
Randomly Generated Numerical Semigroups

By
Zachary J. Spaulding

Abstract.

Numerical semigroups are subsemigroups of N, that is, subsets of the natural numbers
closed under addition. In this paper, we will look at a particular way to randomly gener-
ate numerical semigroups given certain parameters. We will then discuss a new software
package which generates and plots data about these objects. Examples of usage will be
highlighted.

2

Contents

1 Introduction 3

2 Background 5
2.1 Semigroups . 5
2.2 Numerical Semigroups . 6

2.2.1 Generating Set . 6
2.2.2 Properties of Numerical Semigroups 6
2.2.3 Apéry Set . 7

3 Algorithms for Randomly Selecting Numerical Semigroups 7
3.1 GenerateNumericalSemigroup() . 8
3.2 GenerateNumericalSemigroupAp() . 9

4 External Packages 11
4.1 GAP System . 11
4.2 SQL . 12
4.3 Sage . 13

5 Usage 13
5.1 RunExperiment() . 13
5.2 RunExperimentP() . 13
5.3 Generating Data . 14
5.4 Storing Data . 15
5.5 Plotting Data . 16
5.6 Example . 17
5.7 Example Data . 18

References 19

1 Introduction

Numerical semigroups are subsemigroups of N. We are interested in randomly gen-
erating these algebraic objects in order to better understand their expected behavior. In
a recent paper [1], the average behavior of random numerical semigroups was studied
and relatively loose theoretical bounds were given for the expected values of certain at-
tributes. In addition to the theoretical approach used in [1], random semigroups can be
studied via computations and experiments. To find more detail about the bounds for cer-
tain attributes, we created rns-db-plot to randomly generate numerical semigroups and
plot their behavior.

Our software generates random numerical semigroups in the following way. Fix a
probability p ∈ [0, 1] and upper bound M ∈N as input. For all integers n ∈ 1, . . . , M, we
choose with probability p whether or not to include n as a generator of the semigroup. We

3

then create a database which stores data about large collections of numerical semigroups
generated in this fashion. This database can then be used to plot expected invariant val-
ues of a random semigroup given fixed parameters via Sage. Example plots of average
Frobenius number (Definition 2.6) and average number of minimal generators (Definition
2.4) are found in Figure 1 and Figure 2, respectively.

Figure 1: Average Frobenius Number

Figure 2: Average Number of Minimal Generators

In this paper, we demonstrate the usage of rns-db-plot, as well as the dependent pack-
ages GAP, SQL, and Sage. We will begin by introducing necessary definitions, theorems,

4

and examples to discuss numerical semigroups in Section 2. In Section 3, we will dis-
cuss the GAP system for numerical semigroup computations. In the following section,
we describe two algorithms for randomly generating numerical semigroups, the second
of which simultaneously generates the semigroup’s Apéry set (Definition 2.8). This func-
tion is intended to be used when calculating invariants related to the Apéry set. In the
final section, we describe usage of rns-db-plot along with a full example.

2 Background

We begin with some preliminary definitions and examples to build familiarity with the
relevant algebraic objects and their attributes.

2.1 Semigroups

We begin with our attention on semigroups which are groups without the requirement of
inverses. More, precisely, we have the following definition.

Definition 2.1. A pair (M, ∗) is said to be a semigroup if M is a set and the following is
satisfied:

∗ : M×M→ M is an associative binary operation on M

That is, a semigroup is a set closed under a binary operation. We often refer to the
semigroup (M, ∗) as M when the binary operation is clear from context.

Example 2.2. Consider (N,+), the set of nonnegative integers under addition. We know
that addition of integer satisfies associativity. Moreover, 0 acts as the identity element
since for all n ∈ N, we have 0 + n = n + 0 = n. Hence, N is a semigroup.

As with other algebraic objects, we can restrict our view to a subset of a given semi-
group which also has a semigroup structure.

Definition 2.3. We say that (N, ∗) is a subsemigroup of (M, ∗) if N ⊆ M, N contains the
idenitity e of M, and N is closed under ∗; that is,

n1, n2 ∈ N =⇒ n1 + n2 ∈ N.

Example 2.4. Going back to the semigroup N, we can consider the set of even nonnega-
tive integers

E := {2n | n ∈N} ⊆N.

Here, 0 is even, so 0 ∈ E. Moreover, the sum of even integers is even, so E is closed under
addition. Thus, E is a subsemigroup of N.

5

2.2 Numerical Semigroups

Definition 2.5. A numerical semigroup is a subsemigroup of N which is cofinite in N, that
is, |N \ S| < ∞.

Example 2.6. Consider the following semigroup under addition:

M = {3a1 + 8a2 | ai ∈N}
= {0, 3, 6, 8, 9, 11, 12, 14, 15, 16, 17, . . . }.

Note that the complement of M is N is finite, that is

|N \M| =
∣∣∣{1, 2, 4, 5, 7, 10, 13}

∣∣∣ < ∞.

Since M is a subsemigroup of N and cofinite in N, M is a numerical semigroup.

2.2.1 Generating Set

Definition 2.7. A generating set of a numerical semigroup S is a set G = {n1, n2, . . . , np} ⊆
N for which every element of S is a non-negative integer combination of elements of G.
That is,

S = 〈G〉 = 〈n1, n2, . . . , np〉 =
{

a1n1 + a2n2 + · · ·+ apnp | ni ∈N
}

.

A generating set G is minimal if |G| ≤ |H| for all generating sets H of S.

Example 2.8. Continuing Example 2.3, we can write

M = {3a1 + 8a2 | ai ∈N}
= {0, 3, 6, 8, 9, 11, 12, 14, 15, 16, 17, . . . }.

As such, M = 〈3, 8〉, and so {3, 8} is a generating set for M. In fact, it is the minimal
generating set for M. Note that {3, 8, 14} is also a generating set for M. We can see
that this generating set is not minimal because it contains a redundant element, namely
14 = 3 + 3 + 8.

Remark 2.9. It will not be shown, but we will make use of the fact that every numerical
semigroup has a unique minimal generating set and that this set is always finite.

2.2.2 Properties of Numerical Semigroups

Definition 2.10. The gaps of a numerical semigroup S are the natural numbers not in-
cluded in S, that is, the elements of N \ S. The genus of S is g(S) = |N \ S|.

Definition 2.11. The Frobenius number of S is F(S) = max(N \ S). That is, the Frobenius
number is the largest gap of S.

6

2.2.3 Apéry Set

Definition 2.12. The Apéry set of n ∈ S is

Ap(S, n) = {s ∈ S | s− n 6∈ S}.

When n isn’t specified, we define Ap(S) = Ap(S, n1) where n1 is the smallest non-zero
element of S. We have an equivalent definition of Apéry set which will be used through-
out this paper.

Lemma 2.13 (4, Lemma 1.4). Let S be a numerical semigroup and n be a nonzero element. Then

Ap(S, n) = {0 = w(0), w(1), . . . , w(n− 1)},

where w(i) is the least element of S congruent with i modulo n.

Example 2.14. The numerical semigroup:

S = 〈5, 8, 9〉
= {0, 5, 8, 9, 10, 13, 14, 15, 16, 17, . . . }.

has gap set
N \ S = {1, 2, 3, 4, 6, 7, 11, 12}.

Hence, the Frobenius number of S is 12. Lastly, let’s look at the Apéry set of S. Lemma
2.1 tells us that we should expect five elements in Ap(S, 5). The minimal generators and
0 are always elements of the Apéry set. Obviously, 0 − n 6∈ N. Suppose k 6= 5 is a
minimal generator such that k− 5 ∈ S. Then k− 5 could replace k as a generator while
still generating S, but this contradicts minimality. Hence, minimal generators (other than
the smallest) are always in the Apéry set. So 0, 8, 9 ∈ Ap(S). Also, note

16− 5 = 11 6∈ S and 17− 5 = 12 6∈ S.

So
Ap(S, 5) = {0, 8, 9, 16, 17} = {0, 16, 17, 8, 9}.

The second expression above shows the elements in order modulo 5.

Remark 2.15. Some properties of a numerical semigroup can be easily calculated from its
Apéry set. In particular, the Frobenius number, the number of gaps, and the number of
minimal generators can be calculated in linear time given the Apéry set.

3 Algorithms for Randomly Selecting Numerical Semigroups

This section will discuss two new functions for generating numerical semigroups. Both
methods, GenerateNumericalSemigroup() and GenerateNumericalSemigroupAp(), gen-
erate semigroups according to the same random model, but the second method also calcu-
lates the semigroup’s Apéry set while generating the semigroup. Because certain numer-
ical semigroup invariants are calculated via the Apéry set, this method is more efficient
when the goal is to then calculate such invariants.

7

As referenced earlier, we consider the following method of randomly generating semi-
groups, used in [1], and then study the expected attributes of semigroups generated in
this fashion. Our generation algorithm is outlined as follows:

1. Fix input parameters M ∈N and p ∈ [0, 1].

2. Initialize G = ∅ to be a generating set for the semigroup.

3. For each n ∈N where n ≤ M, independently choose with probability p whether or
not to include n in the generating set G.

So, given parameters M and p, we construct a generating set for S where each positive
integer less than M has probability p of being a generator for S.

3.1 GenerateNumericalSemigroup()

The most fundamental function from rns-db-plot is GenerateNumericalSemigroup()

which implements the described algorithm at the beginning of this section. In particular,
this function takes nonnegative integer parameters m, a, and b 6= 0. Here, we take m to be
the upper bound M and a

b to be the probability p in the above procedure. Pseudocode for
the implementation of this functions follows:

Algorithm 3.1. Given m, a, and b, randomly generate a numerical semigroup.
function GENERATENUMERICALSEMIGROUP(m, a, b)

G ← {}
p← a/b
for all n ∈ [1, m] do

if Random([0, 1]) < p then
G ← G ∪ {n}

end if
end for
return NumericalSemigroup(G)

end function

Note that this implementation is relatively inefficient in terms of operation complex-
ity. In particular, the algorithm often considers appending generators which are already
spanned by the current generating set at some given point.

Example 3.2. Suppose we run GenerateNumericalSemigroup() and 3, 7, 8, and 14 are cho-
sen as generators. Note that

3 + 3 + 8 = 14.

So inlcuding 14 as a generator is redundant and does not change the elements of the
semigroup given that 3 and 8 are already generators. Hence, considering to include 14, or
any other linear combinations of already chosen generators, is inefficient.

8

3.2 GenerateNumericalSemigroupAp()

As previously mentioned, numerical semigroups possess many invariants that have
been heavily studied in literature, and GAP has functions which calculate many of these
invariants. However, the complexity of these functions vary depending on the property
in question. Remark 2.2 states that certain properties can be easily read from the Apéry
set. Hence, GAP’s implementation of the calculation of properties like these often first
requires the calculation of the Apéry set, and then goes on to use this set to calculate the
desired property.

Recall that the Apéry set of a numerical semigroup S can be expressed as:

Ap(S, n) = {0 = w(0), w(1), . . . , w(n− 1)}

where w(k) ∈ S is the minimal element such that w(k) ≡ k mod n. So, we see that as the
smallest generator of S increases, the size of the Apéry set increases as well. This in turn
increases the runtime for the calculation of Ap(S) and hence the runtime for calculation
of invariants like the Frobenius number. So, given that we intend on calculating several
such invariants, we call GenerateNumericalSemigroupAp() when randomly generating
semigroups to reduce overall runtime for experiments. This method is especially effective
when we expect to have a relatively large first generator (i.e. for small p).

As we saw in Section 3, one can create a numerical semigroup object in GAP by passing
the Apéry set of a semigroup to the function NumericalSemigroupByAperyList(). Our
function GenerateNumericalSemigroupAp() randomly generates a semigroup according
to the same parameters passed to GenerateNumericalSemigroup(), but does so by con-
structing the Apéry set, rather than just the generating set.

Algorithm 3.3. Given n ∈ S = 〈n1, . . . , nk〉, computes Z(m) for all m ∈ [0, n] ∩ S.
function GENERATENUMERICALSEMIGROUPAP(m, a, b)

G ← {}
p← a/b
for all n ∈ [1, m] do

if Random([0, 1]) < p then
n1 ← n
G ← G ∪ {n1}
A← (0, 0, . . . , 0)
Break

end if
end for
n← n1
while A has at least two 0 entries do

n← n + 1
if n 6= g mod n1 for all g ∈ G then

for all g ∈ G do

9

if n− g ∈ A then
A[n mod n1]← n

else
if n ≤ M and Random([0, 1]) < p then

A[n mod n1]← n
end if

end if
end for

end if
end while
return NumericalSemigroup(G)

end function

In this algorithm, we have A = Ap(S, n1) = Ap(S) where S is the semigroup that is
constructed when the algorithm finishes. After picking the first generator, we continue
iterating through larger integers as before but we now construct the Apéry set along the
way. In addition, once the kth entry in A is appropriately filled, we no longer consider
integers with the same residue as k modulo n1 as new generators or as possible elements
of A. We do this because in such a case, a natural number n = k mod n1 would be a
redundant generator and could not be the least positive residue modulo n1 of its class
since obviously k < n.

In step 5 of the algorithm, the criteria used to check whether or not n is in the Apéry set
is to see if n− g is in the Apéry set for any generator g ∈ G. Equivalently, we are checking
to see if n is the sum of two elements of Ap(S), since minimal generators are always
in Ap(S). The use of this reduction in the algorithm is crucial in terms of complexity.
Moreover, this statement is nontrivial, hence its proof is given below.

Proposition 4.2.1 If a ∈ A = Ap(S, n1) and a is not a minimal generator of S, then
a = a′ + a′′ for some a′, a′′ ∈ Ap(S).

Proof. Let a be defined as above. Then a = m′ + m′′ for some m′, m′′ ∈ S. Since Ap(S, n1)
contains one representative for each equivalence class modulo n1, there exist a′, a′′ ∈ A
such that

m′ ≡ a′ mod n1

m′′ ≡ a′′ mod n1.

Hence, a = m′ + m′′ ≡ a′ + a′′ mod n1. Since Ap(S, n1) contains the minimal elements
of S which belong to the equivalence classes, it must be that a = a′ + a′′, else there would
be a smaller element in S and in the same equivalence class as a.

Remark 3.4. The second function, GenerateNumericalSemigroupAp(), has higher com-
plexity than the first function, GenerateNumericalSemigroup(), and thus should only be
used if the Apéry set is to be used in subsequent computation.

10

4 External Packages

Here, we describe the other functionality of rns-db-plot and the general procedure of
its use. As previously mentioned, GAP was used to implement the random generation of
numerical semigroups. This was often done in large quantities with varying paramaters.
In addition, we made use of SQL to keep a database of the data generated over the course
of the project as well as Sage to give visual expressions of the data produced.

4.1 GAP System

This section discusses GAP, a standard language for computations involving numerical
semigroups. All of the code from this section is executed in GAP.

Example 4.1. We can create a numerical semigroup generated by a subset of N by passing
this set into NumericalSemigroup(). The statement below assigns s to be a numerical
semigroup object generated by 5, 8, and 9.

gap> s := NumericalSemigroup([5,8,9]);

<Numerical semigroup with 3 generators>

gap>

GAP also has its own random numerical semigroup function. However, its method
of generation is different from the procedure used in [1]. GAP’s function takes positive
integer parameters k and M where k is the maximum number of generators and M is
an upper bound for the generators. The function then uniformly picks k integers from
{1, 2, . . . , M} and returns the numerical semigroup generated by these integers.

Example 4.2. As an example, the following statement assigns s to be a numerical semi-
group with 10 generators randomly chosen from {1, 2, . . . , 500}.

gap> s := RandomNumericalSemigroup(10, 500);

<Numerical semigroup with 5 generators>

Example 4.3. We can determine the minimal generating set of a numerical semigroup by
calling

gap> s := NumericalSemigroup([5,8,9,13]);

<Numerical semigroup with 4 generators>

gap> MinimalGeneratingSystem(s);

[5,8,9]

Example 4.4. We can also calculate the gaps, Frobenius number, and Apéry set of a nu-
merical semigroup via GAP, and use the Apéry set to create its corresponding numerical
semigroup.

11

gap> s := NumericalSemigroup([5,8,9]);

<Numerical semigroup with 4 generators>

gap> GapsOfNumericalSemigroup(s);

[1,2,3,4,6,7,11,12]

gap> FrobeniusNumber(s);

12

gap> ApSet := AperyListOfNumericalSemigroup(s);

[0,16,17,8,9]

gap> t := NumericalSemigroupByAperyList(ApSet);

<Numerical semigroup>

gap> s = t;

true

This agrees with our calculations from Example 2.5.

Remark 4.5. GAP is a language designed for compuations in discrete mathematics. Be-
cause of this, the language features little support for the use of real numbers. To avoid
problems with the system’s representation of real numbers, the inputs of functions are al-
ways rational. In particular, probabilities are entered as two integers, a numerator a and
a denominator b. For example, a probability of 0.05 could be entered as a = 1 and b = 20.

The functions RunExperiment() and RunExperimentP(), Sections 4.2.1 and 4.2.2, were
also often used in GAP. The former randomly generates a desired amount of semigroups
with desired paramaters and calculates for each semigroup generated specific invariants.

4.2 SQL

SQL is a language used for creating and managing databases.

Example 4.6. We will demonstrate creating, inserting data into, and pulling data from a
table in SQL. Within the terminal, we launch SQL and create a table named Table 1 with
columns labeled a, b, and str. The first two columns will hold integer values while the
third will hold a string value.

zacharyspaulding$ sqlite3

sqlite> create table Table_1(a integer, b integer, str string);

We can now insert and select entries from Table 1. Let us insert three rows into and
select some data from Table 1.

sqlite> insert into Table_1(a,b,str) values (1, 2, "hello");

sqlite> insert into Table_1(a,b,str) values (30, 2, "world");

sqlite> insert into Table_1(a,b,str) values (1, -45, "goodbye")

sqlite> select a from Table_1;

hello

world

goodbye

12

sqlite> select * from Table_1;

1|2|hello

30|2|world

1|-45|goodbye

sqlite> select * from Table_1 where a = 1;

1|2|hello

1|-45|goodbye

The documents created by the previously mentioned functions are actually written as
commands for SQL. Initial experiments contain commands for creating a new database.
Subsequent experiments add to existing databases by appending entries of data which
include the paramaters M and p chosen and various invariants of the particular semi-
group generated. As of now, these documents need be copied from the Docker container
to some local directory in order to make use of them with SQL, a local program.

4.3 Sage

Sage is an opensource computer algebra system written in Python. This was used for
plotting data from SQL databases to give a visual description of expected behavior of
the randomly generated semigroups. In short, the functions written in Sage read data
from an SQL database created by the GAP functions. It then averages the values of the
numerical invariants for the semigroups with fixed M and p. These averages are then
plotted against each other for varying M or p.

5 Usage

In this section, we describe the process of running an experiment in GAP using rns-db-
plot and plotting its results using Sage. A full example is featured in Section 6.6.

5.1 RunExperiment()

RunExperiment() takes the same parameters as GenerateNumericalSemigroup() along
with a positive integer parameter called len. This will generate len many numerical
semigroups. For each of these generated semigroups, RunExperiment() will write an
SQL insert statement to a file in the Docker shell. Note that this function only makes
calculations for a fixed probability p and fixed upper bound M.

5.2 RunExperimentP()

This function is similar to RunExperiment() but will make calculations for varying values
of p. Because of this, RunExperimentP() takes all the same parameters as RunExperiment()
as well as a second probability and a positive integer plen. We will call the two probabili-
ties p1 and p2.

13

RunExperimentP() will consider the interval [p1, p2]. This interval will then be parti-
tioned into plen components of equal length. Then for each endpoint of the partition,

Pk = p1 +
p2 − p1

plen
k for k ∈ {0, 1, 2, . . . , plen},

RunExperiment() will be called with probability Pk.

This allows us to generate several datapoints with varying probability parameters
using a single function.

The former of these allows the user to randomly generate N semigroups, with fixed M
and p, using either our implementation or GAP’s. The function will also calculate any
number of desired invariants for each semigroup as they are generated and store the data
in a document inside of the active Docker container. The latter function does the same
but allows for the probability p to vary over a given interval.

5.3 Generating Data

The first step in running an experiment with rns-db-plot is to generate the desired data.
This is done in GAP through Docker.

There are several parameters to be chosen when running an experiment. We choose
an upper bound M for the minimal generators of the semigroup, a rational probability
p ∈ [0, 1] for the probability that a positive integer less than M is to be a generator, and
some N for the number of datapoints. We must also choose which attributes we would
like to be calculated for each of the datapoints, i.e. Frobenius number, number of (mini-
mal) generators, whether or not the semigroup is symmetric, etc.

Depending on the chosen attributes, we will call different functions to generate the
data. In both cases, we must also make a choice for a filename and tablename which will
be elaborated upon in the following sections.

Example. To launch Docker, open the terminal and execute the following commands

zacharyspaulding$ docker start rns

zacharyspaulding$ docker attach rns

Enter the following commands to lanuch GAP and load required packages.

[homalg@494436f5876c ~]$ gapL

gap> LoadPackage("num");

gap> NumSgpsUse4ti2();

gap> NumSgpsUse4ti2gap();

gap> NumSgpsUseSingular();

gap> NumSgpsUseNormaliz();

14

After this, import rns-db-plot so that the generating functions may be used. You can now
generate data. As an example, execute the following to generate 1000 random numerical
semigroups with upper bound M = 500 and probability p = .01 with data to be stored
into table 1 in the file named file.txt.

gap> RunExperiment(1000, "file.txt", "table_1", [["FrobNum", FrobeniusNumber,

"integer"], ["NumMinGens", NumMinGens, "integer"]], 500, 1, 100, GenNumSemAp);

Note that this command will calculate the Frobenius number and minimal generat-
ing set for each generated semigroup. These values are given the names FrobNum and
MinGens, respectively. And their data types in SQL are integer and string, respectively.
The last command says to use the function GenNumSemAp() to generate the semigroups.
We could also generate data for varying probabilites as follows.

gap> RunExperimentP(1000, "file.txt", "table_1", [["FrobNum", FrobeniusNumber,

"integer"], ["NumMinGens", NumMinGens, "integer"]], 500, 1, 100, 11, 100, 5,

GenNumSemAp);

This will generate data for M = 500 and p = 1
100 , 2

100 , . . . , 11
100 .

5.4 Storing Data

Data is stored in tables in a local directory via SQL. When the data is generated in GAP,
strings filename and tablename are passed when calling either of the experiment functions.
As data is generated, these functions will also write out to the file named filename lines
of SQL commands. For each data point generated, the functions write out one line of
SQL code which, when called in SQL, will insert into the table tablename the generated
point along with its corresponding attributes. If filename is an empty file, then the exper-
iment function will write out a statement that creates the table with name tablename and
appropriate columns for attributes. Here is an example of SQL output.

sqlite> select * from table_1;

1|100|1|100|55|109|12|0|0

2|100|1|100|0|-1|34|0|0

3|100|1|100|0|0|0|0|1

4|100|1|100|0|-1|12|0|0

5|100|1|100|0|-1|73|0|0

6|100|1|100|0|-1|76|0|0

7|100|1|100|0|-1|41|0|0

8|100|1|100|0|-1|71|0|0

9|100|1|100|0|-1|12|0|0

10|100|1|100|171|341|10|0|1

11|100|1|100|0|-1|64|0|0

12|100|1|100|0|-1|11|0|0

13|100|1|100|0|-1|82|0|0

14|100|1|100|0|-1|18|0|0

15

15|100|1|100|0|-1|12|0|0

16|100|1|100|945|1889|43|0|1

17|100|1|100|0|-1|88|0|0

The first column is the entry ID for the randomly generated numerical semigroup, the
second column is the M value, and the third and fourth columns are integers a and b
whose ratio defines the probability p. The remaining columns are attribute values of the
generated semigroup, in this case Frobenius number, number of generators, number of
minimal generators, and smallest generator.

After the experiment function finishes its execution, we must move file.txt from the
Docker shell where it was created to a local directory. This can be done by executing a
command simlar to

zacharyspaulding$ docker cp 494436f5876c:home/homalg/file.txt .

in a Linux based environment. The initial directory will vary between users.

Next, launch SQL and execute .read file.txt inside the database. This will generate
the table called table 1 and insert all datapoints from the experiment. Make sure to save
this SQL database.

zacharyspaulding$ sqlite3 Database

sqlite> .read file.txt

sqlite> .save Database

sqlite> .quit

Note that this will save the table into and SQL database with filename Database.

5.5 Plotting Data

Data is plotted via functions in Sage.

To plot functions in Sage, we need the strings database and tablename. The former
is a local path which ends in the name of the SQL database where the data is stored.
The latter is the name of the specific table in this database. We then pass these values
into expectedAttributePlot(). This will return plots of average values of chosen at-
tributes against M values. In Sage, execute the following to plot average Frobenius num-
ber for M = 500, 1000 using data located in table 1 of an SQL database with pathname
/zacharyspaulding/NumSemGp/Database.

sage: import sqlite3

sage: expectedAttributePlot("~/zacharyspaulding/NumSemGp/Database", "table_1",

"NumMinGens", [500, 1000])

This will plot the average number of generators for M values 500 and 1000 from table 1
from the SQL database with the path /zacharyspaulding/NumSemGp/Database. Note
that this function can only be used to plot integer valued functions. See Figures 3-5.

16

Figure 3: Average Number Minimum Generators I

5.6 Example

Here we will walk through an example of running a small experiment using rns-db-plot.
This example used the function RunExperimentPM() which calls RunExperimentP() for
each entry in a list of M values. We first launch GAP and generate data in the terminal.

zacharyspaulding$ docker start rns

zacharyspaulding$ docker attach rns

[homalg@494436f5876c ~]$ gapL

gap> LoadPackage("num");

gap> NumSgpsUse4ti2();

gap> NumSgpsUse4ti2gap();

gap> NumSgpsUseSingular();

gap> NumSgpsUseNormaliz();

After loading these packages, paste in rns-db-plot and execute the following.

gap> RunExperimentPM(1000, "file2.txt", "table_2", [["NumMinGens", NumMinGens,

"integer"]], [500, 1000, 5000, 10000], 1, 100, 1, 10, 15,

GenerateNumericalSemigroupAp);

gap> quit;

Here, enter Ctrl + p then Ctrl + q to return to the local directory or open a new termi-
nal window. When copying a file from the Docker container, use your unique container

17

pathname.

zacharyspaulding$ cd NumSgps

zacharyspaulding$ docker cp 494436f5876c:home/homalg/file_2.txt .

zacharyspaulding$ sqlite3 Database

sqlite> .read file_2.txt

sqlite> .save Database

sqlite> .quit

Now launch Sage and execute the following to generate the plots from this experi-
ment.

sage: import sqlite3

sage: expectedAttributePlot("~/zacharyspaulding/NumSgps/Database", "table_2",

"NumMinGens", [500, 1000, 5000, 10000])

See Figures 3-5 for plots similar to ones which would be generated from this experiment.

Figure 4: Average Number Minimum Generators II

5.7 Example Data

The table in Figure 6 displays runtimes for the code above for generating 1000 semi-
groups. Varying M values and different generating functions are used.

The following page shows examples of output from expectedAttributePlot(). The

18

Figure 5: Average Number Minimum Generators III

Figure 6: Run Times for GenerateNumericalSemigroup and GenNumSemAp
Time (s) M = 500 M = 1000 M = 5000 M = 10000

GenNumSemAp 1802.0 35.7 16.4 17.6
GenNumSem 2.3 4.3 59.5 310.6

horizontal axis measures the probability p used to generate the semigroups and the ver-
tical axis measures the average of the attribute.

References

[1] J.A. De Loera, C. O’Neill, D. Wilburne, Random Numerical Semigroups and a Simplicial
Complex of Irreducible Semigroups.

[2] M. Delgado, P. Garcı́a-Sánchez, and J. Morais, GAP Numerical Semigroups Package,
http://www.gap-system.org/Manuals/pkg/numericalsgps/doc/manual.pdf.

[3] Sage: Open Source Mathematics Software, available at www.sagemath.org.

[4] Rosales, J. C. and Garcı́a-Sánchez, P. A., Numerical semigroups.

19

