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Abstract. In this thesis, we will provide a basic recursive formula of the Hilbert Series of a quotient
ring Rn/In where Rn = C[x0, ..., xn−1] and In is the quadratic defining ideal of the nth jet scheme of a

double point. Knowing the Hilbert Series of the quotient will give us a way to derive the Hilbert Series

of the ideal. To achieve our goal, we will study the first syzygy module of the quotient ring and describe
its generators. In fact, by learning the structure of the first syzygy module, we can derive a recursive

formula for the minimal free resolution of the quotient ring as Rn module which will provide an explicit

form for the Hilbert Series.

1. Introduction

Consider the ring

Rn = C[x0, x1, x2..., xn−1]

and the ideal In = (f1, f2..., fn) ⊂ Rn, where

fn =

n−1∑
k=0

xkxn−1−k.

For example, when n− 1, we have I1 = (x20), and when n = 2, we have I2 = (x20, 2x0x1). It is easy
to see that Rn is an infinite dimensional complex vector space where the basis consists of all monomials
of x0, x1..., xn−1.

Now, we define the bi-degree deg(m) = (a1, a2) to be the degree of a monomial m, where deg(xi) =
(i, 1) and deg(m1m2) = deg(m1) + deg(m2). Then obviously, Rn is a commutative bi-graded C algebra,
and fi are homogeneous with respect to this bi-grading.

Definition 1.1. For any field k and any bi-graded k vector space V , the Hilbert Series HV (q, t) of V
over k is defined as

HV (q, t) =
∑
a1,a2

qa1ta2 dimV (a1, a2),

where dimV (a1, a2) is the dimension of the subspace of V that has bi-degree (a1, a2).

Now, let’s consider the Hilbert series of Rn over C

H(q, t)n =

∞∑
a1,a2

qa1ta2dRn(a1, a2)

where dRn
(a1, a2) = dimRn

(a1, a2) is the dimension of the subspace with bi-degree (a1, a2) in Rn; in
other word, it is the number of monomials in Rn having bi-degree (a1, a2). For example, when n = 1,
R1 = C[x0], the standard basis for R1 as a complex vector space is B1 = {1, x0, x20...}. Then a1(xk0) = 0,
a2(xk0) = k, and that implies when a1 = 0 and a2 ∈ Z≥0, dR1

(a1, a2) = 1, and when a1 6= 0, dR1
(a1, a2) =

0. Thus, the Hilbert series of R1 is

H(q, t)1 =

∞∑
a1,a2

qa1ta2dR1
(a1, a2) =

∞∑
a2=0

ta2 =
1

1− t
.

Proposition 1.2. The Hilbert series H(q, t)n of Rn is given by the equation

H(q, t)n =

n−1∏
k=0

1

1− qkt
.
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Proof. We are going to prove this proposition by using mathematical induction. For the base case, as we
stated earlier, when n = 1,

H(q, t)1 =
1

1− t
=

0∏
k=0

1

1− qkt
.

Suppose for some m ∈ Z>0,

H(q, t)m =

m−1∏
k=0

1

1− qkt
,

Let’s consider n = m+ 1. Let Bm be the standard basis of Rm, then the standard basis of Rm+1 is
Bm+1 =

⋃∞
k=0 x

k
mBm. Moreover, we know deg(xkm) = (km, k). Since deg(m1m2) = deg(m1) + deg(m2),

we can convert the Hilbert series H(q, t)m+1 of Rm+1 as following

H(q, t)m+1 =

∞∑
a1,a2

qa1ta2dRm+1
(a1, a2)

=

∞∑
j=0

qjmtj
∞∑

a1,a2

qa1ta2dRm(a1, a2)

=

∞∑
j=0

qjmtjH(q, t)m

=
1

1− qmt
H(q, t)m

=

m∏
k=0

1

1− qkt
.

Therefore, by mathematical induction, for ∀n ∈ Z>0, the Hilbert series H(q, t)n of Rn is

H(q, t)n =

n−1∏
k=0

1

1− qkt
.

�

Remark 1.3. For any commutative bi-graded C algebra R and any bi-graded R module M , denote the
Hilbert series of M as H(M). We know that for any bi-graded submodule S ⊆ M , the Hilbert Series
over C satisfy

H(M) = H(S) +H(M/S).

Thus, instead of calculate the Hilbert Series of In directly, we can first calculate H(Rn/In) and
subtract it from H(Rn) which is known. Because of the relation, we can calculate the Hilbert Series of
In over C by subtracting the Hilbert Series of Rn/In from the Hilbert Series of Rn. Since we already
have the formula for H(Rn) for ∀n ∈ N, once we know H(Rn/In), we can easily deduce H(In).

In this sense, the main goal of this thesis is to prove the following theorem.

Main Theorem. Let Hn(q, t) = H(Rn/In), then when n ≥ 4, it can be derived by the following
recursion:

Hn(q, t) =
tHn−3(q, q2t) +Hn−2(q, qt)

1− qn−1t
.

When n is approching to ∞, an explicit formula for the Hilbert Series of Rn/In is proven by Br-
uschek, Mourtada and Schepers[1], which relates the Hilbert series of the arc space for the double point
to the Rogers-Ramanujan identity. A similar result for n =∞ was obtained by Feigin-Stoyanovsky [2, 3],
Lepowsky et al. [4, 5], and Gorsky, Oblomkov and Rasmussen in [6].

Moreover, the result of this thesis, together with the explicit formula for the Hilbert Series of Rn/In
can be found in [7].
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2. Build up for recursive relation

Basis of Rn/In for small n

In order to calculate the Hilbert Series of Rn/In, we need to know the basis of Rn/In over C. Now,
let’s consider the basis Bn of Rn/In for n = 1, 2, 3.

When n = 1, R1 = C[x0] and I1 = (x20), then B1 = {1, x0};
When n = 2, R2 = C[x0, x1] and I2 = (x20, 2x0x1), then B2 = {1, x0, xk1 |k ∈ N};
When n = 3, R3 = C[x0, x1, x2] and I3 = (x20, 2x0x1, 2x0x2 + x21), we can see that by choosing the

reversed degree lexicographic order as the monomial order, {x20, 2x0x1, 2x0x2 +x21} satisfies Buchberger’s
Criterion and is indeed a reduced Groebner basis for I3.

Therefore, B3 = {xi2, x0x
j
2, x1x

k
2 |i, j, k ∈ Z≥0} which consists of all monomials which are not divisible

by any of the leading terms of the elements in the Groebner basis.

For bigger n, we will get the basis from a recursive relation, but before we do that, we need some
tools.

Definition 2.1. A shift of a polynomial f(x1, ..., xn) ∈ Rn is f(x2, ..., xn+1), which is in Rm for all
m > n, we denote it as S(f). Moreover, for any subset M ⊆ Rn or quotient of Rn, we denote the shift
of M as S(M) = {S(f) : f ∈ M}. If we consider S as a linear function from Rn to Rm where m ≥ n,
then S is an injection as its kernel is trivial.

Lemma 2.2. For any α1, ..., αn ∈ Rn,
∑n

i=1 S(αi)S(fi) = 0 if and only if
∑n

i=1 αifi = 0.

Proof. Since
∑n

i=1 S(αi)S(fi) = S(
∑n

i=1 αifi). Because S is an injection, then S(g) = 0 if and only if
g = 0. Thus,

∑n
i=1 S(αi)S(fi) = 0 if and only if

∑n
i=1 αifi = 0. �

Recursive relation between the bases of Rn/In

Now, we claim that for n > 3, Bn =
⋃∞

k=0 x
k
n−1[x0S

2(Bn−3)
⋃
S(Bn−2)].

The way we consider this is to construct two subsets of Rn/In, which we name as Qn and Pn, where
Qn consists of all elements in Rn/In that are divisible by x0 and Pn consists of all elements in Rn/In
which contain no term divisible by x0.

We can see that Qn is an ideal in Rn/In and Pn is a subring of Rn/In which is isomorphic to
[Rn/In]/Qn. Consequently, we have H(Rn/In) = H(Qn) + H(Pn). In fact, Qn can be considered as
x0Rn/[In

⋂
(x0)] and Pn can be considered as Rn/[In + (x0)]. Now, we need to study their structure

respectively. First, let’s consider the quotient ring Rn/[In + (x0)].

Lemma 2.3. For the subring Pn of Rn/In which consists of elements having no term divisible by x0,
we have

Pn =
Rn

In + (x0)
= S

(
Rn−2

In−2

)
[xn−1].

Proof. By the Third Isomorphism Theorem, it’s isomorphic to

Rn/(x0)

[In + (x0)]/(x0)
,

where Rn/(x0) = S(Rn−2)[xn−1]. Since In + (x0) is generated by f1, f2, ..., fn, x0, by the natural map,
the quotient [In + (x0)]/(x0) is generated by the residue of the generator of In + (x0), where the residue

of f1, f2 is 0 since they contain x0, and residue of fn is S(fn−2) for n ≥ 3 as fn = S(fn−2) + 2x0xn−1.
As a result,

Rn

In + (x0)
= S

(
Rn−2

In−2

)
[xn−1].

Thus, the basis of Pn is
⋃∞

k=0 x
k
n−1S(Bn−2). �

In order to study Qn, we first need to know the structure of In
⋂

(x0), which requires us to study
the module of first syzygy of f1, ..., fn.

3. Study of the first syzygy

Definition 3.1. Let R be a commutative ring and M be an R-module generated by m1,m2, ...mn,
where n < ∞. Let F be an rank n free R-module with basis B = {e1, ..., en} and there is a R-module
homomorphism φ : F →M such that φ(ei) = mi for i = 1, ..., n. The first syzygy module of m1, ...mn

is kerφ and an element of kerφ is a syzygy of m1, ...,mn. Moreover, since F is a free module, every
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element in F can be written as a unique R combination of e1, ..., en. As a result, we can write the element
in kerφ in n-tuple form.

In our case, In is an Rn-module and {f1, ..., fn} is a generating set of In. It is important for us to
learn the first syzygy module of f1, ..., fn as it will help us understand the structure of In

⋂
(x0).

Lemma 3.2. For f1, f2, ...fn, the following relation holds

n−1∑
i=0

(n− 1− 3i)xifn−i = 0.

Proof. It is easy to see that all terms in
∑n−1

i=0 (n− 1− 3i)xifn−i = 0 are scalar multiples of monomials
xaxbxc such that a+ b+ c = n− 1 since fn is the summation of monomials xaxb such that a+ b = n− 1.

If a 6= b 6= c, then the coefficient of xaxbxc is

2(n− 1− 3a) + 2(n− 1− 3b) + (n− 1− 3c) = 6(n− 1)− 6a− 6b− 6c

= 6(n− 1)− 6(a+ b+ c)

= 6(n− 1)− 6(n− 1)

= 0;

If a = b 6= c, then the coefficient of xaxbxc is

2(n− 1− 3a) + (n− 1− 3c) = 3(n− 1)− (6a+ 3c)

= 3(n− 1)− 3(a+ b+ c)

= 3(n− 1)− 3(n− 1)

= 0;

If a = b = c, then 3a = n− 1 and a = b = c = (n− 1− a)/2. Thus, the coefficient of xaxbxc is

n− 1− 3a = n− 1− 3(n− 1− a)

2

=
3a− (n− 1)

2
= 0.

As a result,
∑n−1

i=0 (n− 1− 3i)xifn−i = 0. �

From Lemma 1, we can recognize some syzygies of f1, f2, ..., fn.

Proposition 3.3. Let
µi = (−2ixi, (−2i+ 3)xi−1, ..., ix0, 0, ...., 0),

νj,k = −fkej + fjek.

Then µi and νj,k are syzygies of f1, ..., fn for i 6= n− 1 and j, k 6= n such that j < k.

Proof. For µi, it directly follows from Lemma 3.2. For νj,k, we realize that fjfk − fkfj = 0 when j > k,
the preimage of this relation is νj,k. As a result, µi and νj,k are in the first syzygy module of f1, ..., fn. �

In fact, they are the generators of the first syzygy module of f1, .., fn and we will prove this later.
If we have already had the conclusion in hand, we will have enough information to discover the structure
of In

⋂
(x0), which gives us an explicit form of Qn.

Proposition 3.4. When n ≥ 3,

n−1∑
i=1

(n− 3i)xifn+1−i = −nx0S(fn−1) = −n[x0x1xn−1 + x0S
2(fn−3)],

where the second equation holds when n ≥ 4.

Proof. Similar to Lemma 1, we can see that each term of the sum is a scalar multiple of monomial xaxbxc
where a+ b+ c = n. When a, b, c 6= 0, if a 6= b 6= c, then the coefficient of xaxbxc is

2(n− 3a) + 2(n− 3b) + 2(n− 3c) = 6n− 6(a+ b+ c)

= 0;
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if a = b 6= c, then the coefficient of xaxbxc is

2(n− 3a) + (n− 3c) = 3n− 6a− 3c

= 3n− 3(a+ b+ c)

= 0;

if a = b = c, then a = b = c = n/3. The coefficient of xaxbxc is

n− 3a = 0.

Thus, if a, b, c 6= 0, then the coefficient of xaxbxc is 0. As a result, x0|
∑n−1

i=1 (n− 3i)xifn+1−i.

Now, let’s consider the coefficient of x0xaxb. From the observation above, we have a + b = n, if
a 6= b, then the coefficient of x0xaxb is

2(n− 3a) + (2n− 3b) = 4n− 6(a+ b)

= 4n− 6n

= −2n;

if a = b, then the coefficient of x0xaxb is

2(n− 3a) = 2n− 6a

= 2n− 3(a+ b)

= 2n− 3n

= −n.

Therefore, we can rewrite
∑n−1

i=1 (n− 3i)xifn+1−i as

−nx0
n−1∑
i=1

xixn−i = −nx0
n−2∑
i=0

xi+1x(n−2−i)+1 = −nx0S(fn−1).

Moreover, because fi = 2x0xi−1 + S(fi−2) when i ≥ 3, then S(fi) = 2x1xi + S2(fi−2) when i ≥ 3.
Hence, when n ≥ 4,

−nx0S(fn−1) = −nx0(2x1xn−1 + S2(fn−3)) = −n[x0x1xn−1 + x0S
2(fn−3)].

�

By Proposition 3.4, we notice that x0S
2(fn−3) ∈ In when n ≥ 4, which implies that

In
⋂

(x0) ⊇ (x0S
2(In−3) + (f1, f2))[xn−1]

.

4. Main theorems

Theorem 4.1. If the first syzygy module of f1, ..., fn is generated by µi and νj,k where i ≤ n− 1 and
j, k ≤ n such that j 6= k,then for n ≥ 4,

x0Rn

In
⋂

(x0)
= x0S

2(
Rn−3

In−3
)[xn−1].

Proof. In order to prove Theorem 4.1, we first of all need to show that

In
⋂

(x0) = (x0S
2(In−3) + (f1, f2))[xn−1]

when the first syzygy module is generated by µ and ν. One direction is already derived by Proposition
2, we just need to show the other direction.

For all g ∈ In, there exists αi ∈ Rn such that g =
∑n

i=1 αifi. For each αi, we can separate it into
two parts, one is divisible by x0 and the other contains no term divisible by x0:

αi = x0α
′
i + S(βi).

Do the similar thing to fi, we get

f1 = x20

f2 = 2x0x1

fi = 2x0xi−1 + S(fi−2) for i ≥ 3



6 AUTHOR: YUZHE BAI SUPERVISOR: DR. EUGENE GORSKY

Thus, we can rewrite g into the following form

g =x20(x0α
′
1 + S(β1)) + 2x0x1(x0α

′
2 + S(β2)) +

n∑
i=3

2x20xi−1α
′
i +

n∑
i=3

x0α
′
iS(fi−2)

+

n∑
i=3

2x0xi−1S(βi) +

n∑
i=3

S(βi)S(fi−2)

=f1(x0α
′
1 + S(β1)) + f2(x0α

′
2 + S(β2)) +

n∑
i=3

2f1xi−1α
′
i +

1

2
α′3x1f2

+ α′4x2f2 +

n∑
i=5

x0α
′
i(S

2(fi−4) + 2x1xi−2) +

n∑
i=3

2x0xi−1S(βi) +

n∑
i=3

S(βi)S(fi−2)

=f1(x0α
′
1 + S(β1)) + f2(x0α

′
2 + S(β2)) +

n∑
i=3

2f1xi−1α
′
i +

1

2
α′3x1f2

+ α′4x2f2 +

n∑
i=5

[xi−2α
′
if2 + α′ix0S

2(fi−4)] +

n∑
i=3

2x0xi−1S(βi) +

n∑
i=3

S(βi)S(fi−2)

The only thing that may not in (x0S
2(In−3)+(f1, f2))[xn−1] is

∑n
i=3 2x0xi−1S(βi)+

∑n
i=3 S(βi)S(fi−2)

and it’s totally depends on βi.

If g ∈ In
⋂
x0Rn, we know

∑n
i=3 S(βi)S(fi−2) =

∑n−2
i=1 S(βi+2)S(fi) = 0, which implies

∑n−2
i=1 βi+2fi =

0. By assumptions, (β3, ..., βn) is a combination of µi and νj,k where i ≤ n− 3, and j < k ≤ n− 2.

For µi = (−2ixi, (−2i+3)xi−1, ..., ix0, 0, ..., 0), we have S(µi) = (0, 0,−2ixi+1, (−2i+3)xi, ..., ix1, 0, ..., 0),
and the image of S(µi) onto Rn is

i∑
j=0

(i− 3j)xj+1fi−j+3 =

i∑
j=0

(i− 3j)xj+1(S(fi−j+1)− 2x0xi−j+2)

=

i∑
j=0

(i− 3j)S(xj)S(fi−j+1)−
i∑

j=0

(i− 3j)2x0xj+1xi−j+2

= −2x0

i∑
j=0

(i− 3j)xj+1xi−j+2

= (3− i)x0S(fi+1)− 6x0x1xi+2

= 2(3− i)x0x1xi+2 + (3− i)x0S2(fi−1)− 6x0x1xi+2

= (3− i)x0S2(fi−1)− 2if2xi+2

Since i ≤ n− 3, then the image is inside (x0S
2(In−3) + (f1, f2))[xn−1].

For νj,k = −fkej + fjek, we have S(νj,k) = −S(fk)ej+2 + S(fj)ek+2, and the image of S(νj,l) onto
Rn is

−S(fk)fj+2 + S(fj)fk+2 = −S(fk)(S(fj) + 2x0xj−1) + S(fj)(S(fk) + 2x0xk−1)

= −S(fk)S(fj) + S(fj)S(fk)− 2S(fk)x0xj−1 + 2S(fj)x0xk−1

= 2(S2(fj−2) + 2x1xj)x0xk−1 − 2(S2(fk−2) + 2x1xk)x0xj−1

= 2x0(S2(fj−2)xk−1 − S2(fk−2)xj−1) + 4f2(xjxk−1 − xkxj−1)

Since j < k ≤ n− 2, the image is in (x0S
2(In−3) + (f1, f2))[xn−1].

Therefore, by our assumption on the generators of the first syzygy module, we have for all g ∈
In
⋂
x0Rn, g ∈ (x0S

2(In−3) + (f1, f2))[xn−1].

As a result, we have

x0Rn

In
⋂

(x0)
=

x0Rn

(x0S2(In−3) + (f1, f2))[xn−1]
.
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Since Rn = C[x0, x1, ..., xn−1], we can consider the ideal x0Rn as C[x20, x0x1, ..., x0xn−1]. Then

x0Rn

(x0S2(In−3) + (f1, f2))[xn−1]
=

C[x20, x0x1, ..., x0xn−1]

(x0S2(In−3) + (x20, 2x0x1))[xn−1]

=
C[x0x2, x0x,3 , ..., x0xn−1]

x0S2(In−3)[xn−1]

=
x0C[S2(x0), S2(x1), ..., S2(xn−4)][xn−1]

x0S2(In−3)[xn−1]

=
x0S

2(Rn−3)[xn−1]

x0S2(In−3)[xn−1]

= x0S
2

(
Rn−3

In−3

)
[xn−1]

�

Now, since we already have the recursive form for the ideal Qn of Rn/In which consists of all elements
divisible by x0 and the quotient Pn = (Rn/In)/Qn, we are ready to calculate the recursive relation of the
Hilbert Series of Rn/In. However, before we start the calculation, we still need to know how the shift
map affects the Hilbert Series.

Lemma 4.2. For any bi-graded M where M consists of polynomials of x1, x2, ..., xn, denote the Hilbert
Series of M as HM (q, t). Then the Hilbert Series of S(M), which is denoted as HS(M)(q, t), satisfies
HS(M)(q, t) = HM (q, qt).

Proof. By definition, we know that

HM (q, t) =
∑
a1,a2

qa1ta2 dimM (a1, a2),

then we have

HS(M)(q, t) =
∑
a1,a2

qa1ta2 dimS(M)(a1, a2).

Since S(xi) = xi+1, which shift the first degree for all xi. Then because deg(m1m2) = deg(m1) +
deg(m2) for all monomials m1 and m2, a1[S(m)] = a1(m) + a2(m) and a2[S(m)] = a2(m) for any
monomial m as a2 denotes the total degree of a monomial and that won’t be changed by shifting.

Hence, dimM (a1, a2) = dimS(M)(a1 + a2, a2) for all a1, a2 ∈ Z≥0, and we have

HS(M)(q, t) =
∑
a1,a2

qa1ta2 dimS(M)(a1, a2)

=
∑
a1,a2

qa1+a2ta2 dimS(M)(a1 + a2, a2)

=
∑
a1,a2

qa1(qt)a2 dimM (a1, a2)

= HM (q, qt)

�

Proposition 4.3. For all n ∈ N, HSn(M)(q, t) = HM (q, qnt).

We can derive this result by repeating the process n times. Notice that HS2(M)(q, t) = HM (q, q2t).

Now, we have enough tools to prove our main theorem.

Theorem 4.4. Denote Hn(q, t) to be the Hilbert Series of Rn/In, then for n ≥ 4, it follows the following
recursive relation:

Hn(q, t) =
tHn−3(q, q2t) +Hn−2(q, qt)

1− qn−1t
.

Proof. Notice that x0Rn/[In
⋂

(x0)] is an ideal of Rn/In and their quotient yields

Rn

In

/ x0Rn

In
⋂

(x0)
=
Rn

In

/
(x0) =

Rn

In + (x0)
.
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Then, because H(M) = H(M/S) + H(S) for all bi-graded C space M and bi-graded subspace
S ⊆M . we have

Hn(q, t) = H

(
x0Rn

In
⋂

(x0)

)
+H

(
Rn

In + (x0)

)
.

Because we know that

x0Rn

In
⋂

(x0)
= x0S

2

(
Rn−3

In−3

)
[xn−1] and

Rn

In + (x0)
= S

(
Rn−2

In−2

)
[xn−1],

we can derive

H

(
x0Rn

In
⋂

(x0)

)
= t

∞∑
k=0

Hn−3(q, q2t)(qn−1t)k =
tHn−3(q, q2t)

1− qn−1t
,

as well as

H

(
Rn

In + (x0)

)
=

∞∑
k=0

Hn−2(q, qt)(qn−1t)k =
Hn−2(q, qt)

1− qn−1t
.

As a result, we will have the recursive formula for Hn(q, t) as

Hn(q, t) =
tHn−3(q, q2t) +Hn−2(q, qt)

1− qn−1t
.

�

By Theorem 4.4, we will have

H(In) =

m∏
k=0

1

1− qkt
− tHn−3(q, q2t) +Hn−2(q, qt)

1− qn−1t
.

For the base cases of Hn(q, t), we have:

H0(q, t) = 0;

H1(q, t) = 1 + t as R1/I1 has basis {1, x0};
H2(q, t) = t+ 1/(1− qt) as R2/I2 has basis {x0, xk1 |k ∈ Z≥0}.
Although from Theorem 4.1, we can derive the recursive formula of Hilbert Series in Theorem 4.4,

the proof of Theorem 4.1 is based on the assumption that the first syzygy module of f1, ..., fn is generated
by certain relations. Now, we are going to prove that it is true.

Theorem 4.5. For ∀n ∈ N, the first syzygy module of f1, f2, ...fn, namely Mn, is generated by µi and
νj,k where i ≤ n− 1, j 6= k where j, k ≤ n.

Before we start the proof of the theorem, let’s first see some examples of cases with small n.

Example 4.6. (when n = 3)

In I3, consider
∑3

i=1 αifi = 0, write αi = x0α
′
i + α′′i where x0 - α′i and any term of α′′j for i = 2, 3

and j = 1, 2, 3. Then,

3∑
i=1

αifi = (x0α
′
1 + α′′1)x20 + (x0α

′
2 + α′′2)2x0x1 + (x0α

′
3 + α′′3)(2x0x2 + x21).

Since α′′3x
2
1 is the only term not divisible by x0, we must have α′′3 = 0, what remains is

(x0α
′
1 + α′′1)x20 + (x0α

′
2 + α′′2)2x0x1 + x0α

′
3(2x0x2 + x21).

Similarly, 2α′′2x0x1 and x0α
′
3x

2
1 are the only two terms not divisible by x20, so 2α′′2x0x1 +x0α

′
3x

2
1 = 0,

which implies α′′2 = x1α
′
3/2. Moreover, since 2x0(2x0x2 + x21) − x1(2x0x1) − 4x2(x20) = 0 is a standard

syzygy for f1, f2, f3, which is µ2, then

α′′2(2x0x1) + x0α
′
3(2x0x2 + x21) = −x1α

′
3f2

2
+ x0α

′
3f3

= −2x2α
′
3f1 −

x1α
′
3f2

2
+ x0α

′
3f3 + 2x2α

′
3f1

=
α′3µ2

2
+ 2x2α

′
3f1
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Therefore, we can rewrite the relation as

(x0α
′
1 + α′′1 + 2x2α

′
3)f1 + x0α

′
2f2 +

α′3µ2

2
.

Notice that µ2 = 0, then (x0α
′
1 + α′′1 + 2x2α

′
3)f1 + x0α

′
2f2 = 0 as well which is a relation between

f1 and f2 and we know it must be a multiple of µ1. As a result, any arbitrary syzygy of f1, f2, f3 is
generated by µ1 and µ2.

Example 4.7. (when n = 4)

Similar to the case in I3, write the arbitrary syzygy as
∑4

i=1 αifi as

(x0α
′
1 + α′′1)x20 + (x0α

′
2 + α′′2)2x0x1 + (x0α

′
3 + α′′3)(2x0x2 + x21) + (x0α

′
4 + α′′4)(2x0x3 + 2x1x2).

Since the only terms not divisible by x0 are α′′3x
2
1 and α′′4(2x1x2) where x21 = S(f1) and 2x1x2 =

S(f2), then there ∃β ∈ C[x1, x2, x3] such that α′′3 = −2x2β and α′′4 = x1β.

Rewrite the relation as

(x0α
′
1 + α′′1)x20 + (x0α

′
2 + α̃′′2)2x0x1 + x0α

′
3(2x0x2 + x21) + x0α

′
4(2x0x3 + 2x1x2)− 4βx0x

2
2,

where α̃′′2 = α′′2 + x3β. Then the terms not divisible by x20 are α̃′′2(2x0x1), α′3x0x
2
1, 2α′4x0x1x2, and

−4βx0x
2
2. If α̃′′2 , α

′
3, and α′4 are all 0, then β = 0 and we can precede to the next step. Otherwise, we

have first three terms are divisible by x1, then the last one must be divisible by x1 as well. Therefore,
there ∃γ ∈ C[x1, x2, x3] such that β = x1γ.

As a result, α′′3 = −2x1x2γ = −γf4 + 2x0x3γ, and α′′4 = x21γ = γf3 − 2x0x2γ. Then, the relation
becomes

(x0α
′
1 + α′′1)x20 + (x0α

′
2 + α̃′′2 + x1x3γ − 2x22γ)2x0x1 + x0α

′
3(2x0x2 + x21) + x0α

′
4(2x0x3 + 2x1x2)− γν3,4.

Then, by taking out a α′4µ3, we get

(x0α
′
1 + α′′1 − x3α′4)f1 + (x0α

′
2 + α̃′′2 + x1x3γ − 2x22γ − x2α′4)f2 + (x0α

′
3 − x1α′4)f3 + α′4µ3 − γν3,4.

Because µ3 = 0 and ν3,4 = 0, we have

(x0α
′
1 + α′′1 − x3α′4)f1 + (x0α

′
2 + α̃′′2 + x1x3γ − 2x22γ − x2α′4)f2 + (x0α

′
3 − x1α′4)f3 = 0,

which is a syzygy of f1, f2, f3, by the last part, it is generated by µ1 and µ2.

As a result, the module of syzygies of f1, f2, f3, f4 is generated by µ1, µ2, µ3, and ν3,4.

Now, let’s start the proof of the general case, which follows the similar idea. Moreover, to make the
proof more accessible, we will precede in the n-tuple language.

Proof. Let Fn be a rank n free module with basis B = {b1, ..., bn}, and define Rn map φ : Fn → In such
that φ(bi) = fi. The first syzygy module of f1, ..., fn is kerφ and since we have a basis for Fn, we can
write element of Fn as n-tuples. For any arbitrary element α ∈Mn ⊂ Fn, write α as

α = (α1, α2, ..., αn),

then for each αi, we can rewrite it as x0α
′
i + α′′i where x0 doesn’t divide any term of α′′i for all i, and by

taking out proper number of ν1,i, we can have x0 - α′i for all i ≥ 2.

By mapping the syzygy into In, we get
n∑

i=1

(x0α
′
i + α′′i )fi = 0

(x0α
′
1 + α′′1)f1 + (x0α

′
2 + α′′2)f2 +

n∑
i=3

(x0α
′
i + α′′i )(2x0xi−1 + S(fi−2)) = 0

and that implies
∑n

i=3 α
′′
i S(fi−2) = 0 because any other terms are divisible by x0. Then let

α′ = (0, 0, α′′3 , ..., α
′′
n),

because of Lemma 1, we have

α′ =

n−1∑
i=3

βi+1S(µi−2) +
∑

3≤j,k≤n,j 6=k

βj,kS(νj−2,k−2).
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For any j, k ≥ 3 such that j 6= k. Because

S(νj−2,k−2) = −S(fk−2)ej + S(fj−2)ek

= −(fk − 2x0xk−1)ej + (fj − 2x0xj−1)ek

= νj,k + 2x0xk−1ej − 2x0xj−1ek,

we can take out all the S(νj−2,k−2) as νj,k and what remains will go to the x0α
′
i parts. Let

α̃ = α−
∑

3≤j,k≤n,j 6=k

βj,kνj,k,

then α̃ ∈Mn. Write α̃ as

α̃ = (x0α̃′1 + α̃′′1 , x0α̃
′
2 + α̃′′2 , ..., x0α̃

′
n + α̃′′n).

Let

α′′ = (0, 0, α̃′′3 , ..., α̃
′′
n),

notice that α̃′′n = (n− 3)x1βn and we have

α′′ =

n−1∑
i=3

βi+1S(µi−2).

Now, we consider the image of S(µi−2), for i = 3, .., n− 1.

φ(S(µi−2)) =

i∑
k=1

(i+ 1− 3k)xkfi+2−k + (2i− 1)xif2

= −(i+ 1)x0S(fi) + (2i− 1)xi−1f2

Therefore, we have

φ(α̃) = (x0α̃′1 + α̃′′1)f1 + (x0α̃′2 + α̃′′2 +

n−1∑
i=3

(2i− 1)βi+1xi−1)f2 +

n∑
i=3

x0α̃′ifi −
n−1∑
i=3

(i+ 1)βi+1x0S(fi)

= 0.

By removing the terms divisible by x20, we get

(α̃′′2 +

n−1∑
i=3

(2i− 1)βi+1xi−1)f2 +

n∑
i=3

x0α̃′iS(fi−2)−
n−1∑
i=3

(i+ 1)βi+1x0S(fi) = 0.

Since f2 = 2x0x1, we can cancel a x0 in each of the terms and simplify the equation as

2(α̃′′2 +

n−1∑
i=5

(2i− 1)βi+1xi−1)x1 +

n∑
i=3

α̃′iS(fi−2)−
n−1∑
i=3

(i+ 1)βi+1S(fi) = 0.

Because S(fi−2) = 2x1xi−2 + S2(fi−4) for i ≥ 5, we can write α̃′i = x1δ
′
i + δ′′i and βi = x1γ

′
i + γ′′i where

δ′′i and γ′′i contain no term divisible by x1. Therefore, we notice the terms that are not divisible by x1
will sum up to be 0. That is

n∑
i=5

δ′′i S
2(fi−4)−

n−1∑
i=3

(i+ 1)γ′′i+1S
2(fi−2) = 0

n∑
i=5

δ′′i S
2(fi−4)−

n+1∑
i=5

(i− 1)γ′′i−1S
2(fi−4) = 0

n∑
i=5

(δ′′i − (i− 1)γ′′i−1)S2(fi−4) + nγ′′nS
2(fn−3) = 0.

Because the equation is a relation of S2(fi), where i = 1, ..., n − 3, by Lemma ?? and induction
hypothesis, we know

γ′′n = x2η
′ +

n∑
i=5

ηiS
2(fi−4).
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Then,

βn = x1γ
′
n + x2η

′ +

n∑
i=5

ηi(fi − 2x0xi−1 − 2x1xi−2)

= x1γ̃′n + x2η
′ +

n−1∑
i=5

ηi(fi − 2x0xi−1) + S(fn−2),

so that

α̃′′n = (n− 3)[x21γ̃
′
n + x1x2η

′ +

n−1∑
i=5

ηix1(fi − 2x0xi−1) + x1S(fn−2)]

= (n− 3)[(f3 − 2x0x2)γ̃′n +
1

2
(f4 − 2x0x3)η′ +

n−1∑
i=5

ηix1(fi − 2x0xi−1)

− 1

n− 3

n−3∑
i=1

(n− 3− 3i)xi+1S(fn−2−i)

= (n− 3)[(f3 − 2x0x2)γ̃′n +
1

2
(f4 − 2x0x3)η′ +

n−1∑
i=5

ηix1(fi − 2x0xi−1)

− 1

n− 3

n−3∑
i=1

(n− 3− 3i)xi+1(fn−i − 2x0xn−i−1)

=

n−1∑
i=3

θifi − x0θ

As a result, let

α̃′ = α̃−
n−1∑
i=3

θiνi,n −
1

n− 1
(α̃′n − θ)µn−1,

then α̃′ ∈ Mn and the last entry is 0. Then by induction hypothesis, it is a combination of µi and νj,k
for i = 1, 2, ..., n− 2 and j, k = 1, 2, ..., n− 1 such that j 6= k.

In conclusion, Mn is generated by µi and νj,k for i = 1, 2, ..., n − 1 and j, k = 1, 2, ..., n such that
j 6= k. �

In fact, this result of the structure of the first syzygy module will induce a recursive formula for the
minimal free resolution of the quotient ring, and it can further imply an explicit formula of the Hilbert
Series, which, as we stated in the introduction, can be found in [7].
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