it follows that

a− `n = (i+ mS,w(i)n)− (mS,w(i) + [`−mS,w(i)])n = i− [`−mS,w(i)]n 6∈ S

by definition of i ∈ Ap(S; dn). Hence, a has no factorizations of length ` in Pn.
Furthermore, a cannot have any factorizations in Pn with length strictly less than mwS

since Lemma 6.7 would force some factorization of length mS,w to have non-zero first
coordinate. Combining these two facts, we must have that LS,w(i + mS,w(i) · n) =
{mS,w(i)}, meaning every factorization of a in Pn has first coordinate zero. As such,
we conclude that a ∈ Ap(Pn). �

With these tools generalized, we can now begin to generalize several applications in
[7]. First, we will need a definition.
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Definition 6.10 ([7, Definition 4.1]). A function f : Z → R is an r-quasipolynomial
of degree α if

f(n) = aα(n)nα + · · ·+ a1(n)n+ a0(n)

for periodic functions a0, . . . , aα, whose periods all divide r, with aα not identically 0.
We say f is eventually quasipolynomial if the above equality holds for all n� 0.

The following generalization of [7, Corollary 4.3] follows immediately.

Corollary 6.11. For n > WR2 , the function n 7→ F (Pn) is rk-quasiquadratic in n.

Proof. Let a denote the element of Ap(S; dn) for which mS,w(−) is maximal. Theo-
rem 6.9 and Proposition 3.8 imply

F (Pn) = max{Ap(Pn)} − n = a− n+ mS,w(a)n

Theorem 4.13 and Proposition 3.8 together imply that a+ rk is the element of
Ap(S; dn+ rk) for which mS,w(−) is maximal and quasilinearity of mS,w(−) completes
the proof. �

In order to generalize [7, Corollary 4.2], we need an additional definition.

Definition 6.12. Let S be a numerical semigroup with gcd(S) = 1. The genus of S is

g(S) = |Z≥0 \ S|

which is the number of positive integers outside of S. For a non-primitive numerical
semigroup T = dS with d ≥ 1, define g(T ) = d · g(S).

Example 6.13. Let S = 〈6, 9, 20〉. From Table 1, we can see that

Z≥0 \ S = {1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 22, 23, 25, 28, 31, 34, 37, 43}

Hence, g(S) = |Z≥0 \ S| = 22.

Just as for the previous corollary, the generalization of [7, Corollary 4.2] follows
immediately.

Corollary 6.14. For n > WR2 , the function n 7→ g(Pn) is rk-quasiquadratic in n.

Proof. By counting the elements of Z≥0 \ S modulo n, we can write

g(Pn) =
∑

a∈Ap(Pn)

⌊a
n

⌋
Theorem 6.9 and Proposition 3.8 gives us that

=
∑

i∈Ap(S;dn)

⌊
i+ mS,w(i)n

n

⌋
=

∑
i∈Ap(S;dn)

⌊
i

n

⌋
+

∑
i∈Ap(S;dn)

mS,w(i)
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=
n−1∑
t=1

⌊
dt

n

⌋
+ d · g(S) +

∑
i<n
di∈S

mS,w(di) +
∑
i≥0
di 6∈S

mS,w(di+ dn)

Each of the terms is eventually quasipolynomial in n. The first term is d-quasilinear in
n, the second term is independent of n, and Theorem 6.9 guarantees that the last two
terms are eventually rk-quasiquadratic and rk-quasilinear in n, respectively. Thus, we
have proven our claim. �

Before generalizing [5, Corollary 5.7], we need a weighted version of [4, Theorem
2.5].

Theorem 6.15. If S is a numerical semigroup with 0 < |∆w(S)| <∞, then

max ∆w(S) = max
n∈Betti(S)

max ∆w(n)

Proof. Let M = maxn∈Betti(S) max ∆w(n). The inequality M ≤ max ∆w(S) follows
immediately. To derive a contradiction, suppose that max ∆w(S) > M . Let x, y ∈ Z(s)
for some s ∈ S such that |y|w − |x|w = max ∆w(S) where there does not exist a
factorization z ∈ Z(s) such that |x|w < |z|w < |y|w. Since |x|w < |y|w, we know
there exists a chain of factorizations between x and y. Applying [4, Lemma 2.1], let
x1, . . . , xt ∈ Z(s) such that x = x1, . . . , xt = y where (xi, xi+1) = (ai + ci, bi + ci) for
some factorization ci ∈ Z(S) where ai and bi are disjoint factorizations of some Betti
element n ∈ S for i = 1, 2, . . . , t− 1. Since |x1|w = |x|w, |xt|w = |y|w, and no |xi|w lies
between these values, there exists some i ∈ {1, . . . , t− 1} such that

|xi|w ≤ |x|w < |y|w ≤ |xi+1|w
Again, by [4, Lemma 2.1], we know there exists a chain of factorizations such that

ai = fi1, . . . , fim = bi with
∣∣|fi(j+1)|w − |fij|w

∣∣ ≤ max ∆w(n) < max ∆w(S)

for all j ∈ {1, . . . ,m − 1}. Notice that we then have (fij + ci), x, b ∈ Z(s) for all
j ∈ {1, . . . ,m − 1}. Also, by our assumption on x and y there is no i or j such that
|x|w < |fij|w < |y|w. By the same argument as before, we can find some j such that

|fij + ci|w ≤ |x|w < |y|w ≤ |fi(j+1) + ci|w
This is a contradiction because

max{∆w(S)} = |y|w − |x|w ≤ |fi(j+1) + ci|w − |fij + ci|w
= |fi(j+1) − fij|w ≤ max

n∈Betti(S)
max ∆w(n) < max ∆w(S)

Therefore we have proven the claim. �

Corollary 6.16. If n > WR2, then

∆w(Pn) = {d},
for d = gcd ∆w(S).



26 FRANKLIN KERSTETTER

Proof. By Lemma 6.4, d = min ∆w(Pn). Additionally, max ∆w(Pn) occurs in the delta
set of a Betti element of Pn by Theorem 6.15, so max ∆w(Pn) = d by Corollary 6.6. �

7. Future Work

This paper is just the beginning for parametrized numerical semigroups and weighted
length applications. Although we have been able to generalize several results from
[1, 4, 5, 7], there are plenty of properties that remain.

Problem 7.1. Generalize the remaining results from [5, 7].

Problem 7.2. Find and prove a formula for calculating min ∆w(S) in terms of the
generators of S and the weight vector w.

Solving Problem 7.2 would serve as a generalization of [3, Proposition 2.9]. Moreover,
it would provide a more concrete calculation in Lemma 6.4 and Corollary 6.6.

Problem 7.3. Prove Conjecture 4.15.

These problems should serve as starting points for future research.
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