
Machine Learning and Real Roots of Polynomials

By

ZEKAI ZHAO

SENIOR THESIS

Submitted in partial satisfaction of the requirements for Highest Honors for the degree of

BACHELOR OF SCIENCE

in

MATHEMATICS

in the

COLLEGE OF LETTERS AND SCIENCE

of the

UNIVERSITY OF CALIFORNIA,

DAVIS

Approved:

Jesús A. De Loera

June 2019

i

iv

ABSTRACT.

This senior thesis is about an experiment that uses artificial neural network technology
to predict the number of real roots of a polynomial.

In this thesis, I introduce some machine learning and deep learning technologies that
I am using in this experiment, and I highlight their popularity. In addition, I review
some background about roots of univariate polynomials, and I compare the performance
of traditional method of computing the number of real roots of a polynomial with the
one of the machine learning method. Then I illustrate my experiment, which includes
explanations of why I choose recurrent neural network for this experiment, how do I obtain
the data, how I train the model and what are the results.

Contents

Chapter 1. Introduction 1
1.1. Machine Learning 1
1.2. Neural Network 2
1.3. Recurrent Neural network 9

Chapter 2. The Roots of Univariate Polynomials 12
2.1. Number of Roots 12
2.2. Algorithms 12

Chapter 3. Experiments 16
3.1. Why RNN 16
3.2. Datasets 16
3.3. Model Description 16
3.4. Results 17

Chapter 4. Future directions 19

Acknowledgements 20

Bibliography 21

Appendix A. MATLAB Code 22

Appendix B. Python Code 25

v

CHAPTER 1

Introduction

In this thesis, we are going to build a machine learning model that predicts the number
of real roots of a given polynomial. Machine learning, especially deep learning, is extremely
popular now. It is interesting to see how machine learning can perform on algebra, so we
decided to test it on determining the number of real roots of a polynomial. For humans, we
cannot get the answer with a glance, and the traditional algorithm (e.g., Sturm’s) is also
time-consuming on solving this problem. The difficulty makes this experiment meaningful.

To better introduce the model, we will first introduce some machine learning algorithms
and structures that we are going to use. Then we will review the concepts of real roots
and algorithms of computing the number of real roots of a polynomial. Finally, we will
explain the experiment: how we obtained our training data, what programming languages
and packages we were using, how we improved the performance of the model and the
experiment results.

1.1. Machine Learning

Machine learning is an algorithm that computers use to learn from the data.
Here is a general definition:

[Machine learning is the] field of study that gives computers the ability
to learn without being explicitly programmed.

− Arthur Samuel, 1959
Unlike the traditional way of programming to solve a problem, which gives the specific

rules and makes the computer solve the problem following the rules (see Figure 1), machine
learning method feeds the computer with data, making it learn the rules by itself with
algorithms (see Figure 2). This method will be efficient especially in those tasks with
complicated rules (e.g., spam mail filter).

Machine learning is now everywhere in our life. For example, Amazon uses machine
learning to train model to provide customers with online shopping recommendations [2];
Google uses machine learning to build models for auto-drive cars [3]; and DeepMind uses
it to create the most powerful Go “player” [4]. The growth of the computational power
makes the machine learning model building faster than ever.

1

2 1. INTRODUCTION

Figure 1. The traditional approach.

Picture taken from [1].

Figure 2. The machine learning approach.

Picture taken from [1].

1.2. Neural Network

Neural network (or artificial neural network) is

”...a computing system made up of a number of simple, highly intercon-
nected processing elements, which process information by their dynamic
state response to external inputs.”

− Dr. Robert Hecht-Nielsen
It is one of the machine learning models. The basic idea behind it is inspired by the
biological neural network (see Figure 3). The basic computational unit in the neural
network is neuron (node). From Figure 4, we can see the basic structure of the neural
network. Let us take a close look at its structure.

1.2.1. Layers. Layers are the main components of an artificial neural network. There
are three types of layers.

1.2. NEURAL NETWORK 3

Figure 3. Biological neuron.

Picture taken from [5]

Figure 4. Computational neuron

Picture taken from ECS 171 lecture notes by Cho-Jui Hsieh

1.2.1.1. Input Layer. Inputs are placed in this layer. In most cases, inputs are in
vector form, where every block of the vector is fed into every node of the input layer. No
computation is done in this layer.

1.2.1.2. Hidden Layers. Most computations are done in these layers. By passing data
from the input layer to the output layer (or the next hidden layer), the hidden layer com-
putes and transfers the information (weights) to the next layer. J-th neuron in the l-the
layer can be represented as

4 1. INTRODUCTION

(1.1) x
(l)
j = θ(s

(l)
j) = θ(

d(l−1)∑
i=0

w
(l)
ij x

(l−1)
i),

where θ is the activation function and w is the weight.
1.2.1.3. Output Layer. The output is generated by using activation functions in this

layer. In most cases, the output nodes have two status: 1 (On) or 0 (Off). The output is
represented as

(1.2) h(x) = x(L).

1.2.2. Connections and Weights. Connections are between neurons (nodes) and
each layer. Every node in the previous layer has connections to all the nodes in the next
layer. There are weights on all connections, determining if the previous information (node)
is important or not (valued from 1 down to 0).
We represent weight w as

(1.3) W l
ij =

1 ≤ l ≤ L :layers

0 ≤ i ≤ d(l−1) :inputs

1 ≤ j ≤ d(l) :outputs

.

The whole purpose of neural network training is to find good weights that lead to
making correct predictions for training sets.

1.2.3. Activation Functions. Since the status of output nodes of the neural network
can only be on or off. It needs a transfer function to map the original results into the final
output. The activation functions map the results of neural network computation into a
range such as 0 to 1.

1.2.3.1. Sigmoid. The sigmoid function is one of the popular activation functions. It
is defined by

(1.4) S(x) = δ(x) =
1

1 + e−x
=

ex

ex + 1
.

It is in the “S” shape (Figure 5), and it monotonically increases in the R domain, with
returning results from 0 to 1. Meanwhile, since it has a well-defined nonzero derivative
everywhere, at every step, gradient descent method can make process.

1.2.3.2. tanh. tanh (Figure 6) is another activation function defined by

(1.5) tanh(x) =
sinh(x)

cosh(x)
=
ex − e−x

ex + e−z
=
e2x − 1

e2x + 1
,

and we can find a relation between the sigmoid function and the tanh function:

1.2. NEURAL NETWORK 5

Figure 5. The sigmoid function

Figure 6. The tanh function

(1.6) tanh(x) = 2S(2x)− 1.

The domain of tanh function is R and the function range is (−1, 1). Tanh function
shows up frequently in the neural network.

1.2.3.3. ReLU. The ReLU function is defined by

(1.7) ReLU(x) = max(0, z).

It is continuous but not differentiable at x = 0. However, it performs good in practice.

6 1. INTRODUCTION

After introducing the structure of the neural network, let us take a look at an example
to see how neural network works in a general way.

Example 1. A very simple example of the neural network application can be recog-
nizing the handwritten digits, where each input image here has 28*28 pixels. The input
layer of the model will have 784 nodes, and each node is fed by one pixel of an image. In
our example model, there are two hidden layers (see Figure 7). The output layer contains
number 0 − 9. As we can see in Figure 7, in the hidden layer one, the model recognizes
the five components (colored in the figure) from 784 pixels. Then with the information of
components in hidden layer one, the model recognizes the two larger components: circle in
the above and a vertical bar in the bottom (number “8” has the same circle component,
and number “1” has the same vertical bar component). With these two components, the
ANN model can clearly classify our input image as the number “9”.

1.2.4. Training Process. Then let us dive in and see how the learning process is
operated. Here are some definitions before we continue.

Definition 1. An epoch is a measure of the number of times all of the training vectors
are used once to update the weights.

Definition 2. A cost function is a function that returns a numerical value as a measure
of how close the prediction is to the actual answer (if given any). We can also refer to the
cost function as a loss function or an objective function [7].

In different cases, we use different cost functions. For example, in the logistic regression
model, we make predictions according to the estimated probability, and the cost function
here is defined as

(1.8) C(θ) =

{
−log(p̂) if y = 1

−log(1− p̂) if y = 0
,

where p̂ is the probability and -log(p̂) will be large when p̂ is close to 0. While, in some
other models we use quadratic cost function to measure the average distance between the
prediction and the correct answer, which is defined as

(1.9) C(w,b) =
1

2n

∑
||y(x)− a(w,b)||2,

where:

• w is the weight vector;
• b is the biases vector;
• n is the total number of training data;
• x is the training data vector;
• y(x) is the labeled value vector, which is the correct answer;
• a(w,b) is the predict value vector.

1.2. NEURAL NETWORK 7

Figure 7. Handwriting writing digit model layers visualization, where white

nodes are activated nodes (value close to 1); Black nodes are not activated nodes

(value close to 0). Picture taken from [6]

The whole process of the neural network training is to look for a set of optimized
weights between different layers in order to minimize the loss (i.e., the value of the cost
function). The smaller value the cost function has, the closer distance our predictions are
from the correct solutions.

In detail, in every epoch, the algorithm feeds every training instance to the neural
network and calculates the output. Then it compares the output with the correct answer
and measures the error (i.e., the value of a cost function). After that, it computes how each
node in the previous layer contributes to the error. Then it keeps computing the contributes
of nodes in previous layers until the input layer. This backtrack process measures error
gradient across all the connection weights. The last step is applying the gradient descent
algorithm on connection weights to minimize the error.

8 1. INTRODUCTION

Figure 8. Illustration of gradient descent algorithm

image from ECS 171 lecture notes by Cho-Jui Hsieh

Definition 3. Gradient descent is an optimization algorithm that utilizes the gradient
of a function to find its minimum.

Gradient descent is one of the most important components of the training process. We
will see how gradient descent algorithm looks for the minimum of the cost function.

For a convex cost function f(x), one can easily find the global minimum by ∇f(x) = 0.
For a non convex function, we use gradient descent: repeatedly do

(1.10) wt+1 ← wt − α∇f(wt),

where α is the step size and α > 0. The choice of step size is crucial. If the step size is too
big, the gradient descent will diverge, while if the step size is too small, the convergence
speed will be too slow.

Let us do a step of gradient descent by hand. As shown in Figure 8, the cost function
is f(w). We start at w = wt, and we assume the first step is d. Then we can form a
quadratic approximation:

(1.11) f(wt + d) ≈ g(d) = f(wt) +∇f(wt)Td +
1

2α
||d||2.

After that we minimize g(d):

(1.12) ∇g(d∗) = 0⇒ ∇f(wt) +
1

α
d∗ = 0⇒ d∗ = α∇f(wt).

After getting the d∗, we are able to update the weight:

(1.13) wt+1 = wt + d∗ = wt−α∇f(wt).

We keep doing previous steps until we reach or close to the minimum, where∇f(w) ≈ 0.

1.3. RECURRENT NEURAL NETWORK 9

1.3. Recurrent Neural network

Human never builds thoughts from scratch. For example, people will analyze the
meaning of a word according to the previous word or context. That is the motivation
of creating a recurrent neural network (RNN). Unlike traditional artificial neural network
(NN) model (e.g., feed-forward neural network), RNN has memories of the previous input.
For example, if your input is “She likes shopping,” in the view of NN, sentences “She likes
shopping” and ”shopping likes she” have the same meaning since NN does not care too
much about the order. All the input nodes have no relations with each other. However,
in RNN, only ”She likes shopping” is correct, which is what we expect. With memory,
RNN has the ability to search correlations between events in different periods (long-term
dependencies).

Figure 9. Loop of recurrent neural network

Picture taken from [8]

The structure of RNN is similar to the structure of NN, except there is a loop in the
hidden layer (Figure 9). A formula of computing the hidden layer of RNN can be

(1.14) ht = φ(Wxt + Uht−1),

where:

• ht is the hidden state at time t;
• xt is the input vector;
• W is the weight;
• ht is the hidden state at previous time t;
• U is the memory rate;
• φ is an activation function, which can be a sigmoid function or tanh.

1.3.1. LSTM.

Definition 4. Long Short Term Memory (LSTM) is the structure inside RNN that
controls memorizing or forgetting the context.

10 1. INTRODUCTION

Figure 10. LSTM Model

Picture taken from [8]

There are three parts of the LSTM mode (Figure 10). The first part is to decide what
information to forget in the current state:

(1.15) ft = σ(Wf · [ht−1,xt] + bf),

where ft is a number from 0 to 1, which determines how completely we should keep
the memory of previous state Ct−1 in current state Ct.

The second part is to decide how many new information we are going to remember in
the current cell state:

(1.16) it = σ(Wi · [ht−1,xt] + bi),

and

(1.17) Ct = tanh(Wc · [ht−1,xt) + bC),

where Ct is the information candidate and it determines how much we should remem-
ber the candidate information.

In the third part, we first update the current cell state:

(1.18) Ct = ft ∗ Ct−1 + it ∗ Ct.

Then we calculate the output ht:

(1.19) ot = σ(Wo · [ht−1, xt] + bo),

and

1.3. RECURRENT NEURAL NETWORK 11

(1.20) ht = ot ∗ tanh(Ct).

The sigmoid layer decides the output cell states, and the tanh is an activation function
that compresses the value into -1 to 1. Ct and ht will then enter the next cell state loop.

CHAPTER 2

The Roots of Univariate Polynomials

I found definitions and theorems in this chapter from Professor De Loera’s notes.

We have started to learn to solve the equations or find the roots of a polynomial since
elementary school. Polynomials and roots are basic mathematics components. In this
chapter, we will review some definitions, theorems, and algorithms about them.

2.1. Number of Roots

Definition 5. A root or a zero of a polynomial is a complex vector c such that f(c) = 0

Theorem 1 (Fundamental theorem of algebra (Gauss)). Let P (x) = adx
d+ad−1x

d−1+
...+a2x

2 +a1x+a0 be a polynomial with coefficients on C (or Q or R or any subfield of C)
then the polynomial P has d roots, counting multiplicities, in the field of complex numbers.

According to the fundamental theorem of algebra, a polynomial P (x) of degree n has
n roots.

Theorem 2 (complex conjugate root theorem). if P is a polynomial in one variable
with real coefficients, and a+ bi is a root of P with a and b real numbers, then its complex
conjugate a− bi is also a root of P [9].

There are two types of roots: real roots and complex roots, where, according to the
complex conjugate root theorem, a complex root always appears with its complex conju-
gate. Therefore, complex roots always appear in pairs. Thus there is a finite number of
combinations of the number of roots of a polynomial. For example, for a polynomial of
degree six, the combinations of its roots can only be

• no real root and six complex roots;
• two real roots and four complex roots;
• four real roots and two complex roots;
• six real roots but no complex root.

2.2. Algorithms

There are several existing algorithm that helps us find the number of real roots of a
polynomial. One is Descartes’ rule of signs.

12

2.2. ALGORITHMS 13

2.2.1. Descartes’ rule of signs.

Definition 6. For a polynomial p(x), two consecutive terms present a sign variation
if their coefficients have different signs.

Theorem 3 (Descartes’ rule of signs). The number of positive real roots of a real
equation either is equal to the number v of sign variations or less than v by an even integer.
Here roots of multiplicity m are counted m times.

Knowing the sign variation, we can use Descartes’ rule of signs to get a rough guess
of the number of roots of a polynomial in the positive domain. Let’s take a look at some
examples.

Example 2. x6 − 3x2 + x+ 1 = 0 has either two positive real roots or none.

However, since Descartes’ rule of signs only gives hints for the number of positive, we
need to use some tricks to get a better guess.

Example 3. f(x) = x4 + 3x3 + x− 1 = 0. What are its roots? By Descartes’ rule of
signs it has one root in the positive part of the line, which is not a multiple root.
f(−x) = x4 − 3x3 − x− 1 = 0 has one sign variation, which means f(x) = 0 has one root
in x < 0.

Corollary 1. The number of negative real roots of f(x) = 0 is equal to the number
of positive roots of f(-x).

With this corollary, we are able to guess the number of real roots.

Lemma 1. If c > 0 is a positive real number, and if (x − c)f(x) is equal to F (x),
the number of sign variations of F (x) is equal to that of f(x) increased by a positive odd
integer.

Although one can run this algorithm in a very short time to make a guess of the number
of real roots of a polynomial, the probability of making a correct selection from the guess
results is really low. For a polynomial of degree six, unless it has a same number of
positive signs and negative signs, the probability of a correct selection is below 50%, where
our neural network model has 97% accuracy (it will be illustrated in the next chapter).
The low accuracy makes it not practical.

To make an accurate computation, we need to use Sturm’s Sequence.

2.2.2. Sturm’s Sequences: Consider now the problem of determining the number
of real roots of f(x) inside [a, b].

Definition 7. The (canonical) Sturm sequence of f is given by P0 = f(x), P1 = f ′(x),
.. , P (i) = −rem(Pi−2(x), Pi−1(x)) = Pi−1(x)Qi−2(x)−Pi−2(x), where rem(Pi−2(x), Pi−1(x))
is the remainder when polynomial long division is used to divide Pi−2(x) by Pi−1(x), and

14 2. THE ROOTS OF UNIVARIATE POLYNOMIALS

Qi−2(x) is the quotient of said long division. Let Pm be the last non-zero polynomial in
the sequence.

Note: Pi(x) is the negative of the remainder (a modified GCD sequence).

Theorem 4 (Sturm 1892). Let f be a polynomial without multiple roots. If a < b in R
and neither is a root of f(x), then the number of DISTINCT real roots of f(x) inside the
interval [a, b] is the number of sign changes in the sequence [P0(a), P1(a), ..., Pm(a)] minus
number of sign changes in [P0(b), P1(b), ..., Pm(a)].

Compared to Descartes’ rule of signs, Sturm’s Sequence can give the specific number
of real roots in a range.

Example 4. Find the distinct real roots of x3 + x+ 1.
First, we compute Sturm’s sequence: x3 + x+ 1 , 3x2 + 1, −2

3x− 1, −31
4 . Then we check

how many real roots in [−1, 1]:{
[−1, 4− 1

3 ,−
31
4 → 2 sign changes

[3, 4,−5
3 ,−

31
4]→ 1 sign changechc

⇒ 1 real root in [−1, 1].

If we let a = −∞ and b = ∞, then we can use Sturm’s Sequence to find the number
of real roots in R. However, computing all the derivatives and the remainder is time-
consuming.

Example 5. We try to compute the number of real roots of P := 33x6 +43x5−38x4−
60x3 +51x2−11x+10, with both Sturm’s theorem and recurrent neural network model (it
will be mentioned in the next chapter). For Sturm’s theorem, We ran it on Maple from the
workstation at Math department, UC Davis. For the recurrent neural network model, We
implemented and ran it on a laptop (CPU: 2.2GHz Core i7-8750H 6 CPU Cores). Results
are shown as below.

Figure 1. Running time with Maple

As we can see from Figure 1 and Figure 2, Both methods give us the same and correct
solution. The processing of finding the number of real roots for polynomial P with Sturm’s

2.2. ALGORITHMS 15

Figure 2. Running time with RNN model

theorem took 0.011 seconds, and the Machine Learning method took 0.0013 seconds, which
runs about 7.4 times faster than the normal algorithm. It again proves the feasibility of
applying machine learning on this problem.

CHAPTER 3

Experiments

The entire experiment includes generating the dataset, building the model and testing
the model.

3.1. Why RNN

Sometimes it is hard to determine which type of neural network to use to solve a
problem. There are thousands of types of neural network structure, including the modified
version [10]. At first, we were using normal feedforward neural network to solve this
problem. However, the results become terrible as the degree of polynomial increases. Our
model does not learn anything from our training data in that situation. Then we decided
to change the neural network structure, and we found the recurrent neural network (RNN).
Since RNN has LSTM layers, it has the ability to remember the previous inputs, in other
words, the order of inputs nodes matters. In our experiment, the input vector is the
coefficients of a polynomial, and the order of coefficients matters (the coefficient of degree
six term is different from the coefficient of degree five term of a polynomial). Thus, we
decided to use RNN to do this experiment, and it turned out to be a success.

3.2. Datasets

Table 1 lists the training examples used to learn the number of real roots of a poly-
nomial. We generate polynomials of degree d by randomly choosing (using uniformly
distributed random numbers) the d + 1 coefficients. For each polynomial, we then count
the number of real roots n using MatLab. This is done for each degree d from three to six
until we have enough training and test instances. The feature vector we use for training
is just the vector of coefficients of length seven (since the degree is bounded by six). We
believe the model trained based on natural distribution is the most useful model (people
look for the number of real roots of those polynomials most often), though we also did
experiments on even distribution model.

3.3. Model Description

We chose five layers in our model. Beside the input and output layer, we constructed
two LSTM layers both with 200 nodes. After that, we built a dense layer with 100 nodes.
Drop out rates (percentage of inputs to remember) for these three layers were 0.2, 0.1, and

16

3.4. RESULTS 17

deg. # real roots # complex roots # data(ND) # data(ED)

3 1 2 7783 1000
3 3 0 2217 1000
4 0 4 2537 1000
4 2 2 7127 1000
4 4 0 336 1000
5 1 4 6630 1000
5 3 2 3341 1000
5 5 0 29 2000
6 0 6 1949 1000
6 2 4 7211 1000
6 4 2 837 1000
6 6 0 3 2000

Table 1. Training data used for learning the number of real roots of polynomials

on a natural distribution (ND) with 10,000 examples in each degree, and on an even

distribution(ED) where the samples are chosen such that there are 2000 examples

for each number of real roots from 0 to 6.

0.2. Input layer was fed by a vector of coefficients of a polynomial. Output layer gave the
predicted number of real roots of a given input polynomial.

For the whole process, we randomly chose 80% of the dataset to be training data, 10%
as validation data, and the result 10% as test data.

Before the training process, the weights between layers were initialized to a small
number. With learning rate = 0.001, after each epoch of training, the weights changed to
achieve a lower error (loss) by the back-propagation algorithm

The loss vector was computed according to the cross entropy algorithm in our model:

(3.1) Loss(t) = desired(t)− predicted(t),

where desired(t) was the correct number of real roots, and predicted(t) was the pre-
dicted result.

After about 40 epochs, the loss converged to a small number.

3.4. Results

For the natural distribution data set, the total accuracy is about 97%, with a mean
squared error below 0.017. For the even distribution data set the total accuracy is about
95% (See Figures 1 and 2). The results show that our model successfully learned to identify
the number of real roots of a polynomial up to degree 6. This experiment serves as a proof

18 3. EXPERIMENTS

0

0

1

1

2

2

3

3

4

4

5

5

6

6

actual # real roots
p

re
d

ic
te

d
#

re
a
l

ro
o
ts

Figure 1. Confusion matrix for polynomials of degrees 3–6 on natural distribution.

0

0

1

1

2

2

3

3

4

4

5

5

6

6

actual # real roots

p
re

d
ic

te
d

#
re

al
ro

ot
s

Figure 2. Confusion matrix for polynomials of degrees 3–6 on even distribution.

of concept that machine learning (neural networks) can be applied to polynomial algebra
problems.

CHAPTER 4

Future directions

In this chapter, we will discuss different ways this study can be extended.
The first direction can be testing the algorithm on polynomials with higher degrees.

In the previous experiments, we used a normal feedforward neural network to test on
polynomials with up to degree 18. The results were bad. However, we haven’t tried using
the recurrent neural network on this problem. In the future, we can apply the recurrent
neural network on predicting the number of real roots of high degree polynomials and to
see if it works as good as on polynomials with degrees up to six.

Another direction can be testing on the model with multivariable polynomials (e.g.,
x2y3 + xz2 + y2 + z = 0). It will be more challenging since the coefficient-only input data
may not work as well as before. We need to come up with another good way to describe
and represent the polynomial. One possible solution is use features such as the number of
terms in the polynomial, the number of terms contains variable x, and etc.

The experiment in Chapter three proves that machine learning or deep learning can
work well in some areas of algebra, but where does it work well and where does it fail is
still unknown. According to the fact that the neural network solves the problem in its own
way, it is hard to analyze how it specifically works.

19

Acknowledgements

We thank the National Science Foundation for support provided via the NSF grant
1818969 for Prof. De Loera.

20

Bibliography

[1] Aurlien Gron. Hands-on machine learning with Scikit-Learn and TensorFlow: con-
cepts, tools, and techniques to build intelligent systems. OReilly, 2018.

[2] Amazon. Real-time personalization and recommendation.
https://aws.amazon.com/personalize/, 2019.

[3] Andrew J. Hawkins. Inside the lab where waymo is building the brains for its driverless
cars. https://www.theverge.com/2018/5/9/17307156/google-waymo-driverless-cars-
deep-learning-neural-net-interview, May 2018.

[4] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, and
et al. A general reinforcement learning algorithm that masters chess, shogi, and go
through self-play. Science, 362(6419):11401144, 2018.

[5] David Fumo. A gentle introduction to neural networks series - part
1. https://towardsdatascience.com/a-gentle-introduction-to-neural-networks-series-
part-1-2b90b87795bc, Aug 2017.

[6] 3Blue1Brown. But what *is* a neural network? — deep learning, chapter 1.
http://www.3blue1brown.com/, Oct 2017.

[7] Michael A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.
[8] Christopher Olah. Understanding lstm networks, Aug 2015.
[9] Gary McGuire and A. G. OFarrell. Maynooth Mathematical Olympiad manual. Logic

Press, 2002.
[10] Jason Brownlee. When to use mlp, cnn, and rnn neural networks.

https://machinelearningmastery.com/when-to-use-mlp-cnn-and-rnn-neural-
networks/, Jul 2018.

21

APPENDIX A

MATLAB Code

In this section, we are going to present the MATLAB code to generate the two datasets
used for this experiment.

The first part is the code that generates the even distribution dataset.

0 %% crea t e the f i l e s

f i l e c o e f = fopen (’ c o e f . txt ’ , ’w ’) ;

2 f i l e n r o o t s = fopen (’ n roo t s . txt ’ , ’w ’) ;

f i l e r e c o r d = fopen (’ record . txt ’ , ’w ’) ;

4

%% fo r degree 3 to 6

6 f o r expon = 3 :6

n roo t s = zero s (1 , expon+1) ;

8 c e l l i n g = 40000; %% normally we do 40000 times i t e r a t i o n s

i f expon == 5 | | expon == 6

10 c e l l i n g = 300000 %% i f degree i s 5 or 6 , we do more i t e r a t i o n s

end

12

f o r j = 1 : c e l l i n g

14 f = [] ;

f o r i = 1:18− expon

16 f (end+1) = 0 ; %% se t 0 on a l l other p l a c e s

end

18 rand number = round (rand ∗200−100) ; %% randomely generate a number

from −100 to 100

whi le (rand number == 0)

20 rand number = round (rand ∗200−100) ;

end

22 f (end+1) = rand number ; %% to avoid 0 at f i r s t p l ace

f o r i = 1 : expon

24 f (end+1) = round (rand ∗200−100) ;

end

26 root = roo t s (f) ; %% get the root o f polynomial

root = root (imag (root) == 0) ; %% get a l l the polynomial with

no image root

28 f o r k = 0 : 0

i f ((l ength (root) == k && n roo t s (k+1) < 1000) | | (l ength (

root) == k && (expon == 5 | | expon == 6) && k == expon && n roo t s (k

+1) < 2000))

30 f p r i n t f (f i l e c o e f , ’ [’) ;

f p r i n t f (f i l e c o e f , ’%d , ’ , f (1 : end−1)) ;

22

A. MATLAB CODE 23

32 f p r i n t f (f i l e c o e f , ’%d ’ , f (end)) ;

f p r i n t f (f i l e c o e f , ’]\n ’) ;

34 n roo t s (k+1) = n roo t s (k+1)+1;

f p r i n t f (f i l e n r o o t s , ’%d\n ’ , k) ;

36 end

end

38

end

40

f p r i n t f (f i l e r e c o r d , ’ expon = %d \n ’ , expon) ;

42

f o r k = 0 : 0

44 f p r i n t f (f i l e r e c o r d , ’# o f %d roo t s = %d \n ’ , k , n roo t s (k+1)) ;

end

46

end

48 f c l o s e (f i l e r e c o r d) ;

f c l o s e (f i l e n r o o t s) ;

50 f c l o s e (f i l e c o e f) ;

./code/randomPoly direct even.m

The second part is the code that generates the uneven distribution dataset.

0 f i l e c o e f = fopen (’ c o e f . txt ’ , ’w ’) ;

f i l e n r o o t s = fopen (’ n roo t s . txt ’ , ’w ’) ;

2 f i l e r e c o r d = fopen (’ record . txt ’ , ’w ’) ;

top degree = 18 ;

4

f o r expon = 3 : top degree

6 n roo t s = zero s (1 , expon+1) ;

f o r j = 1:10000 %% i t e r a t e 10000 times f o r each degree

8 f = [] ;

10 rand number = round (rand ∗200−100) ;

whi le (rand number == 0)

12 rand number = round (rand ∗200−100) ;

end

14 f (end+1) = rand number ; %% to avoid 0 at f i r s t p l ace

f o r i = 1 : expon

16 f (end+1) = round (rand ∗200−100) ;

end

18 d e r i v a t e f = polyder (f) ; %% get the de r i va t e o f the polynomial

root = roo t s (f) ; %% compute the roo t s

20 root = root (imag (root) == 0) ; %% s e l e c t unimage roo t s

k = length (root) ;

22

newf = [ze ro s (1 , max(0 , top degree+3−numel (f))) , f] ;

24 new der i va t e f = [ze ro s (1 , max(0 , top degree+2−numel (f))) ,

d e r i v a t e f] ;

26 %%re s u l t i n c l ude s c o e f f i c i e n t o f po lynomia l s and i t ’ s d e r i v a t i v e s

24 A. MATLAB CODE

r e s u l t = [newf new der i va t e f] ;

28

%% pr in t i ng the r e s u l t

30 f p r i n t f (f i l e c o e f , ’ [’) ;

f p r i n t f (f i l e c o e f , ’%d , ’ , r e s u l t (1 : end−1)) ;

32 f p r i n t f (f i l e c o e f , ’%d ’ , r e s u l t (end)) ;

f p r i n t f (f i l e c o e f , ’]\n ’) ;

34 n roo t s (k+1) = n roo t s (k+1)+1;

f p r i n t f (f i l e n r o o t s , ’%d\n ’ , k) ;

36

38

end

40

f p r i n t f (f i l e r e c o r d , ’ expon = %d \n ’ , expon) ;

42 f o r k = 0 : expon

f p r i n t f (f i l e r e c o r d , ’# o f %d roo t s = %d \n ’ , k , n roo t s (k+1)) ;

44 end

46 end

f c l o s e (f i l e r e c o r d) ;

48 f c l o s e (f i l e n r o o t s) ;

f c l o s e (f i l e c o e f) ;

./code/randomPoly direct uneven.m

APPENDIX B

Python Code

This part presents the python code used for

• data preprocessing;
• data training;
• data testing;
• results analysis.

0 import t en so r f l ow as t f

from tenso r f l ow import keras

2 import time

import a s t

4 import numpy as np

import matp lo t l i b . pyplot as p l t

6 from c o l l e c t i o n s import Counter

from sk l ea rn import svm

8 from sk l ea rn import l i n ea r mode l

import i t e r t o o l s

10 from sk l ea rn . p reproce s s ing import RobustScaler

import random

12 import g lob

import os

14

16

i n p u t f i l e = ’3−hypergraphs−on−15− v e r t i c e s ’

18 f o l d e r pa th = ’ PolyLearn/ da t a d i r e c t ev en / ’

20 n t e s t = 100 # of data po in t s to r e s e rve f o r t e s t i n g

n va l = 100 # of data po in t s to v a l i d a t e during t r a i n i n g

22 draw = 0 # 1 i f draw the v a l i d a t i o n acc vs t r a i n i n g acc graph ; 0

otherwise

24 #CNN

n nodes h l = [8 0] # number o f nodes in each hidden l aye r

26

#RNN

28 n nodes dense = [1 0 0] # number o f nodes in each dense hidden l aye r

n nodes LSTM = [200 , 2 00] # number o f nodes o f LSTM lay e r s

30 n drop out = [0 . 2 , 0 . 1 , 0 . 2]

32 hm epochs = 40 # number o f t r a i n i n g t imes

25

26 B. PYTHON CODE

34

36 # main func t i on

de f main () :

38

i nput data = use r input ()

40

data = np . array ([[input data [’ c o e f ’] [i] , i nput data [’ root ’] [i]] f o r i

in range (l en (input data [’ c o e f ’]))])

42 n c l a s s e s = np . amax(input data [’ root ’]) + 1 # number o f c l a s s e s f o r

c l a s s i f i c a t i o n

44 pr in t (”Number o f C la s s e s = ” , n c l a s s e s)

p r in t (” n nodes h l = ” , n nodes h l)

46 pr in t (”hm epochs = ” , hm epochs)

pr in t (”Total Number o f Data = ” , l en (data))

48 n t r a i n = 1 # number o f experiment time

f o r i in range (n t r a i n) :

50 # i f doing experiment on uneven d i s t r i b u t i o n data s e t c a l l t h i s

f unc t i on

t r a i n a nd t e s t (data , n c l a s s e s)

52

i f doing experiment on even d i s t r i b u t i o n data s e t c a l l t h i s

f unc t i on

54 #t r a i n a n d t e s t f i x t e s t s e t (data , n c l a s s e s)

p r in t (”\n”)

56

58 # tra i n i n g adn t e s t on uneven d i s t r i b u t i o n data se t

de f t r a i n a nd t e s t (data , n c l a s s e s) :

60

np . random . s h u f f l e (data) # randomly s h u f f l e the data

62

n t e s t = in t (0 . 1∗ l en (data)) # take 10% of data as t e s t data

64 n t r a i n = len (data)−n t e s t

a s s e r t n t r a i n > 0 # make sure number o f t r a i n i n g data i s g r ea t e r

than 0

66 t r a i n da t a = data [0 : n t r a i n] # separate data in to t r a i n i n g data

t e s t d a t a = data [n t r a i n :] # and t e s t i n g data

68

t fmodel = RNNModel(n c l a s s e s , n nodes h l)

70 t fmodel . t r a i n (t ra in da ta , epochs=hm epochs)

bu i ld a t en so r f l ow RNN model

72

preds = tfmodel . t e s t (t e s t da ta , n c l a s s e s)

74 # te s t on model

76 d i f f f r om co r r e c t an swe r (preds , t e s t da ta , n c l a s s e s)

#ana lyze the r e s u l t s

78

80 # ra in i ng and t e s t i n g on even d i s t r i b u t i o n data s e t

de f t r a i n a n d t e s t f i x t e s t s e t (data , n c l a s s e s) :

B. PYTHON CODE 27

82 # te s t i n g up to degree 6

each number o f root we pick 200 as t e s t and r e s t as t r a i n

84

n t e s t = 1400

86 n t r a i n = len (data)−n t e s t

a s s e r t n t r a i n > 0

88 t r a i n da t a = data [0 : 8 0 0]

t e s t d a t a = data [8 0 0 : 1 0 0 0]

90 f o r i in range (1 ,14) : # s i n c e i t ’ s even d i s t r i bu t i on , we can obta in

data evenly

t r a i n da t a = np . concatenate ((t r a in da ta , data [i ∗1000 : i

∗1000+800]) , a x i s =0)

92 # separate data in to t r a i n i n g data

t e s t d a t a = np . concatenate ((t e s t da ta , data [i ∗1000 + 800 : i ∗1000
+1000]) , a x i s = 0)

94

96 t fmodel = RNNModel(n c l a s s e s , n nodes h l)

t fmodel . t r a i n (t ra in da ta , epochs=hm epochs)

98 # bui ld a t en so r f l ow RNN model

100 preds = tfmodel . t e s t (t e s t da ta , n c l a s s e s)

t e s t the model

102

d i f f f r om co r r e c t an swe r (preds , t e s t da ta , n c l a s s e s)

104 # analyze the r e s u l t s

106 # parent c l a s s f o r l e a rn i ng models

c l a s s Model :

108 def preproce s s (s e l f , data) : # a func t i on f o r convert ing input f i l e

data to model input

return np . array ([np . array (datum) f o r datum in data])

110 def t r a i n (s e l f , data) : pass # t r a i n the model on a l i s t o f input /

output pa i r s

de f p r ed i c t (s e l f , datum) : pass # pred i c t the c l a s s o f one input

112 def t e s t (s e l f , data , n c l a s s e s) : # t e s t the model on a l i s t o f input /

output pa i r s

114 n data = len (data)

preds = [s e l f . p r ed i c t (datum) f o r datum in data [: , 0]]

116

num acc = len ([i f o r i in range (n data) i f preds [i] == data [i

, 1]])

118

computing mean square e r ro r

120 mean squared error = 0 .0

f o r i in range (n data) :

122 mean squared error = mean squared error + ((preds [i]−data [i

, 1]) ∗∗2) ∗∗0 .5

mean squared error = mean squared error / f l o a t (n data)

124 pr in t (”mean squared error = ” , mean squared error)

126 #compute the accuracy

28 B. PYTHON CODE

accuracy = num acc/ f l o a t (n data)

128 pr in t (” accuracy = ” , num acc/ f l o a t (n data))

return preds

130

def p r e d i c t s t d i o (s e l f) : # pred i c t the c l a s s o f input from s td i o

132 whi le (1) :

t e s t f e a t = input (’ \nEnter your input : ’)

134

i f (t e s t f e a t == ’ 0 ’) :

136 break

try :

138 datum = ast . l i t e r a l e v a l (t e s t f e a t)

except SyntaxError :

140 cont inue

142 pred , s t a r t t ime , end time = s e l f . predictWithTime (datum)

144 pr in t (’ \nthe number o f r e a l r oo t s o f t h i s polynomial i s ’ ,

pred , ”with time” , end time − s t a r t t ime)

146 def save model (s e l f) : # save the model

model j son = s e l f . model . t o j s on ()

148 with open (” . / models/model . j s on ” , ”w”) as j s o n f i l e :

j s o n f i l e . wr i te (model j son)

150 s e l f . model . save (” . / models/PolyLearnModel . h5”)

152

def load model (s e l f , f i l e p a t h) : # load the ex i s t ed model

154 # load j son and crea t e model

j s o n f i l e = open (’ . / models/model . j s on ’ , ’ r ’)

156 l oaded mode l j son = j s o n f i l e . read ()

j s o n f i l e . c l o s e ()

158 s e l f . model = t f . keras . models . model f rom json (loaded mode l j son)

s e l f . model . l oad we ight s (f i l e p a t h)

160

162 # RNN model

c l a s s RNNModel(Model) :

164 # i n i t i a l i z e and bu i ld the s t ruc tu r e o f the RNN model

de f i n i t (s e l f , n c l a s s e s , n nodes h l , p reproce s s=None) :

166 i f p reproce s s != None : s e l f . p reproce s s = preproce s s

model = keras . Sequent i a l ()

168 pr in t (”Model i n i t i a l i z i n g ”)

170 # added l a y e r s f o r t e s t

f o r i in range (l en (n nodes LSTM)) :

172 i f i == 0 :

model . add (keras . l a y e r s .LSTM(n nodes LSTM [i] , a c t i v a t i o n=’

r e l u ’ , r e turn sequence s=True))

174 e l s e :

model . add (keras . l a y e r s .LSTM(n nodes LSTM [i] , a c t i v a t i o n=’

r e l u ’))

176 model . add (keras . l a y e r s . Dropout (n drop out [i]))

B. PYTHON CODE 29

178 f o r j in range (l en (n nodes dense)) :

model . add (keras . l a y e r s . Dense (n nodes dense [j] , a c t i v a t i o n=’

r e l u ’))

180 model . add (keras . l a y e r s . Dropout (n drop out [i+j]))

182 model . add (keras . l a y e r s . Dense (n c l a s s e s , a c t i v a t i o n=’ softmax ’))

184 opt = t f . keras . op t im i ze r s .Adam(l r =0.001 , decay=1e−6)

model . compile (opt imizer=opt ,

186 l o s s=’ c a t e g o r i c a l c r o s s e n t r opy ’ ,

metr i c s=[’ accuracy ’ , ’ mean squared error ’ , ’

mean abso lute error ’])

188 s e l f . model = model

s e l f . accuracy = 0

190 pr in t (s e l f . model . v a r i a b l e s)

192 #func t i on to t r a i n the model with t r a i n i n g data

de f t r a i n (s e l f , data , epochs=hm epochs) :

194 i nput data = s e l f . p reproce s s (data [: , 0]) # preproce s s ing the data

input data = input data [: , input data . shape [1] −7 : input data . shape

[1]] # abs t r a c t the non−zero vector

196 i nput data = np . reshape (input data , (input data . shape [0] , 1 ,

input data . shape [1]))

tbCallBack = keras . c a l l b a c k s . TensorBoard (l o g d i r=’ . /Graph ’ ,

h i s t ogram freq=0, wr i te graph=True , wr i te images=True)

198 #bui ld the tensor board

s e l f . h i s t o ry = s e l f . model . f i t (input data , keras . u t i l s .

t o c a t e g o r i c a l (data [: , 1]) , verbose = 1 , v a l i d a t i o n s p l i t =0.1 , epochs

=hm epochs , c a l l b a c k s =[tbCallBack])

200 i f (draw == 1) :

s e l f . p l o t () # p lo t i f i t i s asked

202

func t i on to pred i c t the r e s u l t

204 def p r ed i c t (s e l f , datum) :

input data = s e l f . p reproce s s ([datum])

206 i nput data = input data [: , input data . shape [1] −7 : input data . shape

[1]] # abs t r a c t the non−zero vector

input data = np . reshape (input data , (input data . shape [0] , 1 ,

input data . shape [1]))

208 return np . argmax (s e l f . model . p r ed i c t (input data) [0])

210 # func t i on to pred i c t the r e s u l t with t iming

de f predictWithTime (s e l f , datum) :

212 i nput data = s e l f . p reproce s s ([datum])

input data = input data [: , input data . shape [1] −7 : input data . shape

[1]] # abs t r a c t the non−zero vector

214 i nput data = np . reshape (input data , (input data . shape [0] , 1 ,

input data . shape [1]))

s t a r t t ime = time . time ()

216 r e s u l t = np . argmax (s e l f . model . p r ed i c t (input data) [0])

end time = time . time ()

218 return r e su l t , s t a r t t ime , end time

30 B. PYTHON CODE

220

def p l o t (s e l f) :

222 h i s t o ry = s e l f . h i s t o ry

h i s t o r y d i c t = h i s t o ry . h i s t o ry

224

graph o f t r a i n i n g and va l i d a t i o n l o s s

226 acc = h i s t o ry . h i s t o ry [’ acc ’]

v a l a c c = h i s t o ry . h i s t o ry [’ v a l a c c ’]

228 l o s s = h i s t o ry . h i s t o ry [’ l o s s ’]

v a l l o s s = h i s t o ry . h i s t o ry [’ v a l l o s s ’]

230

epochs = range (1 , l en (acc) + 1)

232

”bo” i s f o r ”blue dot”

234 p l t . p l o t (epochs , l o s s , ’ bo ’ , l a b e l=’ Tra in ing l o s s ’)

b i s f o r ” s o l i d blue l i n e ”

236 p l t . p l o t (epochs , v a l l o s s , ’b ’ , l a b e l=’ Va l ida t i on l o s s ’)

p l t . t i t l e (’ Tra in ing and va l i d a t i o n l o s s ’)

238 p l t . x l ab e l (’ Epochs ’)

p l t . y l ab e l (’ Loss ’)

240 p l t . legend ()

242 p l t . show ()

244 # graph o f t r a i n i n g and va l i d a t i o n accuracy

p l t . c l f () # c l e a r f i g u r e

246 a c c va l u e s = h i s t o r y d i c t [’ acc ’]

v a l a c c v a l u e s = h i s t o r y d i c t [’ v a l a c c ’]

248

p l t . p l o t (epochs , acc , ’ bo ’ , l a b e l=’ Tra in ing acc ’)

250 p l t . p l o t (epochs , va l acc , ’b ’ , l a b e l=’ Va l ida t i on acc ’)

p l t . t i t l e (’ Tra in ing and va l i d a t i o n accuracy ’)

252 p l t . x l ab e l (’ Epochs ’)

p l t . y l ab e l (’ Loss ’)

254 p l t . legend ()

256 p l t . show ()

258 # reading the data from f i l e s

de f u s e r input () :

260 i nput data = {}

262 # reading the c o e f f i c i e n t s

l i n e s = tup le (open (f o l d e r pa th+’ coe f . txt ’ , ’ r ’))

264 pr in t (” f i l e name = ” , f o l d e r pa th+’ coe f . txt ’)

p r in t (” t o t a l l i n e = ” , l en (l i n e s))

266 i nput data [’ c o e f ’] = np . array ([a s t . l i t e r a l e v a l (l i n e s [i]) f o r i in

range (0 , l en (l i n e s))])

#input data [’ c o e f ’] = np . array ([a s t . l i t e r a l e v a l (l i n e s [i]) f o r i in

range (0 , 10000)])

268

reading the number o f roo t s

B. PYTHON CODE 31

270 l i n e s = tup le (open (f o l d e r pa th+’ n roo t s . txt ’ , ’ r ’))

p r in t (” f i l e name = ” , f o l d e r pa th+’ n roo t s . txt ’)

272 pr in t (” t o t a l l i n e = ” , l en (l i n e s))

input data [’ root ’] = np . array ([a s t . l i t e r a l e v a l (l i n e s [i]) f o r i in

range (0 , l en (l i n e s))])

274 #input data [’ root ’] = np . array ([a s t . l i t e r a l e v a l (l i n e s [i]) f o r i in

range (0 , 10000)])

276 return input data

278 # func t i on to ana lyze the r e s u l t s

de f d i f f f r om co r r e c t an swe r (preds , data , n c l a s s e s) :

280 d i s t ance = np . ze ro s (n c l a s s e s)

r o o t c o r r e c t = np . ze ro s (shape=(11))

282 root wrong = np . ze ro s (shape=(11))

root ans and pred = np . ze ro s (shape=(11 ,11))

284 n data = len (data)

f o r i in range (n data) :

286 d i s t ance [abs (preds [i]−data [i , 1])] += 1

i f abs (preds [i]−data [i , 1]) == 0 : # i f the p r ed i c t i on i s c o r r e c t

288 r o o t c o r r e c t [data [i , 1]] += 1

e l s e : # i f the p r ed i c t i on i s not c o r r e c t

290 root wrong [data [i , 1]] += 1

root ans and pred [data [i , 1] , preds [i]] += 1

292

f o r i in range (n c l a s s e s) :

294 pr in t (”number o f p r ed i c t data that has d i s t ance ” , i , ” from the

co r r e c t answer i s ” , i n t (d i s t ance [i]))

296 f o r i in range (0 , n c l a s s e s +1) :

i f r o o t c o r r e c t [i] != 0 or root wrong [i] != 0 :

298 pr in t (”For c l a s s ” , i , ” there are ” , i n t (r o o t c o r r e c t [i]) , ”

data pr ed i c t c o r r e c t and ” , i n t (root wrong [i]) , ” data p r ed i c t wrong”

)

300 f o r j in range (1 , n c l a s s e s +1) :

i f root ans and pred [i , j] != 0 :

302 pr in t (”The number o f number o f r e a l r oo t s should be

pred i c t as ” , i , ”but be pred i c ted as ” , j , ” i s ” , i n t (

root ans and pred [i , j]))

304

i f name == ” ma in ” :

306 main ()

./code/polyLearn.py

	Chapter 1. Introduction
	1.1. Machine Learning
	1.2. Neural Network
	1.3. Recurrent Neural network

	Chapter 2. The Roots of Univariate Polynomials
	2.1. Number of Roots
	2.2. Algorithms

	Chapter 3. Experiments
	3.1. Why RNN
	3.2. Datasets
	3.3. Model Description
	3.4. Results

	Chapter 4. Future directions
	Acknowledgements
	Bibliography
	Appendix A. MATLAB Code
	Appendix B. Python Code

