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1 Introduction

The classification of rings of interest in number theory using ring-theoretic properties (such as Eu-
clidean domains, principal ideal domains, unique factorization domains, etc.) is a valuable branch
of research because it can determine when theorems carry between similar domains. Additionally,
domain classification gives insight into what types of proofs will be fruitful or invalid for a certain
type of domain. A historical example from early attempts to prove Fermat’s Last Theorem high-
lights how information about a domain could have prevented misguided research. One attempt
analyzed numbers of the shape a0 ` a1ζ ` a2ζ

2 ` . . . ` an´1ζ
n´1 where ζn “ 1 and ai are in Z.

However, this proof failed because it incorrectly assumed unique factorization within numbers of
this form. If the mathematician had known that he was not working in a unique factorization
domain, he could have pursued a proof more likely to succeed.

This thesis will elaborate on Hendrik W. Lenstra Jr.’s work [1], [2], [3] regarding sufficient con-
ditions for a number ring with infinitely many units to be a Euclidean domain. Lenstra connects
several observations that suggest that the Generalized Riemann Hypothesis (GRH) can be used to
prove that certain rings are Euclidean. This thesis will illustrate the topics Lenstra presents, includ-
ing a Euclidean function ψ, in order to help someone with an undergraduate level of mathematics
understand the reasoning behind Lenstra’s proof. This ψ is defined as follows:

Definition. Given a ring R, let R´1 “ t0u and Rn “ tα P R: residues of α are contained in
Rn´1}, and let ψpαq “ n when α is in Rn but α is not in Rn´1.

Lenstra applies ψ to number fields, which are sets of elements qnη
n ` qn´1η

n´1 ` . . . ` q1η ` q0
where η is a root of an irreducible polynomial pmx

m ` pm´1x
m´1 ` . . .` p1x` p0 and pj , qi are in

Q. He then analyses number rings R (which are subsets of number fields) that satisfy the following
properties:

Given a number field K:
1) for every element α in K, there is an integer m such that mα is in R.
2) There are fixed elements θ0, θ1, . . . θd in K such that every element α of K that is in R can be
written as α “ a0θ0 ` a1θ1 ` . . . ` adθd where ai are integers (i.e. every element of R is a linear
combination of θ0, θ1, . . . θd with coefficients in Z).

In order for a domain D to be Euclidean, there must be a function

norm : D ÝÑ NY t0u

(called a Euclidean function) such that for α and β in D and β ‰ 0, there exist κ and ρ in D such
that α “ βκ` ρ and either ρ “ 0 or normpρ) < normpβ). For convenience, “Euclidean function”
and “norm” will be used interchangeably throughout this paper. A common norm in undergraduate
mathematics is the absolute value function for Z.

Let us define a norm N that is commonly used in number fields: Given a number field K
generated by η, with η being a root of an irreducible polynomial ppxq “ pmx

m` pm´1x
m´1` . . .`

p1x`p0, where pj are in Q, let τ be an element of K written as τ “ qnη
n`qn´1η

n´1` . . .`q1η`q0,
where qi are in Q. Define the norm Npτq as the product:

Npτq “

∣∣∣∣ź
ι

pqnι
n ` qn´1ι

n´1 ` . . .` q1ι` q0q

∣∣∣∣
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where ι are all of the roots of ppxq. If R is a number ring of K, then for elements α and β in R, let
us write α{β as τ , which is an element of K. We can now rewrite α “ βκ` ρ as τ ´ κ “ ρ{β. If R
is Euclidean with respect to N , then ρ “ 0 or Npρq ă Npβq, and by taking N of both sides we get
Npτ ´ κq “ Npρq{Npβq ă 1 (note that the converse is also true, a fact we will use shortly). After
making this observation, Lenstra presents a theorem by Hurwitz [2].

Theorem 1. [Hurwitz] Given a number field K and an associated number ring R, there is an
integer m ą 1, so that for each τ in K there is a κ in R and an integer j, 0 ă j ă m such that
Npjτ ´ κq ă 1, with N as defined above.

Lenstra then modifies the proof of this theorem to extend it to the following:

Theorem 2. There is an integer m ą 1, so that for all ω1, ω2, . . . , ωm, τ in K there is a κ in R
such that Nppωj ´ ωiqτ ´ κq ă 1 for some integers i, j, 1 ď i ă j ď m.

Note that by taking tω1, ω2, . . . , ωmu “ t1, 2, . . . ,mu, we recover Hurwitz’s Theorem. Lenstra
points out that if it is possible to pick ω1, ω2, .., ωm such that ωj´ωi is a unit of R, then ωj´ωi has
an inverse. This gives Npωj ´ ωiq “ 1 because for any α in R, Npαq is a positive integer and thus
if α is a unit, 1 “ Np1q “ Npαα´1q “ NpαqNpα´1q which implies that both Npαq and Npα´1q are
1. Then using Theorem 2

Npτ ´ κpωj ´ ωiq
´1q ă 1

Thus, ρ “ κpωj´ωiq
´1 is in R and every element τ of K can be written as the sum of an element ρ

of R and an element τ ´ ρ of K with Npτ ´ ρq ă 1, implying that R is Euclidean. This observation
leads to the idea that a large enough set of units in a given number ring can make it possible to
show that ring is Euclidean. Lenstra’s Theorem 3 is a result of the investigation into this idea.

Theorem 3. [Lenstra] Given a number ring R with unique factorization and infinitely many
units, if one assumes several of the Generalized Riemann Hypotheses, then R is Euclidean using ψ
(as previously defined) as the Euclidean function.

Aside from the assumption of the GRH which generalizes the Riemann Hypothesis to extensions of
Q, the proof of Theorem 3 relies on the following proposition:

Proposition 1. Given a number ring R with infinitely many units, let P be the set of primes p in
R such that for every element β in R, either p | β or β ” u mod p, with u being a unit of R. Then
for every β in R such that either β is a prime not in P or β “ p1p2 where p1 and p2 are in P , for
all α coprime with β, there exists ρ in R with ρ ” α mod β where ρ is either a unit of R or ρ is in
P .

After illustrating how ψ suggests a method of proving Theorem 3, this paper will heuristically
verify the existence of infinitely many primes in P in rings of the form β

αj where α is a fixed
integer, and both β and j range over Z. These heuristics are related to Artin’s conjecture, which is
subsequently verified using heuristics. These heuristics are followed by a discussion of the nuance
in using ψ and the GRH to prove Theorem 3.

2 ψ: A Novel Norm

As mentioned, the norm function most familiar to an undergraduate math student is the absolute
value function for Z. Lenstra constructs a function ψ modeled after the properties of a Euclidean
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function. Thus, if ψ is defined for every α in R, ψ will be a Euclidean function. To reiterate,
Lenstra aims to create a ψ that satisfies:

For all α and β in R and β ‰ 0, there exists κ and ρ in R such that α “ βκ` ρ with either ρ “ 0
or ψpρq ă ψpβq.

Lenstra begins by identifying the β in R that should satisfy ψpβq “ 0. For ψ to be a Euclidean
function, which are non-negative, it is impossible for ρ to be nonzero, because that would give
ψpρq ă ψpβq “ 0. So for ψpβq “ 0, then ρ “ 0, giving α “ βκ for all α in R. Setting α “ 1 implies
that β must be a unit. Thus, Lenstra defines ψpβq “ 0 when β is a unit.

For ψpβq “ 1, ρ can be 0 or ψpρq “ 0. If ρ “ 0, then β | α. If ψpρq “ 0, then ρ is a unit. Thus
ψpβq “ 1 implies that either β divides α or leaves a remainder of a unit. (As Lenstra phrases it:
every residue class of β either contains 0 or a unit.) Lenstra expands this by categorizing R into
sets Rn where:

R´1 “ t0u

Rn “ tβ P R : residues of β are contained in Ri,iănu

This categorization gives ψpβq “ n when β is in Rn but β is not in Rn´1. If every β is contained
in some Rn, then ψ is defined for every β, and thus by construction ψ is a Euclidean function. Let
us now consider the application of this norm to two rings, Z and pZ{5Zqrxs.

2.1 ψ for ZZZ
Lenstra shows this categorization for R “ Z. For x in Z:

ψpxq “ 0 for x “ ˘1
˘1 are the only units of Z

ψpxq “ 1 for x “ ˘2 and ˘3
0 and 1 are the residues mod 2; 0 and ˘1 are the residues mod 3.
Note that -1 ” 2 mod 3.

ψpxq “ 2 for x “ ˘4, ˘5, ˘6, and ˘7
In the case of x “ 7, 0, ˘1, ˘2, and ˘3 are the residues mod 7
since -1 ” 6 mod 7, -2 ” 5 mod 7, and -3 ” 4 mod 7. If | x | ą 7,
x would have a residue ρ with | ρ | ą 3 which is not contained in
the set of elements satisfying ψpxq “ 0 or ψpxq “ 1. Thus ˘7 are
the largest elements satisfying ψpxq “ 2.

ψpxq “ 3 for x “ ˘8,. . . , ˘15
Similarly, for the case when x “ 15, 0, ˘1,. . . , ˘7, are the residues
mod 15 and thus there are no x larger than˘15 that satisfy ψpxq “
3.
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The corresponding Rn, using the above categorization, gives:

R0 “ t´1, 0, 1u

R1 “ t´3,´2,´1, 0, 1, 2, 3u

R2 “ t´7, . . . ,´1, 0, 1, . . . , 7u

R3 “ t´15, . . . ,´1, 0, 1 . . . , 15u

. . .

Rn “ t´p2
n`1 ´ 1q, . . . ,´1, 0, 1 . . . , 2n`1 ´ 1u

This give the following formula for ψ applied to Z:

ψpxq “ n for x “ ˘2n,˘p2n ` 1q, . . . ,˘p2n`1 ´ 1q

Note that n “ log2p2
nq ă log2p2

n´1 ` 1q ă . . . ă log2p2
n`1 ´ 1q ă n ` 1. Using rxs to denote the

step function that rounds x down to the nearest integer, we can rewrite ψ as:

ψpxq “ rlog2p| x |qs “

„

lnp| x |q

lnp2q



(1)

2.2 ψ for F rxs

Another example is in applying ψ to F rxs, where F is a field. Let α be a polynomial in x with
coefficients in F . In order for ψpαq “ 0, α must be a unit. The only units of F rxs are the nonzero
elements of F , (i.e. the nonzero elements of F rxs with degree 0). The elements that satisfy ψpαq “ 1
are the ones such that every residue class contains either 0 or a unit. These turn out to be the
elements of degree 1. To see this, consider F rxs “ pZ{5Zqrxs. In this field, 0 = 0, and the units
are 1, 2, 3, 4. Any element with degree greater than 0 does not have an inverse because pZ{5Zqrxs
does not contain x´1. Let us look at the residue class of 3x` 2.

We want to determine whether all the nonzero congruence classes of 3x ` 2 contain a unit.
In other words, can we always find a unit u that satisfies α ” u mod 3x ` 2 for every α in R,
when α is not divisible by 3x` 2? Take any polynomial α “ anx

n ` ¨ ¨ ¨ ` a1x
1 ` a0 in pZ{5Zqrxs.

Using long division, we can always find an element ρ with degree(ρ) ď degree(3x ` 2) = 1. Let
α “ 2x4 ` 4x3 ` x` 2, long division gives:

4x3 ` 2x2 ` 2x` 4

3x` 2 q 2x4 ` 4x3 ` 0x2 ` x` 2

2x4 ` 3x3

x3 ` 0x2

x3 ` 4x2

x2 ` x

x2 ` 4x

2x` 2

2x` 3

4
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Note that it is always possible to cancel the terms aix
i with degree greater than 3x ` 2 (i.e. all

the aix
i when i ą 1) at each step of long division because the coefficients are all units since F is a

field. For example 3x was multiplied by 2x2 to cancel the x3 term.
In the case of 3x` 2, ρ “ 0 is in the congruence class of α only if 3x` 2 divides α. Otherwise

it is only possible to find ρ with degree(ρq “ 0 meaning that ρ is a unit. Thus for every α in R, α
is either divisible by 3x` 2 or is congruent to a unit; so ψp3x` 2q “ 1. The reasoning that shows
that ψp3x` 2q “ 1 holds for every element β of degree 1 in F rxs.

Let us now examine an element of degree 2: 3x2 ` 3x ` 1. We can see from long division that
every α in R is in the same congruence class as an element ρ with degree less than 2. To show that
we can find at least one ρ with degree equal to 1 (otherwise ψp3x2 ` 3x` 1q ă 1), consider α “ x:
there is no element κ such that x “ κp3x2 ` 1q ` ρ, where ρ is 0 or a unit (i.e. 1, 2, 3, or 4). In
fact, for any β we can always find an element α not congruent to any elements ρ with degreepρq ă
degreepβq ´ 1 by simply adding xn´1 where n “ degreepβq. Using the example β “ 3x2 ` 3x ` 1,
pick α “ β ` x “ 3x2 ` 3x` 1` x “ 3x2 ` 4x` 1:

1

3x2 ` 3x` 1 q 3x2 ` 4x` 1

3x2 ` 3x` 1

x

This reasoning holds with all elements of degree equal to 2. More generally, for any element β
with degreepβq “ n, then: 1) every element α is congruent to some ρ with degreepρq ă n, and
2) there exists some element γ that is not congruent to any elements with degree less than n ´ 1.
From this we can easily construct ψ. ψpβq “ 0 iff β is a unit (i.e. a nonzero element of F rxs with
degree(βq “ 0). From there by induction, ψpβq “ degree(β):

ψpβq “ 0 ðñ degreepβq “ 0

ψpβq “ 1 ðñ degreepβq “ 1

ψpβq “ 2 ðñ degreepβq “ 2

. . .

ψpβq “ n ðñ degreepβq “ n

3 A first attempt to prove Theorem 3

In [3], Lenstra shows that it is possible to “prove” Theorem 3 using the following assumption (which
turns out to be false):

Assumption 1. Given a number ring R, for each pair of relatively prime elements a and b in
R, b ‰ 0, there is a prime p such that p ” a mod b and every x in R is divisible by p or is congruent
to a unit mod p.

This set of primes will be referred to throughout this paper, so let us define them:

Definition. Let P be the set of primes p such that every x in R is divisible by p or is congruent
to a unit mod p.
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We saw earlier that for β in R, ψpβq “ 1 if every α in R is divisible by β or congruent to a unit
mod β. Thus if ψpβq “ 1, for every α not divisible by β, there exist κ such that α “ κβ ` u, where
u is a unit. A quick proof by contradiction shows that β must be prime. Assuming that α and β
share a common factor d that is not a unit, then d must also divide u. If d divides u, then there
exists a q such that qd “ u. But since u is a unit, it has a multiplicative inverse u´1. Thus d also
has a multiplicative inverse since dpqu´1) = uu´1 = 1. Thus d is a unit, which give a contradiction.
Thus α and β share no common factors. Since this is true for all α not divisible by β, β must be
prime.

Note that P is the set of primes p such that ψppq “ 1. Thus for all other primes q, ψpqq ě 2.
Let β in R decompose into εp1p2 . . . pnq1q2 . . . qm, where ε is a unit, primes pi are in P , and primes
qi are not in P (note that we area allowing pi “ pj and qi “ qj). Given the property of ψ [5,
Proposition 12] that

ψpαβq ě ψpαq ` ψpβq (2)

we can apply this property to the factorization of β, which gives us ψpβq ě n` 2m. If we define a
function χ : RÑ NY t0u :

χpβq “ n` 2m (3)

we can prove Theorem 3 by using Assumption 1 and showing that χ is a Euclidean function.
Let us separately consider the cases when α and β are coprime and when they share a common

divisor. When α and β are coprime, consider three sub cases: χpβq “ 0, 1, or χpβq ą 1. If χpβq “ 0,
then β is a unit and α “ βpβ´1αq ` 0, which trivially satisfies the Euclidean function criterion. If
χpβq “ 1, β is in P which by definition of P guarantees a unit ρ that satisfies α “ βκ ` ρ, thus
giving χpρq “ 0 ă 1 “ χpβq. If χpβq ą 1 , Assumption 1 guarantees a prime p in P that satisfies
p ” α mod β. Since χppq “ 1 ă χpβq, the Euclidean function criterion is met.

When α and β share a common divisor, let d be their greatest common divisor and let α “ dα1

and β “ dβ1. Then α1 and β1 are coprime and there exist κ1 and ρ1 such that α1 “ β1κ1 ` ρ1, with
χpρ1q ă χpβ1q. Thus α “ dα1 “ dβ1κ1 ` dρ1 “ βκ1 ` dρ1. And since χpdρ1q “ χpdq ` χpρ1q ă
χpdq ` χpβ1q “ χpdβ1q “ χpβq, there exist κ and ρ (namely κ1 and dρ1) such that χ satisfies the
requirements of a Euclidean function. This covers all of the cases, thus proving Theorem 1.

Although we will see later that Assumption 1 is untrue, the “proof” that χ is a Euclidean
function using Assumption 1 establishes the idea that if P is large enough, then R can be Euclidean
(if it is a unique factorization domain).

4 The set of primes in P

To give an example of the set P in a ring with infinitely many units, consider the subring of Q:

R “

"

β

2j
: β, j P Z

*

In this case, units are numbers in the form ˘2j , j P Z, so there are an infinite number of units. P
is the set of prime numbers p (excluding 2) up to units such that there exists a j in Z for every
positive integer β ă p that satisfies β ” ˘2j mod p. For example, for p “ 7,

t20, 21, 22, 23, 24, 25, 26,´20,´21,´22,´23,´24,´25,´26u ” t1, 2, 4, 1, 2, 4, 1, 6, 5, 3, 6, 5, 3, 6u mod 7
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We can see that when 2 is a primitive root of a prime number p, p is in P . Additionally, when both
positive and negative powers of 2 (i.e. ˘2j , not 2˘j) span the set t1, 2, . . . , p ´ 1u mod p, then p
is also in P . We saw earlier that Assumption 1 implies Theorem 3. Even though Assumption 1 is
false, it gives the insight that the set P must be suitably large in order for R to be Euclidean. So
to investigate whether R is Euclidean, we should assess how big P is. Let fpxq give the fraction of
primes in P less than or equal to x compared to the total number of primes less than or equal to
x, written symbolically as:

fpxq “
| tp ď x | p P P u |

| tp ď x | p primeu |
(4)

Below is a table of how big P is with respect to the set of primes. The data in the table does
not appear to immediately converge, although fpxq does seem to remain close to 0.7. Luckily,
with modern computational power, we can create a graph that gives a more detailed picture of the
behavior of fpxq.

Figures 1 through 5 plot fpxq for different sets of the form t
β
αj : β, j P Zu (specifically, α “

2, 3, 7, 41, and 101). Matlab was used to make the graphs. In the code, a loop cycles through the
prime numbers less than a specified n. For each prime p the code calculates the residues mod p
of positive and negative powers of α. It then checks to see if these residues cover all integers less
than p. If all the integers less than p are represented, then p is in P . As each p is checked, the code
keeps track of how fpxq increases. Reading over the code, one can note that the code performs a
similar task to determine when α is a primitive root of p, the relevance of which will be discussed
in the next section.

Calculating residues was the only part of the code that required optimization. Matlab’s built-in
moding function is only able to handle numbers less than 21024 and I needed calculate up to 21000000

mod p. Since I needed to calculate every value of 2j mod p, I used the property that 2b`pp´1qn ” 2b

mod p and calculated the value of each 2j mod p iteratively by multiplying the value of 2j´1 mod
p by 2, and then modding the result. For example, 21023 mod 7673 ” 3177. To calculate 21024 mod
7673, I calculated 2*3177 mod 7673, which in this case is 6354.

Below is the Matlab code for finding primes in P in the ring R with α “ 2.

1 alpha = 2 ; % This i s the number that we w i l l be check ing to see i f a
g iven prime i s in P or i f alpha i s p r i m i t i v e root o f p

2 n = 1000000; % This i s how high in the i n t e g e r s we w i l l be rcheck ing
3 ps = primes (n) ; % a l i s t o f the primes l e s s than n to t e s t .
4 ps = ( ps ˜= alpha ) .∗ ps ;
5 ps = ps ( ps ˜= 0) ;

Table 1: Fraction of primes in P for the ring of rational numbers t β2j : β, j P Zu
x number of primes ď x number of primes in P ď x fpxq
10 4 3 0.75
20 8 6 0.75
50 15 5 0.6667
100 25 17 0.6800
200 46 31 0.6739
500 95 57 0.6800
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6 counter = 1 ; % This v a r i a b l e keeps t rack o f how many primes l e s s than p
that we have checked

7 primSumCounter = 0 ; %This v a r i a b l e keeps t rack o f how many primes l e s s
than p that alpha i s a p r i m i t i v e root f o r

8 PSumCounter = 0 ; %This v a r i a b l e keeps t rack o f how many primes l e s s
than p are in P

9 primFract ion = ze ro s (1 , l ength ( ps ) ) ; %This array s t o r e the f r a c t i o n o f
primes l e s s than p that alpha i s a p r i m i t i v e root f o r

10 PFraction = ze ro s (1 , l ength ( ps ) ) ; %This array s t o r e the f r a c t i o n o f
primes l e s s than p that are in P

11 k pVals = ze ro s (1 , l ength ( ps ) ) ;
12 f o r p = ps ( 1 : l ength ( ps ) ) % c y c l i n g through primes to t e s t
13 plusRes = ones (1 , p´1) ; % f o r each prime p , we c r e a t e a l i s t to

s t o r e r e s i d u e s o f +alpha ˆ j , the l i s t s t a r t s as a l l ones s i n c e
one i s always the f i r s t element o f the l i s t

14 minusRes = (p´1)∗ ones (1 , p´1) ; % f o r each prime p , we c r e a t e a
l i s t to s t o r e r e s i d u e s o f ´alpha ˆ j , the l i s t s t a r t s as a l l p´1
s i n c e p´1 i s always the f i r s t element o f the l i s t ( i . e . ´1 = p´1
mod p)

15 ListedP = 0 ; %r e s e t ListedP f o r each p .
16 % I f ListedP s tays 0 , p i s not a prime in P and alpha

i s not p r i m i t i v e root
17 % I f ListedP ge t s changed to 1 , alpha i s a p r i m i t i v e

root but p i s not a prime in P
18 % I f ListedP ge t s switched to 2 , alpha i s both a

p r i m i t i v e root and p i s a prime in P
19

20 % f o r each p , t h i s loop c a l c u l a t e s r e s i d u e s mod p , no i n t e g e r s are
p r i m i t i v e r oo t s o f 1 , so s t a r t at 2

21 % also , i f r e s i d u e s get to (p´1)/2 + 1 without repeat ing , then
alpha i s a p r i m i t i v e root o f p and p i s in P

22 f o r i = 2:(1+(p´1)/2)
23 plusRes ( i ) = mod( alpha ∗plusRes ( i ´1) ,p ) ; % c a l c u l a t i n g r e s i d u e s

+alpha ˆ j mod p by mul t ip ly ing the prev ious r e s i d u e by alpha ,
i . e . alpha ˆ j mod p = alpha ˆ( j´1)∗ alpha mod p

24 minusRes ( i ) = mod(´alpha ∗plusRes ( i ´1) ,p ) ; % c a l c u l a t i n g
r e s i d u e s ´alpha ˆ j mod p by mul t ip ly ing the prev ious p o s i t i v e

r e s i d u e by ´alpha , i . e . ´alpha ˆ j mod p = alpha ˆ( j´1)∗´alpha
mod p

25 i f ( plusRes ( i ) == 1) % stop when plusRes equa l s 1 because the
r e s i d u e s w i l l j u s t s t a r t r epea t ing . % i f plusRes does not
equal 1 by the time i = (p´1)/2 , than alpha i s a p r i m i t i v e
root so stop the loop

26 break
27 end
28 end
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29

30 % when p = 2 , i = 2 : ( p´1) s k i p s over 2 , so we have to check i f
alpha i s odd , in which case , i t i s a p r i m i t i v e root o f 2 and 2
i s in P

31 i f (p == 2)
32 i f (mod( alpha , 2 ) == 1)
33 ListedP = 2 ;
34 end
35

36 % i f plusRes made i t to 1 + (p´1)/2 without repeat ing , than alpha
i s a p r i m i t i v e root and p i s in P

37 % i f plusRes made i t to 1 + (p´1)/2 , but that l a s t term was 1 , than
alpha i s not a p r i m i t i v e root , but we need to check i f p i s in

P
38 e l s e i f ( i == (1 + (p´1)/2) )
39 i f ( plusRes ( i ) ˜= 1)
40 ListedP = 2 ;
41 e l s e i f (sum( unique ( [ plusRes minusRes ] ) >=1) == (p´1) ) % i f

the re are p´1 unique va lue s g r e a t e r than 0 between the
plusRes and negRes , than p i s in P

42 ListedP = 1 ;
43 end
44

45 end % i f i doens ’ t make i t to 1+ (p´1)/2 , alpha i s not a p r i m i t i v e
root o f p and p i s not in P

46

47

48 i f ( ListedP == 2) % i f alpha i s a p r i m i t i v e root o f p and p i s in P
:

49 primSumCounter = primSumCounter + 1 ; % sum of primes f o r which
alpha i s p r i m i t i v e goes up by 1

50 primFract ion ( counter ) = primSumCounter/ counter ; % keep track o f
f r a c t i o n o f primes f o r which alpha i s p r i m i t i v e

51 PSumCounter = PSumCounter + 1 ; % sum of primes in P goes up by
1

52 PFraction ( counter ) = PSumCounter/ counter ; % keep track o f
f r a c t i o n o f primes in P

53

54 e l s e i f ( ListedP == 1) % i f l i s t e d , then :
55 primFract ion ( counter ) = primSumCounter/ counter ; % sum of primes

f o r which alpha i s p r i m i t i v e does not go up by 1 , but s t i l l
keep track o f f r a c t i o n o f primes f o r which alpha i s

p r i m i t i v e
56 PSumCounter = PSumCounter + 1 ; % sum of primes in P goes up by

1
57 PFraction ( counter ) = PSumCounter/ counter ; % keep track o f
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f r a c t i o n o f primes in P
58 e l s e
59 primFract ion ( counter ) = primSumCounter/ counter ; % sum of primes

f o r which alpha i s p r i m i t i v e does not go up by 1 , but s t i l l
keep track o f f r a c t i o n o f primes f o r which alpha i s

p r i m i t i v e
60 PFraction ( counter ) = PSumCounter/ counter ; % sum of primes in P

does not go up by 1 , but s t i l l keep track o f f r a c t i o n o f
primes in P

61 end
62 i f ( ListedP == 0)
63 k pVals ( counter ) = (p´1)/ i ;
64 e l s e i f ( ListedP )
65 k pVals ( counter ) = 1 ;
66 counter = counter + 1 ; % keeping t rack o f how many primes have been

checked
67 end
68

69 %using the average o f the l a s t 10% of va lue s as a r e p r e s e n a t i v e o f the
70 %convergance value
71 pr imAve l imit = mean( pr imFract ion ( f l o o r ( . 9∗ l ength ( pr imFract ion ) ) : l ength

( pr imFract ion ) ) ) ;
72 PAve l imit = mean( PFraction ( f l o o r ( . 9∗ l ength ( PFraction ) ) : l ength (

PFraction ) ) ) ;
73

74

75 %p l o t i n g the data
76 f i g u r e
77 hold
78 p lo t ( [ 1 , n ] , pr imAve l imit ∗ [ 1 , 1 ] , ’ Color ’ , ’ k ’ )
79 p lo t ( ps , primFraction , ’ Color ’ , [ 0 0 .4470 0 . 7 4 1 0 ] ) ;
80 ylim ( [ 0 , 1 ] ) ;
81

82 f i g u r e
83 hold
84 p lo t ( [ 1 , n ] , PAve l imit ∗ [ 1 , 1 ] , ’ Color ’ , ’ k ’ )
85 p lo t ( ps , PFraction , ’ Color ’ , [ 0 0 .4470 0 . 7 4 1 0 ] ) ;
86 ylim ( [ 0 , 1 ] ) ;

The graphs created in Matlab suggest that fpxq converges (i.e. there is a positive fraction
of primes in P ). Below are the graphs of fpxq for the sets t β2j : β, j P Zu, t β3j : β, j P Zu,
t
β
7j : β, j P Zu, t β

41j : β, j P Zu, and t β
101j : β, j P Zu. Additionally, the last graph in this section,

Figure 6, summarizes the results of similar computations for the rings t βαj : β, j P Zu as α ranges
from 1 to 1000.

11



Figure 1: Fraction of primes p in P , p ă x, for the ring of rational numbers t β2j : β, j P Zu

As seen in Figure 1, the fraction of primes in P appears to converge to a limit of about 0.56. In
rings with different denominator bases (i.e. β

3j instead of β
2j ) the fraction of primes in P does not

always stabilize around 0.56. For example, for α “ 3, fpxq converges to about 0.6.

Figure 2: Fraction of primes p in P , p ă x, for the ring of rational numbers t β3j : β, j P Z}

Figure 3: Fraction of primes p in P , p ă x, for the ring of rational numbers t β7j : β, j P Zu
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Figure 4: Fraction of primes p in P , p ă x, for the ring of rational numbers t β
41j : β, j P Zu

Figure 5: Fraction of primes p in P , p ă x, for the ring of rational numbers t β
101j : β, j P Zu

By running the same algorithm that created Figures 1-5, we can approximate the fraction of
primes that are in P for similar rings that have the form t

β
αj , β, j P Zu with α a fixed integer.

Figure 6, below, shows these approximations plotted against the value of α.
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Figure 6: fp105q calculated for rings t βαj : β, j P Zu, 1 ď α ď 1000 and then plotted against α

For most α, it appears that fpxq converges to about 0.5634 (the mean of values between 0.5
and 0.59). There are a few other common values for the limit of fpxq: 0.6017, 0.3752, 0.3379, and
0.2245, These values are the means of values clustered together and are visualized as horizontal
lines in Figure 6. The α that correspond with fp105q « 0.38 are all squares. However, α “ 64 and
729, which are also sixth powers, correspond to the two points with fp105q « 0.23. Table 2 below
clearly organizes the factorization for the rest of the α with fp105q ff 0.56.

Table 2: Factorization of α for which fp105q ff 0.5634, 0.3752, or 0.2245
fp105q « 0.6017 fp105q « 0.3379 fp105q « other
α factors α factors α factors fp105q
3 t3u 8 t23u 27 t33u 0.4523
12 t22, 3u 125 t53u 32 t25u 0.4427
48 t24, 3u 216 t23, 33u 128 t27u 0.4828
75 t3, 52u 343 t73u 243 t35u 0.4768
108 t22, 33u 512 t29u
147 t3, 72u 1000 t23, 53u
192 t26, 3u
300 t22, 3, 52u
363 t3, 112u
432 t24, 33u
507 t3, 132u
588 t22, 3, 72u
675 t33, 52u
768 t28, 3u
867 t3, 172u
972 t22, 35u
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From the table, it is clear that factorization affects the size of P . The numbers such that fp105q «
0.6017 all contained an odd power of 3 and a high even power of one or more primes. The numbers
such that fp105q « 0.3379 are all perfect cubes. In the next section, we will look at a related
problem to gain insight into how factorization affects limxÑ8 fpxq.

5 Artin’s Conjecture

In the previous section, fpxq was calculated for the set t βαj : β, j P Zu by checking for each prime
p whether the set t˘αj mod p, 1 ď j ă pu contained t1, 2, ..., p´ 1u. As noted, if we remove the ˘,
the set P would simply be the set of primes that have α as a primitive root. Since we are interested
in how large P is, the question of whether fpxq converges is similar to Artin’s conjecture that every
number α (that is not a square number) is a primitive root for a positive fraction of primes. In
other words, for non-square α in Z, α ą 1, the following limit converges:

lim
xÑ8

gpxq “ lim
xÑ8

| tprimes ď x which have α as a primitive rootu |

| tprimes ď xu |
(5)

Christopher Hooley [6] proved this conjecture assuming the GRH, along with Hans Heilbronn’s
proposed formula for this limit. The formula is:

Artin’s Conjecture. Given any nonzero integer α, α ‰ ˘1 and α ‰ β2 for any β in Z, let Nαpxq
be the number of primes not exceeding x for which α is a primitive root. Let α1 be the squarefree
part of α, let h be be the largest integer with the property that α is a perfect h’th power. Lastly, let

Ch “
ź

q|h
q prime

p1´
1

q ´ 1
q

ź

q-h
q prime

p1´
1

qpq ´ 1q
q

Note that since q ranges across all primes, the second product is an infinite product since there are
infinitely may primes that do not divide h. If α1 ı 1 mod 4, then as xÑ8,

Nαpxq “ Ch
x

lnpxq
`O

´xlnplnpxqq

lnpxq2

¯

If α1 ” 1 mod 4, then as xÑ8,

Nαpxq “ Ch

´

1´ µp| α1 |q
ź

q|h
q|α1

q prime

1

q ´ 2

ź

q-h
q|α1

q prime

1

q2 ´ q ´ 1

¯ x

lnpxq
`O

´xlnplnpxqq

lnpxq2

¯

where µ is the Möbius function:

µpnq “

$

’

&

’

%

1 n is a squarefree integer with an even number of prime factors

´1 n is a squarefree integer with an odd number of prime factors

0 otherwise
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Since the number of primes less than x, denoted by πpxq, approaches x
lnpxq as xÑ8, and all of

the above infinite products converge, then

lim
xÑ8

gpxq “ lim
xÑ8

Nαpxq

πpxq

also converges. Note that if α1 ı 1 mod 4, then limxÑ8 gpxq “ Ch. Additionally, the overwhelming
majority of α give a corresponding value of h “ 1 which in turn gives Ch “ 0.3795....

To heuristically verify Artin’s conjecture, gpxq was graphed using Matlab (Figures 7 - 13). The
graphs of gpxq were made using the same code that made the graphs of the previous section because
both algorithms check to see if all n ă p are congruent to a power of α mod p. The only difference
is that for gpxq, the algorithm checks if only the residues of αi mod p (and not the residues of ´αi

mod p) cover the integers less than p. Below are the graphs.

Figure 7: α “ 2

As seen in Figure 7, the fraction of primes that have 2 as a primitive root appears to converge to a
limit of about 0.375. For each of the other primitive roots assessed (α “ 3, 7, 41, 101), the fraction
of primes with α as a primitive root also stabilizes around 0.375. Although primes are not the only
numbers that can be primitive roots, Hooley’s formula shows a relationship between factorization
and gpxq. So to keep test cases similar, I picked numbers that were primes.

Figure 8: α “ 3
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Figure 9: α “ 7

Figure 10: α “ 41

Figure 11: α “ 101

Figures 12 and 13 below respectively compare the predicted values of gpxq with the computed
values for 1 ď α ď 1000. By plotting Heilbronn’s prediction for limxÑ8 gpxq for 1 ď α ď 1000, see
Figure 12 below, we can see that most integers are primitive roots for about 38% of all primes. We
can see that there are some numbers that deviate from the limit of 0.38. Integer squares are never
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primitive roots, as seen by the points in the graph that lie on the horizontal axis. Looking back at
Heilbronn’s formula, non-square numbers that contain high powers of primes, such as 27, 32, 125,
and 128, tend to have lower values.

Figure 12: Heilbronn’s prediction for limxÑ8 gpxq, horizontal axis corresponds to α.

The actual fraction of primes less than 100,000 for which α is a primitive root is shown below
in Figure 13, which closely resembles Heilbronn’s predictions. Figure 13 was created by looping the
code that generated Figures 7 - 11 and changing α each cycle.

Figure 13: Actual fraction of primes less than 105 for which α is a primitive root.

Figure 13 is very similar to the corresponding Figure 6 that plots fp105q vs α. Square integers
can not be primitive roots which is why gpαq “ 0 for squares. However, Figure 6 suggests that if
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negative powers of square α are considered, a fraction of all primes are in P for t βαj : β P Zu, albeit
this fraction appears to be much less than for non-squares, 0.38 instead 0.5576. Other similarities
can be seen for α “ 8, 27, 32, 125, and 128, all of which fall outside of the clusters of the rest of the
numbers around 0.5576 and 0.374, for Figure 6 and Figure 13 respectively. All of these similarities
suggest that Figure 6 depicts a similar pattern that depends on the factorization of α.

6 A counterexample to Assumption 1

Although Assumption 1 would allow for a tidy proof of Theorem 3, it is untrue. Lenstra provides
a simple example that, while not an exact counterexample to Assumption 1, still illustrates how
Assumption 1 could be invalid. Consider primes p ” 1 mod 8. By Gauss’s Lemma [7, pg. 52],
given below, 2 is a quadratic residue of p, meaning that there is an x in pZ{pZqˆ with 2 ” x2 mod
p. Thus, 2 cannot be a primitive root of p. This dependence between p ” 1 mod 8 and 2 not
being a primitive root of p suggests that Assumption 1 has exceptions; in this case we have p and
2 which are relatively prime but 2 is not a primitive root for these primes, which as we have seen
is related to whether p is in P for some rings. Before stating Gauss’s Lemma, we must first define
the function γ:

Definition. Given coprime p and a, where p is an odd prime, consider the residues of ai mod p,
1 ď i ď p´1

2 that fall in the set t´p´1
2 , . . . ,´1, 0, 1, . . . p´1

2 u. Let γpp, aq be the number of these
residues that are less than 0.

For example, γp7, 5q “ 1 because ti5 mod 7, 1 ď i ă 7´1
2 “ 3u ” t5, 10, 15u ” t´2, 3, 1u mod 7

which contains 1 negative element.

Gauss’s Lemma. Let a be coprime to p. pa|pq “ p´1qγpp,aq mod p, where pa|pq is 1 if a is a square
mod p and -1 if a is not a square mod p.

If we let a “ 2 in Gauss’s lemma, the following reasoning proves 2 can not be a primitive root
if p ” 1 mod 8. Let m be the positive integer such that 2m ď

p´1
2 and 2pm` 1q ą p´1

2 . Thus for

all i such that m ă i ď p´1
2 , the residue of 2i in the set t´p´1

2 , . . . , p´1
2 u is less than 0. Thus m is

the number of i that give a positive residue and p´1
2 ´m is the number of i that give a negative

residue; thus p´1
2 ´m “ γpp, 2q. Therefore if p “ 8n ` 1, for some integer n, then m “ 2n (based

on the condition that m is that largest integer that satisfies 2m ď
p´1
2 “ 8n`1´1

2 “ 4n) and thus

γpp, 2q is even since γpp, 2q “ p8n`1q´1
2 ´ m “

p8n`1q´1
2 ´ 2n “ 4n ´ 2n “ 2n. Since γpp, 2q is

even and p2|pq “ p´1qγpp,2q mod p, p2|pq “ 1, which means that 2 must be a square mod p and
therefore cannot be a primitive root. For R “ t β2j : β, j P Zu, if P was defined at the set of primes
for which 2 is a primitive root, we would have a counterexample for Assumption 1 since 1 and 8
are relatively prime and there exist no primes p such that p ” 1 mod 8 and 2 is a primitive root of
p. Unfortunately, the condition on P is a bit looser, allowing both positive and negative powers of
2 to span t1, 2, . . . , p´ 1u mod p. But this does suggest that a counterexample exists.

Indeed, Lenstra provides a definitive counterexample in [3] by considering the elements in the
number ring Zrζs, where ζ5 “ 1, and ζ ­“ 1. The elements of this ring look like a0`a1ζ`a2ζ

2`a3ζ
3,

where ai are in Z. Note that the highest power of ζ included is ζ3 since ζ4 “ ´p1 ` ζ ` ζ2 ` ζ3q.
To see this consider the sum of the five fifth-roots of unity, 1 ` ζ ` ζ2 ` ζ3 ` ζ4. Since these are
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symmetrically spaced around 0 in the complex plane, their real and imaginary components cancel
to 0. Thus 1` ζ ` ζ2 ` ζ3 ` ζ4 “ 0, giving ζ4 “ ´p1` ζ ` ζ2 ` ζ3).

To fully satisfy our inquiry of Assumption 1, this number ring must have an infinite number of
units. An easy way to verify that Zrζs has infinitely many units is to note that p1`ζqp´ζ´ζ3q “ 1.
Since the complex absolute value of elements α in Zrζs, written as | α |, is equal to

?
a2 ` b2 where

a and b are real numbers such that α “ a` bi, one has

|1` ζ| “ |1` cosp
2π

5
q ` i ˚ sinp

2π

5
q|

“

c

p1` cosp
2π

5
qq2 ` sin2

p
2π

5
q

“

c

1` 2 cosp
2π

5
q ` 1

“

c

2p1` cosp
2π

5
qq

ą 1

If we examine powers of p1 ` ζq we see that all powers of must be unique since their complex
absolute value is constantly increasing since | 1` ζ | ą 1 (based on the property that for α in Zrζs,
| αn | “ | α |n). Since p´ζ ´ ζ3qn is the inverse of p1` ζqn, Zrζs has infinitely many units.

Alternatively, the fact that Zrζs has infinitely many units is implied by the Dirichlet Unit
Theorem:

Dirichlet Unit Theorem. Let K be an arbitrary number field with r real embeddings and 2s
complex embeddings. Let G be the group of units for K and let U be the subgroup of units that are
also roots of unity. Dirichlet’s Unit Theorem states that G mod U is a finitely generated group with
r ` s´ 1 independent generators.

In order for a number field to have a finite unit group, it must have r` s´ 1 “ 0. The minimal
polynomial for ζ is the cyclotomic polynomial

Φ5pxq “ x4 ` x3 ` x2 ` x1 ` 1

which has degree 4 (see [8, chapter 7] for a more detailed discussion). Thus Zrζs has four embeddings,
and since all four are complex embeddings, r ` s ´ 1 “ 0 ` 2 ´ 1 “ 1 ą 0. Therefore Zrζs can
not have a finite unit group (not to be confused with the false statement that Zrζs can not have a
finitely generated unit group modulo the roots of unity.)

However, although Zrζs satisfies the condition of having infinitely many units, it turns out that
for primes π, if π ” 1 mod 4, then the natural reduction map from Zrζsˆ Ñ pZrζs{Zrζsπqˆ is not
surjective (see [4, Theorem 9.1] which gives this result). In other words, the quotient map from the
group of units of Zrζs to the group of units of Zrζs mod π is not surjective (note: the group of units
of Zrζs mod π is the same as the group of non zero congruence classes of π since π is prime). Since
the quotient map is not surjective, π has at least one congruency class that does not contain a unit.
Therefore π is not in P , thus providing a counterexample to Assumption 1 for number rings with
infinitely many units.
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7 The use of the Generalized Riemann Hypothesis

As discussed, Assumption 1 is not true and this invalidates the “proof” of Theorem 3 that we saw
in Section 3. However this proof can be salvaged if instead of Assumption 1 we use Proposition 1,
rewritten below. But first, let us restate the definition of χ from Section 3:

χpαq “ n` 2m : α “ εp1p2 . . . pnq1q2 . . . qm

where ε is a unit and pi and qj are primes with pi in P and qj not in P .

Proposition 1. Let R be a number ring with infinitely many units, and let P be as previously
defined. Then for every β such that χpβq “ 2 (i.e. β is a prime not in P or β “ p1p2 where both
p1 and p2 are primes in P ) and all α coprime with β, there exists ρ in R with ρ ” α mod β where
ρ is either a unit of R or ρ in P

In order to show that χ is a Euclidean function given Proposition 1, let us separately consider
the cases when α and β are coprime and when they share a common divisor. When α and β
are coprime, consider four sub cases: χpβq “ 0, 1, 2 or χpβq ą 2. If χpβq “ 0, then β is a unit
and α “ βpβ´1αq ` 0, which trivially satisfies the Euclidean function criterion. If χpβq “ 1,
β is in P which by definition of P guarantees a unit ρ that satisfies α “ βκ ` ρ, thus giving
χpρq “ 0 ă 1 “ χpβq.

Here is where the proof differs. If χpβq “ 2, by Proposition 1 there is a ρ that satisfies α “ βκ`ρ
with ρ being either a unit or an element of P , thus giving χpρq ď 1 ă 2 “ χpβq. If χpβq ą 2 , since α
and β are coprime, the Dirichlet Theorem of Prime Numbers in Arithmetic Progressions generalized
to number rings guarantees a prime p that satisfies p ” α mod β (in fact we are guaranteed infinitely
many such primes). Since χppq ď 2 ă χpβq, the Euclidean function criterion is met.

When α and β share a common divisor, let d be their greatest common divisor and let α “ dα1

and β “ dβ1. Then α1 and β1 are coprime and there exist κ1 and ρ1 such that α1 “ β1κ1 ` ρ1, with
χpρ1q ă χpβ1q. Thus α “ dα1 “ dβ1κ1 ` dρ1 “ βκ1 ` dρ1. And since χpdρ1q “ χpdq ` χpρ1q ă
χpdq ` χpβ1q “ χpdβ1q “ χpβq, there exist κ and ρ (namely κ1 and dρ1) such that χ satisfies the
requirements of a Euclidean function. This covers all of the cases, thus proving Theorem 1.

The GRH is used in proving Proposition 1 as seen in the following outline of the proof. For
each prime p in R, the residue classes that do not contain 0 form a group Gp under multiplication.
Within Gp, the residue classes that contain a unit of R make a subgroup Hp Ă Gp. A prime p is in P
when all of its residue classes that do not contain 0, do contain a unit; symbolically, rGp : Hps “ 1.

Let kp “ rGp : Hps and let Pn “ tp : kp has no prime factors less than nu. Figure 14 shows the

smallest factor of kp for primes p of t β2j : β, j P Zu, which correlates with the largest Pn that would
contain p. For example: for p = 8191, only 26 of the residue classes contain a unit, so k8191 “ 315
since 8190{26 “ 315. Since 315 factors into 3, 3, 5, and 7, 8191 is in P2 and P3, but not P4. As n
increases, | Pn | decreases, containing fewer primes that are not in P . Since for any prime p not in
P , we can find an n such that p R Pmąn, this gives

P “
8
č

n“1

Pn

So p with large spikes in Figure 14 are in more Pn.
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Figure 14: Graph of the largest n such that Pn contains p vs p.

Given coprime elements α, β, and assuming that α is not congruent to a unit mod β, we want
to know if there is a prime p in P such that p ” α mod β. By analyzing the set

Vm “ tp : p ” α mod β, p P Pmu

we can look at the fraction δm of primes that are in Vm. Letting V represent the intersection of all
Vm as m goes to infinity, the GRH is used to show that

lim
mÑ8

δm “ δ

where δ is the fraction of primes that are in V . As such, the GRH can be used to show that V
contains a positive fraction of primes, which can then be used to show that P is large enough to
establish Proposition 1, which in turn gives Theorem 3.
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