
A Machine Learning Approach to Evaluate Beijing Air Quality

By

Mingye Yang

SENIOR THESIS

Submitted in partial satisfaction of the requirements for High Honors for the degree of

BACHELOR OF SCIENCE

in

MATHEMATICS

in the

COLLEGE OF LETTERS AND SCIENCE

of the

UNIVERSITY OF CALIFORNIA,

DAVIS

Approved:

Jesús A. De Loera

June 2018

Contents

Chapter 1. Preliminaries 1

1.1. Abstract & Introduction 1

1.2. Data 2

Chapter 2. Some Machine Learning Concepts 5

Chapter 3. Methods & Models 7

3.1. Random Forest 7

3.2. Support Vector Machine 9

Chapter 4. Experimental Results 13

4.1. Random Forest 13

4.2. Support Vector Machine 15

Chapter 5. Code 17

Bibliography 23

iii

CHAPTER 1

Preliminaries

1.1. Abstract & Introduction

Air Pollution has been considered as one of the most serious environmental issues in China. In
2015, only 73 out of 338 major cities met the national standard for air quality [1]. Major pollu-
tants, especially Fine particles (particulate matter with diameter less than 2.5 µm), are robustly
associated with adverse health effects, including cardiac and respiratory morbidity and mortality
[2]. Research from an independent group even showed that air pollution cause 1.6 million deaths
in 2016 [3].

Many highly developed cities and northern “edge cities” in China usually incur air pollution
problems. In this paper, I will be examining Air Quality in Beijing since it is the most representa-
tive city that suffers from air pollution.

The methods of analysis and the models we will use are inspired by Paulo Cortez and Ańıbal
Morais’s paper A Data Mining Approach to Predict Forest Fires using Meteorological
Data .[13]

In that paper, five Data mining / Machine Learning Techniques (multiple regression, Decision
Tree, Random Forest, Neural Network and Support Vector Machine) are implemented to predict
the burned size of forest fires in a northeast park area in Portugal. The data-collection region is
divided into a 9*9 grid and assigned spatial coordinates accordingly. Fire time (month and day),
meteorological variables (temperature, relative humidity, wind and rain) , Forest Fire Weather In-
dex Components and spatial locations are contained in the feature spaces. Feature selections and
data preprocessing are conducted to ensure that the input variables are appropriate. Hyperparam-
eters tuning are also done to boost up the accuracy.

In this paper, Beijing City is divided into 6 circles. Each air quality monitor stations location
(longitude and latitude), as well as the date information (month, day, hour) are included in the
feature spaces. Major air pollutant measurements are also recorded. Data-preprocessing is done to
avoid NAs, divide the dataset into training set and test set, scale the features, and convert some
features type if necessary. In terms of machine learning teniques, I have applied Random Forest
(since its just a collection of Decision trees method and its way more accurate.) to regress the Air
Quality Index and Support Vector Machine to classify the Air Quality Level. However, instead
of merely applying the method and showing the results, detailed interpretations of the these two
Machine Learning models are provided. I have also applied features selections in order to reduce
the hyperparameter tuning time.

1

2 1. PRELIMINARIES

1.2. Data

The data used in the experiment is collected from China National Urban Air Quality Real-time
Publishing Platform. Air Quality Index (AQI) is a number that measures the pollution level of the
ambient air and it is measured based on 6 air pollutants: Sulfur dioxide (SO2), Nitrogen dioxide
(NO2), Carbon monoxide (CO), Ozone (O3), PM2.5 (particulate matter with diameter less than
2.5 µm) and PM10 (particulate matter with diameter less than 10 µm) [4]. AQI is classified into
into 6 levels of severity based on the value:

• Level 1: Excellent. AQI ranges from 0 ∼ 50.
• Level 2: Good. AQI ranges from 51 ∼ 100.
• Level 3: Lightly Polluted. AQI ranges from 101 ∼ 150.
• Level 4: Moderately Polluted. AQI ranges from 151 ∼ 200.
• Level 5: Heavily Polluted. AQI ranges from 201 ∼ 300.
• Level 6: Severely Polluted. AQI > 300.

This paper uses Beijing AQI data in year 2015. For better interpretation and visualization,
Beijing city is divided into 6 spatial locations by circles (see Figure 1). Location of each 12 national
Environmental Protection Monitoring Centers is also provided (see Figure 2). The station monitors
air quality features and reports the information hourly.

A small sample of the dataset is given (see Figure 3) to illustrate what the dataset looks like.
Attribute description of the dataset is then followed in Table 1.

Machine Learning techniques, Random Forest (RF) and Support Vector Machine (SVM) are
implemented to predict the AQI value and classify the pollution level. Before applying the Machine
Learning models, the dataset is being cleaned and pre-processed through the following steps:

• Cleaned missing values
• Converted categorical data to numerical (if necessary)
• Splitted dataset into training set and test set
• Feature scaling (if necessary)

1.2. DATA 3

Figure 1. Circles of Beijing

Figure 2. National Environmental Protection Monitoring Centers in Beijing

4 1. PRELIMINARIES

Figure 3. Small sample of the dataset

Attribute Description

month Month of the year (1 to 12)
day Day of the month (1 to 31)
hour Hour of the day (0 to 23)

station code Twelve stations in Beijing (1001 to 1012)
longitude Longitude of the station
latitude Latitude of the station
circle Circle each station monitors (1 to 6)

level index AQI levels (1 to 6)
so2 SO2 1-hour average (in µg/m3)

so2 24h SO2 24-hour moving average (in µg/m3)
no2 NO2 1-hour average (in µg/m3)

no2 24h NO2 24-hour moving average (in µg/m3)
co CO 1-hour average (in mg/m3)

co 24h CO 24-hour average (in mg/m3)
o3 O3 1-hour average (in µg/m3)

o3 24h O3 Daily maximum 1-hour average (in µg/m3)
o3 8h O3 8-hour moving average (in µg/m3)

o3 8h 24h O3 Daily maximum 8-hour moving average (in µg/m3)
pm10 PM10 1-hour average (in µg/m3)

pm10 24h PM10 24-hour moving average (in µg/m3)
pm2 5 PM2.5 1-hour average (in µg/m3)

pm2 5 24h PM2.5 24-hour moving average (in µg/m3)
aqi Air Quality Index

Table 1. AQI Dataset Attribute Description

CHAPTER 2

Some Machine Learning Concepts

Before getting in depth discussion of machine learning, it is crucial to know some basic but
important concepts in Machine Learning.

Definition 1. Machine Learning teaches computers to do what comes naturally to humans
and animals: learn from experience. Machine learning algorithms use computational methods to
learn information directly from data without relying on a predetermined equation as a model. The
algorithms adaptively improve their performance as the number of samples available for learning
increases. [12]

Machine Learning can be used in many cases : Face detection, demand/supply optimization,
disease identification, etc. Living in a world driven by data, people can use machine learning as a
useful and robust tool to make business decisions.

Definition 2. Supervised learning entails learning a mapping between a set of input vari-
ables X and an output variable Y and applying this mapping to predict the outputs for unseen
data. [6]

Definition 3. Unsupervised learning studies how systems can learn to represent particular
input patterns in a way that reflects the statistical structure of the overall collection of input
patterns. [7]

In other way, in supervised learning, input predictors is used to train a model to classify or
regress associated response variables. For unsupervised learning, there will be no response variables
and the goal is to seek the relationship between variables. This paper will focus on supervised
learning.

Definition 4. In machine learning, hyperparameter optimization or tuning is the prob-
lem of choosing a set of optimal hyperparameters for a learning algorithm. [11]

Choosing a better set of hyperparameters in a model is crucial for improving the model and
getting higher accuracy.

5

CHAPTER 3

Methods & Models

3.1. Random Forest

Before getting to know Random Forest (RF), we first have to know what a Decision tree is.

Decision tree is more well-known as Classification & Regression Trees (CART) methodology.
The algorithm is a top-down,greedy approach that is known as recursive binary splitting .[14]
Starting from the top, all observations are in the same region. Then a series of questions are asked
at each node (referred as internal nodes) to split observations into subregions based on the result
of the questions. The algorithm stops when pre-defined stopping criterion is met. A general crite-
rion is when each node contains less than a specific number of observations. Now each observation
falls into one subregion (known as terminal nodes or leaves)[14].

Regression tree (decision tree for regression) uses variances reduction metric to choose the best
splitting parameter. Each separation by the chosen splitting features should give the maximal
information. In math, the algorithm chooses the feature and its level/value to minimize

1
|St|2

∑
i∈St

∑
j∈St

1
2 (xi − xj)2 + 1

|Sf |2
∑
i∈Sf

∑
j∈Sf

1
2 (xi − xj)2 [15]

where x represents the response value for each observation; St is the set of observations for which
the splitting result is true and Sf is the set of observations for which the splitting result is false.

Now, the prediction is simply taking the mean of the response variable of all observation in
each terminal node. The plot below shows how to use weather information to predict hours played:

Figure 1. A simple regression tree example extracted from [16]

7

8 3. METHODS & MODELS

If we grow a very large tree, the model will have really high variance and might overfit, while
a smaller tree model may result in less precise prediction. So we have to tune the tree size to make
it appropriate. Generally, cost-complexity pruning method is used to reach this goal: [9]

First, we grow a large tree T0, then we prune this tree to obtain any subtree T ⊂ T0, and we
index each terminal nodes by m and its respective sub-region as Rm, then we define:

|T | = number of terminal nodes in T,

Nm = # {xi ∈Rm} where xi denotes the observation,

ĉm = 1
Nm

∑
xi∈Rm

yi where yi is the respective response variable

Qm(T) = 1
Nm

∑
xi∈Rm

(yi − ĉm)2

Then the cost complexity criterion is defined as

Cα(T) =
∑|T |
m=1NmQm(T) + α|T |.

The main idea of this algorithm is to find, for each α, the subtree Tα ⊆ T0 to minimize Cα(T).
α is exactly the tuning parameter. It is intuitive to see that as α gets bigger, a smaller size sub-
tree is required in order to minimize Cα(T). We use the weakest link pruning method to find
Tα, that is, to successively collapse the internal node that produces the smallest per-node increase
in
∑
mNmQm(T), and continue until we produce the single-node (root) tree. Estimation of α is

achieved by five- or tenfold cross-validation: we choose the value α̂ to minimize the cross-validated
sum of squares. Our final tree is Tα̂. [9]. A more detailed description of this algorithm could be
found in Chapter 9 of the book The Elements of Statistical Learning. [9]

Though decision tree method is fast and could be easily visualized and interpreted, the predic-
tion accuracy is not quite favorable compared to other regression approaches. Random Forest
(RF) method is thus introduced to overcome the disadvantages of decision trees.

Random Forest is then simply a method that grows a collection of decision trees and gives the
aggregated results. What is notable in the RF model is that it also implements a smart algorithm
to decorrelate the trees: Instead of searching for the best splitting feature among the whole feature
space, RF model selects the best splitting feature among a random sample of m features at each
internal node. Typically, m is chosen to be the approximate of square root of total number of
feature space.[8]

This algorithm perfectly mitigates the effect of having strong variables. Without this algo-
rithm, decision trees in the forest will have similar structure due to the variance reduction metric
and thus, the reduction in variance of the model might not be substantial. The implementation of
this algorithm in the RF model gives each feature equal chance to be considered in the splitting
step and make the model more appropriate.

3.2. SUPPORT VECTOR MACHINE 9

3.2. Support Vector Machine

Some concepts are required to understand the algorithm of Support Vector Machine (SVM):

Definition 5. In a p-dimensional space, a hyperplane is a flat affine subspace of dimension
p− 1. In math, a p-dimensional hyperplane is define as:

β0 + β1X1 + β2X2 + ...+ βpXp = 0 [17]

For parameters β0, β1, ..βp, the above equation separates the observations in two hyperplanes.

Definition 6. Margin is the perpendicular distance from each training observation to a given
separating hyperplane.

Definition 7. A Maximal margin hyperplane is the seperating hyperplane that is farthest
from the training observation, that is, a hyperplane for which the margin is largest.

Definition 8. The Support vector classifier classifies a test observation depending on
which of a hyperplane it lies. It allows some observations to be on the wrong side of the margin or
hyperplane (since some datasets are can not be perfectly separated by a maximal margin hyperplane.
It is the solution to the following optimization problem (where M is the margin and C is the tuning
parameter). An example of Support Vector Classifier is also given below.[17]

Figure 2. Optimization ex-
pression of Support Vector
Classifier from [17]

Figure 3. Support Vector
Classifier Example from [17]

More detailed explanation of the above concepts could be found in Chapter 9 of the book An
Introduction to Statistical Learning with Application in R. [17]

Then, Support Vector Machine is just an extension of Support Vector classifier. It uses Kernels
to enlarge the feature space and include non-linear boundaries to classify.

Definition 9. A Kernel is a function that takes two vectors Xi and Xj as arguments and
returns the value of the inner product of their images φ(Xi) and φ(Xj):

K(X1, X2) = φ(X1)Tφ(X2)[?]

10 3. METHODS & MODELS

Now the support vector machine has the form:

f(x) = β0 +
∑
i∈S K(x, xi)

where S is the collection of indices of support vectors, the observations that lie on the margin. Here
are some commonly used kernels [18]:

• Radial Kernel: K(xi, xi′) = exp(−γ
∑p
j=1(xij − xi′j)2)

• linear Kernel: K(xi, xi′) = 1 +
∑p
j=1 xijxi′j

• dth-degree polynomial: K(xi, xi′) = (1 +
∑p
j=1 xijxi′j)

d

Figure 4 and Figure 5 below show the Support Vector Machine classification using a degree 4
polynomial kernel and a radial kernel.

Figure 4. Degree 4 polyno-
mial kernel from [18] Figure 5. Radial kernel from [18]

Usually, SVM is applied for binary classification, but it can also be used to perform multi-classes
classification by One-Versus-One Classification or One-Versus-All Classification:

Suppose we have K classes to be classified. One-Versus-One Classification basically chooses(
K
2

)
binary classes combination and assigns each observation to one of the classes. Eventually, the

most frequently allocated class for each observation is the classification result.

A detailed Algorithm for One-Versus-All Classification is given in pseudocode:

3.2. SUPPORT VECTOR MACHINE 11

Figure 6. Pseudo code for One-Versus-All Classification from [19]

CHAPTER 4

Experimental Results

4.1. Random Forest

The RF method fits the training dataset well and gives a 99 percent prediction accuracy. Since
the dataset and the random forest are large, a regression tree pruned to the depth of 3 levels is
presented below:

A table of the variable importance is also given:

Feature numerical importance

level index 0.93
pm2 5 0.05
pm10 0.01

pollutions None 0.01
Other features roughly zero

Table 1. Variable importance

Figure 1. Regression tree of depth 3

13

14 4. EXPERIMENTAL RESULTS

Eventually, I use Random Grid Search to tune the hyperparameters:

Regressor Hyperparameter Selections

bootstrap [True, False]
max depth [10,20,30,40,50,60,70,80,90,100,110,None]

max features [auto,sqrt]
min sample leaf [1,2,4]
min sample split [2,5,10]

n estimators [20, 40, 60, 80, 100, 120, 140, 160, 180, 200]

Table 2. Hyperparameter tuning

The best hyperparameter selection is:

Regressor Hyperparameter Selection

bootstrap True
max depth 100

max features auto
min sample leaf 1
min sample split 2

n estimators 140

Table 3. Best hyperparameter selection

The accuracy improvement is minor since our original model already has really high accuracy.

4.2. SUPPORT VECTOR MACHINE 15

4.2. Support Vector Machine

We use SVM model to classify the AQI index level. The default hyperparameters setting for
the 3 kernels (radial,polynomial and linear) and the classification accuracy on the testdata are:

Kernel Cost Gamma Degree Classification Accuracy

Radial 1 0.009174312 — 0.9377155
Polynomial 1 — 3 0.6090913

Linear 1 — 1 0.9343915

Table 4. Default kernels hyperparameter setting Classification Accuracy

Since the dataset is too large and it will take too much time in the hyperparameter tuning
part, feature importance is ranked firstly in this classification cases based on mean decrease of Gini
Index. The result is shown below:

Figure 2. Feature Importance Ranking

Then, 5 most important features, pm2 5, pollutions, pm10,pm2 5 24h and co, are used to tune the
hyperparameters.

16 4. EXPERIMENTAL RESULTS

Again, I use grid search with 5-fold cross validation to tune the hyperparameters.

The result for Radial Basis Function (RBF) kernel is shown below in Table 5:

Cost Gamma Accuracy

2−5 2−9 0.67628
2−5 2−7 0.76777
2−5 2−5 0.88082
2−5 2−3 0.92949
2−5 2−1 0.94557
2−3 2−9 0.76770
2−3 2−7 0.87971
2−3 2−5 0.93208
2−3 2−3 0.96100
2−3 2−1 0.96767
2−1 2−9 0.87706
2−1 2−7 0.92572
2−1 2−5 0.95777
2−1 2−3 0.97496
2−1 2−1 0.97856
1 2−9 0.90482
1 2−7 0.93887
1 2−5 0.96569
1 2−3 0.97982
1 2−1 0.98208

Table 5. Radial kernel hyper-
parameter tuning

Cost degree Accuracy

2−5 1 0.87229
2−5 2 0.75749
2−5 3 0.65925
2−5 4 0.62625
2−3 1 0.91687
2−3 2 0.85650
2−3 3 0.74909
2−3 4 0.67377
2−1 1 0.93577
2−1 2 0.92661
2−1 3 0.84444
2−1 4 0.70409
1 1 0.94001
1 2 0.94254
1 3 0.88141
1 4 0.74808

Table 6. Polynomial kernel hy-
perparameter tuning

The best choice of Cost and Gamma is when Cost = 1 and Gamma = 0.5. The new SVM
model scores 98.19255% accuracy, which is around 4.4% more accurate than the default model.

The tuning result for polynomial kernel is shown above in Table 6. Cost = 1 and degree = 2
is the best hyperparameter combination. The new SVM model gets 94.46961% accuracy, which is
around 1.03% more accurate than the default model.

CHAPTER 5

Code

The following code is for Random Forest:

import pandas as pd

import matp lo t l i b . pyplot as p l t

import numpy as np

import math

df2 = pd . r ead c sv (’ Datase t fo r R . csv ’)

X = df2 . i l o c [: , : − 1]

y = df2 . i l o c [: , − 1 :]

X = pd . get dummies (X)

y = pd . DataFrame (y [’ aqi ’] . apply (np . l og))

from s k l ea rn . p r e p r o c e s s i n g import StandardSca ler

X. i l o c [: , 6 : 2 1] = StandardSca ler () . f i t t r a n s f o r m (X. i l o c [: , 6 : 2 1])

l a b e l s = np . array (y [’ aqi ’])

f e a t u r e l i s t = l i s t (X. columns)

f e a t u r e s = np . array (X)

from s k l ea rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t

t r a i n f e a t u r e s , t e s t f e a t u r e s , t r a i n l a b e l s , t e s t l a b e l s =

t r a i n t e s t s p l i t (f e a tu r e s ,

l a b e l s , t e s t s i z e = 0 .25 , random state = 42)

Train the Model and try on t e s t s e t .

from s k l ea rn . ensemble import RandomForestRegressor

r f = RandomForestRegressor (n e s t imato r s = 100 , random state = 42)

r f . f i t (t r a i n f e a t u r e s , t r a i n l a b e l s) ;

p r e d i c t i o n s = r f . p r e d i c t (t e s t f e a t u r e s)

e r r o r s = abs (p r e d i c t i o n s − t e s t l a b e l s)

mape = 100 ∗ (e r r o r s / t e s t l a b e l s)

Calcu la te and d i s p l ay accuracy

accuracy = 100 − np . mean(mape)

p r i n t (’ Accuracy : ’ , round (accuracy , 2) , ’%. ’)

17

18 5. CODE

importances = l i s t (r f . f e a t u r e i m p o r t a n c e s)

f e a tu r e impor tance s = [(f ea ture ,

round (importance , 2)) f o r f ea ture ,

importance in z ip (f e a t u r e l i s t , importances)]

f e a tu r e impor tance s = sor t ed (f ea ture impor tance s , key = lambda x : x [1] ,

r e v e r s e = True)

[p r i n t (’ Var iab le : { : 20} Importance : {} ’ . format (∗ pa i r)) f o r

pa i r in f ea tu r e impor tance s] ;

Hyperparameter tuning

from s k l ea rn . m o d e l s e l e c t i o n import GridSearchCV

param grid = {
’ bootstrap ’ : [True] ,

’ max depth ’ : [8 0 , 90 , 100 , 110] ,

’ max features ’ : [2 , 3] ,

’ m in sample s l ea f ’ : [3 , 4 , 5] ,

’ m in sampl e s sp l i t ’ : [8 , 10 , 1 2] ,

’ n e s t imator s ’ : [100 , 200 , 300 , 1000]

}
r f = RandomForestRegressor ()

g r i d s e a r c h = GridSearchCV (es t imator = r f , param grid = param grid ,

cv = 3 , n jobs = −1, verbose = 2)

g r i d s e a r c h . f i t (t r a i n f e a t u r e s , t r a i n l a b e l s)

g r i d s e a r c h . best params

b e s t g r i d = g r i d s e a r c h . b e s t e s t i m a t o r

g r i d ac cu racy = eva luate (b e s t g r i d , t e s t f e a t u r e s , t e s t l a b e l s)

p r i n t (’ Improvement : o f { : 0 . 2 f }%. ’ . format (100 ∗
(g r id accuracy−base accuracy)/ base accuracy))

5. CODE 19

The following code is for Support Vector Machine:

Defau l t SVM c l a s s i f i c a t i n us ing R

setwd (”˜/ Desktop/ Thes i s / Fina l ”)

df = read . csv (’ Datase t fo r R . csv ’)

df2 = df [,−24]

l e v e l = d f 2 $ l e v e l i n d e x

d f 2 $ l e v e l = l e v e l

df3 = df2 [,−8]

View (df3)

s t r (df3)

d f 3 $ l e v e l = f a c t o r (d f 3 $ l e v e l)

d f 3 $ c i r c l e = f a c t o r (d f 3 $ c i r c l e)

df3$month = f a c t o r (df3$month)

df3$day = f a c t o r (df3$day)

df3$hour = f a c t o r (df3$hour)

s e t . seed (1000)

t r a i n = sample (1 :80224 ,56157 , r e p l a c e = FALSE)

t ra indata = df3 [t ra in ,]

t e s tda ta = df3 [− t ra in ,]

l i b r a r y (’ e1071 ’)

f i t d e f a u l t r a d i a l = svm(l e v e l ˜ . , data = tra indata , k e rne l = ’ r ad i a l ’)

f i t d e f a u l t p o l y = svm(l e v e l ˜ . , data = tra indata , k e rne l = ’ polynomial ’)

f i t d e f a u l t l i n e a r = svm(l e v e l ˜ . , data = tra indata , k e rne l = ’ l i n e a r ’)

summary(f i t d e f a u l t r a d i a l)

summary(f i t d e f a u l t p o l y)

summary(f i t d e f a u l t l i n e a r)

p r e d d e f a u l t r a d i a l = p r e d i c t (f i t d e f a u l t r a d i a l , t e s tda ta)

t a b l e (p r e d d e f a u l t r a d i a l , t e s t d a t a $ l e v e l) #22568/24067 = 93.77155%

p r e d e f a u l t p o l y = p r e d i c t (f i t d e f a u l t p o l y , t e s tda ta)

t a b l e (p rede fau l tpo ly , t e s t d a t a $ l e v e l) #14659/24067 = 60.90913%

p r e d e f a u l t l i n e a r = p r e d i c t (f i t d e f a u l t l i n e a r , t e s tda ta)

t a b l e (p r e d e f a u l t l i n e a r , t e s t d a t a $ l e v e l) # 22488/24067 = 93.43915%

#Feature s e l e c t i o n us ing R

s e t . seed (7)

l i b r a r y (mlbench)

l i b r a r y (c a r e t)

c o n t r o l = t ra inCont ro l (method=”repeatedcv ” , number=10, r epea t s =3)

model = t r a i n (l e v e l ˜ . , data=df3 , method=”lvq ” ,

preProces s=”s c a l e ” , t rCont ro l=c o n t r o l)

20 5. CODE

Estimate v a r i a b l e importance

importance = varImp (model , s c a l e=FALSE)

pr in t (importance)

p l o t (importance)

Hyperparameter tuning us ing python

import pandas as pd

df = pd . r ead c sv (’ Datase t fo r R . csv ’)

df2 = df . l o c [: , [’ p o l l u t i o n s ’ , ’ co ’ , ’ pm2 5 ’ , ’ pm10 ’ , ’ pm2 5 24h ’]]

l e v e l 2 = df [’ l e v e l i n d e x ’]

df2 [’ l e v e l ’] = l e v e l 2

from s k l ea rn . p r e p r o c e s s i n g import LabelEncoder

l e p o l l u t i o n s = LabelEncoder ()

df2 [’ po l l u t i on s encoded ’] = l e p o l l u t i o n s . f i t t r a n s f o r m (df2 . p o l l u t i o n s)

from s k l ea rn . p r e p r o c e s s i n g import OneHotEncoder

p o l l u t i o n s o h e = OneHotEncoder ()

X = p o l l u t i o n s o h e . f i t t r a n s f o r m (df2 . p o l l u t i o n s e n c o d e d . va lue s .

reshape (−1 ,1)) . toar ray ()

dfOneHot = pd . DataFrame (X, columns = [” p o l l u t i o n s ”+s t r (i n t (i)) f o r i

in range (X. shape [1])])

df = pd . concat ([df2 , dfOneHot] , a x i s =1)

s e t (df2 [’ p o l l u t i o n s ’])

df3 = df . drop ([’ p o l l u t i o n s ’ , ’ l e v e l ’ , ’ po l l u t i on s encoded ’] , a x i s =1)

df4 = df3 . copy ()

df4 [’ l e v e l ’] = l e v e l 2

X = df4 . i l o c [: , : − 1]

y = df4 . i l o c [: , 1 7]

from s k l ea rn . c r o s s v a l i d a t i o n import t r a i n t e s t s p l i t

X train , X test , y t ra in , y t e s t = t r a i n t e s t s p l i t (X, y ,

t e s t s i z e = 0 . 2 , random state = 0)

from s k l ea rn . p r e p r o c e s s i n g import StandardSca ler

sc X = StandardSca ler ()

X tra in = sc X . f i t t r a n s f o r m (X tra in)

X tes t = sc X . trans form (X tes t)

from s k l ea rn . g r i d s e a r c h import GridSearchCV

def g r i d s e a r c h c v (c l f , x , y , params , cv = 5) :

gs = GridSearchCV (c l f , param grid = params , cv = cv)

5. CODE 21

gs . f i t (x , y)

p r i n t (”BEST” , gs . best params , gs . b e s t s c o r e , gs . g r i d s c o r e s)

b e s t e s t i m a t o r = gs . b e s t e s t i m a t o r

re turn b e s t e s t i m a t o r

from s k l ea rn import svm

params = { ’C’ : [2∗∗−5 ,2∗∗−3 ,2∗∗−1 ,1] ,

’gamma’ : [2∗∗−9 ,2∗∗−7 ,2∗∗−5 ,2∗∗−3 ,2∗∗−1]}
c l f = svm .SVC(ke rne l = ’ rbf ’)

c l f = g r i d s e a r c h c v (c l f , X train , y t ra in , params)

params = { ’C’ : [2∗∗−5 ,2∗∗−3 ,2∗∗−1 ,1] , ’ degree ’ : [1 , 2 , 3 , 4] }
c l f 2 = svm .SVC(ke rne l = ’ poly ’)

c l f 2 = g r i d s e a r c h c v (c l f 2 , X train , y t ra in , params)

R e f i t the model with the bes t hyperparameter us ing R

f i t r a d i a l 3 = svm(l e v e l 2 ˜ . , data = tra indata , co s t = 1 ,gamma = 0 . 5)

summary(f i t r a d i a l 3)

p r e d d e f a u l t r a d i a l 3 = p r e d i c t (f i t r a d i a l 3 , t e s tda ta)

t a b l e (p r e d d e f a u l t r a d i a l 3 , t e s t d a t a $ l e v e l 2) ###0.9819255

f i t p o l y = svm(l e v e l 2 ˜ . , data = tra indata , k e rne l = ’ polynomial ’ ,

c o s t = 1 , degree = 2)

summary(f i t p o l y)

predpoly = p r e d i c t (f i t p o l y , t e s tda ta)

t a b l e (predpoly , t e s t d a t a $ l e v e l 2) #0.9446961

Bibliography

[1] Wei, B. (2016). 2015 Report on the State of the Environment in China (Full article). Retrieved from

http://cn.chinagate.cn/environment/2016-06/07/content_38617610_2.htm

[2] Du, X., Kong, Q., Ge, W., Zhang, S., Fu, L. (2010). Characterization of personal exposure concentration of

fine particles for adults and children exposed to high ambient concentrations in Beijing, China. Journal of
Environmental Sciences, 22(11), 1757-1764. doi:10.1016/s1001-0742(09)60316-8

[3] Rohde, R. A., Muller, R. A. (2015). Air Pollution in China: Mapping of Concentrations and Sources. Plos
One, 10(8). doi:10.1371/journal.pone.0135749

[4] People’s Republic of China Ambient air quality standards [PDF]. (2012, February 29).

[5] People’s Republic of China Technical Regulation on Ambient Air Quality Index (on trial) [PDF]. (2012,

February 29).

[6] Cord, M. (2008). Machine learning techniques for multimedia: Case studies on organization and retrieval ; 20
tables (pp. 21-49). Berlin: Springer.

[7] Dayan, P. (1999). Unsupervised Learning. The MIT Encyclopedia of the Cognitive Science.

[8] James, G. (2015). An introduction to statistical learning: With applications in R.(pp. 303-335) New York:

Springer.

[9] Hastie, T., Tibshirani, R., Friedman, J. H. (2016). The elements of statistical learning data mining, inference,

and prediction. (pp. 295-336). New York, NY: Springer.

[10] Drakos, N., Moore, R. (2016, August 19). Kernel Mapping. Retrieved from http://fourier.eng.hmc.edu/
e161/lectures/svm/node8.html

[11] Hyperparameter optimization. (2018, April 11). Retrieved from https://en.wikipedia.org/wiki/
Hyperparameter_optimization

[12] MathWorks Introducing Machine Learning [PDF]. (n.d.).

[13] Cortez, P., Morais, A. (2007). A Data Mining Approach to Predict Forest Fires using Meteorological Data.

[14] James, G. (2015). An introduction to statistical learning: With applications in R. (pp. 305-306) New York:

Springer.

[15] Decision tree learning. (2018, May 16). Retrieved from https://en.wikipedia.org/wiki/Decision_
tree_learning#Metrics

[16] Decision Tree Regression. (n.d.). Retrieved from http://www.saedsayad.com/decision_tree_reg.htm

23

24 BIBLIOGRAPHY

[17] James, G. (2015). An introduction to statistical learning: With applications in R.(pp. 337-372) New York:
Springer.

[18] Hastie, T., Tibshirani, R., Friedman, J. H. (2016). The elements of statistical learning data mining, inference,
and prediction. (pp. 417-458). New York, NY: Springer.

[19] Multiclass classification. (2018, May 16). Retrieved fromhttps://en.wikipedia.org/wiki/Multiclass_
classification#One-vs.-rest

