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Abstract

We propose a two-parameter Dynamical Toric Code model (DTCM), which is
a small perturbation to the Toric Code model that induces dispersion in the
anyons of this model, yet preserves particle number. We calculate the exact
energies in the one-anyon sector, and show a sin(k) dispersion relation. We also
calculate the exact energies for the two-anyon sector in the zero anyon hopping
limit, and find four distinct energy bands. For the full DTCM in the two-anyon
sector, we proceed for non-zero anyon hopping numerically. We show evidence
for fused ribbon eigenvectors from our numerical simulation, which would make
this model the first known model to exhibit fusion of anyons under the dynamics
generated by the Hamiltonian.
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1 Introduction

Quantum mechanics is arguably the largest jump in the history of theoretical
physics. At a fundamental level, it has shattered our previous model of nature,
given by Newtonian mechanics. Newtonian mechanics provides a recipe for
determining the future dynamics of a particle, if you know the position and
velocity at a given time, however, quantum mechanics forbids the capability
of ever knowing both the position and momentum at the same time. It also
claims that all particles are secretly also waves, it states that most quantities
can only take discrete values rather than continuous values, and the observable
quantities are described by a non-commutative algebra. Even after nearly 100
years of research in quantum mechanics, physicists and mathematicians still
have much to uncover.

One major prediction from quantum mechanics is that all the matter in
the universe is built out of fundamental building blocks called particles. The
standard model of particle physics has been a very successful model of all the
fundamental particles in the universe. However, it is known to be limited in
scope. This model puts all particles into one of two catergories: fermions and
bosons. One assumption made by the model is that we live in three spatial
dimensions. Although this is quite a reasonable assumption, certain materials,
such as graphene, are able to confine particles to live in only two spatial di-
mensions, where the story is different. In two dimensions, bosons and fermions
still exist, but there are additional particles called anyons. These particles are
sensitive to moving around each other, a process called braiding, even in the
absence of any form of interaction between the anyons, a property not observed
in bosons nor fermions. This process of braiding has been shown to be able to
encode a quantum computation [4]. Anyons are a very exciting and not well
understood phenomena, that are being studied extensively by both mathemati-
cians and condensed matter physicists.

One of the simplest models exhibiting anyons is known as the Toric Code
model, proposed by Kitaev [4]. The Toric Code was initially proposed to live on
a finite square lattice with periodic boundary conditions, forming a torus, but
we will discuss this model defined on Z2. This model has a unique frustration
free ground state, and all the energy eigenvectors are completely specified by
counting the number of anyon excitations in the model. The anyons in this
model are in fact eigenvectors of the Toric Code Hamiltonian, and we will see
that this means their dynamics are trivial. This means that if there is an anyon
at a site in the lattice, there is no way for the anyon to move under the dynamics
induced by the Hamiltonian. It is of great interest to introduce other terms into
the Hamiltonian that preserve the anyonic structure of the Toric Code model,
yet induce non-trivial dynamics in the anyons.

The ground state of the Toric Code model has a topological order, with
a finite gap to the lowest excitation in the model. It was proved by Bravyi,
Hastings, and Michalakis, that the ground state is stable in the sense that the
gap does not close under sufficiently small perturbations [2]. In earlier work
my advisor Prof. Bruno Nachtergaele, along with a Ph.D student Mathew Cha,



and postdoc Pieter Naaijkens, recently proved that the anyonic structure of the
excitation spectrum in these models is stable under small perturbations [3]. The
goal of this project is to develop a specific perturbation to the Toric Code model
and explore the effects this perturbation has on the spectrum of the Toric Code
model.

This paper will be structured in the following way. In section 2, we will
discuss some necessary background information on quantum mechanics, and
studying system of more then one particle. We will finish this section with a
brief discussion of bosons, fermions, and anyons. In section 3, we discuss a
two-spin system, and an N-spin system. We then discuss the desire to study
infinite quantum spin systems rather than just finite systems, and motivate this
from both mathematical and physical reasons. In section 4, we will develop
the theory for studying infinite quantum spin systems of spin-1/2 particles. In
section 5, we discuss two standard quantum spin systems on infinite lattices, and
introduce the notion of quasi-particle excitations. In section 6, we discuss the
Toric Code model, including introducing anyons, and discussing some properties
of the model. In section 7, we discuss our proposed Dynamical Toric Code
model, which is a perturbation to the Toric Code model that induces non-
trivial dynamics of the anyons. We finish this paper in section 8 with concluding
remarks, and planned future work.

2 Background

2.1 Quantum Mechanics

For simplicity, we will develop quantum mechanics initially in the case of a
finite dimensional system. There are two major quantities in quantum mechan-
ics: states, and observables. States are represented by normalized vectors in a
Hilbert space.

Definition 2.1 A Hilbert space H is a complex inner product space that is also
a complete metric space with respect to the distance function induced by the
inner product.

Given v, u € ‘H with coefficients v,,, u,, in some orthonormal basis, we define the

inner product as
dim(H)

wuy =" Tpu, (1)

where - denotes complex conjugation.

Observables are defined as bounded operators on this Hilbert space which
form an algebra B(#). The measurement of a physical experiment will always
yield an eigenvalue of an observable, and because of this the set of observables
is often restricted to only include Hermitian operators. However, the set of
Hermitian operators does not form an algebra, and so we will not make this



restriction, but simply say that physical observables are given by Hermitian
operators in B(H).

Since we will always be working in an inner product space, we will use Dirac
(bra-ket) notation. The idea is that an inner product between vectors ¢ and 1)
takes the form

(9lv) - (2)

We will break this ”"bracket” into two parts: a bra and a ket. The ket, denoted
|-} will be an element of #H, and the bra denoted (-] will be an element of the
dual space of H. This notation makes the data-types of quantities very explicit.
If we have a full bracket (-|-), then the data type is an element of C, if we have
just a ket |-) then the data type is an element of H, and if we have an outer
product |-) (-| then the data type is an element of B(H).

Let us suppose that the dimension of H is D, and consider a physical ob-
servable 0. Since O is Hermitian, we have that it can be unitarily diagonalized.
For simplicity let us assume the eigenvalues are distinct, which automatically
ensures that the eigenvectors of O form an orthonormal basis for . In the
case of degenerate eigenvalues, one just has an invariant subspace of H under O
spanned by the degenerate eigenvectors, which could be made orthonormal by
the Gram-Schmidt procedure for example so there is no loss of generality. Let
us denote the eigenpairs by {(An,|An))}2_;. Thus if we have a state |[¢)) € H
we can expand it in a basis of eigenvectors of O as

D
= an|A) an€C. (3)
n=1
Then consider the quantity
(Y] O). (4)

Then, in the basis of eigenvectors of O
n,n’=1
Since |Ap,) is an eigenvector of O with eigenvalue Ay, we can write
(W|Oyp) = Z A A Ay (A [An) - (6)
n,n'=1

Orthonormality of the eigenvectors implies (A |Ap) = 6y, p, killing the sum over
n' yielding

WO y) = Z\anl An- (7)

We interpret this quantity as the expectation value of O in the state 1. We thus
interpret |a,|? as the probability of a measurement yielding the value \,,. Since



we assume states are normalized, this ensures {|a,|?}2_; form a well defined
probability distribution, and is why we assume states are normalized.
Let us now consider the transformation

[¥) — €)@ ER. (8)
Then consider how an expectation value changes under this transformation
(Yl O ) — (Wl 0™ [p) = (Y| O ) . (9)

Thus expectation values are invariant under such a transformation. Since expec-
tation values are the means for calculating experimental quantities, we have that
two states that differ only by an overall phase factor are physically equivalent.

2.2 Hamiltonians

One very important operator in quantum mechanics is the Hamiltonian, which
for the systems studied here is equivalent to the total energy. The Hamiltonian
is the generator of dynamics, as is seen from Schrodinger’s equation

. d
i 1) = H[Y), (10)

where [1) is any state, H is the Hamiltonian, and % is the reduced Planck’s
constant which we will from now on set to 1. We always demand that the
Hamiltonian is a Hermitian operator, as the total energy must be measured to
be real.

Let us consider an eigenpair of H, call it (E,|E)). Then notice Shrodinger’s
equation for an eigenvector of H becomes

. d .d i
i |[E)=H|E) = i |[EY=FE|E) = |E;)=¢e Et\Ey). (11)

Thus the time evolution is simply multiplication by a phase for an eigenvector
of H, which is physically undetectable. Thus the dynamics of an eigenvector of
H is trivial, and we call such a state a stationary state.

2.3 Pauli Matrices

One of the simplest quantum mechanical system is a single spin-1/2 system
with Hilbert space H = C2. All the operators on this space are given by the
2 X 2 matrices in M»(C), and so the algebra of observables is generated by the
identity and the Pauli matrices o', 02, 03. The Pauli matrices in the basis of

eigenvectors of o3 are given by

L (01 5 (0 i\ 5 (1 0
"_(1 0) U‘(i 0) 7=\ 1)

The Pauli matrices are seen to be Hermitian, and have eigenvalues +1. Consid-
ering just one Pauli matrix say o3, we interpret the eigenvector corresponding to



an eigenvalue of +1 as ”spin up” often denoted as |1), and the eigenvector with
eigenvalue —1 as "spin down” denoted by |]). Physically, we say the particle has
total spin & = (o1, 02, 03), and we interpret o!>? as the projection of the spin
along the x,y,z-direction. This means that the projection along a given axis can
only take one of two values, in sharp contrast with a normalized classical vector
that can take a projection along an axis of any value in the interval [—1, 1].
We can consider the action of o2 on the states [1),|}). In the matrix

representation we see that |1) = (1,0)T and |}) = (0,1)T. Thus

an-CYO-Qw

Performing similar explicit calculations, we yield the following

ot 1) =14

ot 14 =11

o? [ty = i) (13)
o)) = —i[1).

The Pauli matrices satisfy many useful properties that we will use through
out this paper. First, their commutation relations are given by

[0,07] :=c'0) — oiot = 2ie; 0", (14)
where i, j, k € {1, 2,3}, € is the Levi-Civita symbol, and repeated indices are
summed over. We also have that their anti-commutation relations are

{o",07} := 007 + ol0" = 25, ;1. (15)
From the anti-commutation relation, we also have the useful property that
(¢") =1 (16)
We can also define spin raising and lowering operators by

T 4 isY
U+::a + 10
2

o —1ioY
o= — 17
; (7)
Sometimes the raising and lower operators are defined without the factor of 2,
but we choose this normalization due its simple form for acting on eigenvectors

of ¢3. In particular

ot 1) =11

ot It) =

o ) =0 (18)
o It =1h-



The raising and lowering operators also have the following properties
oot =0t
030" = —0~ (19)
~ 4 ([@=-0 °)

o o =
2

There are many others, but these are what we need here. Also o™~ are not
Hermitian, and in particular we have that

(a+)* =0~ ; (o7) =0t (20)

2.4 Tensor Product

When studying more then one particle, the method to transfer one particle
quantum mechanics into more then one particle is through the tensor product.
In particular, if we have one particle living in the Hilbert space H; and another
particle in Hs,, then the full Hilbert space for both particles is H = H1 ® Ha,
with dim(H) = dim(#H;) - dim(H3). If we suppose that the first particle is in the
state |1)) € H; and the second particle is in the state |¢) € Ha, then the state for
the combined system is written ) ® |¢). We have the following identification
of tensor product states

MYy @9¢)= (M) ®@d=19®(\p)
(V1 +1Y2)R0=11 QP +1P2® ¢ (21)
YR (1 +d2) =V @ d1 + 1 @ ¢a.

The inner product on the tensor product space is defined in terms of the tensor
products of the one particle spaces as

(1 @ P1lth2 @ d2)yy = (P1|2) gy, (P1]d2) 4, - (22)

Furthermore, if we have operator’s 01,05 acting on the first or second par-
ticle respectively, then these operators in the full Hilbert space would take the
form

01— 01
02 —I® 02. (23)
Suppose we wanted to have an operator act on both particles simultaneously,

such as in the case of the two particles interacting, then such an operator would
take the form of O; ® O, and its action on the state ) ® |¢) would be

(01 @ O2)([9h) @ [¢)) = O1[1h) @ O2|) . (24)

When studying N particles, then tensor product generalizes in the natural
way, by treating the tensor product space as its own Hilbert space, and tensoring
this with another Hilbert space, and so on and so forth.



2.5 Identical Particles

We believe that most particles in the universe are in fact indistinguishable from
other particles of the same type. In particular, electrons are identical particles.
What this means, is if we have a system containing N indistinguishable particles,
then the system is invariant under the action of the group Sy. Thus if we simply
take IV copies of the single particle Hilbert space, this space has duplicate states
that are connected by permutations of the locations of the N particles. If we
consider a system of two particles described by the state

V) = |z1) ® |22) , (25)

then this state is physically indistinguishable from the state
[Y') = lw2) ® |a1) - (26)

Thus the relation between |¢) and |¢)') is at most multiplication by a phase. If
we define an operator T" which swaps the locations of the two particles, then we
have

T ) =¢). (27)
If we then swap again, we have
T? 1Y) = [4) (28)
which generally implies
T° =1 (29)

Since the operator T satisfies T? = I, so does its eigenvalues, meaning the
eigenvalues of T are +1. If the eigenvalue is +1, we call such a state a state of
bosons, and if the eigenvalue is —1, we call this a state of fermions.

Unfortunately, this formalism is incomplete. It turns out to be sufficient
in 3 and higher spatial dimensions, but is not the case in 2 dimensions. The
major flaw is that we assume that swapping the particles is independent of the
path taking to do this operation, which is not generally true in 2 dimensions.
Very loosely, one way to understand this is that if we introduce 1 dimension of
time, then in 2+ 1 dimensions, the trajectories of the particles can move around
each other and form a knot. Since knots only exits in 3 dimensions, the case
of 3 + 1 dimensions allows enough freedom to untie this knot, killing the path
dependence.

We can understand this more formally by considering the composite Hilbert
space and taking the quotient space with repsect to the action of the group
Sy. I will give just a brief description of this formalism, for a more complete
description I point the reader to [5]. Let us suppose that the position of the
particles are represented by vectors in R™, and that we have N copies of identical
particles. Then the configuration space for the composite system is given by the
cartesian product of N copies R”, call this space M7;. However this is an over
specification of the NV particles, since swapping any of the particles is physically

10



the same state, so we must quotient by the group action of Sy . It can be shown
that
%/SN = R"™ x T(H,N), (30)

where R™ represents the center of mass of the particles, and r(n, N) is the
relative coordinate of the N particles. If we restrict to just two particles, we
can write 7(n,2) in terms of a radial and an angular component as

r(n,2) =2 (0,00) X Pp_1, (31)

where &,,_1 is the n-dimensional real projective space. Some properties of this
space is that # is a point, &?; is a circle which is infinitely connected, where
as P, 1 for n > 3 is doubly connected. The fact that &2, for n > 3 is doubly
connected is what ensures that there are only two cases for the phase acquired
for interchanging two particles, namely +1 yielding bosons and fermions. Since
1 is infinitely connected, this implies that there are infinitely many phases
that can be obtained in the process of swapping the position of two particles.
If T is the operator that swaps the two particles, and |x1) ® |x2) is the state for
two particles in two dimensions, then

T|z1) ® |z2) = € |22) @ |a1) . (32)

If the phase angle ¢ is equal to 0, then we call these particles bosons, if ¢ = m,
then we have fermions, and if ¢ is anything else, we call such particles anyons.

3 Quantum Spin Systems

3.1 Two Spin System

If we treat spin-1/2 particles as magnetic dipoles, then the energy of the two
spins is given by the Hamiltonian

H=d . (33)
Each spin-1/2 particle lives in C2, and so the full Hilbert space is C? @ C? =
C*. Explicitly we have

3
51&222[(01®H)(H®01)] (34)

The tensor product notation is quite cumbersome, and so we will denote which
Hilbert space the spins act on by subscripts, and it is assumed that the operators
are tensored with the identity to live in the full Hilbert space for the composite
system. Explicitly

ol =0 ®I1

ob =1 (35)

11



Similarly for states in this Hilbert space, we drop explicit tensor product nota-
tion and simply write the following

o) = [¥) @ |9) . (36)

The ordering of the state label is meaningful, and matches the tensor product
structure. So in particular, [¢) # |$) in general.

So let us find the eigenvalues of H. If we work in the basis of eigenvectors
of 03, we know how the Pauli matrices act, and the basis for this space will be
the tensor products of basis vectors of o3, namely (|11), [11), [41), [44)). Let us
explicitly calculate the action on the first two basis vectors

&1 - G2 |[11) = [o10g + ofo3 + oiod] [11) = [[1b) — [L4) + 1)) = [11)
&1 G2 1)) = [o1og + o703 + obos] [T = [I1) + [11) — [Th)] =2 [41) — [11) .

(37)
Via a similar calculation, the action on all four basis vectors is given by
HIT) = 1)
HIt) =2[1) - 1D
HT) =21 — 1) (38)
HIW) = [1).

Let us write [11) = 2[11) — [171), and similarly for ||]). Define a flip operator
F o which exchanges the spins of the two particles. Then notice we can write
H compactly as

H=2F 5 — 1t (39)

Since every eigenvector is an eigenvector of 1, diagonalizing F} o diagonalizes H.
Since F3 2 simply swaps the two spins, we have immediately that |11) and []{)
are eigenvectors of Fj o with eigenvalue 1. Also, if we take a symmetric and
anti-symmetric combination of |1)) and ||1), since F} o maps these states into
each other, we can find the other two eigenvectors. In particular

1 1

Fl,zﬁ (1) + M) = NG [(I14) + 1)

1 1
FI,ZE (11 = [N = VG [114) — 0.

Thus, % [[1)) £ |41)] are eigenvectors of F} o with eigenvalues £1. Since dim(H) =
4, these are all the eigenvectors of Fj 2. The same vectors are eigenvectors of
H, now with eigenvalues of (—3,1,1,1).

IWhenever a number c is added to an operator, we will interpret this as adding cl to the
operator.

12



Figure 1: A finite spin chain of length L.

3.2 Spin Chain

Let us now consider a collection of N interacting spin-1/2 particles. Let us
suppose that the N = L particles live on the vertices of the chain shown in
Figure 1. We will allow the particles to interact with each other only if the
vertices that the spin’s live on are connected by an edge. We will say that at
each vertex, the spin lives in the Hilbert space C?, and so the Hilbert space for
the full chain is

N
H=Q)C2=c. (40)
i=1
A real material has N ~ 1023, and so nearly every particle in the material has
the exact same surroundings. However, when we examine a finite chain, there
are boundaries on both sides of the chain, at x = 1, L. It is nearly the case
that the system is translationally invariant, and so we wish to build this into
our model. In addition, a result from Statistical Mechanics states that phase
transitions only exist in the thermodynamic limit, where we take N — co. Thus
if we study an infinite spin chain, then we would have both the thermodynamic
limit, and translational invariance. Another method is to work with finite N,
but we connect the spin at site z = L back to the spin at site z = 1, known as
applying periodic boundary conditions. This builds in translational symmetry,
and then taking the limit as N — oo yields the thermodynamic limit. However,
doing this induces a global topology different from that of an infinite chain,
which can lead to differences between the two models. On the other hand, if
done with care, this provides a finite system with translational symmetry which
in many cases is ideal for a computer simulation, as it captures the translational
symmetry of the infinite system. We will discuss both methods in this paper,
but first we will discuss working directly in the thermodynamical limit. This
makes our Hilbert space infinite dimensional, and so we will need to proceed
with some care.
One major issue is an ill-defined inner product. To see this, suppose we have
infinitely many copies of the Hilbert space H;. Then the Hilbert space would
be

"= ém (41)

Then if we have two normalized states |1)),|¢) € H, the natural definition of
inner product would be

(Wlg) = [ (Wili)y, - (42)
=1

13



This need not converge as is seen if |1);) = — |¢;) for each . This is potentially
catastrophic, as all physical measurements are calculated via inner products.

4 Quantum Spin Systems on Infinite Lattices

The majority of this section is based upon [6]. Let us assume that we have
infinitely many copies of spin-1/2 particles located in a periodic manner at
sites, such as at the vertices of a lattice like Z?, with Hilbert space C? at each
site. We saw before that there is a possible issue of an ill-defined inner product.
Notice though that if we were able to ensure that every state in our full Hilbert
space differed from any other state at only finitely many sites, then the inner
product would reduce to a finite product, and would be well defined. Doing
this will be the goal of this section. The big picture idea is that we are going
to construct our Hilbert space H out of a single reference state |2) by acting
on this state with all possible observables that act only on a finite number of
sites, called local observables. This will make any other state differ from |Q2) at
only finitely many sites, moreover this would mean any two states in H would
differ at only finitely many sites. To achieve this, we first want to generalize
away from a Hilbert space, to define observables in a C*-algebra, rather than
as bounded operators on a Hilbert space. We then will develop the notion of
a state directly on observables. We will then discuss the GNS Hilbert space
construction, which generates a Hilbert space from our C*-algebra. Lastly, we
will discuss how the algebra of local observables form a C*-algebra, from which
we can construct a well-defined local Hilbert space, which will allow us to work
in the thermodynamic limit.

4.1 C#*-algebras

For operators acting on a Hilbert space, there is a well-defined adjoint operation,
due to a Hilbert space being an inner product space. This operation plays an
important role in quantum mechanics, as all physical observables are self-adjoint,
meaning

H*=H, (43)

where H* is the adjoint of H. The adjoint operation is only defined through
the inner product through the defining relation

(Y|H) = (H™Y|o) . (44)

We want to define an adjoint like operation directly on our algebra of observ-
ables, and such an algebra is called a *-algebra.

Definition 4.1 A x-algebra 2 is an algebra on which an (anti-linear) involution
x s defined. That is, there is a map * : A — A with the following properties:

1. (A*)* = A for all A € A.
2. (AB)* = B*A* for A,B € 2.

14



3. (M + B)* = MA* + B* for A,B €2 and )\ € C.

An example of a x-algebra is the set of n X n matrices, where the x-operation is
given by the adjoint. We want our final algebra of observables to also include
limits of sums and sequences of operators, and so we need a space that is com-
plete with respect to a norm. This leads us to a more general form of *-algebra,
known as a C*-algebra.

Definition 4.2 A C*-algebra 2 is a *-algebra which is complete with respect to
a norm ||-||. Moreover, the norm satisfies the following properties:

1. [[AB|| < [IA][[|B]| for A, B € 2.
2. ||Al|l = ||A*| for all A € .
3. |A* Al = ||A||? for all A e .

Also, a unital C*-algebra is a C*-algebra that has an identity element. We will
always work with a unital C*-algebra.

4.2 States

Recall that the expectation value in a Hilbert space of the operator O in the
state |¢) is given by
(0) == (Y| O[¢). (45)

We want a definition of a state without making reference to a vector in a Hilbert
space, so we can address expectations of operators in an algebra. We observe
that since expectation values are elements of C, we can define a state as a linear
functional from our C*-algebra to C.

Definition 4.3 A linear functional on a C*-algebra 2 is a linear map w : A —
C. It is called positive if w(A*A) >0 for all A € 2.

Then a state is defined as a linear functional with norm 1, i.e. w(I) = 1. This
is the abstraction of demanding our states are normalized.

4.3 GNS Hilbert Space Construction

Ultimately, quantum mechanics is performed in a Hilbert space, and so we need
to construct a Hilbert space from our C*-algebra to perform calculations. To
do this we will need a representation of our C*-algebra on a Hilbert space.

Definition 4.4 Let 2 be a C*-algebra and let H be a Hilbert space. A repre-
sentation of A on H is a x-homomorphism m : A — B(H). That is, a linear
map such that m(AB) = n(A)w(B) for all A, B € A. For a x-representation one
has in addition that m(A)* = w(A*).

Now, if we have a state, a C*-algebra, and a representation, the GNS Hilbert
space construction guarantees that we can construct a Hilbert space from these
quantities.
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Theorem 4.1 (GNS Hilbert Space Construction) Let 2 be a unital C*-
algebra and w a state on A. Then there is a triple (m,,H.,2), where H,, is
a Hilbert space, m,, a representation of A on H, and Q € H,, such that Q is
cyclic for m,, and in addition we have

w(A) = (Q] 1, (A)|Q), AeL. (46)

This triple is unique in the sense that if (w,H, V) is another such triple, there is
a unitary U : H, — H such that UQ =¥ and 7(A) = Ur(A)U* for all A € 2.

4.4 Algebra of Local Observables

In the case of a finite-dimensional Hilbert space, we defined observables as the
set of bounded operators acting on that Hilbert space H, B(H). Using the
adjoint operation from the Hilbert space, B(#) forms a x-algebra. In the case
of an infinite system, one approach to define our observable algebra is to again
just use the set of bounded operators, but then locality is lost. By locality
we mean that an operator only has a finite range, and cannot have an effect
infinitely far away. The importance of locality is two-fold: first it ensures that
the inner product is well defined in the thermodynamic limit, and secondly it
is physically meaningful because we expect that a measurement made here on
Earth will have no effect on a distant galaxy. Note that addition and composition
of local operators is still local, and the set of local operators form an algebra.
In the case of an finite system, then the set of local operators on a Hilbert space
is the same as the set of bounded operators. In the case of the infinite system,
the set of local operators is a subset of bounded operators. We will construct
the set of local operators on an infinite system as follows.

First, we will always work with the lattice Z2. Define a set of sites S on Z2,
this set could be the set of vertices, or the set of edges connecting vertices, or
something else, but we will always assume the set of sites is countable. We will
also always study spin-1/2 systems, so say that at each site is a Hilbert space
H, = C2. Consider a finite set of sites A € Z?2, then

Ha = Q) H. (47)

seA

is a finite dimensional Hilbert space. We then define

Ap = B(H,) = Q) M2(C) (48)

zEA

to be the algebra of observables on this space. We want to generalize this notion
to the case of infinitely many sites, while preservering locality. To do this, we
need a way to compare the algebra of observables from one set of sites to the
other.

Let us suppose A; C Ay C Z?, and let A € A,,. We can interpret A € Ay,
by acting as A on the sites in A UAs, but trivially everywhere else. Suppose that
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there are n sites in A; and n+m sites in Ay, then we say A1 @A2®---®A, € Ap,
then 41 ® A2 ® -4, 91l®---®1 € Ap,, where we have inserted copies of
the identity operator at the m sites in As\A;. For the case that A; C Az we
can see via this extension that Ay, C Ap,

Let us denote the set of all finite subsets of Z? as P. Since we can make
sense of algebras being embedded in a larger space, we can define the %-algebra
called the strictly local algebra of observables for the infinite systems as

oo := ] Aa. (49)
AePy

To yield a C*-algebra, we take the closure with respect to the operator norm

Az2 = QLIOCH'”.

(50)
This space is called the quasi-local algebra of observables. This is a C*-algebra
for the infinite system Z2. Thus, if we have any state w : 272 — C, then from
the GNS Hilbert space construction Theorem, we will have a Hilbert space H,,,
a representation m, of 2Az> on H,,, and a reference state |€2), such that |Q) is
cyclic for 7. Furthermore, since |Q)) is cyclic for m,, and =, is a representation
of local operators, this means that every vector in H,, differs from |Q2) at finitely
many sites, and so our inner product is well defined.

Picking such a state w is somewhat of an art. Different choices of w can in fact
yield inequivalent representations of our observables 22, and it is not always
clear which representation is preferred. Ultimately we are interested in studying
the low energy excitations of our system, and this makes taking the ground state
of our Hamiltonian an obvious candidate for our state. It is sometimes the case
that the ground state is degenerate, and we will discuss such models. In this
case, one can simply pick one of the ground states as their state for input into
the GNS construction. In the cases studied here, the energies will not depend
on the choice of ground state, but expectation values of certain observables
can. The different inequivalent representations correspond to different physical
configuration with a global conserved quantity, loosely called charge.

4.5 Unbounded Operators and the Hamiltonian

In general the Hamiltonian H is an unbounded operator in the thermodynamic
limit. To remedy this, we will always work in an invariant subspace under
H, in which the action of H is well defined. Finding the ground state of the
Hamiltonian will take some care though. We will first work on a finite system
in which the Hamiltonian is bounded, and find the ground state there. We then
will extend this ground state to the thermodynamic limit, giving us our state
for the GNS construction.
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5 Quantum Spin Models on Z?

Many real materials have planes of magnetically active atoms seperated by
planes of mangetically inactive atoms, for which their bulk properties are well
modelled by two-dimensional planes of spin-1/2 particles. There are also single
atom thick materials, such as graphene, for which a two-dimensional model is
the most accurate. One of the simplest two-dimenonsional lattices is a square
lattice, given mathematically by Z2. We will restrict ourselves to studying the
energy levels of quantum spin-1/2 systems on Z2.

5.1 Ising Model

Define A as a finite set of connected vertices in Z2. We then define the Ising
model on A by its Hamiltonian

1 33
Hy = 3 ;\62(1 —0,03), (51)

where the second sum is over all vertices § € A that are connected to v € A.
Define the total spin operator along the x3 direction

SP=> o (52)

vEA

Let us note that [Hy, ¥3] = 0, and so we can find simultaneous eigenvectors of H
and 33. The eigenvectors of X3 are simply the tensor product of o2 eigenvectors
at each vertex, labelled by whether the spin is up or down at each vetex x € Z2.
We also note that for each v, d that

[H, (1= oy05)] =0, (53)
and so we can diagonalize H by diagnonalizing each term. We also note that
(1-0y03) >0, (54)

and in particular, the four eigenvalues of (1 —o203) are (0,0,2,2). Thus H > 0,
and there are exactly two states |1 o) satisfying

H |i1,2) = 0. (55)

These states are written in the spin basis as

o) =111 1) 5 () = [ ) (56)

Let us use |12) to define a state on our algebra. In particluar, define

Q) =) 1) - (57)

€A
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Then we will define a state wa on our local algebra A5 by
wA(A) = <QA|A|QA>, VA € 2A,. (58)

We want to generalize this to the infinite system, to be a state on 2z2. Notice
that if we increase the size of A, we can just increase the tensor product of [25)
with more copies of ||), and so this naturally extends to a state on ;... To
yield a state w on A2, we will take the limit that A goes to Z2
w(A) = 111&12 wa(A). (59)

Since A must be local and bounded, A will only effect finitely many sites of |Q2),,
making the expectation value a finite product of finite terms. This argument is
independent on how we extend A to Z2, and thus the sequence converges.

We then use w along with 20> to construct a GNS triple (7, H,, [2)). We
can now work directly in the thermodynamic limit to study this model.

5.1.1 Thermodynamic Limit

We wish to construct an invariant subspace for which we can discuss the action
of the Hamiltonian in the infinite system. Let |S1),[S2) be eigenvectors of 33
with eigenvalues s1, so, and notice that since [Hy, %% = 0

0= (S1|[Ha,X%]|S2) = 0= (S1| HyX* — X3H, |Ss)
= 0= (52— 51)(S1| Ha|S2). (60)
Thus, either so = s; or (S1|Hx|S2) = 0. Thus, if we work in a space of

degenerate eigenvectors of X3, then Hj leaves this space invariant, for every
A € Z2. In particular, define the following subspaces of H,,

HWY = span(od |Q) |z € Z2)

Il
HP = span(of oy |Q) |z, y € 72,z # y) (61)
where the over line denotes the closure with respect to the norm ||-||. These
subspaces are invariant under Hy, and restricted to this subspace, the infinite
system Hamiltonian H will be well defined, defined by

H=0 3 300k, (62)

vEZ2 §~v

where we restrict the domain of H to be in H12).

If we adopt the particle physics nomenclature, we interpret |Q2) as the vacuum
and o |Q)) as creation of a particle at the position x. However, this kind of
particle is not part of the standard model of physics, and so we call such an
excitation a quasi-particle. Since the Pauli matrices at different sites in a lattice
commute, we have that

oot 1) = ot ot 9, (63)



and so these quasi-particles are bosons, and called magnons. We will define
magnon states as follows

ol Q). (64)

Let us consider the action of H on a one-magnon state

Hime) = 5 3 30— olodot ). (65)

VEZ2 S~v

Since Pauli matrices of different vertices commute, each term in the sum passes
through o and returns 0 on |[Q2) except for the case of v, = x. Each pair will
happen exactly twice, so we can remove the extra factor of two out front and
consider only the case v = z,

Hlmg) => (1-0303)ot |9). (66)
S~z
Since o is on a different vertex than Ug’, they commute. Also 02 Q) = — Q)
for all € Z2, thus
Himg) =Y (of +020])|Q). (67)
S~

Also, by the commutation relations of the Pauli matrices, we have that o3¢0t =
o1, so we have
Hof Q) =2) o |9). (68)
S~z
Since there are exactly four term in the sum, and the summand is independent
of & we conclude

and therefore |m,) is an eigenvector of H with eigenvalue 8 for each z € Z2.
Since |m;) is an eigenvector, its dynamics is simply given by multiplication by a
phase, and is trivial. In other words, magnon’s in the Ising model are stationary,
and do not move under their own dynamics. A nearly identical calculation shows
that for the two-magnon states o f o, [Q2) yields

12|\mymy) if x~y

H mamy) = {16 |mzmy) otherwise (70)
In general, any N magnon state defined by
‘mzn ...m$2mzl> = O’;_N ...0;20-;_1 |Q> (71)

is an eigenvector of H, and thus the dynamics of any collection of magnons in
this model is trivial. To yield non-trivial dynamics in the magnons, we need
other terms in the Hamiltonian. A common model that does this is called the
Heisenberg model.
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5.2 Heisenberg Model

Let A be a finite set of connected vertices in Z2. Then the Heisenberg model is
defined by its Hamiltonian

Hy= 3 350 60-a). (72)

vEA d~v

Again we have the property that
[Hp, X% = 0. (73)

Therefore we have that Hy and 32 can be simultaneously diagonalized. From
the two-spin Hamiltonian problem, we know that & - &5 has eigenvalues of —3, 1,
and so 1 — &4 - 02 has eigenvalues of 0,4. Thus H is a sum of positive operators,
and so H > 0. In this case there are in fact infinitely many states |¢) satisfying
H ) = 0. In particular, |Q4) from the Ising model satisfies Hp |Q2x) = 0.
We thus can use the same GNS Hilbert space that we constructed for the Ising
model here.

Since [Hy, ¥3] = 0 for each A, we have that the subspaces H1:2) are invariant
under H, and so we define the infinite system Hamiltonian which is well defined
on these subspaces as

1 S
Hy = 3 Z Z(l—av~05). (74)
VEZ2 d~v

In this case, however, the state |m,) is not an eigenvector of H. To see this,
let us determine the action of H on |m,)

1 L o
H|mq) = 5 SN 1-6,-5)0 ). (75)
VEZ2 d~v

By definition

Gy - G5 = 0203 +olo} + olal. (76)
We can rewrite this dot product in terms of 0¥, 0~ instead of o', 0? yielding

— —

Gy s =ouos +2[ofo, +ofo,]. (77)
With this we can write

H|mg) = % Z Z (1—0i0} —2[ofo, +ofa,]) ol |). (78)

VEZ2 d~v

We have that each term in the sum is 0 unless v,0 = x. Combining both these
instances into one eliminates the extra factor of 1/2.

H|mg) = Z (1- o3of —2 lofo, +ofo,]) ol Q). (79)

o~z
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The first two terms is identical to the Ising model, and yields 8 |m,). For the
other terms, we use the fact that cTo™ =0, and 0= 0+ = (1 — ¢3)/2, thus

H|mg) =8|mg) =) of (1-03)|2). (80)
S~z
Lastly, 02 |Q) = — |Q2), and so we have
H|mg) =8|my) =2 |ms). (81)
o~

Thus we see that |m,) is not an eigenvector of H in the Heisenberg model. We
do know, however, that since H(1) is an invariant subspace under H, in general
we can write an eigenvector as a super-position over all |m,) for x € Z?. Thus
define a general state in this subspace by

)= > Aslmy). (82)
T€EZ2

Then finding the eigenvectors is equivalent to solving for the coefficients {A;}
in the equation

Hp)=Ep) = > A.H|mg) =Y A E|m,) (83)
TEZ2 TEZ2

using Equation (81)

> [8|m$> +2) A, m5>] =Y A.E|m.). (84)

r€Z? S~z r€Z?

From translational invariance in Z2, we can convert the |ms) to |m,) by a
translation of —9. Then define u as the set of unit vectors in the £z 5 directions,

then
>

zE€Z2

8As+2) Ay

yeu

ma) = > AE|my) . (85)

TEZ?

Note that (m/|my) = 8, 4, since ([[1) = 0, and so we can equate the coefficents
in front of |m,) on each side of the equals sign. This yields the following
recursion relation

8Ay +2) A,y = EA,. (86)
YyeEU
To solve this recursion relation, consider the ansatz A, = kT
8T 4 9 TN kT = peitT, (87)
YyeEU

Using the fact that e® + e~ = 2 cos(¢) we conclude
_ _ .2 kl 2 k2
E =4(1 — cos(k1)) +4(1 — cos(ks)) = 4 |sin 5 + sin 5 | (88)

where (ky, k) = k.
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5.3 A Few Remarks

We saw that the Ising model had quasi-particle excitations called magnons,
but the magnons were eigenvectors of the Hamiltonian and so they had trivial
dynamics. The Heisenberg model however also has magnon excitations, but they
were not eigenvectors of the Hamiltonian. We found that the eigenvectors were
a superposition of magnon states, with coefficients given by e¢*%. Although we
algebraically found the coefficients in the superposition by solving a recursion
relation, the coefficients have a simple physical meaning.

Since Z? is translationally invariant, this induces a group action of the trans-
lation group on our model, which has a unitary representation. Since the Hamil-
tonian acts the same, it is invariant under this transformation, and so the eigen-
vectors of H must also respect this transformation. This means that translating
the entire system by an element £ € Z2 would be physically equivalent before
and after. Thus, the difference before and after the transformation would at
most pick up a phase that depends on €. In particular, if T'(€) is the represen-
tation of a translation by ¢ on our Hilbert space and |¢) is an eigenvector of
H

T(€) [y) = ¢ [y). (89)

Since translation by &; and then translation by & is equivalent to a translation
by &1 + & we need

T(&)T(€) V) = T(& + &) [) = PITH0R) = (@) (90)

Also translation by £ = 0 must return the original state. These conditions
constrain ¢(&) = k€ for some constant k. Thus we say

T() [) = ¢F€ 1)) . (91)

What we find from this is that the eigenvectors of the Heisenberg Hamiltonian
are in fact eigenvectors of the translation operator, which we could have pre-
dicted by exploiting translation symmetry rather than simply solving for the
coefficients generally. Translational symmetry is not always enough to solve a
problem. The fact that all the Hamiltonians we will study are translational in-
variant only means that we can simultaneoulsy diagonalize both operators, but
this does not always guarantee that the eigenvectors of the translation opera-
tor will be eigenvectors of the Hamiltonian. This is analogous to the fact that
when we found eigenvectors of X3, these eigenvectors were the eigenvectors of
the Ising Hamiltonian, but not the eigenvectors of the Heisenberg Hamiltonian.

Also, the vector k in the eigenvector of the translation operator we interpret
loosely as the momentum. In the case of the continuum, such as in a Quantum
Field Theory, the Translation operator is generated by the momentum operator,
and so we carry this over into the case of a discrete system such as the ones
defined on a lattice here. This momentum is sometimes called the crystalline
momentum, quasi-momentum, or simply the wave-vector. One major difference
is the distinct values that & can take. We usually restrict k € [—m, 7] X [—7, 7).
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Figure 2: Example of a vertex operator (blue) and a face operator (red) of the
Toric Code model.

We see that under the transformation k — k -+ 277, i € Z2, then the eigenvalues
of the translation operator transform

eiE-i‘ . ei(E+27rﬁ)-i‘ _ eil;-i" (92)
Thus the eigenvalues are invariant under this transformation. Thus, all the
physically significant information from k is extracted in any square of length
27, we choose k € [—m, 7] X [—m, 7] by convention.

Lastly, we found that the energies in the Heisenberg model were written
as a function of k. The energy as a function of k is known as a dispersion
relation. This relation yields a direct measurement of the speed of propagation
of information v, in the material by

_dr
Vg =
This relation also makes calculating thermodynamic quantities explicitly clear,
since thermodynamic quantities can be expressed as integrals of the energy over
all physically distinct values of k weighted by some kernel. In many cases, once
the dispersion relation is known for the system, essentially any other quantity
can, at least in principle, be calculated from this. Because of this, we focus

the majority of our attention to determining the dispersion relation for these
models.

(93)

6 Toric Code Model

Let A be a finite subset of Z2. In this model, the sites are given by edges in A.
A face is defined as the center point of a square, and an edge is a line connecting
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two vertices. We will denote by e ~ f.e ~ v if the edge e is adjacent to f,v,
and we will denote v ~ f if there exists an edge e such that e ~ v and e ~ f.
define the following operators, illustrated in Figure 2

Av:HU; ; Bf:HO'S. (94)

e~ e~ f

We then define the Hamiltonian on A by

Hy= Y (1-4)+ > (1-By). (95)

{v|A,€Ar} {f|BreAnr}

Since both A, and By are products of Pauli matrices, each with eigenvalues
+1, we have that the eigenvalues of A,, By = +1. Thus each term in the
Hamiltonian is non-negative, and so we have that H > 0. Note that every
Ay, By shares either 0 or 2 edges. If they share 0 edges, then it is clear that
[Ay, Bf] = 0. When they share two edges, call them es3, e4 then we have

_ 1.1 1 _1 3 3 3 3
AyBy = 0,,0,,0,,0,,00.00,00. 05 . (96)

Since the Pauli matrices acting on different edges commute, we have

_ 3 3,1 3 1 331 1
AyBy = 0. 0, (0,,00.0.,00,)0¢, 0, (97)

Since the Pauli matrices anti-commute, we can reverse the order of the Pauli
matrices at e3 at the cost of a minus sign. Then doing this again for the Pauli
matrices at e4 produces an additional minus sign cancelling the first. Thus

_ 33 3 3 1 1 11 _
AyBy =0;,0;,,0,.0.0,0.,0.0,, =DBfA,. (98)

Thus

[A,,Bfl =0 Vo, feA. (99)
What this also means is that since Hy is a sum of terms including the identity
and A, or By, then

[H A, =[H,Bf] =0 Vv, fcA. (100)

Thus we can diagonalize H by diagonalizing each A,, By.

The ground state of this model, |Q25) is given by the unique state satisfying
A, Q) = By |Q22) = |Q) for all v, f C A. We then define a state on our local
algebra by

WA = <QA|A‘QA>, VA € Ayp. (101)

This state is less clear to show that this extends to the infinite system then
in the case of the Ising model. It was shown in [1] that there is a unique
frustration free ground state w : 2Az> — C? in the thermodynamic limit of this
model, satisfying w(A,) = w(By) =1 for all v, f C Z2. This will be our state
that we use in the GNS Hilbert space construction.

Let us label the set of faces in Z? by F, the set of vertices in Z? by V, and
the set of edges in Z2 by £. Then the infinite system Hamiltonian is defined by

Hy=> (1-A4,)+Y (1-By). (102)

veV fer
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Figure 3: Examples of loop operators for the Toric Code model.

6.1 Understanding The Ground State of the Toric Code

Let us first discuss the state |Q) satisfying Hy |Q2) = 0. Such a state is realized
when each Pauli matrix at each edge satisfies
1 3

ol Q) = 0? Q) = [9). (103)
Such a state is interpreted as a vacuum state, where all the operators act triv-
ially. However, if at any vertice or at any face, exactly two of the Pauli matrices
in Ay, By return —1, then still the energy of such a state is 0. We interpret such
states as closed loops of Pauli matrices. Explicitly, define a loop in Z by [ and
a loop [ in dual(Z?) (the dual of Z? is the square lattice formed by connecting
all the faces), and define loop operators by

=1 ; ‘o= (104)
ecl e€l

The claim is that L(1) |Q) and L3(1) |2) are eigenvectors Hy with eigenvalue 0.
An example of such loops are shown in Figure 3. Let us consider the quantity

HoL* () = |> (1—A)+ > (-8B | [] (105)

veV feF ecl
Since By is comprised of all 0 operators, the second term commutes with L3 (0).
The first term is a little more subtle. Not that since L? is a closed loop of o3s
each vertex that it crosses, it acts on two edges e ~ v. This is very analogous
to the case of a By interacting with A,, and since there is an even number of
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overlaps between L3(l) and A, for each v € Z?, L3(l) also commutes with the
first term, and so

HoL*(1) = L*(I) Ho. (106)
Then consider the state L3 |Q2). We have

HoL*(1)|Q) = L*(1)H, |©) = L*(1)0 = 0. (107)
Thus we conclude that L3(1) |Q) is an eigenvector of Hy with eigenvalue 0. A
very similar argument shows that L'(1)[€) is also an eigenvector of Hy with
eigenvalue 0. Since Z? is homotopic to a point (i.e. the topology of Z? has
genus 0) every closed loop can be contracted away, yielding a unique ground
state |Q) for Hy satisfying

Ao Q) = By [2) = ). (108)

Thus we interpret the ground state |2) as an equal superposition of all possible
closed loops in Z2.

6.2 Excited States of the Toric Code

We saw that when we have a closed loop of Pauli matrices acting on |{2) that
this returned |2) again. This was because every vertex and face operator saw
an even number of Pauli matrices from the loop. What if we have a non-closed
path of Pauli matrices instead? Consider a path v C dual(Z?), and define a
string operator by

s') =T (109)

ecy

Then let us consider the action of Hy on S(v)|Q)

HoS'(7)|2) = | D (1= A)+ Y (1= By)| ' ()| (110)

veV fer

Since A, is comprised of ols, it passes through S!(v) and returns 0 on [{).
Thus

HoS'(y) 1) = Y (1= Bf)S'(7)[9). (111)
fer

Only the endpoints of the string don’t commute with any By, since any interior
points will always share exactly two edges with By. Then let us denote the
endpoints of v by a,b. Thus only if f ~ a or f ~ b do we get a non-zero
contribution from Hy

HoS' (7)) = [(1 = Byra) + (1 = Byap)] 81 (7) [9) - (112)

In both cases, BfS'(y) = —S*(v)By. Then using the fact that By [Q) = |Q) we
have
HoS'(7)19) =481 (7) |9) - (113)
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Figure 4: Example’s of adjusting the string between two anyons in the Toric
Code model. The black dotted line represents a loop which moves the string,
and the red dotted line extends the string by multiplcation with a Pauli matrix.

Thus, S1|Q) is an eigenvector of H with eigenvalue 4. If we define a path
5 C Z?, and string operator

s = [ o2 (114)

e€ey

We would find by an identical analysis that
HyS*(7) 19) = 45°(F) |2) - (115)

These states are another example of quasi-particle excitations, except instead of
living at a particular edge, they must live at the endpoints of strings. Also we
note that suppose we have a string as shown by the blue line in Figure 4, and we
act with the loop shown in the same figure by a dotted black line, then the state
is left invariant. This is seen because the string and loop commute, and then
the loop returns 1 on |2). Therefore, we can use closed loops to move the string
around arbitrarily. Since the Pauli matrices square to 1, we can also interpret
such a state as a new state with string given by the union of both strings,
but subtracting away their overlap. Furthermore, we can hop the particle to a
neighboring site by extending the string with another o', as depicted in red in
Figure 4. The story is analogous for strings operators S3(7).
Define the following subspaces of the full Hilbert space

HD) = {S3(7)[Q) : 7 C 2%}
HW =T{S1(7)[Q) : v C dual(Z2)}

I (116)

We see that these spaces are invariant subspaces under the action of Hy.
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|y S

Figure 5: An example of the anyon in blue braiding around the anyon in red,
in the Toric Code model.

6.3 Anyons

Next let us consider a state of the form form
S (1) 19) - (117)
Nearly identical analysis as for the one particle case shows that
HyS*(7)S () 19) = 85%(7)S" (1) [92) - (118)

We saw before that we can hop a one-particle state to a neighboring face by
the action of a ¢ at a neighboring edge to the particle, effectively extending
the path. Let us consider hopping one particle around the other. We show one
particle in blue, the other particle in red, and the path the blue particle takes
hopping around the red particle, in a process called braiding, illustrated by a
black dotted line in Figure 5. This process returns the blue particle back to its
original place, and so we would naturally believe that the final state after this
process is the same as the initial state. To determine the relation between the
two, define the following states

[Winitiat) = S*A)STNQ) 5 Wopina) = L' DS F)S' (N 1Q),  (119)

where 7 is the red string in the Figure 5, «y is the blue string, and [ is the dotted
black loop. Note that L'(l) and S3(¥) share exactly one edge, and so they
anti-commute. Thus

[Wrinat) = =S°(F)L(1)S' (7) |92) . (120)
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Since L' (1) and S*() are both products of o''s, they commute. Then L(1) |Q) =
|©2), and so we have

‘¢final> = _SS(i)Sl(V) ‘Q> == |¢init1ﬁal> . (121)

These particles are quite unlike usual particles, fermions and bosons, which do
not change their phase in such a process. Particles with this unusual property
are known as anyons. The anyons that live in Z2 are named electric anyons, and
the anyons in dual(Z?) are named magnetic anyons. We then usually denote
the anyon states as

€)= S@)1Q) 5 =S MIQ) ;5 lew) =S F)S () IQ).  (122)

These particles also exist in real solid state materials, namely, they are in-
trinsicly related to the fractional quantum Hall effect.
If we define the following subspace of our Hilbert space

I
3

Hw = [S33)ST() ) - 5 C 22,7 C dual(Z2)} (123)

we see also that this subspace is left invariant under H.

We see that the Toric Code model harbors exotic quasi-particle excitations
that develop non-trivial phases when the anyons braid around each other. How-
ever, since the anyons are eigenvectors of Hy, such a process would not occur
under its own dynamics. This is very analogous to magnons in the Ising model,
in which the magnons were eigenvectors of the Ising Hamiltonian. The goal of
this work is to add additional terms to the Hamiltonian (much like the Heisen-
berg model to the Ising model), that induce non-trivial dynamics in the anyons,
yet at the same time leave H(9, H) and H(¢*) invariant and preserve |(2).

7 Dynamical Toric Code Model

The goal we are trying to produce with our Dynamical Toric Code Model is
to induce dispersion into the anyons of the Toric Code model. This will be
analogous to the Heisenberg model inducing disersion into the magnons of the
Ising model. From the Heisenberg model, we can learn a few lessons of how to
do this. First, the Heisenberg model respects the total spin symmetry, meaning
that it does not couple a one-magnon state to a state with a different num-
ber of magnons. Second, a single magnon state was not an eigenvector of the
Heisenberg Hamiltonian, but rather this Hamiltonian hopped a single magnon
to a neighboring vertex. Lastly, if a magnon exists at vertex v, the Heisenberg
model acts trivially on all vertices that are not v or neighbors of v. We want
add a term to the Toric Code model that has these same properties.

7.1 Hamiltonian Construction

First, one major difference in the Toric Code model is that the excitations come
in pairs connected by a string. We saw, however, that we can extend this string
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by multiplying by ¢!-? at the endpoint of a string. To study the disersion in just

one anyon, we consider a semi-infinite path of o'3s that effectively pushes one
of the anyons out of the model. Formally, we let v C dual(Z?) be a semi-infinite
path terminated at the face z, and let ¥ C Z? be a semi-infinite path terminated
at the vertex z, then we define the one particle states by

lez) = S3A) 10 5 S3F) =[]}
Jjey
) = Se (N 1Q) 5 Sa(n =] ;- (124)
J€y
This process leaves behind a semi-infinite string attached to each anyon state
that cannot be removed. We want our perturbation to not interact with the

strings in anyway. These states are somewhat different from the Toric Code
model, and so let us define the one-particle Hilbert space by

HO = {S33) 1) -7 c 22}
HH) — {SL(7) 1) : v C dual(Z?)}

H~H. (125)
We will see that the ground state of the Toric Code model is annihilated by our
perturbation, and that it leaves (9, H(#) invariant. Thus we will work directly
in the thermodynamic limit in the Hilbert space constructed for the Toric Code
model.

Let us just consider the case of a one-anyon state at the face = given by |u).
We saw from the Toric Code model that we can hop the anyon by acting with
a o' at the end of the string, effectively extending the string. This will produce
the hopping that we desire. Thus we want something of the form

> ol (126)
feEFe~f

However, note that such an operator could create anyon pairs out of |Q2), as
there is nothing restricting it to only act at the end point of a string. The
characteristic of an anyon at the face = is that

By |M€E> = - |:u93> ; Bf |Ma:> = |/’[’5E> ’ f 7é Z. (127)

Thus the operator (1 — A,) would be 0 on |u,) unless v = 2. Thus the operator
> > ol By) (128)
feEFe~f

would certainly hop an anyon, and also conserve anyon number. The issue
with this operator is that it is not Hermitian. We need the Hamiltonian to be
Hermitian as we demand that time evolution is unitary, as well as physically the
Hamiltonian represents the total energy which is always measured to be real.

To see this, define
by =Y ol (129)
e~f
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Observe that byBy = —Byby, since each term in the sum of by anti-commutes
with By. Thus

[bf(1 = Bg)]" = (1= By)*b; = (1 — By)by = bs(1+ By). (130)

Thus each term in the sum over f is not Hermitian. To remedy this, let us
observe that given any operator O, the quantity

i[0,0%] =i [00* — 0*0] (131)

is Hermitian. We also note that the sum of Hermitian operators is also Hermi-
tian. Thus if we modify our perturbation to

2300 - By~ by(1 - Byl (132)
feF

this operator is Hermitian. Note that this term simplifies to

iy byBy. (133)

fer

Unfortunately, this term now has the problem that it creates anyons out of |(2),
which is not what we want. The final correction is to redefine by with alternating
signs as follows
by =Y O(e)al, (134)
e~f
where O(e) = +1 if e is above or to the right of f, and ©(e) = —1 if e is below
or to the left of f. We still have by By = —Bybs, and thus

H,=iY bsBy (135)
fer

is still Hermitian. Since both By and by are comprised of operators that live on
edges, we can rewrite this sum as a sum over edges instead of faces as

Hy =iy o) OBy, (136)

ec& fre

where ©(f) = +11if f is above or to the right e, and ©(f) = —1if f is below or to
the left of e. This will be our final form for the perturbation to induce dispersion.
We can create an analogous perturbation that acts on electron anyons as follows

He=iy [ag > 64,

ec& v~ve

. (137)
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7.2 Action on the Ground State

Let us first just verify that H, and H. do not couple |Q2) to any other states.
We will check this is true for H,, and the case for H, is nearly identical.

H, Q) =iY |ol> O(f)Bs| 1). (138)

ecé fre

Note that by definition of |2), By |Q) = |Q2) for all f, thus

H, Q) =Y |old ()] Q). (139)

ecé& fre

Now, O(f) is just a sign, that is 1. There are exactly one +1 and one —1 in
the sum, and so

H,|Q)=i»  [ol(+1—-1)] Q) =0. (140)
ec&

Therefore H,, |2) = 0. Similarly we have that Hc|Q2) = 0. This means that if
we define our full Hamitonian as

H=Hy+\H,+ H], (141)

then we have H |Q) = 0.

7.3 Action on one-anyon States

Let us now consider
H |pg) = [Ho + A (Hy + He)] |pa) - (142)

Let us discuss each term independently. First, we know that Ho|pz) = 2|pz)
from the calcuation done in the Toric Code model. The reason it is not 4 is
because one of the anyons was sent to infinity, and does not contribute. Next

consider
H, |ug) = zz log’ Z O(v)A

ecé v~ve

SHIQ). (143)

Note that since A, and Si(v) are both comprised of o's, they commute. Then
A, |2) = |€2), thus

SHQ). (144)

Hema»—iz[ ' 6)

ec& v~e

Similar to the case of the ground state, the ©(v) term will have one +1 and one
—1 terms in the sum, and will thus yield zero, implying H |u,) = 0. Let us
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Figure 6: Illustration for what results from the calculation of H,, |ju,), which
leads to Equation (147).

consider the action of H,,

Hylus)=i) oy O(f)Br| Sp(7)[9). (145)

ecé& fre

There are three cases: f is a face that does not contain the string nor the
anyon, f contains the string, or f = z. If f contains neither a string nor an
anyon, then it commutes with S!, and the the ©(f) term will kill the sum. If f
contains the string, but not the anyon, then there will be exactly two edges in
common between By and S.(7v), and the two edges will anti-commute meaning
that [By, S:(v)] = 0, and so again the O(f) terms will yield 0 killing the sum.
Thus all terms in the sum are 0 unless f = x, forcing e ~ x. Thus

Hylus) =iy |oc Y O(f)Br| Si(7)19). (146)

e~zT fre

What remains is shown in figure 6. The edges in green are the edges e that
remain in the sum. each edge has exactly two faces f that satisfy f ~ e, one
is the face x, and the other are shown in red. If f is one of the red faces, then
By commutes with S.(v) and returns 1 on |Q2). However, if f = z, then By
anti-commutes with S1(v) picking up a minus sign. If we denote the edges that
are in green by subscripts [, u,r,d if the edge is to the left,up,right, or down
compared to x we have that

H, |1e) = 2 [0} — ol + ol + 0] S23)19). (147)
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The additional o! simply extends the string (or reduces the string in the case
of ¢}) yielding a new one-anyon state. This can be written compactly by intro-
ducing O(e; x) and O(e; T) by returning +1 if the edge is above or to the right
of z,z and —1 otherwise, we conclude

Hy ) = 203" 0(6;2) ) (148)
Thus, the full action of H on |u,) is given by
H|piz) = 2 |pa) + 200 Y O(es ) |pe) - (149)
An essentially identical calculation shows
Hlez) = 2lez) + 200 Y 0(67) Je) (150)

We see that H takes one magnetic anyon states to other magnetic anyon states,
and same for electric anyons. Thus we have that the spaces #(® and H" are
invarant subspaces under the action of H.

To calculate the dispersion relation, we do the same as for the Heisenberg
model. We will, however, exploit translational symmetry immediately and define

the state o
) = ¥ lmy) . (151)
TEF
Then we will solve for E in the equation
H ) = E ). (152)

This yields . )
Z e TH |my) = Z Ee™™ T |m,) . (153)

r€F zEF
We know how H acts on |u,) from before, so

Z 26”2'5 [|mm> + Z/\Z @(6; Z‘) |Me>‘| = Z Eeilz-f |Mw> . (154)

TEF TEF

en~x

We rewrite the terms |u.) as |u,) by translating by unit vectors ¢, yielding

Z 26iE-i

zeF

1 +MZ@(5)3Z”3~5] o) = > B T |u,) . (155)
§

zeF

Since (mg|my/) = 05, we have that we can compare coefficients yielding

E=2

1+iny ei’”@(a)] . (156)
§

Recalling that €' — e~ = 2isin(x) we conclude

E =2+ 4X[sin(ky) + sin(ks)] . (157)
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7.4 Ribbons

A third anyon excitation exists in this model known as a ribbon. A ribbon is
formed when a magnetic and an electric anyon fuse together, and thus travel
together as a new particle. More mathematically, the dynamics of a ribbon
would satisfy that if the position of the electric anyon is v and the position
of the magnetic anyon is f, then v ~ f for all time. We want to develop a
perturbation that hops a ribbon, yet always satisfies v ~ f after each hop. Let
us define the two-anyon Hilbert space by

Hw = {S3F)SI(7) [0 15 C 22,7 C dual(ZD)] .

(158)
We will see that our perturbation on ribbon states annihilates the ground state
of the Toric Code model, and leaves H(“*) so we work directly in the thermo-
dynamic limit.

We induce dispersion in the ribbons by adding an additional term to our
old perturbation, that enforces the condition v ~ f. This is achieved with the
perturbation

Hey =iy [0l Y O(f)Br Y (1-Ay)+02> O(v)A, Y (1- By)

ec& fre vre vre fre
(159)
Note that since [Bf, A,] = 0 for all f,v € Z?, we have that the sum’s over f and v
commute, and so they act independently. We also note that [¢},>, (1 — A,)] =

{ag’, Do el — Bf)} = 0, and so the final sum in each term commutes with ev-

erything. We saw before that with out the final sum of each term, we have
either H, or H,,, which we saw in the previous section that these are Hermitian.
Since 1 — A, and 1 — By are Hermitian, and the product of two commuting
Hermitian operators is Hermitian, we conclude the H, is Hermitian. Explicitly
for the first term

iY ol OB (1-Ay)| =(=i)> > (1—A4,)) 6(f)Bso}

ec& fr~e vve e€f vrve fre
= (=) Y O(NBrory (1-A)
e€cf fre vrve
=iy oty O(f)Bf Y (1—A,), (160)
ecé fre vre

similarly for the other term, and thus H,, is Hermitian. Note that the final term
in H, kills |©2), since A4, |Q) = By Q) = |Q) for all v, f € Z?, so H, |Q) = 0.
Let us define a two particle state by

lezta) = SZ(3) S (1) 1), (161)
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where 7,7 are semi-infinite paths in Z2 dual(Z?) terminated at Z, x respectively.
Let us then find the action of H, on |ezpt,)

Heulezpa) =iy (o0 ) O(f)By Yy (1—A4,)

ec& fre vve

+ oS04, Y1 - By)| lesi) (162)

vrve fre

We have that (1 — By) |ezft,) = 0 unless e ~ z, and (1 — A,) |ezpy) = 0 unless
e ~ T, and thus

Heplezna) =i |02 S 0(£)B; S (1 - A)

e~T fre v~e

+ Y0l OA D (1= By)| lezpa) . (163)

e~z v~ve fre

Since e ~ T, exactly one of v ~ e satisfies v = Z, and thus the last sum over v
returns 2 on ez, ), similarly for the sum over f in the second sum. Thus

Heylezpa) =i | Y 02> O(f)Br2+ Y 00y Ow)A2| [ezua).  (164)

e~T fre e~x vre

The alternating signs induced by © force that f = x in the first sum, and v ==
in the second sum, forcing e ~ x and e ~ T for both sums. If it is the case that
z 4 T, then H,, |ezp,) = 02, otherwise

Heplezpia) = 2i Z o Z o(f)By + ae Z O() Ay | lezpa) - (165)

e~ froe vrve
e~x

When f = z or v = Z, the sum over f and the sum over v yield £2. In particluar,
if the edge is to the left or bottom of = we get —2 and if the edge is above or to
the right of x we get +2, similarly for Z. Thus,

He, lezpe) = 4@'2 [O(e; Z)al + O(e; )02 ] |ezpta) - (166)

As an example, if we have the state shown in Figure 7, we would have

Heylezpe) = 4i[—0p, — a0, + 00, + 02 ] lezpia) (167)

2This is the crucial property that forces ribbons to stay together.
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Figure 7: An example of a ribbon for the state |ezpu,) used in Equation (167).

where ¢; is the edge to the left of the red anyon, and ey is the edge below the
red anyon.

To combine the o1’s into |ez/,) to produce a new state depends on the
orientation of the string. In order to proceed we introduce a convention for the
string, which is equivalent to defining a basis to work in. We choose for all
strings to go to infinitely straight downward, towards infinity in the minus xo-
direction. If the anyon hops horizontally, we must return this state to one of the
basis states, by constructing an infinite loop. Such a loop is not a local operator,
and thus is not in our algebra of observables. However, we can construct a
sequence of finite loops, and take the limite as the loop size goes to infinity.
Doing this will determine the sign that the state picks up, as creating such a
loop may cross the string from the other anyon, yielding a minus sign.

3

7.5 Ribbon Dispersion

In this section, we wish to find the dispersion relation for H,. If we define
H = Hy + pH.,, (168)

then the dispersion relation will be the dispersion relation for H,, just multi-
plied by p, and shifted by 4 from Hy. Thus anything interesting is due to H,
alone.

A general two particle state (one electric and one magnetic) is given by

Sz S (1) 19) - (169)

We say such a state is a ribbon state if it is the case that x ~ Z. Such a state
can be thought of as a particle living at a site defined by the arithmetic mean
of  and z. In Figure 8 we show the location of sites denoted by vectors J;
stemming from a face denoted by . Each site can be uniquely located by the
vector = + 0; where x € dual(Z?).
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Figure 8: Location of ribbon sites given by ¢; in reference to a face . By
translational invariance, the same ¢;s apply for all z € F.

Note that H, is translationally invariant under translations in 72, but since
sites have a lattice spacing of 1/2, all ribbon states are not equivalent under
translations. We must consider a lattice with a basis, given by x € dual(Z?),
with basis vectors §;. We thus denote a ribbon state by |z;d;), j € {1,2,3,4}.

Let us choose a basis in which 7,7 are semi-infinite vertical paths coming
from —oo in the x5 direction. From the last section, we have that the action on
a generic two-particle state is given by

He, lespie) = 412 (e;Z)ol + O(e; )02 ] |ezpa) - (170)

e~x
e~T

This translates to the four following equations in terms of the action on |z;d;)

H., |z, 81) = 4i[— |x — é1;04) — |x; 04) + |T + é2; 03) — |x; 03)]

Hey |z, 00) = 4if|z;03) — |+ €13 03) + |x504) — |2 — €2;63)]

Heﬂ ‘l‘, 63> = 4Z[|£L' — 61, (52> |$ 52> + |£L’ (51> — |.7J — ég; 51>] (171)
Hep, |z, 04) = 4i]|x;01) + | + é1;01) + |2 + é2;02) — |x; 02)].

We note that when an anyon hops down or left a minus sign is picked up, but
up or right no sign is picked up. The sign for vertical hopping comes just from
the ©(By, A,) terms. For horizontal hopping, there is a minus sign from these
terms as well, but there is an additional minus sign that comes from returning
the state to the basis state defined by a semi-infinite straight path from —oo in
the vertical direction. This extra minus sign is always seen when the electric
anyon hops, since we defined the electric anyons to be above the magnetic anyons
(the S? operator is applied after the S operator on [2)). As for the horizontal
hopping of the magnetic anyon, it only induces an additional minus sign when
the magnetic anyon is below the electric anyon in the vertical direction. This is
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because to place the state back in this position after hopping, we need to create
a loop, which will pick up an additional minus sign in this case, and in the limit
the loop height goes to oo, we yield a net minus sign.

To find the dispersion relation, we consider the ansatz

W= S S AR 2,45 (172)

r€dual(Z?) j=1

We then want to solve for the coefficients A; from the equation

Hy) = Ey) (173)

analogously to the case of the Heisenberg model. Using Equations (171) we find
that

S 4TI ) As 4 (1 e A o, 6)
x€dual(Z?)
+ [-(1+e™)A3 — (1 — e *2)Ay] |2, 62)
+ (1 —e ™) A + (1 + e *) As] |2, 61)
+ [~ —e™)A; + (1 —e™) Ay |z,61) }
4

= Y D EARE 2,6, (174)

r€dual(Z?) j=1

Since (2',9;/|x,0;) = 02,405, we have the following matrix equation for the
Aj,S

0 0 (1 — €ik2) (1 — 67““) Aq Ay

4i 0 0 —(+e™) —(I—em®) | [ Ay | _ | A

—(1 —e7tk2) (14 e7ihr) 0 0 Az |~ 7| A

—(1—etF) (1 —etke) 0 0 Ay Ay
(175)

Diagonalizing this 4 X 4 matrix yields the dispersion relation

E = i\/4 — 2cos(ky) 4 /10 + 2 cos(2k;) — 8 cos(kz), (176)

where all four combinations of the + are the four eigenvalues. We illustrate
these dispersion relations for a few paths of k in the region [—m, 7] X [—m, 7] in
Figure 9.

7.6 Full Hamiltonian

We have shown two seperate perturbations to the Toric Code model. One that
induced dispersion in the one anyon sector, and one that induced dispersion in
the ribbons. We now want to study the case where we have both perturbations
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N /\

Figure 9: Plots of the dispersion relation of H.,. The black box at the top
of each figure represents the region k € [—m, 7] X [—7,n] and the black line
represents the path taken in this region.
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to the Toric Code model, and the full Dynamical Toric Code model Hamiltonian
will be given by
H=Hy+ \H.+ H,| + pH,, (177)

where )\, p are real numbers which can tune the strength of the two perturba-
tions. We call A the coupling constant for free anyon hopping, and p the coupling
constant for ribbon hopping. Let us first observe that on a one-particle state,
H,, acts trivially. Let us consider He, |u,). Note that (1 — A,) |p) = 0 anni-
hilating the first term, and thus

He i) = 3202 3" 0(0) 40 3010 = By) ). (178)

ec& v~e fre

Unless f =z, (1 — By) |ue) = 0, forcing e ~ z for a (potentially) non-zero term.
If f =a then (1 — By) |pe) = 2|ps), thus

Heulp) =D 502 Y O(0) A2 |pa). (179)

e~x v~e

However, note that A, |u,) = 1 for all v € Z?. Since every edge has a vertex to
the left and right, or above and below, and so the term

> 04, (180)

v~e

always takes the form of (A, — A})), which will annihilate |p,). Thus He, |pz) =
0. A similar argument implies H, |ez) = 0. Thus, we have that

H|pz) = 2|pa) + 2/\iz O(e) |pe) , (181)

e~x

and so adding H, to the Hamiltonian does nothing to the one-anyon sector.

The story is different for the case of two-anyon excitations. Although H,
forces the anyons to move together as a ribbon, the terms H. and H, have no
such restriction. If A = 0, then we recover the ribbon Hamiltonian discussed
previously, in which the anyons move together as a fused ribbon. The question
is, if A > 0 do fused ribbon states exist as eigenvectors of the Hamiltonian.

The question is quite tricky to answer explicitly, as it is not clear how to
find the exact eigenpairs of the Hamiltonian in the two-anyon invariant sub-
space. Since the Hamiltonian permits interactions between the anyons, exploit-
ing translational invariance alone is not sufficient to diagonalize H. To address
this question, we turn to a numerical calculation.

7.7 Numerical Calculation

To encapsulate the thermodynamic limit, we first calculate the matrix elements
in the infinite system, and then simulate these matrix elements on a finite lattice.
For simplicity, we rescale the coupling constants in our Hamiltonian, so that all
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matrix elements are +1, defining A’ = A\/2 and p’ = p/4, and then we rescale
our Hamiltonian to be

H=Hy+H'
H' =X [H.+ H,] + p'Hep. (182)

We only simulate H’, as Hy has every vector in the subspace H(¢*) is an eigen-
vector with energy 4, and thus only shifts the spectrum by a constant.

Since the infinite system is translationally invariant, we want to build this
into our numerical calculation. To to this, we consider a finite square lattice,
where we identify the points on the left boundary with those on the right, and
the points on the top boundary with those on the bottom, forming geometrically
a torus. There is one caveat, we have that when the z; coordinates of z and
Z are neighbors, then matrix elements are different depending on whether the
2o coordinate of z is greater than or less than Z. To remedy this, we consider
both paths going up and going down from x to Z, including looping around the
periodic boundary. If going up is faster, then we say x is above x. We note that
this scheme also makes it equally likely for Z to be above x as it is for it to be
below, which is a property of the infinite system as well.

Now to address the question of if there are fused ribbon eigenvectors of the
Hamiltonian. To do this, we construct the Hamiltonian for the finite system as
described, and then numerically diagonalize H’'. We then project the eigenvec-
tors into the subspace of all ribbon states, for which the anyons are right next
to each other. Then the norm of the projected eigenvector is a reflection of how
much weight the eigenvector has in this subspace. In particular, if the norm is
1, then all the weight is in this subspace, and so we say the eigenvector is thus
a ribbon state. We know that when A = 0, that there is clearly ribbon states as
seen from our analytical calculation.

We show in Figure 10 our results for the norms NV, in this projected subspace.
For this calculation, we fixed p’ = 1 and we varied X’ from 0 to 1 in increments of
0.01, and we performed our calculation on a 10 X 10 square lattice with periodic
boundary conditions. We see when A’ = 0, we have many states with A}, = 1
which corresponds to the ribbon states discussed previously. As we turn on X,
we see that these degenerate states fan out, and many of them have N, drop
dramatically, signifying these fused anyons are splitting. However, we do see
that there exists states with A, 2 1 in this entire range of A’. We expect fused
anyons can produce some non-zero propability of coupling to non-fused states,
and so slight deviations from N, are still in agreement with the existence of
ribbon states. Due to quantum mechanical uncertainty, there will always be
a propability of a ribbon state quantum tunneling into two free anyons, and
we expect that this probability will grow proportionally with A’. This is even
the case with the electron and the proton in the Hydrogen atom. There is a
finite, non-zero probability that the electron would be found arbitrarily far from
the proton, yet we generally say they form a bound composite system. From
our numerics, it is unclear where the cutoff between a fused ribbon, and two
free anyons would be from N, alone, but we believe this calculation strongly
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Figure 10: A plot of the norm of the eigenvectors projected into the ribbon sub-
space as a function of A’ in the Dynamical Toric Code model. This calculation
is performed on a 10 X 10 square lattice with periodic boundary conditions, and
we set p = 1.

suggests that there exists fused eigenvectors of the Hamiltonian.

8 Conclusions and Future Work

In this paper, we show the development of studying infinite quantum spin sys-
tems, leading up to the GNS Hilbert space construction. We then apply the
GNS Hilbert space construction to the Ising and Heisenberg model. We find
that both the Ising and Heisenberg model harbor magnon quasi-particle exci-
tations, but the Heisenberg model has a non-trivial dispersion relation for the
magnons. We then discuss the anyons in the Toric Code model, and make
analogy with magnons in the Ising model.

Inspired greatly by the Heisenberg model, we propose a perturbation H.+H,,
to the Toric Code model that leaves the anyonic structure of the Toric Code
invariant, and induces a non-trivial sin(k) dispersion relation in the anyons. We
also propose a perturbation H,, that acts invariantly on the ribbons of the Toric
Code model, and found an analytical expression for the dispersion relation of
the ribbons. We then define the Dynamical Toric Code model as

H=Hy+H
H' = \H.+ H,) + pH,,. (183)

We show H,, acts trivially on single anyon states, and so the dispersion relation
for single anyons is completely specifed by just H. + H,,. For A = 0, we showed
that the anyons form fused ribbon states for the energy eigenvectors. When
A >0, H.+ H,, want to separate the ribbon into two free anyons, but it is not
obvious if this transition is abrupt, or if fused ribbon states exits for non-zero
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. To answer this we simulated H' numerically. We computed the norm of the
eigenvectors projected onto the ribbon subspace, N,. We found eigenvectors
with AV, very near one, with slight decay with increasing A. This result provides
evidence for the existence of fused ribbon eigenvectors for non-zero .

In the future, we hope to prove in a rigorous manner that the Dynamical
Toric Code model harbors fused ribbon eigenvectors for non-zero A. We hope
that our numerical simulation can provide insight into the spectrum that will
allow us to proceed analytically. We also hope to study scattering of anyons
under this model. We believe that the existence of fused ribbon eigenvectors
would lead to scattering of two free anyons producing an output state of the
anyons fusing. If this were true, this would be the first known model that
exhibits fusion of anyons after scattering.
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