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Abstract. An affine semigroup is a set of non-negative integer vectors that is closed
under addition. Affine semigroups are central objects of study in algebraic combi-
natorics, discrete geometry, and optimization. Many noteworthy functions that are
defined on an affine semigroup restrict to polynomials on subsets of the respective
semigroup, called cones. Many of the proofs that such decompositions exist are exis-
tential, meaning that no precise collection of cones is known. By better understanding
a precise decomposition into cones, we can gain further insight into its original func-
tion. This paper introduces AffineSemigroup, the software package, designed to ease
the process of finding a semigroup decomposition as a union of cones. Utilizing the
existing graphics system in Sage, an open source computer algebra system comparable
to Mathematica or Matlab, our software package automates the process of defining
cones one-by-one in succession until a complete decomposition of the semigroup is
obtained. We provide a clear and intuitive interface allowing the user to choose the
basepoint and generators that define each cone, at each step updating the graphic
representation to aide the user in placing the next cone.

1. Introduction

An affine semigroup is a set of non negative integer vectors that is closed under
vector addition, and a cone is a translation of a subsemigroup of an affine semigroup
generated by linearly independent vectors.

For example, consider the semigroup generated by (2, 0), (1, 1), (0, 2) ∈ Z2
≥0. We can

see in Figure 1a the elements of the semigroup A = 〈(2, 0), (1, 1), (0, 2)〉 generated
up to (25, 25). In this particular example, this figure also illustrates the number of
factorizations associated with each element of the semigroup. A factorization of an
element is a tuple indicating how many generators are used to represent the element.
For instance, (15, 15) = 7(2, 0) + 1(1, 1) + 7(0, 2) is an example of a factorization of
the element (15, 15) ∈ A. The number of factorization counts the number of different
ways to represent the element using the generators. Following the example above,
(15, 15) ∈ A has a total of 8 factorizations given by

{(7, 1, 7), (2, 11, 2), (0, 15, 0), (5, 5, 5), (6, 3, 6), (3, 9, 3), (4, 7, 4), (1, 13, 1)}.
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(a) A = 〈(2, 0), (1, 1), (0, 2)〉
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(b) C1 = 〈(0, 0); (0, 2), (2, 2)〉
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(c) C2 = 〈(1, 1); (0, 2), (2, 2)〉
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(d) C3 = 〈(2, 0); (2, 0), (2, 2)〉
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(e) C4 = 〈(3, 1); (2, 0), (2, 2)〉
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(f) Decomposition

Figure 1
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Utilizing the generators (0, 2) and (2, 2), we can restrict the semigroup to a cone C1 =
〈(0, 0); (0, 2), (2, 2)〉, and translating by (1, 1), we yield the cone C2 = 〈(1, 1); (0, 2), (2, 2)〉.
Similarly, we can restrict the semigroup by (2, 0) and (2, 2), and translating by (2, 0)
yielding the cone C3 = 〈(2, 0); (2, 0), (2, 2)〉 and and translating by (1, 1) yielding the
cone C4 = 〈(3, 1); (2, 0), (2, 2)〉. Restricting the number of factorizations to each cone
yields a polynomial c1x+ c2y + c3 = f(x, y).

C1 = 〈(0, 0); (0, 2), (2, 2)〉 ; 1
2
x+ 0y + 1 = f(x, y)

C2 = 〈(1, 1); (0, 2), (2, 2)〉 ; 1
2
x+ 0y + 1

2
= f(x, y)

C3 = 〈(2, 0); (2, 0), (2, 2)〉 ; 0x+ 1
2
y + 1 = f(x, y)

C4 = 〈(3, 1); (2, 0), (2, 2)〉 ; 0x+ 1
2
y + 1

2
= f(x, y)

Notice how the union of C1, C2, C3, and C4 is equal to the A. This is known as a
decomposition.

In this paper we introduce AffineSemigroup, a software package designed to ease
the process of finding a semigroup decomposition as a union of cones. This current
version supports the basic functionality of the algebraic structure affine semigroup by
running needed functionalities through GAP. We also include plotting functions to
help identify and spot patterns for relevant data pertaining to affine semigroup. This
package also includes the functionalities of cones. In its own class definition, the Cone
object has member functions that further benefits the decomposition process. In par-
ticular, unique member functions that gives the user more insight into the polynomials
that exists behind each abstract object. Finally, this software package is currently
focused towards the development of the ConeDecomposition class; specifically, to
provide an automated process to allow the user to recursively define cones to obtain a
complete decomposition of the semigroup desired.

This software package is available at
http://github.com/coneill-math/affinesgps-sage.

This paper will provided a summary of the relevant definitions that pertain to soft-
ware package, in Section 2, then explore a comprehensive documentation of the software
package. We explore in detail the functionalities of the object classes

AffineSemigroup, Cone, and ConeDecomposition

in Section 3. In addition, we give a detailed walkthrough of the automated Decom-
position process provided by the ConeDecomposition class, showcasing the various
options available in the interface in Section 4. As a result, we demonstrate an ob-
servation for 3-generated affine semigroup that was produced in the process of using
the software package in Section 5. Finally, in Section 6, we conclude the paper with
conjectures formulated from our observations.

http://github.com/coneill-math/affinesgps-sage
http://github.com/coneill-math/affinesgps-sage
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2. Background

In this section, we recall several definitions used in this paper.

Definition 2.1. An affine semigroup A is a subsemigroup of (Zd
≥0,+), d ≥ 2, generated

by some finitely many vectors. We write A = 〈g1, ..., gn〉, where g1, ..., gn are the
generators of A. The factorization of an element a ∈ A is a tuple, (x1, ..., xn) where
a = x1g1 + ...+ xngn. The length of a factorization (x1, ..., xn) is x1 + ...+ xn, i.e. the
number of generators appearing in the factorization.

Example 2.2. Let A = 〈(1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5)〉. Referring to Figure 2a
we can see the elements of A up to (20, 20).

Example 2.3. Let B = 〈(11, 7), (17, 23), (5, 13)〉. Referring to Figure 3a we can see B
represented up to the maximum of (100, 100).

Definition 2.4. The minimum factorization length is defined as the minimum of the
factorization set of an element. Similarly, the maximum factorization length is the
maximum of the factorization set of an element.

Example 2.5. Referring to Figure 2c and 2d we can see the minimum and maximum
factorization of elements in A represented up to (20, 20). Similarly, we can see in Figure
3c and 3d, the the minimum and maximum factorization of elements in B represented
up to (100, 100).

Definition 2.6. Let A = 〈g1, ..., gn〉 be an affine semigroup.

1. A relation is a pair {(x1, ..., xn), (y1, ..., yn)} of factorization for the same element
a ∈ A.

2. The minimal presentation of A is a collection of minimal relations of its genera-
tors.

Definition 2.7. The Cone generated by α1, ..., αn translated by β is the set

C = 〈β;α1, ..., αn〉 =

{
β +

n∑
j=1

cjαj : c1, ..., cn ∈ Q

}
⊂ A.

Definition 2.8. Let A be an Affine Semigroup. We define a decomposition of A is
the union of a finite set of cones C1, ..., Cn such that A =

⋃
iCi.

Example 2.9. Let X = 〈(2, 0), (2, 2), (0, 2)〉. We can define the following cones, C1 =
〈(0, 0); (0, 2), (1, 1)〉 and C2 = 〈(2, 0); (2, 0), (1, 1)〉, such that C1, C2 ⊂ X and X =
C1 ∪ C2 forms a decomposition of X. Refer to Figure 4.

Definition 2.10. Fix an affine semigroup A, function f : A → R is eventually
quasipolynomial if there exists a decomposition for A so that f restricts to a poly-
nomial on each cone. For more information on quasipolynomial, we direct the reader
to [2].
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(a) The affine semigroup A in Example 2.2.
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(b) Number of factorizations
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(c) Minimum factorization length
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(d) Maximum factorization length

Figure 2

3. Class Documentation

AffineSemigroup is a software package that consists of three main object defi-
nitions: AffineSemigroup, Cone, and ConeDecomposition. In this section, we
demonstrate the functionality that each class provides.
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(a) The affine semigroup B from Example 2.3.
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(b) Number of Factorization
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(c) Minimum Factorization
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(d) Maximum Factorization

Figure 3

3.1. The AffineSemigroup Class. An object class that supports the basic func-
tionality of the algebraic structure, Affine Semigroup, by running the need functional-
ities through GAP.

AffineSemigroup(self,gens)
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(a) The affine semigroup X from Example 2.9.
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Figure 4

The object constructor initializes a AffineSemigroup object by defining its gener-
ators, gens.

sage: A = AffineSemigroup([[1,3],[3,3],[3,1]])
sage: A.gens
[[1, 3], [3, 1], [3, 3]]
sage: B = AffineSemigroup([[1, 3], [4, 5], [7, 9]])
sage: B.gens
[[1, 3], [4, 5], [7, 9]]

contains (self,other)
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(a) A.Plot(25,25)
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(b) A.Plot(25,25,MaxFact)

Figure 5

A helper function that returns True if other is the element of the semigroup and
returns False otherwise.

sage: A = AffineSemigroup([[2, 3], [3, 5], [5, 3]])
sage: [0,0] in A
True
sage: [2,3] in A
True
sage: [4,3] in A
False
sage: [4,4] in A
False

GenericGapCallGlobal(self, gapfuncname)
Given a gap object, this function returns the corresponding sage object. This func-
tionality serves a a wrapper functions to call the existing GAP functions and convert
them to Sage objects.

Plot(self,xmax,ymax,ptsize=None,func=None)
A member function that returns a plot that maps the members of the AffineSemigroup
from [0,0] to [xmax,ymax].

sage: A = AffineSemigroup([[1,3],[3,3],[3,1]])
sage: A.Plot(20,20)



A SOFTWARE PACKAGE FOR DECOMPOSING AFFINE SEMIGROUPS 9

Launched png viewer for Graphics object consisting of 1 graphics
primitive

sage: A.Plot(20,20,MaxFact)
Launched png viewer for Graphics object consisting of 182 graphics

primitives

Refer to Figure 5.

Factorizations(self,v)
A member function that returns the factorization of the element v.

sage: A.Factorizations([40,50])
[[13, 8, 1], [10, 5, 5], [7, 2, 9]]
sage: B.Factorizations([40,50])
[[0, 10, 0]]

FactorizationsUpToElement(self, v)
A member function that utilizes a dynamic programming algorithm to generate the
factorizations of every element up to the element v. For each element leading up to v,
this function saves the factorization of the each element interally.

sage: A = AffineSemigroup([[1,3],[3,3],[3,1]])
sage: time A.Factorizations([50,50])
CPU times: user 33.1 ms, sys: 6.31 ms, total: 39.4 ms
Wall time: 41.5 ms
[[11, 11, 2], [8, 8, 6], [5, 5, 10], [2, 2, 14]]
sage: time A.FactorizationsUpToElement([50,50])
CPU times: user 3.58 s, sys: 599 ms, total: 4.18 s
Wall time: 4.66 s
sage: time A.Factorizations([50,50])
CPU times: user 1.2 ms, sys: 703 s , total: 1.9 ms
Wall time: 1.46 ms
[[11, 11, 2], [8, 8, 6], [5, 5, 10], [2, 2, 14]]

LengthSet(self,v)
A member function that returns the length of the element v.

sage: A.LengthSet([1,3])
[1]
sage: A.LengthSet([15,15])
[5, 7]
sage: A.LengthSet([40,50])
[18, 20, 22]
sage: B.LengthSet([7,9])
[1]
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sage: B.LengthSet([40,50])
[10]

MinimalPresentation(self)
A member function that returns the minimal presentation of the semigroup.

sage: A.MinimalPresentation()
[[[3, 3, 0], [0, 0, 4]]]
sage: B.MinimalPresentation()
[[[1, 12, 0], [0, 0, 7]]]

ElementOfMinimalPresentation(self)
A member function that returns the elements that corresponds to each set of elements
in its minimal presentation.

sage: A.ElementOfMinimalPresentation()
[[12, 12]]
sage: B.ElementOfMinimalPresentation()
[[49, 63]]

ElementsUpToElement(xmax,ymax)
A helper function that takes in a semigroup, semigroup and returns a list of points
up to [xmax,ymax] that are members of the semigroup.

sage: A = AffineSemigroup([[1, 2], [2, 1], [1, 5]])
sage: A.ElementsUpToElement(5,5)
[[0, 0], [1, 2], [1, 5], [2, 1], [2, 4], [3, 3], [4, 2], [4, 5], [5, 4]]

Elasticity(self,v=None)
OmegaPrimality(self,v=None)
CatenaryDegree(self,v=None)
DeltaSet(self,v)
Member functions for semigroup theoretic functions. See for precise definitions.

sage: A = AffineSemigroup([[5, 1], [1, 3], [2, 5]])
sage: A.Elasticity()
12/7
sage: A.Elasticity([10,25])
1.0
sage: A.OmegaPrimality()
24
sage: A.OmegaPrimality([10,25])
24
sage: A.CatenaryDegree()
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24
sage: A.CatenaryDegree([10,25])
0
sage: A.DeltaSet([10,25])
[]

3.2. The Cone Class. An object class that supports the functionalities of cones,
specifically focused on member functions to give more insight into the polynomials
that each cone restricts to.

Cone(self,basepoint,gens,semigroup,degree=None,func=None)
This object constructor initializes a Cone object by taking in the basepoint, basepoint,
generator list, gens, relevant to the specified semigroup, semigroup, with the op-
tion to specify a degree, degree, or unique function, func, to calculate the necessary
polynomial.

sage: A = AffineSemigroup([[1,3],[3,3],[3,1]])
sage: cone = Cone([0,0],[[1,3],[3,3]],A)
sage: cone.basepoint
[0, 0]
sage: cone.gens
[[1, 3], [3, 3]]

InitDegree(self,coeff)
A helper function that runs internally in the constructor. Defines the matrix of
the polynomial function defined with the given degree,self.degree, and function,
self.func, specified initially by the user in the Cone construction.

sage: A = AffineSemigroup([[1,3],[3,3],[3,1]])
sage: cone = Cone([0,0],[[1,3],[3,3]],A,2)
sage: cone.matrix
[ 0 0 0 0 0 1]
[ 1 3 9 1 3 1]
[ 9 9 9 3 3 1]
[ 4 12 36 2 6 1]
[16 24 36 4 6 1]
[36 36 36 6 6 1]
sage: cone = Cone([0,0],[[1,3],[3,3]],A,3)
sage: cone.matrix
[ 0 0 0 0 0 0 0 0 0 1]
[ 1 3 9 27 1 3 9 1 3 1]
[ 27 27 27 27 9 9 9 3 3 1]
[ 8 24 72 216 4 12 36 2 6 1]
[ 64 96 144 216 16 24 36 4 6 1]
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[216 216 216 216 36 36 36 6 6 1]
[343 441 567 729 49 63 81 7 9 1]
[729 729 729 729 81 81 81 9 9 1]

DrawCone(self,plot,xmax,ymax,color)
HighlightCone(self,plot,xmax,ymax,color)
PlotCone(self,plot,xmax,ymax,color)
Member functions that returns a plot of the semigroup with the elements of the cone
up to [xmax,ymax] in the color, color, specified.

sage: A = AffineSemigroup([[1,3],[3,3],[3,1]])
sage: plot = A.Plot(15,15)
sage: cone = Cone([0,0],[[1,3],[3,3]],A)
sage: cone.DrawCone(plot,15,15,"magenta")
sage: cone.HighlightCone(plot,15,15,"magenta")
sage: cone.PlotCone(plot,15,15,"magenta")

Refer to Figure 6.

ContainsPoints(self,point)
A member function that returns True if point is a member of the cone, False
otherwise.

sage: A = AffineSemigroup([[1,3],[3,3],[3,1]])
sage: cone = Cone([0,0],[[1,3],[3,3]],A,1)
sage: cone.ContainsPoint([2,2])
False
sage: cone.ContainsPoint([9,9])
True
sage: cone.ContainsPoint([100,100])
False
sage: cone.ContainsPoint([99,99])
True

4. The CONEDECOMPOSITION Class

The main functionality of this ConeDecomposition class is to provide an auto-
mated process to decompose affine semigroups. Using the member function

Decomposition(),

the user can recursively define cones, by their basepoints and generators, in order to
construct a semigroup decomposition. This function returns a list of cones of the
respective decomposition.
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(c) PlotCone

Figure 6

The object constructor,

ConeDecomposition(self,semigroup,xmax,ymax,func=None),

takes in the maximum coordinates, xmax and ymax, for the corresponding semigroup,
semigroup, with the option to specify a function, func, to calculate the necessary
polynomial for decomposition.
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sage: A = AffineSemigroup([[1,3],[3,3],[3,1]])
sage: disjoint = ConeDecomposition(A,30,30)

In order to aid the decomposition process, the function first prints the minimal pre-
sentation and elements of the minimal presentation of the underlying affine semigroup.

sage: conelist = disjoint.Decomposition(30,30)
Beginning Disjoint Decomposition for Affine Semigroup generated by [[1,

3], [3, 1], [3, 3]]
Minimal Presentation = [[[3, 3, 0], [0, 0, 4]]] @ [[12, 12]]

At each iteration of defining a cone, the function gives a list of suggested generators,
using the original generators of the affine semigroup. Cone definition is done by running
the cone object previously defined. Furthermore, the function gives suggested base-
points, based off of the remaining points in the function, utilizing the RemainingPts
function.

Defining Cone 1:
Cone generators Options- 0:[1, 3] 1:[3, 1] 2:[3, 3]
Please enter generators:[0,1]
Set Basepoint: (enter vector or 1 to keep set @ [0, 0]) 1
Preview -- Cone generate by [[1, 3], [3, 1]] with basepoint @ [0,

0]
Launched png viewer for Graphics object consisting of 180 graphics

primitives

*** Warning -- Cone Overlap @ []
0:Keep Cone / 1:Remove Current Cone / 2:Redefine Previous Cone(s)

/ 3: Add Cone & End Program / 4: End Program
Choose option: 1

Defining Cone 1:
Cone generators Options- 0:[1, 3] 1:[3, 1] 2:[3, 3]
Please enter generators:[0,1]
Set Basepoint: (enter vector or 1 to keep set @ [0, 0]) [3,3]
Preview -- Cone generate by [[1, 3], [3, 1]] with basepoint @ [3,

3]
Launched png viewer for Graphics object consisting of 180 graphics

primitives

*** Warning -- Cone Overlap @ []
0:Keep Cone / 1:Remove Current Cone / 2:Redefine Previous Cone(s)

/ 3: Add Cone & End Program / 4: End Program
Choose option: 3
Finished with 1 cone.

The Decomposition() function also supports the input of unique functions.

sage: maxFact = ConeDecomposition(A,15,15,MaxFact)
sage: conelist =maxFact.Decomposition(15,15)



A SOFTWARE PACKAGE FOR DECOMPOSING AFFINE SEMIGROUPS 15

Begining Decomposition for Affine Semigroup generate by [[1, 3], [3, 1],
[3, 3]]

Minimal Presentation = [[[3, 3, 0], [0, 0, 4]]] @ [[12, 12]]

Defining Cone 1:
Cone generators Options- 0:[1, 3] 1:[3, 1] 2:[3, 3]
Please enter generators:[0,2]
Set Basepoint: (enter vector or 1 to keep set @ [0, 0]) 1
Preview -- Cone generate by [[1, 3], [3, 3]] with basepoint @ [0,

0]
Launched png viewer for Graphics object consisting of 204 graphics

primitives
0:Keep Cone / 1:Remove Current Cone / 2:Redefine Previous Cone(s)

/ 3: Add Cone & End Program / 4: End Program
Choose option: 0
Cone generate by [[1, 3], [3, 3]] with basepoint @ [0, 0]

With each iteration of defining a new cone, the user has the option to: 0) keep
the current cone, 1) remove the current cone, 2) redefine the current cone, 3) add the
current cone to the list and end the program, 4) end the program. By providing a
plot preview of the current decomposition process, this gives the user a visual insight
to where they should place the next cone. In addition, with the given options at each
cone iteration, this interface gives the user flexibility to redefine previous cones.

Defining Cone 2:
Cone generators Options- 0:[1, 3] 1:[3, 1] 2:[3, 3]
Please enter generators:[0,1]
Set Basepoint: (enter vector or 1 to keep set @ [3, 1]) 1
Preview -- Cone generate by [[1, 3], [3, 1]] with basepoint @ [3,

1]
Launched png viewer for Graphics object consisting of 148 graphics

primitives

*** Warning -- Cone Overlap @ [[12, 12], [13, 15], [14, 18], [15,
21], [16, 24], [17, 27], [18, 30], [24, 24], [25, 27], [26,

30]]
0:Keep Cone / 1:Remove Current Cone / 2:Redefine Previous Cone(s)

/ 3: Add Cone & End Program / 4: End Program
Choose option: 1

Defining Cone 2:
Cone generators Options- 0:[1, 3] 1:[3, 1] 2:[3, 3]
Please enter generators:[1,2]
Set Basepoint: (enter vector or 1 to keep set @ [3, 1]) 1
Preview -- Cone generate by [[3, 1], [3, 3]] with basepoint @ [3,

1]
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(a) Cone 1 (b) Overlapping cone

(c) Cone 2

Figure 7

Launched png viewer for Graphics object consisting of 150 graphics
primitives

0:Keep Cone / 1:Remove Current Cone / 2:Redefine Previous Cone(s)
/ 3: Add Cone & End Program / 4: End Program

Choose option: 0

Refer to Figure 7.
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5. Data Results for 3 Generated Affine Semigroups

In our efforts to determine the leading coefficients of the quasipolynomials of Affine
Semigroups, we began by restricting our focus to decomposing Affine Semigroups gen-
erated by 3 generators over the constant 1 function. Utilizing the Affine Semigroup
packaged for decomposition, we made the following observations:

Example 5.1. Let A be an Affine Semigroup such that A = 〈(1, 3), (3, 1), (3, 3)〉. The
minimal presentation is

MinPres(A) = {(3, 3, 0), (0, 0, 4)}.
We can decompose the semigroup using only the middle generator to achieve a decom-
position utilizing 4 cones generated by (1, 3) and (3, 1) with a translation factors of
(3, 3). Refer to Figure 8.

sage: A = AffineSemigroup([[1,3],[3,3],[3,1]])
sage: decomposeA = ConeDecomposition(A,30,30)
sage: disjointA_1 = decomposeA.Decomposition(30,30)
Beginning Decomposition for Affine Semigroup generate by [[1, 3], [3, 1],

[3, 3]]
Minimal Presentation = [[[3, 3, 0], [0, 0, 4]]] @ [[12, 12]]
...
Finished with 4 cones
sage: disjointA_1

[<Cone with basepoint [0, 0] generated by [[1, 3], [3, 1]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [3, 3] generated by [[1, 3], [3, 1]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [6, 6] generated by [[1, 3], [3, 1]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [9, 9] generated by [[1, 3], [3, 1]] with
polynomial function 0x + 0y + 1>]

We can also decompose the semigroup using only the two outer generators to obtain
a decomposition with 6 cones: 3 cones generated by (1, 3) and (3, 3) with a translation
factor of (1, 3) and 3 cones generated by (3, 3) and (3, 1) with a translation factor of
(3, 1). Refer to Figure 9.

sage: disjointA_2 = A_decomp.Decomposition(30,30)
Beginning Decomposition for Affine Semigroup generate by [[1, 3], [3, 1],

[3, 3]]
Minimal Presentation = [[[3, 3, 0], [0, 0, 4]]] @ [[12, 12]]
...
Finished with 6 cones
sage: disjointA_2
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(a) (b)

(c) (d)

(e)

Figure 8. Example A Decomposition 1
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(a) (b)

(c) (d)

(e) (f)

Figure 9. Example A Decomposition 2
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[<Cone with basepoint [0, 0] generated by [[1, 3], [3, 3]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [3, 1] generated by [[1, 3], [3, 3]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [6, 2] generated by [[1, 3], [3, 3]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [9, 3] generated by [[3, 1], [3, 3]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [10, 6] generated by [[3, 1], [3, 3]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [11, 9] generated by [[3, 1], [3, 3]] with
polynomial function 0x + 0y + 1>]

Example 5.2. Let B = 〈(2, 3), (3, 1), (3, 2)〉. The minimal presentation is

MinPres(B) = {(3, 5, 0), (0, 0, 7)}.
We can decompose the semigroup using only the middle generator to achieve a de-
composition utilizing 7 cones generated by (2, 3) and (3, 1) with a translation factor of
(3, 2). Refer to Figure 10.

sage: B = AffineSemigroup([[2,3],[3,1],[3,2]])
sage: decomposeB = ConeDecomposition(B,30,30)
sage: disjoint_B_1 = decomposeB.Decomposition(30,30)
Beginning Decomposition for Affine Semigroup generate by [[2, 3], [3, 1],

[3, 2]]
Minimal Presentation = [[[3, 5, 0], [0, 0, 7]]] @ [[21, 14]]
...
Finished with 7 cones
sage: disjoint_B_1

[<Cone with basepoint [0, 0] generated by [[2, 3], [3, 1]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [3, 2] generated by [[2, 3], [3, 1]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [6, 4] generated by [[2, 3], [3, 1]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [9, 6] generated by [[2, 3], [3, 1]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [12, 8] generated by [[2, 3], [3, 1]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [15, 10] generated by [[2, 3], [3, 1]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [18, 12] generated by [[2, 3], [3, 1]] with
polynomial function 0x + 0y + 1>]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10. Example B Decomposition 1
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We can also decompose the semigroup using only the two outer generators to obtain
a decomposition with 8 cones: 3 cones generated by (3, 1) and (3, 2) with a translation
factor of (2, 3) and 5 cones generated by (2, 3) and (3, 2) with a translation factor of
(3, 1). Refer to Figure 11.

sage: disjoint_B_2 = decomposeB.Decomposition(50,50)
Beginning Decomposition for Affine Semigroup generate by [[2, 3], [3, 1],

[3, 2]]
Minimal Presentation = [[[3, 5, 0], [0, 0, 7]]] @ [[21, 14]]
...
Finished with 8 cones
sage: disjoint_B_2

[<Cone with basepoint [0, 0] generated by [[2, 3], [3, 2]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [3, 1] generated by [[2, 3], [3, 2]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [6, 2] generated by [[2, 3], [3, 2]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [9, 3] generated by [[2, 3], [3, 2]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [12, 4] generated by [[2, 3], [3, 2]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [15, 5] generated by [[3, 1], [3, 2]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [17, 8] generated by [[3, 1], [3, 2]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [19, 11] generated by [[3, 1], [3, 2]] with
polynomial function 0x + 0y + 1>]

6. Conjectures and Further Data

Upon further examination into the observations made, we noticed an overlying pat-
tern for the 3 generated affine semigroups. We will examine the decomposition for
number of factorization, minimum factorization length, and maximum factorization
length.

Recall we define A = 〈(1, 3), (3, 1), (3, 3)〉. In the following decompositions, we follow
the form defined in Claim 5.2. We can see by these data results that for the 3 generated
Affine Semigroups, that the coefficients for the linear terms are constant across all of
the cones in the respective decomposition.

numFact = ConeDecomposition(A,25,25,NumFact)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11. Example B Decomposition 2
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sage: numFact_1 = numFact.Decomposition(25,25)
sage: numFact_1

[<Cone with basepoint [0, 0] generated by [[1, 3], [3, 1]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [3, 3] generated by [[1, 3], [3, 1]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [6, 6] generated by [[1, 3], [3, 1]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [9, 9] generated by [[1, 3], [3, 1]] with
polynomial function 0x + 0y + 1>]

Refer to Figure 12.

sage: numFact_2 = numFact.Decomposition(25,25)
sage: numFact_2

[<Cone with basepoint [0, 0] generated by [[1, 3], [3, 3]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [3, 1] generated by [[3, 1], [3, 3]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [4, 4] generated by [[1, 3], [3, 3]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [7, 5] generated by [[3, 1], [3, 3]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [8, 8] generated by [[1, 3], [3, 3]] with
polynomial function 0x + 0y + 1>,

<Cone with basepoint [11, 9] generated by [[3, 1], [3, 3]] with
polynomial function 0x + 0y + 1>]

Refer to Figure 13.

Minimum Factorization Length.

minFact = ConeDecomposition(A,25,25,MinFact)

sage: minFact_1 = minFact.Decomposition(25,25)
sage: minFact_1

[<Cone with basepoint [0, 0] generated by [[1, 3], [3, 1]] with
polynomial function 1/4x + 1/4y + 0>,

<Cone with basepoint [3, 3] generated by [[1, 3], [3, 1]] with
polynomial function 1/4x + 1/4y -1/2>,

<Cone with basepoint [6, 6] generated by [[1, 3], [3, 1]] with
polynomial function 1/4x + 1/4y -1>,
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<Cone with basepoint [9, 9] generated by [[1, 3], [3, 1]] with
polynomial function 1/4x + 1/4y -3/2>]

Refer to Figure 14.

sage: minFact_2 = minFact.Decomposition(25,25)
sage: minFact_2

[<Cone with basepoint [0, 0] generated by [[1, 3], [3, 3]] with
polynomial function 0x + 1/3y + 0>,

<Cone with basepoint [3, 1] generated by [[3, 1], [3, 3]] with
polynomial function 1/3x + 0y + 0>,

<Cone with basepoint [4, 4] generated by [[1, 3], [3, 3]] with
polynomial function 0x + 1/3y + 2/3>,

<Cone with basepoint [7, 5] generated by [[3, 1], [3, 3]] with
polynomial function 1/3x + 0y + 2/3>,

<Cone with basepoint [8, 8] generated by [[3, 1], [3, 3]] with
polynomial function 1/3x + 0y + 4/3>,

<Cone with basepoint [9, 11] generated by [[1, 3], [3, 3]] with
polynomial function 0x + 1/3y + 4/3>]

Refer to Figure 15.

Maximum Factorization Length.

maxFact = ConeDecomposition(A,25,25,MaxFact)

sage: maxFact_1 = maxFact.Decomposition(25,25)
sage: maxFact_1

[<Cone with basepoint [0, 0] generated by [[1, 3], [3, 1]] with
polynomial function 1/4x + 1/4y + 0>,

<Cone with basepoint [3, 3] generated by [[1, 3], [3, 1]] with
polynomial function 1/4x + 1/4y -1/2>,

<Cone with basepoint [6, 6] generated by [[1, 3], [3, 1]] with
polynomial function 1/4x + 1/4y -1>,

<Cone with basepoint [9, 9] generated by [[1, 3], [3, 1]] with
polynomial function 1/4x + 1/4y -3/2>]

Refer to Figure 16.

sage: maxFact_2 = maxFact.Decomposition(25,25)
sage: maxFact_2

[<Cone with basepoint [0, 0] generated by [[1, 3], [3, 3]] with
polynomial function 0x + 1/3y + 0>,

<Cone with basepoint [3, 1] generated by [[3, 1], [3, 3]] with
polynomial function 1/3x + 0y + 0>,
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<Cone with basepoint [4, 4] generated by [[1, 3], [3, 3]] with
polynomial function 0x + 1/3y + 2/3>,

<Cone with basepoint [7, 5] generated by [[3, 1], [3, 3]] with
polynomial function 1/3x + 0y + 2/3>,

<Cone with basepoint [8, 8] generated by [[3, 1], [3, 3]] with
polynomial function 1/3x + 0y + 4/3>,

<Cone with basepoint [9, 11] generated by [[1, 3], [3, 3]] with
polynomial function 0x + 1/3y + 4/3>]

Refer to Figure 17.
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(a) (b)

(c) (d)

Figure 12. Number of factorizations decomposition 1
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(a) (b)

(c) (d)

(e) (f)

Figure 13. Number of factorizations decomposition 2
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(a) (b)

(c) (d)

Figure 14. Minimum factorization length decomposition 1
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(a) (b)

(c) (d)

(e) (f)

Figure 15. Minimum factorization length decomposition 2
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(a) (b)

(c) (d)

Figure 16. Maximum factorization length decomposition 1
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(a) (b)

(c) (d)

(e) (f)

Figure 17. Maximum factorization length decomposition 2
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