
Factorization in Numerical Semigroup Algebras

Sviatoslav Zinevich

June 2018

Contents

1 Introduction 2

2 Background Information 2

3 Using the NumericalSemigroupAlg Package 3
3.1 Basic Usage . 4
3.2 Factoring x6 + 1 using the factorization() member function . 5
3.3 Reducibility check of x8 + x6 + x4 + 1 using the isIrreducible

recursive implementation . 11
3.4 Reducibility check of x8 + x6 + x4 + 1 using the non-recursive

implementation of isIrreducible() 15

4 Data on Atomic Density 17
4.1 Methodology . 17
4.2 The Semigroup Algebra F2[x2, x3] 19
4.3 The Semigroup Algebra F2[x4, x5, x6, x7] 19
4.4 The semigroup Algebra F5[x2, x3] 19
4.5 The semigroup Algebra F4[x2, x3] 20

5 Future Work 20

1

1 Introduction

For any field F , it is a fundamental property that any polynomial p ∈ F [x] can
be factored uniquely as a product of irreducible polynomials. This property
does not hold, however, for semigroup algebras where some powers of x are
forbidden; one instance being the semigroup algebra F2[x2, x3] of polynomials
that do not contain x1. For instance, x6 has two factorizations into irreducibles:
x2x2x2 and x3x3. The emergence of such non-unique factorization leads to the
question of effective factorization in F [S], the semigroup algebra of polynomials
whose terms all have exponents in the semigroup S ⊆ N.

The first portion of this paper is dedicated to the issue of efficient computa-
tion of polynomial decomposition in arbitrary semigroup algebras. A python-
based recursive solution is provided:

https://github.com/coneill-math/numsgpsalg

Recent research in the field of non-unique factorization in semigroup algebras
has prompted a further discussion into the reducibility patterns of polynomials
under such conditions. Specifically, we address the following question: what
proportion of polynomials are reducible as the degree increases. In order to
get viable results while checking reducibility of many polynomials, an efficient
reduciblity check that did not require finding the full factorization was needed.
The next portion of the paper discusses two such implementations and how they
accomplish this goal.

The next part of the paper looks into computational evidence about re-
ducibility patterns of polynomials in various rings generated by semigroups. A
few different finite fields are used, along with some different semigroups, and
an extensive computational overview of the proportion of irreducibles to re-
ducibles is presented. An explanation about how the results were generated is
also provided.

Finally, the results of the computational evidence are related to further ana-
lytical questions in the topic. Suggestions for future research are provided, and
a brief overview of a proposed order in which they should be tackled is given.

2 Background Information

Definition 2.1. A numerical semigroup S ⊆ N is closed under addition and
contains the zero element.

Example 2.2. Numerical semigroups can be generated by a finite list of gen-
erators. Given a set {g1, g2, ..., gm} of generators, the numerical semigroup
generated by the set is given by

〈g1, g2, ..., gm〉 = {
∑n

i=1 aigi | ai ⊆ N}.

That is, k is in the semigroup if there exists a combination of generators that
sum up to k. The first few elements in the semigroup generated by 〈3, 5〉 are

2

{0, 3, 5, 6, 8, 9, 10, 12, 15, ...} . 0 is the identity element in every numerical semi-
group, and 3, 5 are elementary, 6 is in the semigroup because 6 = 3 · 2 + 5 · 0
and so on. Notice that 11 isn’t in the numerical semigroup because there is no
way to sum up 3 and 5 to yield 11.

Definition 2.3. A field F is a ring where the both operations (+, ·) satisfy
commutativity, associativity, the existence of additive and multiplicative iden-
tities 0, 1 ∈ F , and the existence of inverses. In particular, if e ∈ F then there
exists e1 ∈ F such that e + e1 = 0,and if e is nonzero, there exists e2 such that
e · e2 = 1.

Example 2.4. One field that is often encountered is Z2 = {0, 1} that consists
of two element, where addition and multiplication are both modulo 2. Another
field is Z5, where addition and multiplication are modulo 5.

Definition 2.5. Fix a field F and semigroup S. The semigroup algebra F [S]

is the set of polynomials of the form
∑k

i=0 aix
i where each ai ∈ F , and ai = 0

whenever i /∈ S .

Example 2.6. F2[x2, x3] is the semigroup algebra over the field F2 generated
by 〈2, 3〉, and can be written as {a0 +

∑n
i=2 aix

i | ai ∈ F2, n ∈ N }.

Definition 2.7. Fix a field F and a semigroup S. An element f(x) ∈ F [S] is
irreducible if its only divisors are the trivial divisors, the multiplicative identity
element and itself.

Example 2.8. The semigroup algebra F2[x] is the semigroup algebra of all
polynomials with coefficients in the field F2. The elements x+ 1 and x3 + x+ 1
are irreducible, while elements such as x2+1 = (x+1)2 and x3+x2 = (x+1) ·x2

are reducible.

Definition 2.9. Fix field F and semigroup S. A factorization of an element E
in a field F [S] is the set of expressions of E as a product of irreducible elements,
i.e. {{e1e2...en} ⊆ F [S] | Πn

i=1ei = E}.

Example 2.10. In the semigroup algebra F2[x2, x3], the only factorization of
x4 + x2 is (x2) · (x2 + 1). x2 and x2 + 1 are both irreducible. x2 can only be
reduced to x ·x but x is not in the semigroup algebra and so x2 is irreducible in
F2[x2, x3]. Similarly, x2 + 1 can be decomposed to (x + 1)2, which is not in the
semigroup algebra and thus not a valid factorization of x2 + 1. x6 on the other
hand has two factorizations x2 · x2 · x2 and x3 · x3. x2 has been shown to be
irreducible, and x3 can be factored into x · x · x, which contains x which is not
in the semigroup algebra, and x2 ·x, which also contains x not in the semigroup
algebra. Thus x6 has two factorizations in F2[x2, x3].

3 Using the NumericalSemigroupAlg Package

This section will cover the class NumericalSemigroupAlg written in Python
using the Sage open source package.

3

3.1 Basic Usage

The class itself contains two public methods, as well as three private methods
and an initialization method.

When creating a new class instance, it is required to enter the semigroup
generators in the form of a list, as the Sage package requires the list to generate
the semigroup, as well as the size of the coefficient field. During initializa-
tion, the semigroup is created using the NumericalSemigroup package and is
assigned to the semigroup class member. A ring is also generated using the
Sage PolynomialRing() function. A class member vars is also created in order
for the user to generate an object variable.

1 alg = NumericalSemigroupAlg([2 , 3] , 2)

2 alg

3 >> Numerical Semigroup Algebra object generated by the semigroup

4 >> [2, 3] in the semigroup algebra with 2 elements

5 x = alg.vars[0]

6 x^19 + x^14 + x^6 + x^4 + 1 in group

7 >> True

8 x^13 + x^7 + x^5 + 1 in group

9 >> False

In addition, a dictionary is created to store the factorization of every single
polynomial generated. Thus, once a factorization of a polynomial has been
computed, it won’t have to be computed again later, saving resources. Using
dynamic programming proves to be very useful, as polynomial decomposition is
an inherently recursive process, where every reducible polynomial consists of the
multiplication of smaller-degree polynomials. Having a dictionary changes the
requirements of the algorithm, as it now has no need to shy away from computing
multiple factorizations, but actually encourages them, since a comprehensive
factorization dictionary enables O(1) look-up. The factorization() function
takes in a sage polynomial. This is the public method that generates all the
factorizations of the polynomial, here named element, in the semigroup algebra.
The inner workings of this function are detailed in Section 3.2.

1 group.factorization(x^9 + x^2 + 1)

2 >> [[x^4 + x^3 + 1, x^5 + x^4 + x^3 + x^2 + 1]]

3 group.factorization(x^11 + x^4)

4 >> [[x^2, x^2, x^7 + 1],

5 >> [x^2, x^2, x^3 + x^2 + 1, x^4 + x^3 + x^2 + 1],

6 >> [x^5 + x^3 + x^2, x^6 + x^4 + x^3 + x^2],

7 >> [x^3 + x^2, x^3 + x^2 + 1, x^5 + x^3 + x^2]]

The next function, isIrreducible(), checks if a given polynomial is irre-
ducible. The optional second argument determines which implementation is
used.

4

The default, isIrreducible(p, True) takes in a sage polynomial as in-
put, and checks reducibility using a recursive algorithm. The recursive function
isIrreducible() is a stripped down version of factorization(). If the poly-
nomial is irreducible, it returns True, otherwise it returns False. It does so
with an algorithm very similar to that of factor(). However, at the point
where the factorization algorithm delves to find the factorization of the devising
polynomials, isIrreducible() stops. It does not need to factor the divisors
because their existence implies the original polynomial is reducible.

The second implementation of isIrreducbile(p, False), also finds whether
a polynomial is irreducible in the semigroup algebra provided in init . How-
ever, unlike the recursive isIrreducible() version, it does so without using
recursion. This is accomplished by observing that the recursive algorithm sim-
ply looks for the right combination of irreducibles that form a polynomial in the
semigroup algebra and divide the input polynomial into another polynomial in
the semigroup algebra.

1 alg.isIrreducible(x^6 + 1 , True)

2 >> False

3 alg.isIrreducible(x^8 + x^7 + x^4 + 1 , True)

4 >> True

5 alg.isIrreducible(x^16 + x^9 + 1, False)

6 >> False

7 alg.isIrreducible(x^21 + x^19 + 1 , False)

8 >> True

3.2 Factoring x6 + 1 using the factorization() member
function

Overview. Upon a call to factorization(input var), a list of all possible
factorizations of the input element is made using Sage’s method factor(). This
is when the private method __Tree() is called. The factorization is a largely
recursive algorithm, and __Tree(element, factorlist, master) implements
that by receiving a possible divisor of the element to be factored, its factor
list, and the governing element, i.e. the element for which the recursive tree is
finding the irreducible components, named here as master.

In general, __Tree() works by checking every possible expression of the
master as a product of two smaller polynomials in the semigroup algebra. For
each such expression, __Tree() calls on itself for each of the two factorizing
polynomials with arguments: element, its factor list, and element again, as
the algorithm now seeks to see if that polynomial can be further factored. This
process keeps on going until factorlist is depleted, and if a factorization of
the master has yet to be found, it is irreducible and is added to the dictionary
as such. After __Tree() makes these calls, the recursive algorithm finds the
irreducible components of the factorization, and they are joined to form a new
list decomposition of the polynomial, which is then added to the dictionary.

5

More concretely, each call to __Tree() starts by checking if factorlist is
empty. An empty factorlist implies that the master’s factorization reached
its full depth , and without it having a factorization into at least two polynomials
in the semigroup algebra, the current master is irreducible, as mentioned above.
However, if factorlist isn’t empty, then the algorithm checks if element is
a factor of master in the semigroup algebra, by checking if it, in itself, is in
the semigroup algebra, and if the remaining polynomial, master/element, is
also in the semigroup algebra. If element isn’t in the semigroup algebra, it is
added to the dictionary with an empty list as it’s decomposition, implying it’s
not in the semigroup algebra. If both conditions are true, the algorithm calls on
another __Tree(), with both divisors as masters, to find out their decomposition
recursively.

After the check for factorizations is done, a recursive call for __Tree() is
made for every possible element that can be a factor of master, by composing
all the elements in factor list minus each one, creating unique polynomials.

An in-depth example. The factorization of x6 + 1 in F2[x2, x3] is (x4 +
x2 + 1) · (x2 + 1) and (x3 + 1) · (x3 + 1). In this part, a deep look will be taken
into how this factorization is computed in the following call:

1 group.factorization(x^6 + 1)

2 >>[[x^2 + 1, x^4 + x^2 + 1], [x^3 + 1, x^3 + 1]]

First, a factor list is generated, namely [x + 1, x + 1, x2 + x + 1, x2 + x + 1] and
stored in factorlist. Then the first call to the main recursive function,

__Tree(x^6+1,factorlist,x^6+1), is made.

The first iteration of the call results in nothing, as master is yet to be added
to the dictionary and the possible factor element, equals master. Then, new
divisors are proposed in the for loop, each unique element of factorlist is
removed, and a polynomial of the remaining factors, is constructed and passed
to __Tree(). Note that duplicate polynomials are not passed as we iterate over
set(factorlist), so each unique factor is generated exactly once. Starting
with the polynomial that has x6 + 1’s factor list with the first element removed,

[x + 1, x2 + x + 1, x2 + x + 1]

. The polynomial is simply the multiplication of these generating polynomials,
x5 + x4 + x3 + x2 + x + 1. Since x6 + 1 has only two different polynomials in
its factorlist, there is only one pending call, a call with the factoring element
with factor list [x + 1, x + 1, x2 + x + 1], that is, x4 + x3 + x + 1 (Figure 1).

In the first recursive call

__Tree(x^5 + x^4 + x^3 + x^2 + x + 1, its factorlist, x^6 + 1),

the program verifies that factorlist is not empty and the element does not
equal master, and continues to check if element is in the semigroup algebra.
Since x5 + x4 + x3 + x2 + x + 1 is not in the semigroup algebra, the program

6

x^6+1

x^5 + x^4 + x^3 + x^2 + x + 1 x^4 + x^3 + x + 1

Figure 1: The first recursive call to Tree. The orange boxes denote currently
executing calls, while the white boxes denote pending calls.

x^6+1

x^5 + x^4 + x^3 + x^2 + x + 1 x^4 + x^3 + x + 1

x^4 + x^2 + 1 X^3 + 1

Figure 2: The next recursive calls to Tree. The orange boxes denote currently
executing calls. The white boxes denote pending calls.

continues to create further recursive calls, just as before. element’s factorlist is
[x+1, x+1, x2 +x+1] so it will generate two recursive calls to __Tree(), First
with element (x2 + x + 1) · (x2 + x + 1) = x4 + x2 + 1 and then with element
(x + 1) · (x2 + x + 1) = x3 + 1 (Figure 2).

In the first call the element, x4 + x2 + 1, is in the semigroup algebra. After
checking that master / element = x2 + 1 is also in the semigroup algebra, the
algorithm checks if x2 + 1 is in the dictionary. Since it is not, a call to

__Tree(x^2 + 1, [x + 1, x + 1], x^2 + 1)

is made. Notice that the master is now x2 + 1, as the algorithm now focuses on
finding its factorization, in order to add the complete decomposition to x6 + 1’s
dictionary entry. In the first call, the proposed factorization element x2 + 1
is again equal to its master, and a recursive call is made again. This time
factorlist is [x + 1, x + 1], so only one call with element = x + 1 is made.
x+1 is not in the semigroup algebra so an empty entry is added to the dictionary
with x+1 as key, indicating that it isn’t included in the group. Yet another call
is made to __Tree() with x + 1 as the element, but this time factorlist is
empty. Since it is empty, and master= x2 + 1 is not yet in the dictionary, then
it must be an irreducible in the semigroup algebra, and is thus added as such.
The function then returns all the way back to the original call with x6 + 1 as
master (Figure 3).

The program proceeds to check if x4 + x2 + 1 itself is in the dictionary. It
isn’t, so a call

7

x^2+1

x + 1 []

[x^2 + 1]

Figure 3: The Tree() call for dictionary value addition of master/element.
The orange boxes denote currently executing calls. The purple boxes indicate
dictionary additions.

x^4 + x^2 + 1

x^2 + x + 1 []

[x^4 + x^2 + 1]

Figure 4: The call for dictionary value addition of element. Orange boxes
indicate currently executing calls. Purple boxes indicate dictionary additions.

__Tree(x^4 + x^2 + 1, [x^2 + x + 1, x^2 + x + 1], x^4 + x^2 + 1)

is made to find out its decomposition. Since the factor list is [x2 + x + 1,
x2 +x+ 1], a call with x2 +x+ 1 as the element will be made, and as x2 +x+ 1
is not in the semigroup algebra, it will be added to the dictionary with an empty
list as its value, and the dictionary value of x4 + x2 + 1 will be itself, as it is
irreducible (figure 4).

The program returns back to the original Tree call, with x6 +1 as master.
After decomposing both element, x4 + x2 + 1, and master/element, x2 + 1
and adding them to the dictionary, the program can now add the new-found
factorization of x6 + 1 to it’s dictionary. This is accomplished by iterating over
every factorization of element and master/element, in this case only x2 + 1
and x4 + x2 + 1, and adding them as a unique factorization of x6 + 1 in the
dictionary (Figure 5).

The algorithm now goes further into the other possible factorizations of x6+1
from smaller polynomials constructed from the factors of x4 + x2 + 1. Since its
factorlist is [x2 + x + 1, x2 + x + 1], only one call is made,

8

x^4 + x^2 + 1

x^2 + x + 1

[x^4 + x^2 +1, x^2 +1]x^6+1

x^5 + x^4 + x^3 + x^2 + x + 1 x^4 + x^3 + x + 1

X^3 + 1

Figure 5: Further searches for possible factorization. Orange boxes indicate
currently executing calls. Purple boxes indicate dictionary additions

__Tree(x^2 + x + 1, [x^2 + x + 1], x^6 + 1).

In that call, nothing new will be done as x2+x+1 is known not to be in ring and
its factorlist will be itself, and another identical call will be made to __Tree(),
which will return due to an empty factorlist. Thus, the program will return and
go into the call to x3 + 1 as the dividing element,

__Tree(x^3 + 1, [x + 1, x^2 + x + 1], x^6 + 1).

The factorlist of x3 + 1 is [x+ 1,x2 +x+ 1], which isn’t empty. The program
then checks if it is in the semigroup algebra, and then if master/element, x3 +1,
is in ring. Since the answer to both inquiries is True, a call

__Tree(x^3 + 1, [x + 1 ,x^2 + x + 1], x^3 + 1)

is made to find its decomposition.
Since element == master, calls to find the possible factors of x3+1 is made,

one for each possible factor. factorlist = [x + 1, x2 + x + 1], so one call with
each factor as element will be made. It is apparent that both are not in the
semigroup algebra so they will be added to the dictionary with an empty list as a
value, and x^3+1 will be added as the only element in its list, as it is irreducible
(Figure 6).

Now the program returns back to the main tree, i.e where master is x6 + 1.
The program checks if element is in the dictionary, and because element is x3+1
and it has just been added to the dictionary, the program continues on without
doing any additional calculations. In the next step, a new unique factorization
is added to the master’s dictionary value list, [x3 + 1,x3 + 1].

The algorithm requires to check if there are other possible factors of x6 + 1
that can be made using some of the factors of x3 + 1. However, x3 + 1 has a

9

x^3 + 1

x^2 + x + 1 x + 1

[] []

[x^3 + 1]

Figure 6: The call for dictionary value addition of element. Orange boxes
indicate currently executing calls, Purple boxes indicate dictionary additions

factor list [x + 1, x2 + x + 1], which already has been examined above to have
only polynomials not in the semigroup algebra and thus irrelevant.

Both x4+x2+1 and x3+1 have been explored, and the algorithm returns all
the way back to the very first __Tree() call, where it will now check x4+x3+x+1
as a possible factor of x6 + 1 with

__Tree(x^4 + x^3 + x + 1, its factorlist, x^6 + 1).

In this function the program checks if x4 + x3 + x + 1 is in the semigroup alge-
bra, and since it isn’t, the program continues continues to find smaller possible
factors. Its factor list is [x + 1, x + 1 , x2 + x + 1], and so there will two calls
with elements x3 + 1 , x2 + 1: (Figure 7).

__Tree(x^3+1, [x + 1, x^2 + x + 1], x^6 + 1)

__Tree(x^2+1, [x + 1, x + 1], x^6 + 1)

The program will go into the first call, the one with element being x3 + 1.
Here, the same will occur as with it did with x3 + 1 prior. However, since
the dictionary entry for x3 + 1 already exist, there is no need for computing
its decomposition. At the phase where new decompositions are added to the
master’s, x6 + 1, dictionary value, the values of element and master/element,
both x3 + 1 will be compared to the existing decompostions, and since [x3 + 1,
x3 + 1] is already in the dictionary, it will not be added.

Afterwards, smaller possible factorizations that consist of the factors of x3+1
will be checked, but since its factor list is [x + 1 , x2 + x + 1] it is clear that
they are not in the semigroup algebra and thus will not have any influence on
the results.

Next, the program will return to the __Tree() call with x4 + x3 + x + 1 as
element, and a call

__Tree(x^2+1, [x^2 + 1], x^6 +1)

10

x^3 + 1

x^2 + x + 1 x + 1

x^4 + x^2 + 1

x^2 + x + 1

[[x^4 + x^2 +1, x^2 +1] ,
[x^3 + 1 , x^3 + 1]]

x^6+1

x^5 + x^4 + x^3 + x^2 + x + 1 x^4 + x^3 + x + 1

x^3 + 1 x^2 + 1

Figure 7: Search for further decompositions. Orange boxes denote currently
executing calls, purple boxes denote dictionary additions, and green boxes show
fully executed calls

is made. Here, it is found that both element, x2+1, and master/element, x4+
x2 + 1, are in the semigroup algebra, and thus are candidates for a factorization
of x6 + 1. Since both already have their decomposition in the dictionary, the
program proceeds to try and add them to the x6 + 1’s dictionary list. However,
this factorization is already in the dictionary, so no new factorizations are added.
After this step, the program continues to look for possible factorizations with
smaller polynomials that have some of the factors of x2 + 1. The factor list of
x2 + 1 is [x + 1, x + 1], and both factors aren’t in the semigroup algebra so it
can be easily deducted that they’re not going to be factors of x6 + 1.

The program then returns all the way up to the original call to __Tree()

by factorization(). Since all possible factorizations of x6 + 1 have been
checked, it is safe to claim that its dictionary entry now contains the complete
decomposition of x6 + 1, and thus it is returned to the caller of this method
(Figure 8).

3.3 Reducibility check of x8 + x6 + x4 + 1 using the isIrre-
ducible recursive implementation

Overview. Upon a call to isIrreducible(polynomial), the algorithm gener-
ates the factor list of the polynomial, and binds a new class member self.isRed
to a True value. This implementation assumes the polynomial is irreducible,
and if it finds out that it isn’t, it returns. Then, a call to

__reducibilityTree(element.factor(),factorlist)

is made. In each call to __ReduciblityTree(), the algorithm first checks if fac-
torlist is empty or if self.isRed == False, and returns back if either is found
to be true. In the former case, an empty factorlist signifies that the bottom
of the recursion has been reached and the element is the trivial divisor, and

11

x^3 + 1

x^2 + x + 1 x + 1

x^4 + x^2 + 1

x^2 + x + 1

[[x^4 + x^2 +1, x^2 +1] ,
[x^3 + 1 , x^3 + 1]]

x^6+1

x^5 + x^4 + x^3 + x^2 + x + 1 x^4 + x^3 + x + 1

x^3 + 1 x^2 + 1

 x + 1 x + 1x^2 + x + 1

Figure 8: Fully searched recursive tree for the decomposition of x6 + 1. Orange
boxes denote currently executing calls, purple boxes denote dictionary additions,
green boxes show fully executed calls, white boxes indicate pending calls

thus no factorization has been found. The latter is a check if a factorization
has been found, since in that case the call to isIrreducible() has fulfilled
it’s goal in figuring out if it’s input element is irreducible, and thus there is
no need for further computation. __ReducibilityTree() is the recursive func-
tion that traverses down the possible factors of the input polynomial. Just like
factorization(), __reducibilityTree() checks if element is in the semi-
group algebra, and if master/element is in the semigroup algebra. If both are
in the semigroup algebra, then master is factorable and the function can return
to isIrreducible() and return False. Otherwise, it continues to transverse
down the possible divisors in a fashion identical to that of factorization().

An in-depth example. The polynomial x8 + x6 + x4 + 1 in F2[x2, x3] is
reducible. Below is a review of how the isIrreducible() recursive function
verifies reducibility in the following call:

1 group = NumericalSemigroupAlg([2 , 3] , 2)

2 x = group.vars[0]

3 group.isIrreducible(x^8 + x^6 + x^4 + 1, True)

4 >> False

The polynomial x8 +x6 +x4 +1 is reducible in the semigroup algebra generated
by [x2, x3] in the semigroup algebra mod 2. It’s decomposition is non-unique,
and is (x2 + 1) · (x6 + x2 + 1) and (x4 + x3 + x2 + 1) · (x4 + x3 + x2 + 1). upon
calling the member function

isIrreducible(x^8+x^6+x^4+1,True)

the program runs the same preparation steps as factorization(). First, the
semigroup algebra is generated using the sage function PolynomialRing().
Following these steps, a factorlist [x + 1, x + 1, x3 + x + 1, x3 + x + 1] is

12

x^8 + x^6 + x^4 + 1

x^5 + x^2 + x + 1x^7 + x^6 + x^3 + x^2 + x + 1

self.isRed = False

Figure 9: Recursive call of reducibilityTree. Orange boxes denote currently
executing calls, white boxes indicate pending calls

made to transverse down the divisors of x8 + x6 + x4 + 1. Then the command
self.isRed = True indicates that, unless shown otherwise, the input polyno-
mial is, in fact, irreducible. Then, a call is made:

__ReducibilityTree(self, element,factorlist)

Next, a check is made if element and master/element are in the semigroup
algebra, much like the one done in factorization(). If both conditions hold,
then a reducibility has been proven, as two polynomials that are in the semi-
group algebra exist which together multiply to create the input polynomial. The
first call is false, as element is equal to master.

Next, a for loop call on __ReducibilityTree() is made for each possible
divisor of x8 + x6 + x4 + 1. Since factorlist contains two pairs of identical
polynomials, only two such calls are necessary, as more calls will just produce
duplicates. A first call is made on (x+ 1) · (x3 +x+ 1) · (x3 +x+ 1) = x7 +x6 +
x3+x2+x+1, followed by a call on (x+1) ·(x+1) ·(x3+x+1) = x5+x2+x+1,
which will be made after the recursive call on

__ReducibilityTree(x^7 + x^6 + x^3 + x^2 + x + 1)

(Figure 9). In the recursive call, factorlist is not empty, and self.isRed is
False, so the program continues to check if x7 + x6 + x3 + x2 + x + 1 is in the
semigroup algebra by calling __checkSemigroup(element). Since it returns
False, the program continues without checking if master/element is in the
semigroup algebra. The program continues then to make further recursive calls
to find divisors in the semigroup algebra. Since factorlist is [(x + 1), (x3 + x +
1), (x3 + x + 1)], two calls will be made, one with element being (x3 + x + 1) ·
(x3+x+1) = x6+x2+1 and another with (x+1) ·(x3+x+1) = x4+x3+x2+1
as the dividing element (Figure 10).

In the next recursive call, the program first checks if factorlist is empty
or self.isRed == True. Since both conditions are not satisfied, the program
continues. It then inquires if either element, x6 + x2 + 1 , is in the semigroup
algebra. Since it is, the program checks if master/element, namely x2 + 1, is
in the semigroup algebra. Since it is, there are at least two polynomials in the
semigroup algebra that compose the input element, so master is reducible. The
program then changes self.isRed = True and returns to the caller function.

13

x^8 + x^6 + x^4 + 1

x^5 + x^2 + x + 1x^7 + x^6 + x^3 + x^2 + x + 1

x^4 + x^3 + x^2 + 1x^6 + x^2 + 1

self.isRed = False

Figure 10: Recursive calls of reducibilityTree(). Orange boxes denote
currently executing calls, white boxes indicate pending calls

x^8 + x^6 + x^4 + 1

x^5 + x^2 + x + 1x^7 + x^6 + x^3 + x^2 + x + 1

x^4 + x^3 + x^2 + 1x^6 + x^2 + 1

self.isRed = True

Figure 11: Full execution of irreduciblity check using isIrreducible(). Orange
boxes denote currently executing calls, green boxes show fully executed calls, and
white boxes indicate pending calls. Transparency indicates calls that returned
since isRed == True

The program is not aware of the change in value of self.isRed and thus
makes a recursive call to x4 + x3 + x2 + 1 as the dividing element. In the new
call, the program checks if factorlist is non empty as if self.isRed == True.
Since the second condition is satisfied, the program returns to the caller function
without doing any calculations (Figure 11).

The program is back in the call with element as x7+x6+x3+x2+x+1 during
its recursive call phase. As there are no other recursive calls to make, the func-
tion returns to it’s caller, the original call to __recursiveTree(). Here, too, the
program does not know yet that the input polynomial has been shown reducible,
so it calls on __recursiveTree() with x5+x2+x+1 as element. In the recursive
call the program checks again if factorlist is empty and if self.isRed == True,
which holds, so the program returns to the previous call.

The original call now finished cycling through possible divisors, so it returns
to the user call to self.isIrreducible() and returns self.isRed, letting the
user know that x8 + x6 + x4 + 1 is in fact reducible(Figure 12).

14

x^8 + x^6 + x^4 + 1

x^5 + x^2 + x + 1x^7 + x^6 + x^3 + x^2 + x + 1

x^4 + x^3 + x^2 + 1x^6 + x^2 + 1

self.isRed = True

Figure 12: Orange boxes denote currently executing calls, Green boxes show
fully executed calls, white boxes indicate pending calls. Transparency indicates
calls that returned since isRed == True.

3.4 Reducibility check of x8 + x6 + x4 + 1 using the non-
recursive implementation of isIrreducible()

Overview. If a polynomial is factored into all its comprising irreducible poly-
nomials, then the reducibility of the polynomial implies there exist a diving
polynomial comprised of some of the factors of the original polynomial. This
subset of factors is guaranteed to be in the powerset of the factor list of the
original polynomial. Thus, given reducible polynomial P with factor list FP =
{f1, f2, ..., fn}, the powerset PS(FP) will contain at least one factorization of a
polynomial p in the semigroup algebra such that P/p is also in the semigroup
algebra (and has a factorization in the powerset as well).

Lemma 3.1. Any reducible polynomial P with factor list F has at least one
factor p1 with factor list f1 such that |f1| ≤ |F |/2

Proof. Given a reducible polynomial P with factorlist FP = {f1, f2, ..., fn}, and
one possible factorization p1p2 = P , let f1 be the factorlist of p1 and f2 be the
factor list of p2. Then f1

⋃
f2 = F has to hold. Thus |f1|+ |f2| = |F |. Thus if

|f1| ≥ |F |/2, then |f2| ≤ |F |/2 has to hold, and otherwise |f1| ≤ |F |/2 and the
lemma is proven

From Lemma 3.1 it follows that it is sufficient to iterate through only the
combinations of reducibles of Fp of length ≤ |FP |/2. And so, the non recursive
function works in a straightforward manner. First, it iterates through the set
of factorlist, looking if there is a simple irreducible in the semigroup algebra
such that the input element divided by the irreducible produces a polynomial in
the semigroup algebra, thus indicating the input polynomial is in the semigroup
algebra. If no such polynomial is found, a combinatorial approach is taken. For
every combination length from 2 to floor(len(factorlist/2)), all the possi-
ble combination are produced of that length. Each combination is a factorlist of
a polynomial that is a possible divisor of the original polynomial. That factorlist
gets reduced to that polynomial, and a check is made whether the polynomial
is in the semigroup algebra, and if so is the complement that will result in the

15

x^8 + x^6 + x^4 + 1

x + 1 x^3 + x + 1

Figure 13: The call to all combinations of size 1 were not in the semigroup
algebra and thus did not indicate reduciblity. Red boxes denote factorization
checks that returned False, orange boxes denote currently executing call

original polynomial upon multiplication is in the semigroup algebra. If yes, then
the original polynomial is certainly reducible and the function returns the value
False. Otherwise, the function keeps running until all the combinations from
all the lengths are exhausted. Once that happens, it is implied the original
polynomial is irreducible, and thus the function returns with the value True.

An in-depth example. The polynomial x8 + x6 + x4 + 1 in F2[x2, x3]
has been shown previously to be reducible. Below is a review of how the
isIrreducible() non-recursive function verifies reducibility in the following
call:

1 group = NumericalSemigroupAlg([2 , 3], 2)

2 x = group.vars[0]

3 group.isIrreducible(x^8 + x^6 + x^4 + 1 , False)

4 >> True

Upon receiving an input polynomial, the program creates a factor list, just like
the one in isIrreducible() and factorization(). The factor list of x8+x6+
x4+1 is [(x+1), (x+1), (x3+x+1), (x3+x+1)]. To find out the number of ele-
ments to make combinations of, the program runs floor(len(factorlist)/2).
Since the length of factorlist is 4, only combinations of 1 and 2 elements out
of the 4 elements in factorlist need to be reviewed. It then proceeds to iterate
over the set of factorlist, namely [(x + 1), (x3 + x + 1)]. First, the program
checks x + 1. A call to __checkSemigroup(x + 1) reveals that it is not in the
semigroup algebra, so the program continues to check x3 + x + 1. Another call
to self __checkSemigroup(x^3 + x + 1) reveals that it is also not in the semi-
group algebra. The program then proceeds to iterate through all the possible
combinations (Figure 12).

The program then proceeds to look at combinations of size 2. The set of these
combinations is [x2 + 1, x4 +x3 +x2 + 1, x6 +x2 + 1]. The program first checks
if x2 + 1 is in the semigroup algebra. Since it is, it checks if (x8 + x6 + x4 + 1)
/ (x2 + 1) = x6 + x2 + 1 is in the semigroup algebra. As the check also returns
True, the input element x8 + x6 + x4 + 1 is reducible, and the function returns
False (Figure 13).

16

x^8 + x^6 + x^4 + 1

x + 1 x^3 + x + 1

x^2 + 1 x^4 + x^3 + x^2 + 1 x^6 + x^2 + 1

Figure 14: After finding a factorization the function returns True. Red boxes
denote factorization checks that returned False, green boxes indicate a factor-
ization check that verified reducibility, white boxes indicate calls that were not
executed due to reducibility already being established

4 Data on Atomic Density

4.1 Methodology

When exploring reducibilty patterns in higher degrees, exhaustive searching over
all the polynomials of a certain degree is unfeasible, as they will take much too
long. For a degree N , there are 2N polynomials of that degree.

In order to get meaningful results about the proportion of reducible poly-
nomials of higher degrees, a sampling algorithm had to be implemented. The
algorithm iterates over a range of degrees. For every specified degree, it gener-
ates 10, 000 polynomials and runs a reduciblity check on each.

Since the reducibility check algorithm has to run over hundreds of thousands
of polynomials, it is imperative to devise an efficient algorithm. The recursive
isIrreducible() algorithm was the first attempt at implementing a viable
algorithm. It is a simplified version of the recursive factorization algorithm,
as described in the previous section. The second algorithm takes a different
approach, and directly iterates over the possible factors of the input polynomial.

In order to find which is more efficient, 10000 polynomials were generated
from degree 50 to 500 in intervals of 50 at the time. The same polynomials
were checked for the reducibility by the two algorithms and the time that each
implementation took to calculate if the input polynomials were reducible was
recorded and later plotted. In the first trial, both were checked for reducibility
of polynomials in the semigroup algebra F2[x2, x3].

According to the top left graph depicted in figure 15, the non-recursive
isIrreducible() is about twice as fast as recursive version. Furthermore, it
seems that both implementations have a linear increase in time taken as the
degree increases. The superiority of the non-recursive implementation can be
explained as a result two factors. First, a major decrease in computation speed
arises for the non-recursive version due to not iterating over all possible divisors
of the input polynomial, like the recursive version does, but rather over at most
half of them. This process cuts down the time for guaranteeing a non-reducible

17

50 100 150 200 250 300 350 400 450

degree of polynomials

0

50

100

150

200

250

T
im

e
 i
n
 s

e
co

n
d
s

50 100 150 200 250 300 350 400 450

degree of polynomials

0

200

400

600

800

1000

1200

T
im

e
 i
n
 s

e
co

n
d
s

Left: Time plot w.r.t increasing degree in ring 2. Right: Time plot w.r.t
degree in ring 4

0 100 200 300 400 500

degree of polynomials

0

500

1000

1500

2000

2500

3000

n
u
m

b
e
r

o
f

re
d
u
ci

b
le

 p
o
ly

n
o
m

ia
ls

0 100 200 300 400 500

degree of polynomials

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

n
u
m

b
e
r

o
f

re
d
u
ci

b
le

 p
o
ly

n
o
m

ia
ls

0 100 200 300 400 500

degree of polynomials

0

1000

2000

3000

4000

5000

6000

n
u
m

b
e
r

o
f

re
d
u
ci

b
le

 p
o
ly

n
o
m

ia
ls

0 100 200 300 400 500

degree of polynomials

0

1000

2000

3000

4000

5000

n
u
m

b
e
r

o
f

re
d
u
ci

b
le

 p
o
ly

n
o
m

ia
ls

Upper left: F2[x2, x3]. Upper right: F2[x4, x5, x6, x7]. Lower left: F5[x2, x3].
Lower right: F4[x2, x3]

Figure 15: Plots for Data on Atomic Density

polynomial is really so, as non-reducible polynomials will force the program to
exhaust the list of possible divisors it iterates over.

Another likely reason for the increase in computation speed is due to the
elimination of recursiveness. Any reducible polynomial has at least 2 irreducible
factors. While one is guaranteed to be of degree less than half of the degree of
the input polynomial, having more than two irreducible components increases
the likely-hood that different polynomials of relatively small degrees are factors
of the input polynomial. Thus, implementing a breadth-first search, such as
the non-recursive version, increases the chances of finding one of those poly-
nomials quickly. However, a depth-first search, such as isIrreducible(), will
go through all the possible divisors that contain a specific factor first, before
advancing to the next divisor, so it could be forced to delve relatively deeply
into the recursion before finding a divisor.

In another trial, both functions were tested for the reducibility of polyno-

18

mials in the semigroup algebra F4[x2, x3] (Top right graph in figure 15). The
results are similar to that of the first. It seems as though the non-recursive
implementation is consistently faster by about a factor of 2.

4.2 The Semigroup Algebra F2[x
2, x3]

This is the same semigroup and ring used in the previous section for the exam-
ples for class usage. The benefits of it are plentiful. It is easy to understand
and do computations on, as well as verify results. Additionally, the semigroup
algebra preserves the same ring properties as the field of all polynomials. That
is polynomial p1, p2, p3 such that p1p2 = p3. then these polynomials p

′

1, p
′

2, p
′

3 in
the semigroup algebra 2, i.e. where every coefficient is taken mod(2) preserve
the equality p

′

1p
′

2 = p
′

3. The same holds for all other operations. It can be eas-
ily observed in the graph in figure 15 that the proportion of reducibles slowly
approaches 0 as the degree increases.

The generating function of the polynomials to test reducibility on, for every
degree:

1 genlist=[sum([x**degree]+[(random.choice([0,1])*(x**j))

2 if j in semigroup else 0 for j in [0..degree-1]])

3 for m in [0..9999]]

4.3 The Semigroup Algebra F2[x
4, x5, x6, x7]

A semigroup generated by 〈m,m + 1, ..., 2m − 1〉 has interesting properties, as
it allows for the existence only of polynomials of the form

∑∞
i=m aix

i. The
semigroup [2,3] is an example of this kind of polynomials. Another example of
these polynomials is the semigroup algebra F2[x4, x5, x6, x7]. As can be observed
in the graph generated in section 4.1. This group shows a similar tendency for
the proportion of reducible polynomials over 10,000 to decrease to 0 as the
degree of the polynomials increases. However, it does so much slower than the
rate of decrease for F2[x2, x3].

The generating code for the random polynomials:

1 genlist=[sum([x**degree]+[(random.choice([0,1])*(x**j))

2 if j in semigroup else 0 for j in [0..degree-1]])

3 for m in [0..9999]]

4.4 The semigroup Algebra F5[x
2, x3]

the semigroup algebra F5[x2, x3] is a different ring of polynomials that pre-
serves the same property of F2[x2, x3] of equality to polynomials in the semi-
group algebra of all integers. The semigroup algebra F5[x2, x3] also exhibits
consistent reduction in the ratio of reducible polynomials to total polynomials

19

generated. It appears to decrease slower than F2[x2, x3] but slightly faster than
F2[x4, x5, x6, x7]

Generating function for every degree:

1 genlist=[sum([x**degree]+[(random.choice([0,0,1,2,3,4])*(x**j))

2 if j in semigroup else 0 for j in [0..degree-1]])

3 for m in [0..9999]]

4.5 The semigroup Algebra F4[x
2, x3]

Unlike the previous algebras, the semigroup algebra F4[x2, x3] does not preserve
the property of equality to polynomials in the semigroup algebra of all integers.
That means that certain powers of x will be lost when multiplying. The results
of reducibility, however, remain similar. Generating function for every degree:

1 genlist=[sum([x**degree]+[(random.choice([0,1,2,3])*(x**j))

2 if j in semigroup else 0 for j in [0..degree-1]])

3 for m in [0..9999]]

5 Future Work

The graphs provided in Section 4 provide visual evidence about the density of re-
ducible polynomials in every degree. It can be easily observed that as the degree
increases, the ratio of irreducible polynomials to the total number of polynomi-
als is going to 0. While changes in semigroup and ring create slight variations
in the number of irreducible polynomials out of 10, 000, the pattern of steady
decrease remains. However, this visual evidence is obviously unsatisfactory. A
rigorous mathematical proof needs to be established.

The computations performed in Section 4 are useful in that they provide a
good sense of what needs to be proven. The observation that the fraction of
irreducible polynomials tends to 0 allows future research to focus on proving
it. In the semigroup algebra F2[x2, x3], this decrease is the most significant, as
the rate of decrease is the fastest. Furthermore, this field is the easiest one to
research, as it’s properties are easily understood. Thus the following conjecture
arises:

Conjecture 5.1. Let I(d) be the number of polynomials in the field F2[x2, x3]

that are irreducible of degree d. Then limd→∞
I(d)

2d
= 0.

The denominator 2d is used since for every polynomial with degree at most
d adding xd+1 will result in a polynomial of degree d + 1, thus the number of
polynomials of degree at most d is half of those of degree d+ 1. and the number
of polynomials of degree 0 is one.

20

The natural continuation for future work would be to extend the proof to
all polynomials of the form 〈m,m + 1, ...2m − 1〉. The data generated in the
previous section supports the case that the property of a diminishing proportion
of irreducibles with an increase in degree holds for rings generated by this sort
of semigroups. In the data section, it can be observed that the decrease holds
for the semigroup algebra F2[x4, x5, x6, x7]. It is not far-fetched from this point
to extend this conjecture to all semigroups of this form:

Conjecture 5.2. For any m ∈ N Let I(d) be the number of polynomials in
the semigroup algebra F2[xm, xm+1, ..., x2m−1] that are irreducible of degree d.

Then limd→∞
I(d)

2d
= 0.

So far the conjectures applied only to rings modulo 2. However, the data
in Section 4 shows that this need not be the only ring in which the property of
diminishing irreducible polynomials holds. As apparent in the data generated
for polynomials in the semigroup algebra F4[x2, x3] as well as F5[x2, x3], the
number of irreducibles as a fraction of total generated polynomials decreases as
well. Thus, the following conjecture arises:

Conjecture 5.3. Fix m, r ∈ N. Let S = 〈m,m + 1, ..., 2m − 1〉, and I(d) be
the number of polynomials in the semigroup algebra Fr[S] that are irreducible

of degree d. Then limd→∞
I(d)

rd
= 0.

A more advanced area for future research would be to find an exact num-
ber of irreducible polynomials of any degree. From other research it has been
concluded that there exists a recurrence relation from the semigroup algebra of
all polynomials of degree 2. Additional research could be done to find a similar
recurrence relation for the numerical semigroup algebra defined by F2[x2, x3]. If
such relation can be found, retroactively proving that the ratio of irreducible of
any degree to the number of polynomials of that degree could be trivial. How-
ever, the ratio problem could be probably solved faster without having to find
the recurrence relation.

From the new recurrence relation a further question arises about finding
the equation to define a recurrence relation for rings generated by an arbitrary
semigroup S = 〈m,m + 1, ...2m − 1〉. This type of semigroup is chosen due to
the similar properties to ring generated by the basic 〈2, 3〉 semigroup for which
a solution is proposed to be found first. These problems are posed with the
eventual goal of forming a general solution for an arbitrary semigroup algebra.

21

