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Abstract

Abstract

This thesis considers analyzing pesticide concentrations in CA surface water. There are
two major components. The first major component is the creation of a database, pulling
information from various sources including the Environmental Protection Agency and the
CA Department of Pesticide Regulation. This information is both on monitoring records
and on physical attributes. The main characteristic feature of the data is its high degree of
missingness as observations on pesticide concentrations are sparse both in time and space.
The second major component is the analysis of such pesticide concentrations with common
time series models for missing data. It is found that these standard methods do not lead to
satisfactory. Future work should look into extensions of time series methods better adapted
to pesticide monitoring data.
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Introduction

1 Introduction

According to the Environmental Protection Agency (EPA), pesticide is defined as any
substance or mixture of substances intended for preventing, destroying, repelling or mitigating
any pest. Pesticide products contain active and inert ingredients. An active ingredient is
a component of a pesticide product that controls target pests and inert ingredients are
important for performance and usability. By definition, these chemicals kill living things.
Using pesticides has an impact on both humans and environment. Humans can be exposed
to pesticides directly while applying, formulating or working with pesticides. In addition,
oral exposure can happen through consuming food containing pesticides. In the environment,
pesticides are present in soil, water, turf or other vegetation. Not only killing insects or
weeds, pesticides can be toxic to birds, fish, beneficial insects, and non-target plants. Some
pesticides are highly hazardous due to the acute toxicity even with small exposure levels.
Other pesticides are persistent in the environment and cannot be washed off easily.

In California, 28 percent of area is farmland and in 2015, 213 million pounds of active
ingredients contained in applied pesticides were reported to EPA. With a large amount of
pesticides used every year and many harmful consequences on humans and the environment,
the tasks of regulating pesticides and monitoring the amount of pesticides in environment
become very crucial. Ideally, we would like to measure the concentration directly from streams
and rivers. However, due to high cost of direct monitoring, only few direct measurements are
taken from streams and rivers. Therefore, models that predict concentrations of pesticides
based on available data are important for monitoring pesticides in environment. Predictions
of pesticide concentrations cannot replace direct measurements from monitoring sites, but
will give us an idea of what to expect for pesticide concentrations at certain locations and
act as an indicator for which areas are contaminated and require extra monitoring.

We will focus on modeling concentrations of bifenthrin and imidacloprid in water. We will
explore natural and artificial factors such as pesticides usage, runoff rate, climate, etc. that
would affect pesticide concentrations in water. Once the model is established, we hope to use
it to predict pesticide concentrations at other locations with similar characteristics.
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Data Overview

2 Data Overview

For the DPR project, we use Catchment Attributes, Monitoring Data and Pesticide Usage
Reporting datasets. The Catchment Attributes dataset is collected from United States
Environmental Protection Agency (US EPA) database. Both Monitoring Data and Pesticide
Usage Reporting datasets are collected from California Department of Pesticide Regulation
(CDPR) database. Because the datasets are provided by different agencies, the ways how
each dataset is stored and sorted are also different. One of the essential tasks in this project
is to figure out how to access the databases, download necessary datasets and clean the
datasets. The goal of this step is to ensure a connection between the three datasets.

2.1 Catchment Attributes

In this thesis, catchments represent the portion of the landscape, where surface flow drains
directly into a stream segment, excluding any upstream contributions. A stream segment is a
section of contiguous stream or river between upstream and downstream tributaries, except
where the segment is a headwater or terminal stream. A watershed is a set of hydrologically
connected catchments, consisting of all upstream catchments that contribute flow into any
catchment in the watershed.

The Stream-Catchment (StreamCat) database describes natural and anthropogenic landscape
features for both individual stream catchments and cumulative upstream watersheds, based
on the National Hydrography Dataset Plus Version 2 (NHDPlusV2) geospatial framework.
Our job is to extract the attributes of monitoring stations located within the HUC14 system
and their upstream watersheds. HUC is a system of unique hydrologic unit codes to identify
the United States hydrologic units. Senior Environmental Scientist at DPR, Dan Wang,
provided us an Excel document containing a list of California Central Coast monitoring
stations and their ComID. ComID is a unique identifier for a stream segment that can be
linked to NHDPlusV2 stream or catchment shapefiles. The list contains 255 stations located
in 188 catchments. Some stations do not have ComID or are coded differently from the
rest because they locate in small sea and are not considered in stream network. From the
EPA website1, attributes for California can be downloaded. Attributes are categorized and
grouped into 51 data files based on their similarities. We used R to match given comIDs of
Central Coast catchments with the comIDs listed in attribute data file (see the Appendix for
the R code). From the StreamCat database, 692 attributes were collected for 188 catchments

1ftp://newftp.epa.gov/EPADataCommons/ORD/NHDPlusLandscapeAttributes/StreamCat/States/
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Data Overview

along the California Central Coast and were compiled to output the Catchment Attributes
dataset. Out of 693 attributes, Ruoyu Wang, postdoc at Department of Land, Air and Water
Resources, UC Davis suggested that 258 attributes are useful in predicting the pesticide
concentrations. In those 258 attributes, four attributes are essential data from NHDPlus, 220
are land use and land cover, 10 are soil, 22 are weather and two are processed results from
CalFed physical model.

CalFed physical model determines the relative ranking of potential areas of concern with
respect to pesticide exposure to sensitive and endangered aquatic species. First, the study
area was characterized based on the physical landscape. Then, for each pesticide considered
in the model, environmental-fate properties were collected, along with historical pesticide
applications. CalFed model also used PRZM and RICEWQ environmental fate models to
predict edge-of-field mass and pesticide runoff. To compute a daily concentration, the daily
mass loadings (sum of daily pesticide mass loadings from agricultural fields, rice paddies,
and urban areas) were “mixed” into the streams and rivers. If the estimated concentration
exceeded ecotoxicological benchmarks, it was considered an indicator event and used in the co-
occurrence analysis. In co-occurence analysis, frequency of indicator events is calculated and
used in conjunction with monthly estimates of species presence to determine co-occurrence.
Area with high co-occurence was considered as potential candidate for extra monitoring.

2.2 Monitoring Data

Department of Pesticide Regulation provided monitored concentrations of two important
and commonly used pesticides, bifenthrin and imidacloprid, in Central Coast. The common
structure for pesticide concentration datasets includes location information (site code, county,
longtitude, latitude, etc.), sampling date, measured concentration, sampling method (limit of
quantitation, agency, sampling code, etc.), and data source. For all pesticides, the monitoring
data is extremely sparse in space and time. There are a lot of missing observations and
censored data, which are measurements below the LOQ.

2.2.1 Bifenthrin

Bifenthrin is an insecticide that is used on various agricultural crops and in homes. In the
United States, bifenthrin is contained in over 600 products in forms of sprays, granules and
aerosols. Bifenthrin is higly toxic to fish and small aquatic organisms and is classified as
carcinogen. Since bifenthrin binds tightly to soil, its concentration is measured in both water

3
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and sediment.

• Bifenthrin concentration in water: The sampling period for bifenthrin pesticide in water
is from June 16, 2003 to April 20, 2017. The samples are taken from 79 unique stations
on 148 unique dates. There is no clear pattern in sampling frequency at the monitoring
stations because some years have too few observations. However, April, May and
June are sampled the most compared to other months. The averages of concentrations
measured from stations that are in the same catchment are shown in Firgure 2.1b. As
we can see from the figure, the monitoring stations locate throughout Central Coast.
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[Figure 2.1(a,b): Scatter plot of bifenthrin concentration in water in space and time]
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[Figure 2.2: Map of bifenthrin in water monitoring stations]

• Bifenthrin concentration in sediment: The sampling period for bifenthrin concentration
in sediment is from June 16, 2003 to May 26, 2016. Samples are taken from 92 unique
stations with 88 unique sampling dates. There is no clear pattern of sampling frequency
among the stations. Monitoring stations for bifenthrin in sediment locate mainly in
Santa Cruz, Watsonville, Salinas (in Santa Cruz and Monterey county), Arroyo Grande,
Santa Maria (in San Luis Obispo county) and Santa Barbara (in Santa Barbara county).

2004 2008 2012 2016

0
10

0
20

0
30

0

Time

 C
on

ce
nt

ra
tio

n 
(µ

g
g)

27_10 27_85 42_6 44_33

0
10

0
20

0
30

0

Stations

 C
on

ce
nt

ra
tio

n 
(µ

g
g)

[Figure 2.3(a,b): Scatter plot of bifenthrin concentration in sediment in space and time.]
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[Figure 2.4: Map of bifethrin in sediment monitoring stations]

2.2.2 Imidacloprid

Imidacloprid is an insecticide that is used to control sucking insects, termites, some soil
insects, and flees on pets. Over 400 products in the United States in forms of liquids, granules,
dusts, and packages that dissolve in water contain imidacloprid. The effect of exposure to
imidaclorpid in fish varies by species. Some native fish in California Central Coast streams
and rivers are salmon, steelhead and trout and they are commonly consumed by humans.
Therefore, high levels of imidacloprid concentrations in water have a direct impact on humans.

The concentration dataset of imidacloprid contains 366 observations which were taken from
37 unique stations on 78 unique dates. The sampling period of imidacloprid is shorter than
bifenthrin pesticide, only from 17 May, 2010 to 12 October, 2017. Samples are most likely
taken once every month, and April to September have the highest frequency of sampling.
The monitoring stations gather around Watsonville, Salinas and Santa Maria.
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[Figure 2.5(a,b): Scatter plot of imidacloprid concetration from in space and time.]
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[Figure 2.6: Map of imidaclopid monitoring stations]

7



Data Overview

2.3 Pesticide Usage Reporting

California Department of Pesticide Regulation (CDPR) publishes pesticide usage in agriculture
and urban land every year since 19782. The Pesticide Usage Reporting (PUR) datasets list
agricultural and non-agricultural pesticide use sorted by county number. Agricultural use of
pesticide is required to report to DPR weekly. Each report provides information about amount
of used pesticide products, amount of active chemicals in used pesticide products, date of
application, area of land that is treated and land location identifier (CO_MTRS). Each
CO_MTRS represents a one square meter land. The county, meridian, township, range and
section of a treated land are coded in CO_MTRS that can be linked to a longitude latitude
coordinate in the sshapefile provided by the CDPR. Non-agricultural pesticide usage reports
are made monthly and do not provide specific spatial coordinates where the pesticides are
applied. Therefore, non-agricultural pesticide usage is stored separately from the agricultural
pesticide usage dataset. Note that CO_MTRS does not uniquely identify a spatial location in
some instances. This happens when there is a stream/river present in the area that is linked
to COM_MTRS. Hence, the area belongs to different catchments. However, the reported
pesticide use still reflects the total amounnt of pesticide applied on the area.

2link:http://www.cdpr.ca.gov/docs/pur/purmain.htm
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3 Time Series

In this section, we will discuss stationary time series and how to model a stationary time
series with ARMA processes.

A time series is a collection of random variables, xt, indexed by t ∈ T , where T ⊆ Z. A time
series is composed of deterministic trend, seasonal component and random fluctuations:

Xt = mt + st + Yt, t ∈ T, (1)

where (mt)t∈T denotes the trend function, (st)t∈T the seasonal effects and (Yt)t∈T the residuals.
Time series are used widely in many different fields such as economics, social science, biology
and physics.

Time series modeling steps include 1) removing trend and seasonal components from the
series, 2) assessing the residuals, 3) modeling the residuals.

3.1 Trend and Seasonal Components Removal

• Assuming st = 0 for all t ∈ T , then Xt = mt + Yt with E[Yt] = 0. There are three
methods to estimate the trend of this time series.

1. Least Squares Estimation

2. Smoothing with Moving Averages

3. Differencing

• If st 6= 0 such that st+d = st and
∑d
j=1 sj = 0 where d is the period of the seasonal

component, then

Xt = mt + st + Yt, t ∈ T

with E[Yt] = 0. We also have three methods to remove trend and seasonal components
from a given time series.

1. Small Trend Method

2. Moving Average Estimation

3. Differencing at lag d

9
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3.2 Stationary Time Series

Before modelling residuals, we need to make sure that the residuals are stationary. There are
two classes of stationarity, strict stationarity and weak stationarity.

Definition:(Strict Stationarity) A stochastic process (Xt)t∈T is called strictly stationary
if, for all t1, . . . , tn ∈ T and h such that t1 + h, . . . , tn + h ∈ T , it holds that

(Xt1 , . . . , Xtn) D= (Xt1+h, . . . , Xtn+h)

That is, the so-called finite-dimensional distributions of the precess are invariant under time
shifts. Here, D= indicates equality in distribution.

Definition:(Weak Stationarity) A stochastic process (Xt)t∈T is called weakly stationary
if

• the second moments are finite: E[X2
t ] <∞ for all t ∈ T ;

• the means are constant: E[Xt] = m for all t ∈ T ;
• the covariance of Xt and Xt+h depends on h only:

γ(h) = γx(h) = Cov(Xt, Xt+h), h ∈ T such that t+ h ∈ T,

is independent of t ∈ T and is called the autocovariance function (ACVF). Moreover,

ρ(h) = ρX(h) = γ(h)
γ(0) , h ∈ T

is called the autocorrelation function (ACF).

3.3 ARMA Processes

After obtaining a stationary time series, we can model the series using ARMA models. By
the decompostion theorem, any stationary series can be approximated by stationary ARMA
model.

Definition:(ARMA processes) (a) A weakly stationary process (Xt)t∈Z is called an au-
toregressive moving average time series of order (p, q), abbreviated by ARMA(p, q), if it
satisfies the following equation

Xt = φ1Xt−1 + · · ·+ φpXt−p + Zt + φ1Zt−1 + · · ·+ φqZt−q, t ∈ Z, (2)

where φ1, . . . , φp and θ1, . . . , θq are real constants, φp 6= 0 6= θq and (Zt)t∈Z ∼WN(0, σ2).

10
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(b) A weakly stationary stochastic process (Xt)t∈Z is called an ARMA(p, q) time series with
mean µ if the precess (Xt ∼ µ)t∈Z satisfies the equation system above.

We define the autoregressive polynomial and the moving average polynomial by

φ(z) = 1− φ1z − φ2z
2 − · · · − φpzp, z ∈ C

θ(z) = 1 + θ1z + θ2z
2 + · · ·+ θqz

q, z ∈ C

Together with the backshift operater, B, we can write equation (2) in a concise form as

φ(B)Xt = θ(B)Zt, t ∈ Z

Definition (Linear processes): A stochastic process (Xt)t∈Z is called linear process or
MA(∞) time series if there is a sequence (ψj)j∈N0 with ∑∞

j=0 |ψj| <∞ such that

Xt =
∞∑
j=0

ψjZt−j t ∈ Z,

where (Zt)t∈Z ∼WN(0, σ2). We can also write a linear process as Xt = ψ(B)Zt where t ∈ Z.

3.3.1 Causality and Invertibility Properties of ARMA Processes

An MA(q) model is always stationary without conditions on the coefficients θ1, . . . , θq. An
AR(1) process can be written as

Xt = φXt−1 + Zt =
∞∑
j=0

φjZt−j

with |φ| < 1. This is a linear process. Hence, AR(1) is stationary. If |φ| > 1, the autoregressive
processes of order one are called explosive. From the above cases of AR(1) models, we would
like to define the notion of causality which means the process (Xt)t∈Z has a representation in
terms of the white noise (Zs)s≤t and is hence independent of the future as given by (Zs)s>t.

Definition (Causality): An ARMA(p, q) process given by (2) is causal if there is q sequence
(ψj)j∈N0 such that ∑∞

j=0 |ψj| <∞ and

Xt =
∞∑
j=0

ψjZt−j, t ∈ Z

Theorem: Let (Xt)t∈Z be an ARMA(p, q) process such that the polynomials φ(z) and θ(z)
have no common zeroes. Then (Xt)t∈Z is causal if and only if φ(z) 6= 0 for all z ∈ C with
|z| ≤ 1. The coefficients (ψj)j∈N0 are determined by the power series expansion

11
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ψ(z) =
∞∑
j=0

ψjz
j = θ(z)

φ(z) , |z| ≤ 1

Another concept closely related to causality is invertibility.

Definition (Invertibility): An ARMA(p, q) process given in (2) is invertible if there is a
sequence (πj)j∈N0 such that ∑∞

j=0 |πj| <∞ and

Zt =
∞∑
j=0

πjXt−j, t ∈ Z

Theorem: Let (Xt)t∈Z be an ARMA(p, q) process such that the polynomials φ(z) and θ(z)
have no common zeros. Then (Xt)t∈Z is invertible if and only if θ(z) 6= 0 for all z ∈ C with
|z| ≤ 1. The coefficients (πj)j∈N0 are determined by the power series expansion

π(z) =
∞∑
j=0

πjz
j = φ(z)

θ(z) , |z| ≤ 1

3.3.2 The PACF of a Causal ARMA Process

Definition (Partial autocorrelation function): Let (Xt)t∈Z be a weakly stationary
stochastic process with zero mean. Then, we call the sequence (φhh)h∈N given by

φ11 = ρ(1) = Corr(X1, X0),

φhh = Corr(Xh −Xh−1
h , X0 −Xh−1

0 ), h ≥ 2,

the partial autocorrelation function (PACF) of (Xt)t∈Z. Therein,

Xh−1
h = regression of Xh on (Xh−1, . . . , X1)

= β1Xh−1 + β2Xh−2 + · · ·+ βh−1X1

Xh−1
0 = regression of X0 on (X1, . . . , Xh−1)

β1X1 + β2X2 + · · ·+ βh−1Xh−1

AR(p) MA(q) ARMA(p,q)

ACF tails off cuts off after lag q tails off
PACF cuts off after lag p tails off tails off

[Table 1: The behavior of ACF and PACF for AR, MA, and ARMA processes]
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[Figure 3.1: ACFs and PACFs of an AR(2)-top, MA(3)-middle and ARMA(1,1)-bottom]
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3.3.3 Forecasting

Definition (One-step Best Linear Predictors (BLP)): Given the observed variables
X1, . . . , Xn of a weakly stationary time series (Xt)t∈Z, one-step best linear predictors are
linear combinations

X̂n+1 = φn0 + φn1Xn + · · ·+ φnnX1

of the observed variables X1, . . . , Xn that minimize the mean-squared error

E[Xn+1 − g(X1, . . . , Xn)2]

for functions g of X1, . . . , Xn.

Theorem (Best linear prediction): Let (Xt)t∈Z be a weakly stationary stochastic process
of which we observe X1, . . . , Xn. Then, the one-step BLP X̂n+1 of Xn+1 is determined by the
equations

E[(Xn+1 − X̂n+1)Xn+1−j] = 0 (3)

for all j = 1, . . . , n+ 1 where X0 = 1.

Assume (Xt)t∈Z has mean 0 ie. φn0 = 0. Then, with the ACVF γ of (Xt)t∈X, the equation (3)
in theorem above can be expressed as

n∑
l=1

φnlγ(j − l) = γ(j), , j = 1, . . . , n (4)

In matrix notation, let Γn = (γ(j − l))j,l=1,...,n, φn = (φn1, . . . , φnn)T and γn =
(γ(1), . . . , γ(n))T . With these notations, equation (4) becomes

Γnφn = γn ⇐⇒ φn = Γ−1
n γn, (5)

provided that Γn is nonsingular.

Let Xn = (Xn, Xn−1, . . . , X1)T , then X̂n+1 = φT
nXn. To access the quality of the prediction,

the mean-squared error can be computed as following:

Pn+1 = E[(Xn+1 − X̂n+1)2]

= γ(0)γT
nΓ−1

n γn

For large n, it is an expensive process to compute the inverse matrix Γ−1
n . There are recursive

prediction methods that help us avoid taking the inverse of Γn. They are Durbin-Levinson
algorithm, innovations algorithm and prediction based on the infinite past.

14
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3.3.4 Parameter Estimation

For a causal and invertible ARMA(p, q) process with zero mean, let β = (µ, φ1, . . . , φp, θ1, . . . , θq, σ
2)T

be the parameter vector. Three methods of parameter estimation are method of moments,
maximum likelihood estimation and least square estimation. Method of moments works best
in case of pure AR processes. For the general ARMA processes, maximum likelihood and
least square methods provide more efficient estimators.

15
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4 Missing Values Estimation

4.1 Statistical Approaches to Assessing Pesticide Concentrations
in the DPR Surface Water Database

Robert H. Shumway was a Statistics professor at University of California, Davis. Time Series
Analysis is one of his research interests, and he had worked on DPR Pesticide Database in
2000 and 2001. One of the datasets that Shumway analyzed contained measurements taken
in the Orestimba Creek tributary of the San Joaquin River (locations include State Highway
33, Crow Creek drain and River Road) on pesticides chlorpyrifos, diazinon and methidathion
during the period April, 1996 to May, 1997. This dataset had similar issues of sparsity
and strong cencoring as discussed above. Therefore, Shumway used Kalman filtering and
smoothing to pre-process data before model fitting. In addition, a fourth root transformation
was applied to stabilize variances and to improve the approximation to stationarity. Since the
analysis was done on two different pesticides at three different locations, Shumway calculated
the correlation matrix that reflected the spatial correlation between different pesticides at
different locations. The ACF plot indicated a non-stationary or long memory process while
PACF plot showed an AR(1) model would suffice.

Shumway also used the state model
−→
Y t = −→x t +−→v t (6)

where A is a q × p matrix and Yt is an independent multivariate normal vector with mean 0
and common (identical) q × q matrix R.

The unobserved data is assumed to evolve through time and space. Then, the state equation
is given as

−→x t = Φ−→x t−1 +−→w t (7)

where Φ is a p×p matrix that summarizes the space-time regression relation for the unobserved
signal and −→w t are independent normal noise vectors with a common p× p covariance matrix
Q.

Transformed diazinon concentrations at three locations are modelled as

yti = xti + vti

for the i = 1, 2, 3 locations at time t by taking the observation matrix A as a 3× 3 identity

16



Missing Values Estimation

matrix and the state equation is

xti = φi1xt−1,1 + φi2xt−1,2 + φi3xt−1,3 + wti

for i = 1, 2, 3, giving a set of transitions in space and time governing the evolution of the
pesticide concentrations.

Since the purpose of the paper is to predict the pesticide concentrations in a given area,
we need a model that expresses observed series in terms of a common signal. To deal with
the problem of irregular sampling and long sequences of observed values that are below
detection limits, irregularly observed and episodic fluctuations are merged into a common
signal. Probability limits for that signal are of interest for determining if standards have
been exceeded.

In the example of diazinon concentration mentioned above, the first step of the procedure
is to measure the transition matrix Φ, the observation covariance matrix, R, and model
covariance matrix Q. Those parameters can be estimated by maximum likelihood method.
Then, Kalman filters and smoothers are used to estimate the unobserved process, −→x t and its
uncertainty by the following equations.

The state-space model defines the signal −→X t in terms of the following equations

−→
Y t = A−→x t +−→v t

−→x t = φ−→x t−1 +−→w t

The signal is estimated by the Kalman smoothed values

xnt = E{xt|y1, . . . , yn} (8)

The uncertainty of the smoothed values is expressed as the mean square covariance

P n
t = E[(xnt − xt)(xnt − xt)′|y1, . . . , yn] (9)

Under the assumption that the errors −→y t and −→w t are normally distributed, prediction intervals,
at any given probability level, available from two equations (8) and (9) above.

4.2 Interpolating Missing Values in a Time Series

In time series, a period of missing values can be estimated by forecasting from previous values
and backcasting from later values. Eivind Damsleth introduced an algorithm that combined
forecasts and backcasts into between-forecasts with a minimum forecast error. This method
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requires the data to have sufficient length for parameters and the model to be estimated
correctly. We also presume that the parameters of the ARIMA-model are known.

First, the notations used for this algorithm are defined as following:

• A forward representation of an ARIMA(p, d, q) process is defined as

φ(B)(1−B)dXt = θ(B)Et

where B is the backward shift operator and

φ(B) = 1− φ1B − · · · − φpBp

θ(B) = 1− θ1B − · · · − θqBq, such that φ(B)θ(B) = 0

and {Et} is a sequence of independent identically distributed normal random variables with
mean zero and variance σ2

z .

• Given the observations xq, xq−1, . . . the minimum mean square error for forward forecast
of xq+l(l ≥ 1) at time q is

êq(l) =
l−1∑
j=0

ψjEq+l−j, ψ0 = 1

where ψj are defined by θ(B) = (1 + ψ1B + ψ2B
2 + · · · )φ(B)(1−B)d.

• A backward representation of an ARIMA(p, d, q) model is expressed as

φ(F )(1− F )dxt = θ(F )ct

where F is the forward shift operator such that F jxt = xt+j and {ct} is a sequence of
indpedent identically distributed normal random variables with mean zero and variance σ2

c

with σ2
z = σ2

c .

• Given xq+m+j(j ≥ l) the minimum mean square error for backward forecast xq+l at
time q +m+ l is

ẽs(m+ 1− l) =
m−l∑
j=0

ψjcq+l+j, s = q +m+ l

The algorithm for finding the best linear combination between forecasting and backcasting is
given as

i) Calculate the optimal forecast êq(l) using φ(B)(1−B)dXt = θ(B)Et and the optimal
backcast ẽs(m+ 1− l) using φ(F )(1− F )dxt = θ(F )ct.
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ii) Calculate the coefficients πj of Bj in the polynomial expansion of θ(B)
φ(B) for j =

0, 1, . . . ,max(l − 1,m− l).

iii) Calculate the cross covariance function γae(j) for j = 0, 1, . . . ,m− l, using

θ(F )(1−
p+j∑
i=1

φjB
j)γae(j − s) = ±αjσ2, −p ≤ j ≤ 0,

θ(B)(1
q−j∑
i=1

θiF
i)γae(j − s) = ±αjσ2, 0 ≤ j ≤ q

This gives p + q + 1 linear equations in p + q + 1 unknowns γae(−p − s), γae(−p − s +
1), . . . , γae(q − s − 1, γae(q − s), which can be solved. The solutions will provide starting
values for the difference equation θ(F )φ(B)γae(j − s) = ±αjσ2, j = . . . ,−1, 0, 1, . . . where
αj is the coefficient of Bj in θ(B)φ(B−1), given by the following:

αj =



0 j < −p

−φ−j + ∑min(p+j,q)
j=1 φi−jθi −p ≤ j ≤ −1

1 + ∑min(p,q)
i=1 φiθi j = 0

−θj + ∑min(p,q−j)
i=1 φiθi+j 1 ≤ j ≤ q

0 j > q

iv) Calculate

v(ê) from (
l−1∑
j=0

ψ2
j )σ2

z ,

v(ẽ) from (
m−1∑
j=0

ψ2
j )σ2

z , and

σ12 =
l−1∑
i=0

m−l∑
k=0

ψiψjγae(i+ j)

where γae(k) is the cross covariance function between {ak} and {el}.

v) If {Xt} is stationary then calculate c and d as the solutions to

(Ex2 − σ2
1)c+ (Ex2 + σ12 − σ2

1 − σ2
2)d = Ex2 − σ2

1

(Ex2 + σ2
12 − σ2

1 − σ2
2)c+ (Ex2 − σ2

2)d = Ex2 − σ2
2
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In the non-stationary case, we calculate c from

c = σ2
2 − σ12

σ2
1 + σ2

2 − 2σ12
and d = 1− c

vi) The optimal between-forecast of xr+l is then given by

c(êq(l) + Ex) + d(ẽq+m+l(m+ 1− l) + Ex)

4.3 Interpolating Missing Values for Diazinon Dataset

4.3.1 Data Exploration

In this section, we will try to implement Damsleth’s algorithm of interpolating missing values.
Out of 339 different pesticides, diazinon has the largest number of observations. For diazinon,
San Joaquin River station near Vernalis (code: 39-17) has the most observations. Therefore,
we will try to implement Damsleth’s algorithm to interpolate missing values in this dataset.
This is the same dataset that Shumway used in his analysis. However, he subsetted the
data to contain observations from April 1996 to May 1997 only. This dataset contains 8277
observations from 1991 to 2013.

0

50

100

150

1 2 3 4 5 6 7 8 9101112
Month

 C
on

ce
nt

ra
tio

n 
(µ

g
L) year

1991
1992
1993
1994
1995
1996 0

50

100

150

1 2 3 4 5 6 7 8 9101112
Month

 C
on

ce
nt

ra
tio

n 
(µ

g
L) year

1997
1998
1999
2000
2001
2002

0

20

40

60

1 2 3 4 5 6 7 8 9101112
Month

 C
on

ce
nt

ra
tio

n 
(µ

g
L) year

2003
2004
2005
2006
2007
2008 0

10

20

30

40

50

1 2 3 4 5 6 7 8 9101112
Month

 C
on

ce
nt

ra
tio

n 
(µ

g
L) year

2008
2009
2010
2011
2012
2013

[Figure 4.1: Plot of diazinon concentrations over twelve months from 1991 to 2013]

20



Missing Values Estimation

We plot the diazinon concentrations over twelve months for all the years and observe that
only from 1991 to 2002, we have a good amount of observations. From 2003 to 2013, the
numbers of observations in each year are too limited, hence, not enough for us to analyze.
Therefore, we subset the dataset to contain only observations from 1991 to 2002. Moreover,
January, February and March tend to have the most observations compared to other months
in all years. This suggests that diazinon is usually applied during the time near those months.

Out of all the years, 1992 to 1994 have the most observations, so we take a closer look at
observations taken in January, February and March in those years to explore if there is any
pattern during those periods. In this subset data, there is a large amount of days that have
concentrations measured at 1 µg/L. This value seems to be unreasonable when all other
observations are above 50 µg/L. Hence, we decided to impute days with concentrations as 1
µg/L by the lowest concentration of the month. In addition, we also imputed the missing
days with the average of the month.
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[Figure 4.2: Diazinon concentrations during January, February and March in 1992 to 1994]

Figure 4.2 shows the patterns of diazinon concentration from January to March in 1992, 1993
and 1994. The range of diazinon concentration during those periods in the three years are
within 75 - 175 µg/L. The patterns in those three years are not exactly the same. However,
we can see that during those months, diazinon concentration went up twice. For 1992, the
concentration went up in mid February and again mid March. For 1993, the concentration
went high in mid January and again in mid Februray. In 1993, the spikes in concentration
happened closer to each other than the previous years, at the end of January and mid
February. We could conclude that farmers apply diazinon pesticide twice at the begining of
the year.
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4.3.2 Interpolating

Damsleth’s interpolating algorithm assumes the model of the time series is known. Hence,
first, we will find the most appropriate model for diazinon concentrations by estimating the
parameters for AR(1), AR(2), MA(1) and ARMA(1,1) models by least squared method using
the available data. For the below plots, I used log, square root and fourth root to transform
the monitoring data.
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[Figure 4.3: Fitted values of AR(1)-black, AR(2)-blue against the transformations of real
data-red]

In Figure 4.3, log transformed diazinon concentration is best modelled with AR(2) and fourth
root diazinon concentration is best modelled with AR(1). Even so, the RSS of the two models
are still high. The RSS from using AR(1) to model fourth root of diazinon concentration is
348516.7 and the RSS from using AR(2) to model log of diazinon concentration is 12484.82.
The RSS reduces significantly with AR(2) model compared to AR(1) model.
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5 Future Work

The initial goal of this project is to apply time series analysis to model pesticide concentration
in California water system. However, in order to model a time series with ARMA model, at
least 80% of data of that series should be present. However, we only have at most 20% of the
data. Due to the extensive missingness and sparsity in data, we cannot apply time series
analysis directly on the data. One solution for missing value problem is to interpolate the
time series with the algorithm provided by Eivind Damsleth. Before we interpolate missing
values in a time series, we have to examine the patterns of missing values. However, with
the datasets that we have at hand, the missing values occur mostly randomly. Therefore,
the interpolation method does not give an accurate result in this project. The missingness
and sparsity in data that we face in this project is a complicated problem and need more
time to solve. Another proposed approach for future work is to use Bayesian Inference with
physical model CalFed predictions as our prior knowledge to build a statistical model. Then
we can use the moniotring data to update our model and find the posterior distribution
of the pesticide concentrations. Then, we can analyze the posterior distribution and infer
the pesticide concentrations. However, this approach requires a good understanding of the
physical model before we can build our statistical model.
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A Appendices

A.1 R Code

A.1.1 Map of Monitoring Stations

library(rgdal)
library(ggplot2)
Imi = read.csv("~/Desktop/DPR/Imidacloprid.csv")
#map for Imidacloprid

mapdat1 = data.frame(Imi$LONGI_NAD8, Imi$LAT_NAD83,
Imi$SITE_CODE,Imi$comID)

colnames(mapdat1) = c("Long_NAD83", "Lat_NAD83","site", "comID")
mapdat1$Lat_NAD83 = as.numeric(as.character(mapdat1$Lat_NAD83))
mapdat1$Long_NAD83 = as.numeric(as.character(mapdat1$Long_NAD83))
mapdat1$site = as.character(mapdat1$site)
dsn = system.file("vectors", package ="rgdal")[1]
cali = readOGR(dsn=dsn, layer = "CA_Counties_TIGER2016")
#need to put shp file in to vector folder of rgdal package

#class(mapdat1) #data.frame

coordinates(mapdat1) = ~Long_NAD83+Lat_NAD83
#class(mapdat1) # "SpatialPoints"

#attr(,"package")

#"sp"

#proj4string(mapdat1) #NA

proj4string(mapdat1) = CRS("+proj=longlat +datum=WGS84")
#WGS84 is obtained from .prj file read by texteditor

mapdat1 = spTransform(mapdat1, CRS(proj4string(cali)))
#identical(proj4string(mapdat1), proj4string(cali))#TRUE

mapdat1 = data.frame(mapdat1)
names(mapdat1)[names(mapdat1)=="Long_NAD83"] = "x"
names(mapdat1)[names(mapdat1)=="Lat_NAD83"] = "y"
ggplot()+geom_polygon(data=cali, aes(x=long, y = lat, group =group))+

geom_point(data = mapdat1, aes(x=x,y=y), color = "red")+
ggtitle( "Station plot of Imidacloprid")
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A.1.2 Extracting Catchment Attributes

##matching COMID
library(gdata)

#read all the attribute files

filenames = list.files("/Users/huongvu/Desktop/DPR/attributes",
pattern="*.csv", full.names=TRUE)

all.file = lapply(filenames, read.csv)

#read in list of Site names

Site = read.xls("~/Desktop/DPR/CentralCoastSiteComID.xlsx",
header = TRUE, skip = 1, sheet = 1)

Station = unique(Site[,2]) #get unique ComID

#function to extract attributes in ComID order from CA files

extract = function(file) {
file = file[which(file[,1]%in%Station),]

}
#function order

sort.COMID = function(file){
print(file)
file = file[order(file[,1]),]

}

#extract COMID

data.file = lapply(all.file, extract)
#test if all COMIDs are extracted

for (i in 1:50){
if (nrow(data.file[[i]]) == nrow(data.file[[i+1]]))

print("TRUE")
}

#ordering data according to COMID

data.file = lapply(data.file,sort.COMID)
#test if sorting is right

for (i in 1:50){
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result = all(data.file[[i]][,1] == data.file[[i+1]][,1])
print(result)

}

#combining all tables

big.table = data.file[[1]]
for (i in 2:51){

big.table = cbind(big.table, data.file[[i]][,-1])
}
write.csv(big.table, "Big Table.csv")
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