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Jesús A. De Loera

March 2019

i



ii

ABSTRACT.

This senior thesis is about using Neural Networks(NN) to identify mathematical paper
authors. The data I use in my experiments consists of 180 papers from 19 different Fields
Medalists.

I preform three types of experiment with NN. In the first experiment, I randomly select
n papers as testing data, train the NN with papers that are not chosen, and use the NN to
predict the authors of the testing papers. In the second experiment, I choose one author at
random and use half of his/her papers as training data and the other half as testing data.
Next, from the papers that do not belong to the chosen author, I choose some amount of
papers randomly and divide them into training set and testing set. I then combine the two
testing data sets as one big testing set and combine the two training data sets as one big
training set. Finally, I use the big training data set to train the NN and use the NN to make
predictions on the big testing set. In the third experiment, I select two authors at random
to preform classification. From each of the two chosen authors, I randomly choose half
of his/her papers as training data and the other half as testing data. Finally, I train the
NN with the testing set and use the NN to distinguish testing papers from the two authors.

I reach 68% accuracy in the first experiment, 98% accuracy in the second experiment,
and 92% in the third experiment.
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CHAPTER 1

Introduction

1.1. Text Mining and Author Identification

The main topic of this thesis is to use text mining techniques and neural networks
to identify authors of mathematical papers. We are interested in the following problem:
given a fixed number of papers written by distinct authors, how can we use our computer
to predict the author of a paper?

Author identification has many real-life applications such as identifying anonymous
papers and finding plagiarism. People have conducted many author identifications on dif-
ferent types of writing. One example is text mining on newspaper headlines using logistic
regression and convex optimization to discover how different Dutch newspapers portray
the news [9]. Unlike other projects, this thesis focuses on mathematical papers.

In math papers, theorems and math equations convey important mathematical ideas
to readers, yet a computer does not understand them when they are written in LATEX
format. Therefore, we delete all LATEX formats from our data and only keep English words.
Thus, we lose information in the deletion process and have less data to perform author
identification with NN models.

1.2. Data

The data we have consists of 180 math papers written by Fields Medal prize winners.
The papers cover different topics, such as probability theory, partial differential equations,
combinatorics, and so on. Note that the Fields Medal is considered by many as the highest
honor that a mathematician can get; it is sometimes described as the “Nobel Prize” for
mathematicians. All the papers are all written in LATEX syntax. To preprocess the data, we
first apply a shell script to the data to remove all symbols, numbers and LATEX formatting.
For example, “\vec{a}” will be removed because it is written in LATEX format. Also, “#”
and “123” will be removed because the first is a symbol and the second is a number.

To transform our math papers into a format that is readable by computers, we greatly
reduce the word count of the papers by deleting all stop words, or words that do not have
significant meaning in a sentence. For example, the sentence, “The cat is brown”, has two
stop words: “the” and “is.” They are stop words because they have little meaning and the
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2 1. INTRODUCTION

main idea of the sentence is the brown cat. We use the programming language, Python,
to eliminate all the stop words from our 180 papers. My research partner, Michi Kirihara,
and I first used the stop word list available in the NLTK python module and removed all
natural language stop words. Moreover, we also created our own customized list of math-
ematical stop words. Some common math stop words are “definition”, “example”, and
“assumption.” After removing the unnecessary stop words, the total word count of our
papers was significantly reduced and the preprocessed data consisted of mostly meaningful
words.

The next task for us is to find a way to combine words in different parts of speech that
have the same root. We call this part of preprocessing “intelligent stemming” the remain-
ing words. I will illustrate the idea of “intelligent stemming” with an example. Assume
that we have five “big”, two “bigger”, and one “biggest” in a paper; each word has its
own word count. We do not want “big”, “bigger”, and “biggest” to be counted separately
because they all mean large; Counting them separately will affect the term frequency of
the word “big,” which decreases its importance to the paper. To fix the problem, we write
a Python script that “intelligently” stems the words. After running the script, we would
combine the count of the less frequent word and add it to the word with the maximum
count; in our example, since “big” has more counts compared to “bigger” and “biggest,”
we would have 8 “big” after running the script. After intelligent stemming, the quality of
our vocabulary is further refined.

After that, we proceed to count the number of n-grams in the papers. We define n-
grams as meaningful n words that appear consecutively frequently in our paper. Examples
of mathematical n-grams are: “Convex Hull,” “Partial Derivative,” and “Singular Value
Decomposition.”Here is an example of how we count bi-grams. Suppose that we have five
“partial” and 8 “derivative” in our paper and the two words appear right next to each
other exactly 4 times. Given the info, we would count the bi-gram, “partial derivative”
as a word on its own. After counting all the n-grams in our papers, we are done with the
preprocessing and ready to transform the preprocessed data into matrix form.

1.3. Data Representation in Matrix Form

1.3.1. Data Matrix. We will use an m x n term-by-document matrix to represent
the preprocessed data. In the data matrix A, each row represents one math paper and
each column represents a word in the papers [4]. Note that the matrix initially contains
every word in all of the papers. In our experiment, we set matrix A to have 180 rows and
3000 columns. Note that the total vocabulary in the papers is more than 3000; we pick
the number 3000 because we believe 3000 is an appropriate size for computers to perform
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matrix operations on A.

Here is what matrix A look like:

(1.1) Data Matrix A =


x1,1 x1,2 x1,3 . . . x1,3000

x2,1 x2,2 x2,3 . . . x2,3000
...

...
...

. . .
...

x180,1 x180,2 x180,3 . . . x180,3000

 .??

I will give an example of how we represents two documents in a matrix. Suppose we
have two documents:

(1) “Alex has a turtle.”
(2) “Natalie loves to dance.”

After we remove that stop words from the two documents, we would get the following:

(1) “Alex has a turtle.” −→ “Alex” , “turtle”
(2) “Natalie loves to dance.” −→ “Natalie”, “love”, “dance”

Then we can transform the documents into matrix form. In this example, I use the
frequency of each word in the entry of the matrix.

Alex turtle Natalie love dance( )
1
5

1
5 0 0 0 Document1

0 0 1
5

1
5

1
5 Document2

We construct data matrix A with the same approach, but instead of using word frequency
as entry in the matrix, I will use the numerical statistic, tf-idf.

1.4. Tf-idf

Next we will use the numerical statistic “term frequency-inverse document frequency”
(tf-idf ) to assign weight to each word in the data matrix. The tf-idf metric was introduced
by the British computer scientist, Karen Spärck Jones, in 1972 [11], and is commonly used
in text-mining.

Let xij ∈ A. We know that xij means the jth word in document i. Define W (xij) as
weight of xij , then according to [8],

W (xij) = tf(xij) ∗ idf(xij),

where

tf(xij) =
Number of times the word appears in document i

Total number of words in document i
,
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and

idf(xij) = log
( N

Dxij

)
,

with

N = Total number of documents in the matrix.

Dxij = The # of documents in corpus that contain the word.

Initially, we try using only term frequency as a measure of word importance, but we
did not get good results due to the high frequency nature of stop words. Consider the
stop word, “definition”, in our papers. The word has a high term frequency weight, yet it
means little and does not help us distinguish work from different authors. Therefore, only
using the tf(.) metric is not good enough; we correct for the problem by doing tf(.)∗idf(.).

The significance of multiplying by idf(.) is as follows: we want words with high weight
to have a high tf and also be important and meaningful for certain papers. That is, we
want to assign more weight to word that have high tf in one particular paper but low tf
in all other papers. The intuition is that words with such characteristics are especially
important to the particular papers that contains them in high frequency.Therefore, they
deserve more weight. On the other hand, words that have high tf in every papers are
usually stop words because we know the papers cover different topics and each topic is
associated with topic-specific math vocabulary.

I will now illustrate how tf-idf assigns low weight to stop words through an example.
Let’s take a look at the stop word “definition” again; it is common to all math papers, yet
it provides virtually no useful information for author identification. If we assume that all
the papers contains the word “definition”, then:

idf(“definition”) = log
( N

D“definition”

)
= log(1) = 0 =⇒ W (“definition”) = 0.

So, we see that the ti-idf metric successfully assigned low weight to “definition”, and
in general, most stop words will have low weight under tf-idf [2]. In contrast, a key word
for a specific paper will have high tf in that specific paper only. This implies that both
the tf and idf of the word will be high, which results in higher weight for the key word.
Altogether, under the tf-idf metric, high frequency key words that only appear in one or
few papers have high weight and common words that appears in many papers have low
weight [8].



CHAPTER 2

A Quick Introduction to Neural Networks

In this section, I will introduce neural networks (NN) and explain how to train feed-
forward neural networks (FNN).

2.1. Artificial Intelligence, Machine Learning, and Deep Learning

First off, I will briefly talk about artificial intelligence, machine learning, deep learning,
and their relations: Artificial intelligence (AI) is a field of computer science that aims
to use machines to automate tasks that usually require human intelligence [1]; Machine
learning (ML) is a subset of AI that uses algorithms to analyze data, learn from the
data, and come up with decision rules based on what it learned from the data; finally,
deep learning (DL) is a subfield of ML that uses neural network models to help ma-
chines learn from successive layered data representation [7]. Note that DL is a subset of
ML, and ML is a subset of AI.

Figure 1. Relation of AI, ML, and DL from [5]

Another key point is that ML is fundamentally different from classical programming:
in classical programming, rules and data are explicitly given to the machine to compute the
desired answer, whereas in ML, data and answers are given to a machine and the machine
would try to come up with the rules to solve for the answer. Hence, “all ML systems are
trained rather than explicitly programmed” [5].

5



6 2. A QUICK INTRODUCTION TO NEURAL NETWORKS

Figure 2. Difference between classical programming and machine learning from [5]

2.2. Structure of Neural Network Models

There are many classes of neural network models in DL. For example, feed-forward neu-
ral networks, recurrent neural networks, and convolutional neural networks are commonly
used in industry. For this project, I choose to use feed-forward neural network because it
is the simplest NN model.

Figure 3. Structure of NN from [6]

Figure 3 is an example of a three-layer FNN. According to the book [10] written by
Michael Nielsen, Neural network models are composed of layers. A layer is a set of nodes.
Three types of layers exist: the input layer, the hidden layer, and the output layer; all of
the layers are made up of nodes. The input layer is where we input the data to the NN.
The hidden layer is all the layers that are in between the NN’s first and last layer; they
usually contain fewer nodes than the input layer. Finally, the output layer is the place
where the NN make the prediction. In the input layer and each of the hidden layers, there
exists a bias node. The bias node represents constant value.



2.3. FEED-FORWARD PROCESS 7

Each node in the NN has an input value, an activation function, and an output
value. Nodes are connected by links; each link has a weight attached to it.

For a NN model with L layers, all nodes in the ith layer are connected to all non-bias
nodes in the i + 1th layer. In Figure 3, we see that all nodes in layer one is connected
to each node in layer two except for the bias node. In other words, nodes x0, x1, x2, x3

are connected to a
(2)
1 , a

(2)
2 , a

(2)
3 . Bias nodes are always not connected to the nodes in their

respective previous layer. Also, all nodes in the same layer are not connected.

2.3. Feed-forward Process

Next, I will talk about how feed-forward neural networks work (FNN). FNN always
start at the input layer and work forward; FNN never works backward.

I will first illustrate the feed-forward process with an example and then talk about the
general case. Recall that each node in the FNN has an input value, an activation function,
and an output value.

2.3.1. Notation for Feed-Forward Process. Assume that our NN model has L
layers.

Definition 1. Let n
(y)
x be xth node in the yth layer.

Definition 2. Let W (y) denote the weight matrix that contains the weight of each
link that connects layer y − 1 and layer y.

Note that:

(1) The rows would represent the nodes in layer y and the columns are nodes in layer
y − 1.

(2) W (y) have dimension (# of nodes in layer y) × (# of nodes in layer y − 1).

(3) W
(y)
jk is the weight of the link that connects (node k in layer y− 1) and (node j in

layer y).

Definition 3. Define B(y) to be the bias nodes in layer y. Next, define b
(y)
x to be the

associated bias node for the xth node in layer y:

b(y)
x = W (y)

x ∗B(y−1).

where

• Vector
~

W
(y)
x = row x of matrix W (y). i.e., weights of links of nodes that are

connected to n
(y)
x , in the same order as ~a(y−1).

Note that This definition says that the specific bias node, b
(y)
x , is the product of the

bias node in layer y and the weight of the links between n
(y)
x and B(y−1). Notice that each

node in layer two or in any layer after has its own unique bias node.
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Definition 4. The input value of node n
(y)
x , Z

(y)
x , is defined as:

Z(y)
x =

~
W

(y)
x · ~a(y−1) + b(y)

x

, where:

(1) The operation “·” means dot product between two vectors of the same size.

(2) Vector ~a(y−1) = all activation of nodes in the layer y − 1 that are connected to

n
(y)
x .

(3) Vector
~

W
(y)
x = row x of matrix W (y). i.e., weights of links of nodes that are

connected to n
(y)
x , in the same order as ~a(y−1).

Definition 5. Let a
(y)
x be the activation value of node n

(y)
x , then a

(y)
x = g

(y)
x (Z

(y)
x )

Where g
(y)
x (.) is the activation function of node n

(y)
x and Z

(y)
x is the input value of

node n
(y)
x .

Once again, we look at Figure 3. x0, x1, x2, x3 are in the input layer: we can also call

them b(1), a
(1)
1 , a

(1)
2 , a

(1)
3 . In order to compute the nodes values in layer two, we will do the

following:

(1) Compute the input value of each node in the second layer
(2) Plug the input value into each node’s respective activation function and compute

value of each node.

Here I will demonstrate how we compute a
(3)
1 , the value of the first node in layer three.

First, we use the input layer’s nodes to compute the nodes values in layer two. By our
definitions, we get that:

(2.1) W (2) =


W

(2)
00 W

(2)
01 W

(2)
02 W

(2)
03

W
(2)
10 W

(2)
11 W

(2)
12 W

(2)
13

W
(2)
20 W

(2)
21 W

(2)
22 W

(2)
23

W
(2)
30 W

(2)
31 W

(2)
32 W

(2)
33

 ,
and

a
(2)
1 = g(

[
W

(2)
11 ∗ a

(1)
1 +W

(2)
12 ∗ a

(1)
2 +W

(2)
13 ∗ a

(1)
3 + b

(2)
1

]
),

a
(2)
2 = g(

[
W

(2)
21 ∗ a

(1)
1 +W

(2)
22 ∗ a

(1)
2 +W

(2)
23 ∗ a

(1)
3 + b

(2)
2

]
),

a
(2)
3 = g(

[
W

(2)
31 ∗ a

(1)
1 +W

(2)
32 ∗ a

(1)
2 +W

(2)
33 ∗ a

(1)
3 + b

(2)
3

]
).

Altogether, we get that,

a
(3)
1 = g(

[
W

(3)
11 ∗ a

(2)
1 +W

(3)
12 ∗ a

(2)
2 +W

(3)
13 ∗ a

(2)
3 + b

(3)
1

]
).
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In general, the feed-forward process starts at the input layer and then computes the
value of nodes in layer two, layer three, etc. , all the way until we reach the output layer!
The activation of nodes in the output layer would be the prediction of the NN.

2.4. Training Neural Networks

From the previous section, we learn how NN preform the feed-forward process and
make predictions given any input data vector. In our data matrix, each row represents
an input vector; each input vector has a corresponding correct “answer.” We define the
label vector as the vector that contains all the corresponding answers from the input
data. To train the NN, we will divide the data into two parts: the training data and the
testing data, and divide the data label into: training label and testing label. It is of
the utmost importance that each data vector is paired with the correct label vector. The
splitting of the data is up to the user to configure. Some possible divisions are “50-50” and
“70-30” splits, where the first number is the percent of training data and the second is the
percent of testing data. We first train the NN using the training data. After that, we find
the accuracy of the NN by making a prediction of the training data and comparing them
to the testing label.

We often train our neural network with the same training data multiple times. To keep
track of the number of times we train the NN, we define an epoch.

Definition 6. One epoch means that the NN has completed one feed-forward process
and one back propagate process with all the training inputs.

For example, if we have 100 training inputs and mini-batch size of 20, then NN would
have to perform 5 feed-forward processes and 5 back propagate processes to complete one
epoch (since 20 ∗ 5 = 100).

2.5. Cost Functions

To measure how close the NN’s prediction is to the actual answer, we use a cost
function . In essence, the smaller the cost, the better the prediction.

Definition 7. A cost function is a function that returns a numerical value as a
measure of how close the prediction is to the actual answer (if given any). We can also
refer to the cost function as a loss function or an objective function [10].

To make things more concrete I will define the quadratic cost function:

Definition 8. We define the quadratic cost function as:

C(w, b) ≡ 1

2n

∑
x

‖y(x)− a(w, b)‖2,

where:
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• w is the vector that contains all the weight used in NN.
• b is the vector that contains all biases used in NN.
• n is the total amount of training data.
• x is a training vector in the training data.
• y(x) is the corresponding label vector to input vector x.
• a is the vector that contains all the activation of nodes in the output layer (the

prediction). a is a function of of x,w, and b. (i.e. a = a(x,w, b)).
• the notation ‖~v‖ means the length of a vector.

From the quadratic cost function, we observed that the better the prediction of the
NN, the less the cost will be. We will use the optimization algorithm gradient descent
to tune weights w and the biases b of the NN in order to minimize the cost function [10].

Moreover, I use the cross-entropy cost function in my NN models. I will define it
formally below.

Definition 9. The cross-entropy function is defined as follows [10]:

CE(a) ≡ − 1

n

∑
x

[
y ∗ ln(a) + (1− y)ln(1− a)

]
,

where

• a = σ(z), where σ is the activation function and z =
∑

j wjxj + b.

• x is all the training inputs =⇒
∑

x is summed over all training inputs.
• y is all the training labels.

2.6. Gradient Descent

Recall from the previous section that our current goal is to find weights w and biases b
that minimize cost function C(w, t). To illustrate the intuition of gradient descent, I will
talk about a special case where the cost function only takes in two inputs values, v1 and
v2. Consider C(v1, v2). We can plot the cost function in a three-dimensional Cartesian
plane. For simplicity, we can think that C(v1, v2) has the following shape:

Note that C(v1, v2) can take any shape in general; Figure 4 is merely an example. From
here, our goal is to find v1 and v2 such that we locate the global minimum of cost function.
Here is an analogy of Gradient descent: imagine that the C(v1, v2) plot is a valley, and the
two points (v1, v2) represent a ball’s position in the plot. In order to reach the minimum,
we just need to find the direction down the valley and move the ball towards that direction.
Naturally, one direction will not necessarily be enough to reach the bottom. Hence, we
must constantly make adjustments to the direction of the ball to make sure the ball arrives
at the minimum. I will present this idea with math notations.

Definition 10. Let the ∆v1 denote a small change in the variable v1 and ∆v2 denote
a small change in v2.
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Figure 4. Example plot of cost function from [10]

By calculus, we know that:

(2.2) ∆C ≈ ∂C

∂v1
∆v1 +

∂C

∂v2
∆v2,

where C is the cost function.
This equation says that a change in C(v1, v2) can be approximated by computing the

partial derivative with respect to each variable of C and then move v1 and v2 accordingly.
Next I will define what a gradient vector is.

Definition 11. Let C(v1, v2, ..., vn) be any function, the gradient of C is defined as
OC, where:

OC =
[ ∂C
∂v1

,
∂C

∂v2
, . . . ,

∂C

∂vn

]T
.

Note that “T” means the transpose of a vector.

Definition 12. Let v1, v2, ..., vn be inputs of cost function C, then define the vector
∆v as:

∆v =
[
∆v1,∆v2, ...,∆vn

]T
.

Using the notations described above, we can rewrite Equation 2.2 as:

(2.3) ∆C ≈ OC · ∆v.

Recall from calculus that the gradient vector OC points to the direction that increases
C the most. Therefore, we will use this property of OC and move in the opposite direction
to decrease C(v1, v2). We will carefully choose ∆v to ensure that ∆C is negative (which
means that the C is slowly decreasing).
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For instance, we can choose

(2.4) ∆v = −ηOC.

Definition 13. Let η be a positive parameter, we call η the learning rate of the NN.

By plugging Equation 2.4 into Equation 2.2, we get

∆C ≈ ∆v · OC
= (−ηOC) · OC
= −η‖OC‖2.

Since ‖OC‖2 ≥ 0, ∆C is guaranteed to be ≤ 0. We will make frequent adjustments to
OC and ∆v. In each update, we compute the amount to move v by Equation 2.4, which
yields:

(2.5) v −→ v′ = v + ∆v = v − ηOC.

Each time we update ∆v, we would decrease C and get closer and closer to a global or
local minimum of C.

Finally, we are ready to define gradient descent.

Definition 14. Gradient descent (GD) is an algorithm that aims to minimize a
function C by repeatedly computing the gradient OC and then moving in the opposite
direction of the gradient.

Figure 5. Figure to illustrate intuition of GD from [10]
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From Figure 5, we see that the ball has a direction attach to it. That direction is
obtained by computing gradient −OC. To apply GD to the NN, we need to find OC of
C(w, b), where

OC =
[ ∂C
∂w1

, . . . ,
∂C

∂wn
,
∂C

∂b1
, . . . ,

∂C

∂bm

]T
.

After we have computed −∆C, we adjust each weight wk and bl by:

wk −→ w′k = wk − η
∂C

∂wk
.(2.6)

bl −→ b′l = bl − η
∂C

∂bl
.(2.7)

2.7. Stochastic Gradient Descent

Notice that the quadratic cost function is actually the average of sum of cost for each
individual training vector. That is:

C(w, b) ≡ 1

2n

∑
x

‖y(x)− a‖2

=
1

n

∑
x

Cx,

where:

• n is the number of training vectors.

• Cx ≡ ‖y(x)−a‖2
2 , which is the cost of one training vector x.

It follows that we must average each OCx to get the gradient OC:

OC =
1

n

∑
x

OCx.

It is common to use at least thousands of training data to train NN. Therefore, it would
a long time to use all of the training vectors to compute OC. To speed up the process, we
will use an algorithm call stochastic gradient descent [10].

Definition 15. Given N training inputs, I = {X1, ..., XN}. We say a subset of I is
a mini-batch of size m if each element in the subset is selected from I randomly and
m < N .

For example, let I = {X1, ..., X100}. One possible mini-batch of size m = 5 is
{x1, x50, x60, x70, x99}.

Definition 16. Stochastic gradient descent is an algorithm that works by picking
a mini-batch from the training data and then uses the gradient of each member in the
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mini-batch to estimate the true OC. That is:

1

m

m∑
j=1

OCj ≈
1

n

∑
x

OCx = OC,

where m is the size of the mini-batch and n is total number of input vectors.

With the stochastic gradient descent algorithm, we are able to approximate the true
gradient OC at a fast rate and optimize the NN quicker.

To adjust the weights and biases, we can first choose a mini-batch and then compute
the gradient of the mini-batch and approximate OC:

(2.8) OC ≈ 1

m

m∑
j=1

OCj .

It follows that:

wk −→ w′k = wk − η
[ 1

m

m∑
j=1

∂Cxj

∂wk

]
.(2.9)

bl −→ b′l = bl − η
[ 1

m

m∑
j=1

∂Cxj

∂bl

]
.(2.10)

2.8. Backward Propagation

Backward Propagation is the way we compute the gradient of the cost function OC.
Previously, we know that:

C(w, b) ≡ 1

2n

∑
x

‖y(x)− a‖2 ⇐⇒ Cx(w, b) = ‖y(x)− a‖2,

Z
(L)
j =

[ ~
W

(L)
j · ~a(L−1) + b

(L)
j

]
,

a
(L)
j = σ(Z

(L)
j ).

Note:

(1) x denotes an input vector.
(2) There are a total of N input vectors.
(3) L denotes the layer of the node.
(4) j denotes the jth node in the layer.

The goal is to calculate the gradient of the cost function OC:

OC =
[ ∂C
∂w1

, . . . ,
∂C

∂wn
,
∂C

∂b1
, . . . ,

∂C

∂bm

]T
,

where:
∂C

∂w
(L)
jk

=
1

N

∑
x

∂Cx

∂w
(L)
jk

.
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Using the chain rule from calculus, we get that:

∂Cx

∂w
(L)
jk

=
∂Cx

∂a
(L)
j

∗
∂a

(L)
j

∂Z
(L)
j

∗
∂Z

(L)
j

∂w
(L)
jk

.(2.11)

∂Cx

∂b
(L)
j

=
∂Cx

∂a
(L)
j

∗
∂a

(L)
j

∂Z
(L)
j

∗
∂Z

(L)
j

∂b
(L)
j

.(2.12)

By calculus, we get that:

∂Cx

∂a
(L)
j

=
(
yj − aLj

)
,

∂a
(L)
j

∂Z
(L)
j

= σ′(Z(y)
x ),

∂Z
(L)
j

∂w
(L)
jk

= aL−1
x ,

∂Z
(L)
j

∂b
(L)
j

= 1.

Therefore:

∂Cx

∂w
(L)
jk

=
(
yj − aLj

)
∗ σ′(Z(y)

x ) ∗ aL−1
x .(2.13)

∂Cx

∂b
(L)
j

=
(
yj − aLj

)
∗ σ′(Z(y)

x ).(2.14)

Let variable M denote that the layer of the nodes. We need to calculate ∂Cx

∂w
(M)
jk

for

M ∈ [0, 1, . . . , L− 1]. Recall that:

∂Cx

∂w
(M)
jk

=

[
∂Cx

∂a
(M)
j

]
∗
∂a

(M)
j

∂Z
(M)
j

∗
∂Z

(M)
j

∂w
(M)
jk

.

One problem arises when we calculate the first term in the product ∂Cx

∂a
(M)
j

. Since a
(M)
j

is not in the last layer L, we take the partial derivative the following way:

∂Cx

∂a
(M)
j

=

nM+1∑
i=1

[
∂Cx

∂a
(M+1)
i

∗
∂a

(M+1)
i

∂Z
(M+1)
i

∗
[
∂Z

(M+1)
i

∂a
(M)
j

]]
,(2.15)

where:
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• i denotes the ithnodes in layer M + 1.
• There is a total of nM+1 nodes in layer M + 1.

In particular, the third term in Equation 2.15 is:

[
∂Z

(M+1)
i

∂a
(M)
j

]
=

∂

∂a
(M)
j

[
~

W
(M+1)
x · ~a(M) + b(M+1)

x

]

=
∂

∂a
(M)
j

[
W

(M+1)
i1 ∗ a(M)

1 + · · ·+W
(M+1)
ij ∗ a(M)

j + · · ·+W
(M+1)
in ∗ a(M)

n

]
+ 0

= W
(M+1)
ij .

From the Equation 2.15, we see that we always use derivative in the M + 1 layer to
compute derivative ∂Cx

∂b
(M)
j

and ∂Cx

∂b
(M)
j

where M ∈ [0, 1, . . . , L−1]. The backward propagation

algorithm starts by computing derivative in the last layer L and gradually works backward
to layer L− 1, layer L− 2, ... , all the way back to layer 1. Hence, the algorithm is called:
“backward” propagation.

Each time we update the NN’s weights and bias using gradient descant, we say the
NN have completed one backward propagation process. Note that we can complete a
backward propagation process with any number of training data inputs.

2.8.1. Example of Backward Propagation. I will show how we apply the back-
ward propagation algorithm with an example. Suppose that the we have the NN model in
Figure 6.

n
(1)
1

n
(1)
2

n
(2)
1 n

(3)
1

W
(2)
11

W
(2)
12

W
(3)
11

Figure 6. Example of Backward Propagation

For simplicity , assume that we are working with only one input vector x (i.e., N=1).
To compute the gradient vector OC, we start with the third (output) layer and compute
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∂Cx

∂w
(3)
11

:

∂Cx

∂w
(3)
11

=
∂Cx

∂a
(3)
1

∗ ∂a
(3)
1

∂Z
(3)
1

∗ ∂Z
(3)
1

∂w
(3)
11

.(2.16)

Next, we will compute ∂Cx

∂w
(2)
11

and ∂Cx

∂w
(2)
12

:

∂Cx

∂w
(2)
11

=

[
∂Cx

∂a
(2)
1

]
∗ ∂a

(2)
1

∂Z
(2)
1

∗ ∂Z
(2)
1

∂w
(2)
11

,(2.17)

∂Cx

∂w
(2)
12

=

[
∂Cx

∂a
(2)
1

]
∗ ∂a

(2)
1

∂Z
(2)
1

∗ ∂Z
(2)
1

∂w
(2)
12

,(2.18)

where inside the brackets we have:

(2.19)
∂Cx

∂a
(2)
1

=

n3=1∑
j=1

[
∂Cx

∂a
(3)
1

∗ ∂a
(3)
1

∂Z
(3)
1

∗
[
∂Z

(3)
1

∂a
(2)
1

]]
.

with [
∂Z

(3)
1

∂a
(2)
1

]
= w

(3)
11

By plugging Equation 2.19 into ∂Cx

∂w
(2)
11

and ∂Cx

∂w
(2)
12

, we are done with computing the partial

derivatives with respect to all the weights. From the example, we see that we must use par-
tial derivatives from the next layer L+1 to compute partial derivative in the current layer L.
Hence, we call this algorithm of computing gradient “Backward Propagation”; we always
start from the last layer and work backwards until we have computed all partial derivatives.

Similarly, we compute all partial derivatives ∂Cx

∂b
(L)
j

as follows:

∂Cx

∂b
(3)
1

=
∂Cx

∂a
(3)
1

∗ ∂a
(3)
1

∂Z
(3)
1

∗ ∂Z
(3)
1

∂b
(3)
1

.(2.20)

∂Cx

∂b
(2)
1

=

[
∂Cx

∂a
(2)
1

]
∗ ∂a

(2)
1

∂Z
(2)
1

∗ ∂Z
(2)
1

∂b
(2)
1

.(2.21)

∂Cx

∂b
(2)
2

=

[
∂Cx

∂a
(2)
1

]
∗ ∂a

(2)
1

∂Z
(2)
1

∗ ∂Z
(2)
1

∂b
(2)
2

.(2.22)
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Just as before, we plug Equation 2.19 into ∂Cx

∂b
(2)
1

and ∂Cx

∂b
(2)
2

. Therefore gradient OC is:

OC =

[
∂C

∂w
(2)
11

,
∂C

∂w
(2)
12

,
∂C

∂w
(3)
11

,
∂C

∂b
(2)
1

,
∂C

∂b
(2)
2

,
∂C

∂b
(3)
1

]T
(2.23)

This concludes the example for N = 1. For any N ≥ 2, we will modify the equations
of ∂C

∂w
(L)
jk

and ∂C

∂b
(L)
j

to:

∂C

∂w
(L)
jk

=
1

N

∑
x

∂Cx

∂w
(L)
jk

,(2.24)

∂C

∂b
(L)
j

=
1

N

∑
x

∂Cx

∂b
(L)
j

.(2.25)

After all the computations, we obtain the gradient of the cost function OC.

2.9. Summary of Neural Networks

In the previous sections, we have gone through how we train the NN with input vectors.
To make things clear, here is the procedure to train a NN to make classifications based on
given data:

(1) Divide the data and the data label into training set and testing set.
(2) Input the training data into the NN and use the feed-forward process to come up

with predictions of the training data.
(3) Use the gradient descent algorithm to find weights and bias that decrease the loss

and increase accuracy
• Note that we calculate the gradient of the cost function OC by backward

propagation.
(4) Use NN to make prediction on the testing data with updated weights ~w and biases

~b.
(5) Repeat steps two, three, and four until we reach desired accuracy (e.g., 80%).

Below is a diagram of the procedure. In essence, we are trying to find the optimal
weights and biases such that the NN can make accurate predictions on unseen data. There
is no set formula on how to tune the parameters of the NN. The best approach now is
to refer to other successful NN models and use the trail and error method to find good
weights and biases. In the next chapter, I will talk about the experiment results I obtained
with my NN models.



2.9. SUMMARY OF NEURAL NETWORKS 19

Figure 7. NN Procedure Diagram from [5]





CHAPTER 3

Experiments

I conduct three different types of author identification experiments using our data. The
three experiments are:

(1) 19-class identification
(2) Binary identification
(3) Pairwise identification

I will discuss each experiment in detail in the following sections. For my experiments,
I use the Python library, TensorFlow, to construct my own NN models. Tensorflow is an
open source software library that allows users to easily construct NN models [3]. Recall
that our data consists of 180 math papers from 19 different Fields Medalists. In Table 1,
I report the number of papers each author has. Also, the data matrix has size 180× 3000,
where the 180 rows are the papers and the 3000 columns are vocabulary from the 180
papers.

3.1. Activation Functions Used

In my neural network models, I used the ReLU, Sigmoid, and the Softmax activation
function in different layers. I will define them formally below.

Definition 17. The ReLU function is defined as follows [5]:

ReLU(x) ≡ max(0, x).

Definition 18. The Sigmoid function is defined as follows [10]:

Sigmoid(z) ≡ 1

1 + exp(−z)
=

1

1 + exp(−
∑

j wj ∗ xj − b)
.

Definition 19. The Softmax function is defined as follows [10]:

Softmax(z
(L)
j ) ≡

exp(z
(L)
j )∑

k exp(z
(L)
k )

,

where in the denominator, the sum
∑

k denotes the sum over all outputs activation in the

Lth layer.

21
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Figure 1. Graph of ReLU function from [5]

Figure 2. Graph of Sigmoid function from [5]

3.2. 19-class Identification

First, I conduct a 19-class identification with the NN. Given a paper from the 19 au-
thors, I want to use the NN model to predict the author of the paper. In this experiment, I
randomly choose N papers from the data as testing data, and use the rest 180−N papers
to train the NN. For example, if I choose to use 20 papers as testing data, then I would
have 180− 20 = 160 papers for training.

I perform the experiment using different training data sizes. In particular, I test the
accuracy of the NN with training size ∈ {100, 110, 130, 150, 160}. To make sure my results
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Author Num of papers

Bhargava 10
Borcherds 10
Bourgain 12

Chau 3
Gowers 11
Hairer 10

Kontsevich 11
Lindenstrauss 11

Louis 12
McMullen 3

Mirzakhani 8
Okounkov 10
Smirnov 12

Tao 12
Villani 10

Voevodsky 11
Werner 10
Yoccoz 11

Zelmanov 3

Table 1. Table of Number of papers by each author

are accurate, I repeat the experiment 10 times for each training size, each time with random
training data and testing data. The accuracy presented in the table is the average accuracy
of the 10 experiments for each training size. That is:

Average Accuracy = 1
10

∑10
i=1 Accuracy of the ith experiment .

The NN model has three layers:

(1) First layer has 100 nodes and uses ReLU as activation function.
(2) Second layer has 60 nodes and uses ReLU as activation function.
(3) Third layer has 19 nodes and uses Softmax as activation function.

The NN optimizer is RMSProp and the cost function is categorical cross-entropy, which
are both available in TensorFlow.

I only include three layers in my NN model because I want to avoid over fitting. Over
fitting means that the NN is trained too well for the given train data; which means that
the NN model has high accuracy on the testing papers but poor accuracy for any data that
deviate from the testing data. Since we only have 180 papers, I try to keep the NN model
simple.
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Next, I pick the input nodes size to be 100 because it yields that highest accuracy.
My last layer has 19 nodes because each node corresponds to one author. The Softmax
activation function spits out the predicted probability of how likely the input paper belongs
to the corresponding author of the output node.

Epoch Batch # input nodes Training Size Average Accuracy

30 10 100 160 0.68
30 10 100 150 0.69
30 10 100 130 0.61
30 10 100 110 0.58
30 10 100 100 0.58

Table 2. Table of 19-author identification

From the table, we see that the larger the training set is, the higher the NN accuracy
will be.

3.3. Binary Identification

In the second experiment, I choose one author at random and use half of his/her papers
as training data and the other half as testing data. More specifically, if the author has k
papers and k is an odd number, then I will use

⌊
k
2

⌋
as testing data and

⌈
k
2

⌉
as training

data. I will refer to the papers from the 18 unchosen authors as the “leftover” data set. I
will use the variable n to refer to the number of leftover training papers and use m to refer
to the number of leftover testing papers. I randomly choose n papers from the leftover data
set and add them into the training set. Similarly, from the leftover data set, I exclude the
n papers that I have chosen and pick m papers and add them to the testing set. Finally,
I train the NN using the training set and use the NN to make predictions on the testing
set. Note that m and n can be any positive natural number as long as m+n ≤ number of
leftover papers (which depends on the chosen author).

Here is one example of the experiment: assume that my randomly chose author is
Maxim Kontsevich, who has 11 papers in our data set. I will randomly pick

⌊
11
2

⌋
= 5

papers as testing data and pick
⌈

11
2

⌉
= 6 as training data. My leftover data set has size

180 − 11 = 169. Next, I can randomly select n = 30 papers and m = 10 papers from the
leftover data set and add them into the training set and testing set, respectively. In this
case, n and m can be any natural number as long as n+m ≤ 169.

The NN model has three layers:

(1) First layer has 100 nodes and uses ReLU as activation function.
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(2) Second layer has 45 nodes and uses ReLU as activation function.
(3) Third layer has 1 nodes and uses Sigmoid as activation function.

The NN optimizer is RMSProp and the cost function is binary cross-entropy, which are
both available in TensorFlow.

To see how accurate the NN is, I have done experiments with n ∈ {10, 20, ..., 160}
and m ∈ {10, 30, 50, 70, 90, 110, 130, 150}. I report my results in Table 4 and in Table 5
below. Similar to the Table 2, the accuracy reported is the average accuracy of the five
experiments for each training size. That is:

Average Accuracy = 1
5

∑5
i=1 Accuracy of the ith experiment .

Note that we are including vast amounts of leftover testing data relative to the number
of testing papers from the chosen author. I suspect that the NN will blindly make predic-
tions and guess that all papers are from the leftover data set. To make sure that the NN
model did learn from our data, I included a column that reports the difference between
actual accuracy of the NN and the expected accuracy of the NN. I define expected accuracy
of the NN as the accuracy that the NN would have if it predicts that all testing samples
are from the leftover data set. In the previous example, the expected accuracy would be

10
10+5 = 2

3 ≈ 66.66%. Fortunately, this column is positive most of the time, which means
that the NN is able to distinguish between papers that belong to the chosen author and
papers that do not.

3.4. Pairwise Identification

In the third experiment, I select two authors at random to perform classification. From
each of the two chosen authors, I randomly choose half of his/her papers as training data
and the other half as testing data. Just like the second experiment, if the author has k
papers and k is an odd number, then I will use

⌊
k
2

⌋
as testing data and

⌈
k
2

⌉
as training

data. Finally, I train the NN with the testing set and use the NN to distinguish testing
papers from the two authors.

The NN model has three layers:

(1) First layer has 100 nodes and uses ReLU as activation function.
(2) Second layer has 45 nodes and uses ReLU as activation function.
(3) Third layer has two nodes and uses Softmax as activation function.

The NN optimizer is RMSProp and the cost function is categorical cross-entropy, which
are both available in TensorFlow.

The results are reported in Table 3. The accuracy reported is the average accuracy of
the 20 experiments for each training size. That is:

Average Accuracy = 1
20

∑20
i=1 Accuracy of the ith experiment .

In conclusion, the three NN models are quite accurate at predicting authors of unknown
papers. The first NN model reach 68% accuracy in the first experiment. The second reach
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Epoch Batch Accuracy

10 10 0.83
10 20 0.92
20 10 0.90
20 20 0.87
30 10 0.91
30 20 0.88

Table 3. Table of Pairwise author identification

98% accuracy in the second experiment. The third NN model reach 92% accuracy in the
third experiment. Here is a list of interesting experiments that one can work on:

• Run the three experiments using Convolutional neural networks (CCN).
• Tune weights and biases of the three NN models above and try reach a higher

accuracy.
• Gather more input data for the three NN models and test how they preform on

unseen mathematical papers.
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leftover test size leftover train size Accuracy Percent > Expected Acc

10 10 0.69 2.67
10 20 0.77 1.25
10 30 0.70 0
10 40 0.73 2.67
10 50 0.72 2.58
10 60 0.73 5.17
10 70 0.79 2.67
10 80 0.79 8
10 90 0.77 1.33
10 100 0.70 5.08
10 110 0.68 1.33
10 120 0.77 1.25
10 130 0.72 1.33
10 140 0.73 6.67
10 150 0.76 10.42
10 160 0.91 0

30 10 0.85 -0
30 20 0.88 1.13
30 30 0.86 0.56
30 40 0.91 2.30
30 50 0.87 1.14
30 60 0.89 1.14
30 70 0.89 1.71
30 80 0.87 1.71
30 90 0.87 1.70
30 100 0.92 4
30 110 0.86 1.11
30 120 0.91 2.86
30 130 0.89 1.13
30 140 nan nan

50 10 0.94 1.82
50 20 0.91 0.36
50 30 0.92 0
50 40 0.92 0.36
50 50 0.92 1.09
50 60 0.95 2.53
50 70 0.92 1.08
50 80 0.91 0.71
50 90 0.92 0.72
50 100 0.94 0.36
50 110 0.94 0.36
50 120 nan nan

Table 4. Table of Binary Author Identification Part 1



28 3. EXPERIMENTS

leftover test size leftover train size Accuracy Percent > Expected Acc

70 10 0.95 0.79
70 20 0.95 0
70 30 0.94 0.80
70 40 0.95 0
70 50 0.95 0.53
70 60 0.94 -0.53
70 70 0.94 0.80
70 80 0.95 0.53
70 90 0.94 -0.27
70 100 0.99 0

90 10 0.96 -0
90 20 0.96 1.26
90 30 0.95 0.42
90 40 0.95 0.21
90 50 0.95 0.21
90 60 0.96 0.42
90 70 0.95 0.21
90 80 nan nan

110 10 0.96 0.17
110 20 0.95 0.17
110 30 0.96 0.17
110 40 0.96 0.52
110 50 0.97 1.39
110 60 nan nan

130 10 0.98 0.44
130 20 0.99 0
130 30 0.98 0.15
130 40 nan nan

150 10 0.97 0
150 20 nan nan

Table 5. Table of Binary Author Identification Part 2
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