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ABSTRACT.

In 1947, George B. Dantzig first invented the simplex method that can solve most cases
of linear programming problems. Later, other pivot rules such as Bland, Greatest Descent,
and Steepest Edge are developed as well. However, none of the pivot rules was able to
perform well in all cases, and it remains unknown the existence of such pivot rule that can
out-perform the existing ones.

This thesis is served as a preliminary version of an ongoing project. We examine
behaviors of four pivot rules on cone-type convex polytopes. To be specific, we randomly
generate non-degenerate LP from dimension three to seven, then analyze various features
(i.e. depth, breath, degree of interior node, etc.) of the pivot rules from the spanning trees
and observe patterns.
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CHAPTER 1

Introduction

In this thesis, we will examine the behavior of Dantzig’s pivot rule, Bland’s pivot rule
and its variations, Greatest Descent pivot rule, and Steepest Edge pivot rule on random
generated cone-type polytopes from dimension three to seven. To do this, we consider the
spanning trees for each simplex pivot rule.

In Chapter 1, we review some basic definitions and theorems of linear programming.
Then, we establish some geometric understandings of the LP that are essential for our
implementations. In Chapter 2, we discuss the software package and its usage. In Chapter
3, we present the statistical analysis of the result data. In the last chapter, we talk about
the implementation of the Shadow Vertex algorithm and difficulties with it while drawing
the spanning trees.

1.1. Basic Definitions

Before we give the rigorous definition a linear program, we first establish some geometric
understandings of a polytope.

Definition 1. A set X is called convex if for all x, y ∈ X and for all λ ∈ [0, 1], the
points λx+ (1− λy) belong to X.

[6]

Definition 2. The convex hull of a set X is the smallest convex set containing X.

Definition 3. The convex cone of a set X is the smallest set containing all non-
negative linear combinations of the elements of X.

Definition 4. A hyperplane is a set {x ∈ Rn : A · x = b} for any given A ∈ Rn and
b ∈ R.

Geometrically, a n-dimensional hyperplane can be viewed as dividing Rn into two parts,
which we call half-spaces.

1



2 1. INTRODUCTION

Definition 5. A half-space is a set {x ∈ Rn : A · x ≤ b} for any given A ∈ Rn and
b ∈ R.

Now we can define a polytope as a finite intersection of half-spaces.

Definition 6. A n-dimensional polytope (or a n-polytope) may be specified as the set
of solutions to a system of linear inqualities

Ax ≤ b,

where A ∈ Rm×n and b ∈ Rm.

For example, a polygon is a 2 -polytope and a polyhedron is a 3 -polytope. Then, a
convex polytope can be characterized as a convex hull of finitely many points in the
n-dimensional space Rn.

Definition 7. Let C be a convex polytope. We say that x ∈ C is a vertex (or extreme
point of C if whenever x ∈ {(1 − λ)u + λv : 0 ≤ λ ≤ 1} for some u, v ∈ C, it must be
the case that either x = u or x = v. Namely it cannot be represented as a proper convex
combination of two other (distinct) points of the convex set.

1.2. The Simplex Method

With the previous definitions, we are now ready to define an LP (Linear Program).

Definition 8. A standard Linear Program is of the form:

min. pTx

s.t. Ax ≤ b, x ≥ 0

where x, p ∈ Rn, b ∈ Rm, and A ∈ Rm×n

The constraints of a linear program can each be realized as half-spaces, and so their
intersections form a polytope. The most popular method to solve linear programs is the
simplex method. All feasible solutions are encapsulated by the convex polytope, and the
simplex method provides algorithms to examine such polytopes to an optimal solution [?].
The simplex method methodically examines the value at each vertex to find the value that
yields the highest objective value. This is done by moving from vertex to vertex of the
polytope, and checking each adjacent vertex. If every neighboring vertex decreases the
objective value or does not increase the objective value, the process finishes and we have
attained an optimal solution. Note that a polytope may give multiple optimal solutions,
and the process by which it chooses a optimal solution is dependent on the way it chooses
which vertices to examine.

To help understand how the simplex method works, we present a simple, two-dimensional
example. Consider a farmer who is trying to decide what animals he should buy to raise
on his farm. He wants to buy cows and chickens, and would like to purchase as many total
animals as he can with the money he has. Say cows cost $200 each and chickens cost $20
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each, and the farmer has $1050 to spend. Assume our farmer wants at least one cow and at
least four times as many chickens as cows, but his coop will hold no more than 20 chickens.

We can visualize solutions to this farmer’s dilemma as points (x, y) in the Cartesian plane,
where x is the number of cows and y the number of chickens he will purchase. The farmer
wants as many animals as possible, which means he is trying to maximize the objective
function

x+ y.

The farmer’s financial and practical constraints can be represented as the following
inequalities:

200x+ 20y ≤ 1050,

x ≥ 1,

y ≥ 4x,

y ≤ 20.

We graph the constraints below:

Notice that these lines cut out a polygon, which is a 2-dimensional polytope. Every point
inside of the polygon is a valid solution to the farmer’s problem. The question that remains
is which of these points is the optimal solution. The answer can be found using the simplex
method. As we said before, the central idea behind the simplex method is that optimal
solutions are found at the vertices of polytopes. Thus, we can find the optimal solution by
traveling between vertices until we cannot improve our objective value by traveling. In this
our example, our objective is to maximize x + y, the total number of animals. To begin
the simplex method, we need to start at an arbitrary vertex that gives a feasible solution.
It is easy to check that (1, 4) is a feasible solution, so we begin there.
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Now we look to the neighboring vertices to see if we can improve our objective value,
the total number of animals. We can move directly up to attain an objective value of
1 + 20 = 21 or to the right diagonal to reach 3.75 + 15 = 18.75. We choose to move up to
reach the higher value.

We again look to our neighbors to see if we can improve. We see that we can move directly
to the right to attain 3.25 + 20, so we move to that point.
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Now we look to our neighbors and see that they have strictly lower objective values. Thus,
we have found our optimal solution, (3.25, 20). Though the simplex method gets much
more complicated with higher dimensions and more constraints, the basic idea remains the
same. As long as our objective function and constraints are linear, we are guaranteed to
find an optimal solution if one exists.

The above process can also be understood in the matrix tableau form, as we demon-
strate below. With the definition of a LP in mind, we make the following definitions.

Definition 9. A slack variable xn+i is defined by

xn+i := Ai·x− bi, i = 1, · · · ,m.(1.1)

Adding slack variables can turn the LP into the canonical form:

min z = pTx(1.2)

s.t. Ax = b, x ≥ 0.(1.3)

where x, p ∈ Rm+n, b ∈ Rm, and A ∈ Rm×(m+n).

Definition 10. A basic solution is a vector x ∈ Rm+n that satisfies Ax = b where
for some B ⊂ {1, 2, · · · , l}, A·B has linearly independent columns and xj = 0 for j /∈ B.

Definition 11. We say that x is a basic feasible solution (BFS) if x is a basic
solution and in addition it satisfies the nonnegativity condition x ≥ 0.

Definition 12. Given a point x in the feasible region, a constraint Ai·x ≤ b is called
active if Ai·x = b and inactive if Ai·x > b.

Now, we introduce the first theorem.

Theorem 1 ([2, Theorem 5.2.1]). Let b ∈ Rm and A ∈ Rm×(m+n) be given. If Ax = b,
x ≥ 0 has a solution, then it has a BFS x ∈ Rm+n. That is, there is a set B ⊆ {1, · · · , l}
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such that ∑
j∈B

A·jxj = b, xB ≥ 0,

and A·B has linearly independent columns.

Proof (see [2, p. 119]). Since the system Ax = b, b ≥ 0 has a solution, the LP

min. p′(Ax− b)
s.t. Ax ≥ b, x ≥ 0.

must have optimal objective value 0. Solve the LP by setting up an initial tableau as
follows:

x·,1 x·,2 1

y1,· = A1,1 A1,2 −b1
y2,· = A2,1 A2,2 −b2
z = p′A p′A −p′b

Performing a block pivot on (1, 1) yields

y1,· x·,2 1

x·,1 = A−1
1,1 −A−1

1,1B A−1
1,1b1

y2,· = A2,1A
−1
1,1 A2,2 −A2,1A

−1
1,1A1,2 0

z = p′ p′ 0

where the zeros in the last column follow from p′(Ax − b) = p′y = 0 and y ≥ 0, which
together imply y = 0 at the optimum. Therefore,

y2,· = A2,1A
−1
1,1y1,· + (A2,2 −A2,1A

−1
1,1A1,2)x·,2 +A2,1A

−1
1,1b1 − b2 = 0

implies that

A2,1A
−1
1,1b1 − b2 = 0.

Substituting the optimal values of x and y into the original tableau, we obtain

0 =

[
y1,·
y2,·

]
=

[
A1,1

A2,1

]
A−1

1,1b1 +

[
A1,0

A2,0

]
0− b.

We complete the proog by setting x̄ =

[
A−1

1,1b1
0

]
and J the columns corresponding to

columns in X·,1.
�

The above theorem shows that, the set B such that columns of A·B are linearly independent
fixes simplex tableau. Therefore, we define the following terms.

Definition 13. Given the index set B ⊆ {1, · · · , l} such that A·B has linearly inde-
pendent columns, we call xB the basic variables and xN where N = {1, · · · , l} \ B the
nonbasic variables, and such index set B the basis.
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A LP then can be written as:

min. z = pBxB + pNxN

s.t. ABxB +ANxN = b, x ≥ 0.

where the constraints can be rewritten as

xB = A−1
B (b−ANxN ), x ≥ 0

which together with the objective function yields

z = (pN − pBA−1
B AN )xN + pBA

−1
B b.

Therefore, we can rewrite the LP in the tableau form:

xN b

xB A−1
B AN A−1

B

z pN − pBA−1
B AN pBA

−1
B

(1.4)

Note that the tableau depends entirely on the choice of the basis B, so every basis generates
its unique tableau. The simplex method provides us such a way to choose the basis B so
that the optimum solution z can be attained. To be specific, within each iteration, we pick
a entering variable from the nonbasic variables to enter the set of basic variables and a
leaving variable from the basic variables to leave, together forms a new basis; hence a
new tableau that yields a improved z.

Several ways had been invented to pick the entering and leaving variables, which we
call pivot rules. Details will be discussed in the next section.

1.3. Pivot Rules

In this thesis, we consider the following 4 pivot rules: Dantzig, Blands (and its vari-
ations), Greatest Descent, and Steepest Edge. To better understand the procedure, we
demonstrate a 3-D example. Consider the LP:

max. x1 + x2 + x3

s.t.

 569/162 403/111 380/63
299/57 1356/307 17/61

4006/463 448/93 74/65

x1

x2

x3

 ≤
1357/103

2883/290
3316/227

 , x1, x2, x2 ≥ 0(1.5)

As shown in Figure 2, the constraints in (1.5) correspond to the cone-type polytope and its
interiors. The level set (objective function) z = x1 + x2 + x3 spans a 2-dimensional plane
in R3. When x1, x2 and x3 take the value 0, the value of the objective function z is 0. To
view this geometrically, we see that at (0, 0, 0) (vertex 3), the polytope intersects the 2-D
plane x1 + x2 + x3 = 0. As we translate the 2-D plane along its normal vector (1, 1, 1), the
value of z increases, meaning that the value of the objective function is improved. And
as long as the translations of the level set still intersects the polytope, there must exists a
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feasible solution such that the objective function attains the value z.

Figure 1. 3-D example

In this example, when z attains its optimum z, the level set z = x1 + x2 + x3 can only
intersect the polytope through a vertex, a an edge, or a face. In a more general setting,
when an objective function with n variables attains its optimum, the (n−1)-dimensional flat
surface spanned by the equation z =

∑n
i=1 xi can only intersect the polytope in (n−1) ways,

namely through 0-skeletons (vertices), 1-skeletons (edges), ..., (n− 1)-skeletons (facets).
Nonetheless, we know that if all feasible solutions are contained in a convex polytope,

then there must exists a vertex on the polytope such that the objective function attains
its optimum when the variables take value at such vertex. However, in many cases, the
constraints might not form a convex polytope, in which case we say the polytope has rays
(the polytope is not “closed” in certain directions). If the directions of the rays coincide
with the direction of the normal vector of the objective function, the LP have no optimum
solution. On the other hand, even if the convex polytope exists, it is inefficient to check
the values z takes on all vertices. Therefore, more economic ways are invented to solve
linear programs, and the simplex pivot rules are a subset of them.

Following the genearal procedure of pivot rules as in (1.1), we add slack variables x4

to x9 to the inequalities in (1.5) to turn them into equations:

569/162x1 + 403/111x2 + 380/63x3 + x4 = 1357/103

299/57x1 + 1356/307x2 + 17/61x3 + x5 = 2883/290(1.6)

4006/463x1 + 448/93x2 + 74/65x3 + x5 = 3316/227, x1, · · · , x6 ≥ 0.
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We can write (??) into the tableau form. In each column, the numbers represent coefficients
of the variables in the first row. We also write −z instead of z to turn the LP into a standard
minimization problem. The yellow vector corresponds to the constant vector b in (1.3), the

green matrix represents matrix A = (aij) ∈ Rm×(m+n) in (1.3), and the purple vector is p
in (1.2)

1 x1 x2 x3 x4 x5 x6

1357/103 569/162 403/111 380/63 1 0 0
2883/290 299/57 1356/307 17/61 0 1 0
3316/227 4006/463 448/93 74/65 0 0 1

−z −1 −1 −1 0 0 0

(1.7)

Since the coefficients of x4 to x6 form a non-singular matrix, by Definition 13, we know
that x4 to x6 are the basic variables and are depended on the nonbasic variables x1, x2

and x3. The basis B is the index set {4, 5, 6}. We further define the set N to be the
index set of the nonbasic variables, which is {1, 2, 3} in this example. Among the nonbasic
variables, we say the ones with negative coefficients the eligible variables, denoted Elg.
Note that the LP is improved only when we increase the value of an eligible variable. In
(1.7), Elg = {1, 2, 3}. Moreover, we introduce an order set for all variables, denoted
Order, indicating the position of each variable in the matrix tableau. In this case, the
order set is the trivial order from 1 to n. For a tableau with with variables in a different
order the order set is different (i.e. {x1, x2, x3} with Order = {2, 1, 3}).

Recall that in each iteration of the simplex method, the pivot rules provide us such a
way to pick one index variable from the basis to leave and one index variable from outside
to enter the basis. In the essence, the pivot rules pick an element b in B and n in N and
swap their positions.

1.3.1. Dantzig’s Rule.

• entering variable: the one with the most negative reduced cost
• leaving variable: the one with minimum (positive) ratio

We demonstrate this process with an example of the path from (0, 0, 0) to the optimum
with respect to the objective function. At (0, 0, 0), we have the same tableau as in (1.7).
In addition, we add a ratio column on the right, which each row i of it indicates the ratio
between the constant term bi and the coefficient of the entering variables aij ∈ A in the
corresponding row, where j is the entering variable. We add the value of xi’s in the last
row. Notice that the numbers here is the value of the variables in the first row instead of
their coefficients. We then have:
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1 x1 x2 x3 x4 x5 x6 ratio

1357/103 569/162 403/111 380/63 1 0 0 949/253
2883/290 299/57 1356/307 17/61 0 1 0 904/477
3316/227 4006/463 448/93 74/65 0 0 1 883/523

−z −1 −1 −1 0 0 0

x 0 0 0 1357/103 2883/290 3316/227
*Tableau form of the Dantzig pivot rule. The green columns indicate the nonbasic variables and their coefficients, the yellow

cell is the entering variable and the purple cell is the leaving variable. The brown cells highlight the important steps in the

computation. The gray cells refer to the corresponding vertex we attain at this iteration.

Here, since we want to minimize −z, we pick the nonbasic variable with the most negative
coefficient in the objective function. In this case, all coefficients are the same (we say this
is a tie) and we pick the one with the minimum index.

To pick the leaving variable, we look at the positive ratio between the constant term
and the coefficients of x1 (the entering variable). The (positive) ratio in each row stands
for the maximum value x1 can be increased until any variables in the equation has to go
negative, in which case no longer satisfies the constraints. Therefore, the nonnegativity of
xi’s impose x1 to be increased only by the minimum ratio, which is 883/532 in this case.
This forces x6 to be zero and become the leaving variable.

Notice that we only look at the positive ratios because if the ratio between the constant
terms and coefficients of the entering variable is negative, increasing the entering variables
will never violate the contraints.

Until now, we have obtained the new basis B = {1, 4, 5} and N = {2, 3, 6}. Apply the
formula we derived from (1.4), we get the second tableau:

1 x1 x2 x3 x4 x5 x6 ratio

883/523 1 103/185 5712/43411 0 0 463/4006 5248/409
3789/523 0 1521/908 2601/467 1 0 −874/2153 679/522
1123/1035 0 1667/1114 −407/989 0 1 −1489/2456

−z 0 −4881/11012 −33/38 0 −463/4006 463/4006

x 883/523 0 0 3789/523 1123/1035 0

By reading the gray bar, we know that this tableau corresponds to vertex 5. Repeat
the above process, we pick x3 as the leaving variable because it has the most negative
reduced cost −33/38 and pick x4 as the entering variable because the minimum ratio be-
tween the constant and x3 is 679/522. Swap the position of the index 3 and 4, we obtain
the third tableau:

1 x1 x2 x3 x4 x5 x6 ratio

883/582 1 301/582 0 −289/12233 0 375/2996 883/301
679/522 0 277/921 1 467/2601 0 −618/8479 1544/357

2599/1604 0 1975/1219 0 736/9961 1 −586/921 11275/11274

−z −1 −1382/7591 −653/4188 653/4188 0 259/4954

x 883/582 0 679/522 0 2599/1604 0

The point (883/582, 0, 697/522) is vertex 7. We pick x2 as the entering variable and x5 as
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the leaving variable. Then:
1 x1 x2 x3 x4 x5 x6 ratio

21156/21157 1 0 0 −534/11311 −957/2998 281/856 1453/477
11263/11262 0 1 0 193/4232 1219/1975 −97/247
49677/49678 0 0 1 793/4782 −230/1239 4294/94945 5196/235

−z −1 −1 −546/4859 325/1979 546/4859 −407/21181

x 21156/21157 11263/11262 49677/49678 0 0 0

This tableau corresponds to vertex 8. This time, x6 is selected as the entering variable and
x7 as the leaving variable, which leads to:

1 x1 x2 x3 x4 x5 x6 ratio

1320/601 569/162 403/111 380/63 1 0 0
607/704 299/57 1356/307 17/61 0 1 0
1453/477 4006/463 448/93 74/65 0 0 1

−z 179/3058 −336/2081 −353/3768 336/2081 353/3768 0

x 0 1320/601 607/704 0 0 1453/477

Observe that all the coefficients of the nonbasic variables in the objective function are
negative. This indicates that the value of z can no longer be improved. So we have attained
the optimum solution, which is vertex 1. Therefore, starting from vertex 3, the Dantzig
pivot rule generates the path 3− 5− 7− 8− 1.

Figure 2. Paths from vertex 3 to the optimum for four pivot rules

1.3.2. Bland’s Rule.

• entering variable: xi such that i = min{j | j ∈ Elg} [5]
• leaving variable: the one with minimum (positive) ratio

Started from vertex 3 again, the first iteration of the Bland’s rule pick the same entering
and leaving variables, so we obtain the same second tableau as in Dantzig:

1 x1 x2 x3 x4 x5 x6 ratio

883/523 1 103/185 5712/43411 0 0 463/4006 1028/339
3789/523 0 1521/908 2601/467 1 0 −874/2153 717/397
1123/1035 0 1667/1114 −407/989 0 1 −1489/2456 3194/4405

−z 0 −4881/11012 −3/38 0 −463/4006 463/4006

x 883/523 0 0 3789/523 1123/1035 0

Here, we look at the eligible terms, namely the indices of nonbasic variables with neg-
ative coefficients in the objective function, and pick the minimum index. In this case, we
pick 2 from {2, 3}. Computing the minimum ratio yield x5 as the leaving variable. With
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the new basis B = {1, 2, 4, 7, 8, 9} and N = {3, 5, 6}, we obtain the new tableau. Repeating
the above process yields the path 3− 5− 6− 8− 1, shown in Figure 2.

1.3.3. Leftmost of the Eligible Variables Rule. Another way to view the Bland’s
rule is that we set the order of indices as Order = {1, 2, · · · , n} and each time we pick the
leftmost element in it. Therefore, different Order set yield different choices of entering
and leaving variables. That is,

• entering variable: xik such that k := min{j | xij ∈ Elg, j ∈ Order}.
• leaving variable: the one with minimum (positive) ratio

With the same example, if we rewrite the trivial order set to be {1, 3, 2, · · · }, which
swaps the position of x2 and x3. Then we have to pick x32 from Elg = {x32 , x23}, which
makes the entering variables to be x3 instead of x2 as in Bland’s.

1.3.4. Greatest Descent.

• entering variable: for all eligible variables, perform the ratio test and pick the
variable that has the most negative product of minimum ratio and reduced cost.
• leaving variable: the one with minimum (positive) ratio

The Greatest Descent pivot rule picks the direction which improves the objective function
the most at the current iteration. It picks the entering variable j ∈ Eli such that

min
j∈Eli

{
pj ·min

{ bi
aij
| j ∈ Eli

}}
is attained. In this example:

1 x1 x2 x3 x4 x5 x6 x1 − ratio x2 − ratio x3 − ratio

1357/103 569/162 403/111 380/63 1 0 0 949/253 3001/827 2217/1015
2883/290 299/57 1356/307 17/61 0 1 0 904/477 2280/1013 4459/125
3316/227 4006/463 448/93 74/65 0 0 1 883/523 1028/339 4183/326

−z −1 −1 −1 0 0 0

x 0 0 0 1357/103 2883/290 3316/227

× −883/523 −2280/1013 −2217/1015
*Tableau form of the Greatest Descent pivot rule. In addition to the previous tableau, we add several ratio columns on the

right representing the ratio tests. In addition, we add a row on the bottom, with each value indicate the product of the

minimum ratio w.r.t such variable and its coefficient in the objective function.

Observe that here Eli = {1, 2, 3}. The ratio tests of x1, x2, and x3 yield 883/523, 2280/1013
and 2217/1015, respectively. Multiplying the minimum ratio with its corresponding pj ’s
leads to the most negative term −2280/1013. Therefore, x2 is the entering variable and
x5 the leaving variable. Repeat the above process yields the path 3 − 4 − 1, as shown in
Figure 2.

1.3.5. Steepest Edge.

• entering variable: for all eligible terms, compute the 2-norm spanned by the vector
composed of its coefficients, then pick the one with the maximum ratio between
its coefficients in the objective function and its 2-norm.
• leaving variable: the one with minimum ratio.
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Since each inequality in the LP represents a half space, the vector (a1j , a2j , · · · , amj)
T can

be viewed as the displacement in such direction . And the steepest edge pivot rule finds
the direction which improves the objective function the most with respect to displacement
in a unit length [7]. For example, at vertex 3, we have:

1 x1 x2 x3 x4 x5 x6 ratio

1357/103 569/162 403/111 380/63 1 0 0 2217/1015
2883/290 299/57 1356/307 17/61 0 1 0 4459/125
3316/227 4006/463 448/93 74/65 0 0 1 4183/326

−z −1 −1 −1 0 0 0

x 0 0 0 1357/103 2883/290 3316/227

|| · ||2 1869/173 3736/491 4111/652

·/· −173/1869 −491/3736 −652/4111
*Tableau form of the Steepest Edge pivot rule. We add another row under the x which represent the 2-norm of the vector

composed of the coefficients of each eligible terms. In addition, the last row indicates the ratios between the bj ’s and the

2-norm of the xj ’s.

Following the Steepest Edge pivot rule, we aim to find

min
j∈Eli

pj
||xj ||2

where ||xj ||2 =

( n∑
i=1

aij

) 1
2

In this case, −652/4111 is the most negative among the three, so x3 is the entering variable,
and x4 becomes the leaving variable after computing the minimum ratio. In the end, it
generates the path 3− 2− 1 (Figure 2).

1.4. Non-degeneracy and Simple Polytopes

It is worth noticing that throughout the computations of the 3-D example, the minimum
ratio is always unique. It is natural to ask if that is always the case. At the same time,
we see that at each iteration, the matrix tableau has its unique solution x ∈ Rm+n, with
the first n terms a vertex on the polytope. It leads to the question that can a vertex on
the polytope generate a unique simplex tableau? The answer to both question is yes only
if the corresponding convex polytope of the LP is simple, or the LP is non-degenerate
[1].

Definition 14. A BFS, or vertex x, is said to be degenerate if one or more of the
basic variables is assigned the value zero.

Definition 15. An LP is degenerate if in a BFS, one of the basic variables takes on
a zero value.

From (1.1), it means that more than n constraints in the m + n equations are active at
vertex x. This corresponds to the geometric definition of simple polytope [3].

Definition 16. A d-dimensional simple polytope is a d-dimensional polytope each
of whose vertices are adjacent to exactly d edges (also d facets).
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Theorem 2 ([1, Theorem 1.8]). (Fundamental Representation Theorem for
Vertices) A point x in the convex polytope C = {x ∈ Rn | Ax ≤ b}, where A = (aij)m×n
and b ∈ Rm, is a vertex of this polytope if and only if there exist an index set I ⊂ {1, · · · , n}
with such that x is the unique solution to the system of equations

n∑
j=1

aijxj = bi, i ∈ I,(1.8)

Moreover, if x is a vertex, then one can that |I| = n in (1.8), where |I| denotes the number
of elements in I.

From Theorem 1, the proof is reduced to show that x is a vertex (extreme point) of
the convex polytope C if and only if x is a BFS.

Corollary 1. The set of extreme points, E, of the feasible region C is exactly the set,
F of all BFS of the LP.

Proof. Refer to [4]. �

Therefore, we’ve answered the questions from the beginning of this section. We also present
an immediate result followed from Theorem 2 here.

Theorem 3. If the constraint set, P , is bounded, then the objective function z = pTx
achieves its minimum on P at an extreme point of P .

Proof. Refer to [1]. �

1.5. The Spanning Tree

Recall from the Dantzig example (2) that the path from vertex 3 to the optimum is
3 − 5 − 7 − 8 − 1. Similarly, we can compute paths from other vertices to the optimum.
Notice that for all of the four pivot rules we introduced, each vertex has it unique tableau
and the choice of the entering and leaving variables depend only on the current tableau.
This is not always the case. In fact, for many other pivot rules, such as the history-based
pivot rules, the same tableau might yield different choices of entering and leaving variables.
Nonetheless, this property is essential for us to draw the spanning tree.

Definition 17. An undirected graph is graph, i.e., a set of vertices (or nodes) that
are connected together, where all the edges are bidirectional.

The second graph in Figure 3 (with both black and red eges) is an example of an
undirected graph.

Definition 18. A tree is an undirected graph in which any two vertices are connected
by exactly one path. Every acyclic connected graph is a tree, and vice versa.



1.5. THE SPANNING TREE 15

Definition 19. A subgraph S of a graph G is a graph whose set of vertices and set
of edges are all subsets of G.

Definition 20. A spanning tree T of an undirected graph G is a subgraph that is a
tree which includes all of the vertices of G, with minimum possible number of edges.

The third graph in Figure 3 is an example of a spanning tree .

Definition 21. An oriented tree is a directed acyclic graph whose underlying undi-
rected graph is a tree.

The last graph in Figure 3 is an example of an oriented tree.

Figure 3. Complete path for the Dantzig pivot rule

Consider the last graph in Figure 3. The root is defined as the top node of the tree. The
child is the node directly connected to another node when moving away from the root.
The parent is the converse notion of a child. The external node (or the leaf) is a node
with no children. The internal node is the node with at least one child. For a given
node, the degree is its number of children. A leaf is necessarily degree zero. A path is
sequence of nodes and edges connecting a node with a descendant. The level of a node is
defined as: 1 + the number of edges between the node and the root. The depth of a node
is defined as: the number of edges between the node and the root. The height of a node
is the number of edges on the longest path between that node and a leaf. The height of
a tree is the height of its root node [8].

Because of the uniqueness of the tableau for each vertex, each vertex has only one parent
node. Therefore, the graph containing all path is acyclic and hence can form a oriented
spanning tree, with vertices with less reduced cost in the objective function pointing toward
vertices with improved value of the objective function. The process is shown in Figure 3.





CHAPTER 2

Visualizing the Four Pivot Rule Trees

In this section, we present the set-up of our experiments and the usage of the package
for examining behaviors of the four pivot rules.

2.1. Experiment Set-Up

From Chapter 1 we known that given a non-degenerate LP and one of the four pivot
rules, its complete paths from all vertices to the optimum vertex can be drawn as an
oriented spanning tree. In our experiments, we:

• randomly generate 500 cone-type polytopes from dimension three to seven
• compute their complete paths and converse them into oriented spanning trees
• extract various features from the spanning trees and analyze the result data

The aim of this experiment is to observe patterns from the performance of the pivot rules,
and look for the possible improvement of current simplex pivot rules.

2.1.1. the Cone-Type Polytope.

Definition 22. A spindle is a polytope with two special vertices u, v such that every
facet contains u or v but not both.

For example, the vertex 3 and 8 in Figure 1 do not have any facet in common.

Figure 1. Vertices that do not have common facet

The examined polytopes satisfy the above property, with the two special vertices
(0, 0, · · · , 0) and (1, 1, · · · , 1). The polytopes are characterized by 2n half-spaces, with

17



18 2. VISUALIZING THE FOUR PIVOT RULE TREES

n of them xi ≥ 0 for i = 1, · · · , n, which contains the oringin. The other n half-spaces are
randomly generated to satisfy the inequalities:

n∑
i=1

ai(xi − 1) ≤ 0

⇔
n∑

i=1

aixi ≤
n∑

i=1

ai

The result matrix will be of the form:
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an1
... ann



x1

x2
...
xn

 ≤

∑n

j=1 a1j∑n
j=1 a2j∑n
j=1 anj

 , x1, · · · , xn ≥ 0

where in order to avoid repetitive constraints, the matrix A = (aij)n×n is forced to be
nonsingular. The generated polytopes are simple.

2.1.2. CDD/CDD+. We know that each convex polytope can be represented either
as the intersection of a class of half-spaces, or as the convex hull that contains a set of
points. In order to examine the behaviors of the four pivot rules, the convex hull expression
is needed. Hence, the software package CDD/CDD+ is utilized, with input the class of half-
spaces that generate the LP and output the corresponding vertices, edges, and adjacency
vertices of each vertex.

2.1.3. Examine the Pivot Rules. Since the cone-type polytopes are simple, by
the uniqueness of the tableau, once we know a path we simultaneously know the path of
all vertices on the path. Therefore, it is more efficient to start from the vertex x that
z = pTx attains the minimum each time we compute the path. We examine the values of
the objective function takes on the set of vertices we get from CDD/CDD+, and compute
path from the vertex that the has the greatest cost to the optimum, eliminate all vertices
on the path from the vertex set, and then compute the path from the vertex with the
greatest cost from the remaining set. This way we can compute all paths and then draw
their corresponding spanning trees.

2.2. Output Graphs and Tables

2.2.1. Oriented Graphs. The oriented graphs include information of all vertices
and edges of the polytope. For any two adjacent vertices, the one that the objective
function takes less negative value on points toward the more improved vertex. In addition,
the complete paths is highlighted in red, indicating the edges that are actually traveled
through. Figure 2 represents the oriented graphs the four pivot rules and variations for the
3-D example we demonstrated in (1.5).
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Figure 2. Oriented Graphs Figure 3. Spanning Trees

breadth depth # internal nodes # levels width of levels node degrees

Dantzig 3 4 4 5 1 2 2 2 1 1 0 0 1 0 1 2 2

Greatest Descent 3 3 4 4 1 3 3 1 1 1 0 0 0 1 3 1

Steepest Edge 3 3 4 4 1 3 3 1 1 1 0 0 0 1 3 1

Blands 4 4 3 5 1 2 2 1 2 0 0 0 2 0 1 2 2

Figure 4. Output File from the Spanning Tree

2.2.2. Spanning Trees. Spanning trees represent the complete paths of of each pivot
rule, with each vertex pointing toward the next one we obtain when applying the pivot
rules. In Figure 3, the green nodes indicate the sink and source of the polytope, namely
the ones the objective function takes the lowest and the highest values on, respectively.

2.2.3. Extracted Features from the Spanning Trees. With each spanning tree,
we examine its breadth, depth, number of internal nodes, number of levels, width of levels,
and node degrees (defined in Chapter 1). The output file of the 3-D example we examine
in Chapter 1.5 is shown in Figure 4.

Here, the width of levels of Dantzig is 1 2 2 2 1, which means the width of level 1 is
1, the width of level 2 is 2, etc. We read the internal node degrees in the similar fashion.
That is, for the Dantzig pivot rule, the degree of node 1 is 1, the degree of node 2 is 0, etc.
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2.3. Usage of the Package

This package is mostly written by Maira Hurtado and me during the summer REU
at UC Davis, under the guidance of Professor De Loera. Thank you the National Science
Foundation for support provided via the NSF grant 1818969 for Prof. De Loera. I would
also like to thank Maira for her kind support during her free time after the REU is finished.
A detailed version of the package usage is done by Maira, which will be available upon
inquiry. Here I demonstrate the basic usage of the it.

./newScript.sh dim1 dim2 #expr rules.txt order.txt option.txt

For example, if we want to test 500 experiments of polytope from dimension three to
seven, the we have dim1 = 3, dim2 = 7, and #expr = 500. The rule.txt indicates the
specific pivot rules we want to test, the order.txt contains the Order set that is used for the
Leftmost pivot rules, and the option.txt gives us the option to draw the spanning tree and
the oriented graph and the options to save the adjacent matrix data and the spanning tree
data. In this thesis, we run 500 experiments from dimension three and seven, with three
variations of the Bland’s rule. One is the trivial order set {1, 2, · · · , n}, the second is the
reverse order set {n, n − 1, · · · , 1}, and the last one the a random permutation generated
by Matlab. For the output file, we include the spanning tree graphs and data.



CHAPTER 3

Statistical Analysis

In this chapter, we present the result data from the tests. Among the six features
extracted from the spanning trees, we analyze the behaviors of breadth, depth, and number
of internal nodes with respect to each pivot rule and each dimension.

Roughly speaking, breadth represents the number different paths within the spanning
tree. The value of breadth equals to the number of nodes that have no child. Under a
specific pivot rule, such node can only be improved by traveling to another node but not
vice versa.

On the opposite, the number of interior nodes equals to the total number of nodes
minus the number of breadth and minus one. Interior nodes represent the nodes that has
at least one child node that has worse objective values and has a parent node that it is
improved into. An interior node is neither the start point nor the end point of a path.

Depths represents the longest path of the spanning tree. It equals to the number of
nodes in the longest path minus two, so the depth is the number of interior nodes in the
longest path. It indicates the worst case that can happen under a pivot rule.

Begin from the next page, the result data will be presented with respect to the three
features from dimension three to seven. The x-axis represents the value of the feature and
the y-axis is the number of experiments out of 500 that attain such value. For example, in
Figure 2, we see that 180 out of 500 experiments have a breadth of eight under the Dantzig
pivot rule, and 200 out of 500 experiments have an breadth of eight under the Greatest
Descent pivot rule.

21
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Figure 1. Breadth 3-D

Dantzig Greatest Descent

Steepest Edge Bland’s

Leftmost-Reverse Leftmost-Permutation
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Figure 2. Breadth 4-D

Dantzig Greatest Descent

Steepest Edge Bland’s

Leftmost-Reverse Leftmost-Permutation



24 3. STATISTICAL ANALYSIS

Figure 3. Breadth 5-D

Dantzig Greatest Descent

Steepest Edge Bland’s

Leftmost-Reverse Leftmost-Permutation
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Figure 4. Breadth 6-D

Dantzig Greatest Descent

Steepest Edge Bland’s

Leftmost-Reverse Leftmost-Permutation
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Figure 5. Breadth 7-D

Dantzig Greatest Descent

Steepest Edge Bland’s

Leftmost-Reverse Leftmost-Permutation
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Figure 6. Depth 3-D

Dantzig Greatest Descent

Steepest Edge Bland’s

Leftmost-Reverse Leftmost-Permutation
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Figure 7. Depth 4-D

Dantzig Greatest Descent

Steepest Edge Bland’s

Leftmost-Reverse Leftmost-Permutation
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Figure 8. Depth 5-D

Dantzig Greatest Descent

Steepest Edge Bland’s

Leftmost-Reverse Leftmost-Permutation
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Figure 9. Depth 6-D

Dantzig Greatest Descent

Steepest Edge Bland’s

Leftmost-Reverse Leftmost-Permutation



3. STATISTICAL ANALYSIS 31

Figure 10. Depth 7-D

Dantzig Greatest Descent

Steepest Edge Bland’s

Leftmost-Reverse Leftmost-Permutation
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Figure 11. Number of Internal Nodes 3-D

Dantzig Greatest Descent

Steepest Edge Bland’s

Leftmost-Reverse Leftmost-Permutation
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Figure 12. Number of Internal Nodes 4-D

Dantzig Greatest Descent

Steepest Edge Bland’s

Leftmost-Reverse Leftmost-Permutation
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Figure 13. Number of Internal Nodes 5-D

Dantzig Greatest Descent

Steepest Edge Bland’s

Leftmost-Reverse Leftmost-Permutation
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Figure 14. Number of Internal Nodes 6-D

Dantzig Greatest Descent

Steepest Edge Bland’s

Leftmost-Reverse Leftmost-Permutation
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Figure 15. Number of Internal Nodes 7-D

Dantzig Greatest Descent

Steepest Edge Bland’s

Leftmost-Reverse Leftmost-Permutation
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