
Solving Nonnegative Principal Component
Analysis Using the Frank-Wolfe and Manifold

Proximal Gradient Methods

Jiayi Lei
SID: 915016668

Email: cjlei@ucdavis.edu

Undergraduate Thesis Writing
Mentor: Shiqian Ma
Spring Quarter 2019

Abstract

Millions of data points are generated at an exponential speed
nowadays. Extracting essential information from this pile of data is
an active area of research. Principal Component Analysis (PCA) is
a fundamental tool for this purpose. In some applications, the prin-
cipal vectors are expected to lie in the non-negative orthant, which
leads to the non-negative Principal Component Analysis (NNPCA).
The objective function for NNPCA is non-convex and the non-
negative constraint makes it even harder to solve. In this paper,
we propose the Frank-Wolfe algorithm (FW) and Manifold Proximal
Gradient Method (ManPG) to solve NNPCA. Through intensive nu-
merical study on many examples, it is shown that ManPG is better
than FW with less number of iterations and faster cpu time.

1 Introduction

Principal Component Analysis (PCA) is often used to reduce the dimen-
sionality of high-dimensional data points. Extracting the most important
features of the data set is very important in analyzing data. However in
many applications like in hyperspectral imaging [1] , non-negative PCs are
preferable due to their physical meanings. This leads to the non-negative
PCA (NNPCA) problem. Applications of NNPCA arise in many fields,

1

such as gene expression, signal processing and non-negative matrix factor-
ization [2].

max
∑n

i=1< vi, x >
2 Classical PCA

s.t. ||x||2 = 1
max

∑n
i=1< vi, x >

2 Nonnegative PCA
s.t. ||x||2 = 1

x ≥ 0

(1)

Classical PCA can be solved by the power method efficiently. However,
adding the non-negative constraints makes the NNPCA problem much
more difficult, mainly due to the following two reasons: (i) The problem is
non-convex. It is known that non-convex problems are usually much harder
to solve than convex problems. (ii) The problem is non-smooth due to the
non-negative constraints. In this paper, the Frank-Wolfe (FW) algorithm,
Manifold Gradient Descent (ManGD) method, and the Manifold Proxi-
mal Gradient Method (ManPG) [3] methods will be used to solve NNPCA.
Also the comparison of these three methods when solving NNPCA will be
covered.
We use the following notation throughout this paper.

• X ∈ Rn×p the matrix with rows v1, v2, v3, ..., vn.

• F (x) := xTAx, where A is a symmetric positive definite matrix

The objective function in NNPCA can be transformed as

max
∑n

i=1< vi, x >
2

= max ||V x||22
= max (V x)T (V x)
= max xTV TV x
= max xTAx,

(2)

where A := V TV is a symmetric positive definite matrix.
We have the following theorem:

Theorem 1. If A ∈ Rn×n is symmetric, then A has exactly n orthogonal
eigenvectors x1, x2, x3, ..., xn, with possibly repeated eigenvalues λ1, λ2, ..., λn.
In other words, there exists an orthogonal matrix X of eigenvectors and a
diagonal matrix D of eigenvalues such that D = XTAX. This algorithm is
called Spectral Theorem.

2

2 Frank-Wolfe Method

2.1 Introduction of Frank Wolfe Method

The classical Frank-Wolfe method was proposed by Marguerite Frank and
Philip Wolfe in 1956 [7]. The algorithm is used to solve the general con-
strained convex optimization problems of the form

min
x∈D

f(x)

where f(x) is convex and continuously differentiable, and the domain D is
a compact convex subset of any vector space. The Frank-Wolfe method is
also known as the conditional gradient method.

Algorithm 1 Classical Frank-Wolfe algorithm

1: Input: Initial point x0 ∈M
2: for k = 0 to K do
3: solve x+k = arg minx∈M < x,∇f(xk) >
4: solve xk+1 := (1− γ)xk + γx+k , for γ := 2

k+2

5: end for

There are many variants of Frank-Wolfe algorithm corresponding to differ-
ent situations. The Frank-Wolfe algorithm to solve non-convex functions is
given below [3].

Algorithm 2 Frank-Wolfe algorithm (non-convex variant)

1: Input: Initial point x0 ∈M threshold tol
2: for k = 0 to K do
3: solve x+k = arg minx∈M < x,∇f(xk) >
4: direction dk := x+k − xk
5: FW-gap gt := −∇f(xk)Tdk
6: if gk ≤ tol then return xk
7: end if
8: γk := min{gk/C, 1}∀C > Cf

9: Updae xk+1 = xk + γdk
10: end for
11: return xk

In this paper, for the sake of simplicity, we let γ = 1, thus xk+1 = xk +
(x+k − xk), and then we normalize xk+1 because of the constraint of ||x|| = 1

3

Since F (x) is not convex, the classical Frank-Wolfe algorithm is not suit-
able to solve the NNPCA problem. However, many variants of Frank-Wolfe
algorithm were proposed. One of them is to solve non-convex optimization
problem [3].

min
x

< x, b >

s.t. ||x||2 = 1
x ≥ 0

(3)

Lemma: Define b− = −min{b, 0}, the elements are taken element-wise,
the solution for the equation (3) is as follow: [4]

x∗ =

{
b−

||b−|| , if b− 6= 0

ei, otherwise
(4)

2.2 Using Frank-Wolfe to solve NNPCA

∇f(x) = −2Ax, we randomize an initial point x0 and solve x+k = arg minx∈M <
x,∇f(xk) > by using the lemma above. For simplicity, we let γl = 1, thus
xk+1 = xk + γdk = xk + (x+k − xk) = x+k , we then normalize xk+1 to bring it
back to the feasible region. Repeat this step until the difference between xk
and xk+1 is smaller than some ε.

min < x,∇f(xk) >
s.t. ||x||2 = 1

x ≥ 0
(5)

3 Manifold Gradient Descent method

Manifold Gradient Descent Method is a type of method that aims to min-
imize functions define on a manifold domain. Algorithms for solving man-
ifold optimization with smooth objective were well developed, including
conjugate gradient methods, Newton-type methods and trust region meth-
ods [4] .
Definition: A manifold is a topological space that locally resembles Eu-
clidean space near each point.
Definition: A smooth function is a function that has continuous deriva-
tives up to some desired order over some domain.

3.1 Introduction of Manifold Proximal Gradient Method(ManPG)

Development of ManPG

4

Manifold Proximal Gradient Method(ManPG) is an algorithm proposed by
Chen, Ma, So and Zhang in 2018 [5]. The algorithm aims to solve mani-
fold optimization problems with non-smooth objectives. It is based on the
proximal gradient method with a retraction operation to keep the iterates
feasible with respect to the manifold constraint. The form of manifold opti-
mization problem that ManPG is targeting is:

minF (X) := f(X) + h(X), s.t., X ∈M

where f is smooth, possibly non-convex, h is convex, possibly non-smooth,
M is a Riemannian manifold embedded in the Euclidean space.

Algorithm 3 Manifold Proximal Gradient Method (ManPG)

1: Input: Initial point x0 ∈ M, δ ∈ (0, 1), γ ∈ (0, 1), Lipschitz constant L
for ∇f(x)

2: for k = 0 to K do
3: Obtain dk by solving problem (1) with t ∈ (0, 1/L];
4: Set α = 1
5: while F (Retrxk

(αdk)) > F (xk)− δα||dk||2F do
6: α = γα
7: end while
8: Set xk+1 = Retrxk

(αdk)
9: end for

In the above psudocode, Retrxk
= xk + αdk, dk = x+k − xk

Definition: Given an open set B ⊆ Rm, we say f is Lipschitz-continuous
on the open subset B if there exists a constant L ∈ R+, which is called the
Lipschitz constant of f on B, such that:

||f(x)− f(y)|| ≤ L||x− y|| ∀x, y ∈ B

Noticed that the norm ||.|| can be any norm. However, once a norm has
been chosen one should stick to that single norm, as the Lipschitz constant
L depends on the particular choice of this norm.

min
dk∈Txk

M
< ∇f(xk), dk > + 1

2t
||dk||2F + h(xk + dk)

s.t. dk ∈ Txk
M

x ≥ 0

(6)

3.2 Use ManPG to Solve NNPCA

In NNPCA, the objective function is

F (x) := f(x) = −xTAx

5

where f(x) is non-convex and non-smooth in the region where ||x|| = 1,
and x ≥ 0. Notice that in NNPCA problem, h(x) = 0
By the Manifold Proximal Gradient method, we have the subproblem of:

min < gradf(xk), x− xk > +
1

2t
||x− xk||2F

s.t.xTxk = 1

||xk||2 = 1

where t > 0 is the step size, x is in the tangent space to the domain at the
point xk, and grad f is the Riemannian gradient. Also note that grad f(x)
is the orthogonal projection of ∇f(x) onto the tangent space.
Following the definition of grad f , we have:

〈gradf(xk), x〉 = 〈∇f(xk), x〉 ∀x ∈ Txk
M

We can rewrite the above objective function as:

min
x
〈gradf(xk), x〉+

1

2t
||x− xk||2F

min
x
xT∇f(xk) +

1

2t
(xTx− 2txTxk + xTk xk)

Which is equivalent to the objective function below, since xTxk = 1,||xk||2 =
1

minxT∇f(xk) +
1

2t
xTx

Similarly, since (t‖∇f(xk)‖)2 is not affected by the choice of x, the above
objective function is equivalent to the equation below:

min 1
2t

(xTx+ 2txT∇f(xk) + (t‖∇f(xk)‖)2)
equivalent to: min ||x+ t∇f(xk)||2. (7)

The objective function can be solved by solving the subproblem below with
c = −t∇f(xk) = 2tAxk.
SUBPROBLEM

min ||x− c||2
s.t. aTx = 1

x ≥ 0
(8)

Assume the minimizer is x∗.

x∗ := P[0,∞)(c− λa)

6

where c and a are both vectors with the same dimention of n and λ is a
scalar. Also, a is a non-negative vector. λ is a solution to aTx∗ = 1 [6]
Thus we have:

n∑
i=1

ai ∗ x∗i = 1

since
x∗i = max{0, ci − λai}

x∗i = ci − λai if and only if when λ < ci
ai

Case 1. x∗i = 0,∀i, in which case aTx = 1 can not be achieved.

Case 2. x∗i = ci − λai,∀i, in which case, x∗ = c− λa. Since aTx∗ = 1, we have
aT c− λaTa = 1, and since c and a are given, it is easy to get λ. After
getting λ, check whether the lowest ratio ci

ai
is greater or equal to the

chosen λ.

Case 3. For some i ∈ L, x∗i = 0; for i ∈ N \ L , x∗i = ci − λai. N is an
index set of n integers, L is a subset of set N . In this case, we need
to figure out the index set of L, such that λ < ci

ai
, ∀i ∈ N \ L and∑n

i=1 ai ∗ x∗i = 1.
Notice that when ai = 0, x∗i = max{ci, 0}, when considering λ, we
can ignore the the index i when ai = 0, since ai ∗ x∗i = 0 no matter
what x∗i is. We store those index and a c pairs in set J Noticed that
J ⊂ N \ L , and store the corresponding ratios in set S0.
For ai > 0, sort the value of ci

ai
,∀i ∈ N \ J in the ascending order.

Sorted indexes are stored in set S, the corroponding indexes in vector
a and vector c are stored in I
After showing that Case 2 is not possible, we can start “muting”
the a c pair from the lowest ratio until we find the λ that satisfies
all requirements. That means while letting xi = 0 we puting in-
dex i into set L, and set the rest elements in x as xi = ci − λai.
Since all ci and ai are known, by using equation that aTx∗ = 1, and
x∗i = max{0, ci − λai}, we can find λ easily. After that we can check
whether λ is less than all other ratios, if yes, that is the λ we want, if
not, then continue to mute the next a c pair and repeat the process
above until we find the right λ and thus x∗.

ManPG is a better algorithm because we do not need to choose a good
step size t and α in order to let the algorithm converge, we can choose ran-
dom γ and δ as inputs. In contrast, when using the cvx package from Mat-
lab, two parameters t and α need to be selected manually and the choice of

7

Algorithm 4 Quadratic Norm Minimizer

1: procedure Quadratic Norm Minimizer
2: E← {i|ai = 0}
3: [R, I]← sort ci

ai
,∀i ∈ N \ E

4: U← []
5: j ← 0
6: do
7: λ =

∑
i aici−1∑
i aiai

,∀i ∈ I \ U
8: j ← j + 1
9: U← [U, I(j)]

10: while λ ≥ R[j]
11: xi ← 0, ∀i ∈ U
12: xi ← max{ci − λai},∀i ∈ N \ U
13: end procedure

these two parameters have huge impact on the performance of the Matlab
built in function, sometimes the algorithm does not even converge. This
has been confirmed by intensive experiments.
To find the Lipschitz constant L for ∇f(x), we have:

∇f(x) = −2Ax

|| − 2Ax− (−2Ay)|| ≤ L||x− y||,∀x, y ∈M

|| − 2A(x− y)|| ≤ L||x− y||

||2A(x− y)|| ≤ 2||A||||x− y|| ≤ L||x− y||

thus L = 2||A||

Notice that we can use either the Euclidean norm or the Frobenius norm
here. But a lot of experience, we observed that it does not make a big dif-
ference in the result about whether we use Euclidean norm or Frobenius
norm. Details about the comparisoin of these two ways to measure the Lip-
schitz number is attached at the Appendix. In this paper we can will use
Euclidean norm.
When using ManPG to solve NNPCA, we set δ = 0.5, γ = 0.5, t = 1/L. By
experiment, we can see that compared to setting t to be a random number
∈ (0, L], when setting t = 1/L, ManPG converges in less iterations and
uses slightly less CPU time. The table of comparison is attached in the
appendix.

8

4 Numereical Results: Compare ManPG and

FW

In order to compare the performance of ManPG and FW, we try to avoid
the difference result from problems themselves. Hence 60 symmetric pos-
itive definite matrices of different sizes n of 10, 20, 50, 100, 500 and 1000,
10 matrices for each size, are pre-generated along with the dominate non-
negative eigenvector stored. But intensive experiments, the rank of the
matrix does not affect the performance gradient descent type algorithm
finding dominate non-negative eigenvector, hence we set the rank of all ma-
trices to be 20, except for matrices of size 10, the rank is 10. Pesudocode
about how to generate the matrix is attached in the Appendix.

Figure 1: Comparision of Iteration Number of ManPG and FW

In Figure 1 and Figure 2, even though the two lines are not always overlap-
ping, i.e the same k for each matrix, the overall pattern is similar. ManPG
and FW have similar behavior in terms of the number of iterations for the
60 sample problems. It takes more iterations for “harder” problems and
less iterations for “easier” problems.
For CPU time, the two lines also have a similar pattern, even though the
similarity is lower than the similarity for the iteration numbers. However,
since CPU time will be affected by not only the efficiency of the algorithms
themselves but also the computer itself and the workload of the computer.
The result of CPU time might not reflect the efficiency of the algorithms
completely.
Details of number of iteration and CPU time for each matrix is attached at

9

Figure 2: Zoom in Comparision of Iteration Number of ManPG and FW

Figure 3: Comparision of CPU Time of ManPG and FW

Appendix.
We suspect whether the condition number affects the performance of dif-
ferent algorithms, i.e. maybe one algorithm performs better on matrices
with higher condition number and maybe other algorithms perform better
on matrices with a lower condition number. Thus we have the graphs be-
low to investigate this question. The horizontal axis are condition numbers
for those 60 pre-generated matrices and the vertical axis is the difference
of number of iteration or CPU time between any two algorithms. It is hard
to see any pattern in these graphs and thus there is no conclusion about

10

Figure 4: Zoom in Comparision of CPU Time of ManPG and FW

how condition number of the matrix affects the performance of ManPG
and FW over each other.

Figure 5: Relationship Between Condition Number and Difference in Per-
formance of Different Algorithms

We take the average of all number of iteration and all CPU time by us-
ing ManPG and FW respectively for 10 matrices of the same size and ana-
lyze the effect of the size of matrix to the performance of both algorithms.
While it is natural that it takes longer CPU time to solve matrices with
bigger size, it is surprising that the size of matrix does not affect the num-
ber of iteration.

11

Figure 6: Relationship Between Matrix size and Difference in Performance
of Different Algorithms

5 Conclusion

Nonnegative principal analysis is a hard problem to solve due to its non-
smooth nonconvex feature. In this paper, we solved the nonegative prin-
cipal analysis (NNPCA) problem by using Frank Wolfe (FW) algorithm
and Manifold Proximal Gradient Method (ManPG). We compared the nu-
merical result from both algorithms and found that ManPG is better than
FW with less number of iterations and slightly less CPU time. But over-
all, their performance on different matrices are similar. Our experiment
suggested the size of matrix will affect the computatoin cpu time but not
the number of iteration. Also, when we set t = 1/L, where L is the Lips-
chitze constant of ∇f(x), ManPG performs the better than setting t to be
a random number between 0 and 1/L. We believe that ManPG has greater
potential in solving nonsmooth optimization problem than FW.

References

[1] Bajorski, P Application of nonnegative principal component analysis
in hyperspectral imaging Proc. SPIE 6302, Imaging Spectrometry XI,
63020G (1 September 2006); doi: 10.1117/12.677375

[2] Montanari, A. and Richard, E. (2016) Non-Negative Principal Compo-
nent Analysis: Message Passing Algorithms and Sharp Asymptotics..
IEEE Transactions on Information Theory, 62(3), pp.1458-1484.

12

[3] Zhao, H. and Gordon, G. (2018) Frank-Wolfe Optimization for
Symmetric-NMF under Simplicial Constraint (German) [online]
arXiv.org. Available at:
https://arxiv.org/abs/1706.06348 [Accessed 15 May 2019].

[4] Frank, Marguerite and Wolfe, Philip (1956) An Algorithm for
Quadratic Programming Naval Research Logistics, 3: 95-110.
doi:10.1002/nav.3800030109

[5] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on
matrix manifolds. Princeton University Press, 2009.

[6] Zhang, J., Ma, S. and Zhang, S. (2019). Primal-Dual Optimization Al-
gorithms over Riemannian Manifolds. an Iteration Complexity Analy-
sis. [online] arXiv.org. Available at: https://arxiv.org/abs/1710.02236
[Accessed 15 May 2019].

[7] Parikh, N. and Boyd, S. (2014) Proximal Algorithms.. Foundations and
Trends in Optimization, 1(3), pp.127 - 239.

Appendix

Analyzing the effect from size of matrix on number of iteration
n ManPG E ManPG Fro FW
10 62.2 106.4 77.7
20 18 25.9 17
50 184.1 259.4 257.2
100 64.2 92.4 89.1
500 13.6 18 24.6
1000 14.8 18.7 21.8

Analyzing the effect from size of matrix on cpu time
n ManPG E ManPG Fro FW
10 0.010938 0.010938 0.0875
20 0 0.00625 0.009375
50 0.01875 0.021875 0.1875
100 0.015625 0.017188 0.16875
500 0.101563 0.057813 0.317188
1000 0.807813 0.1875 0.5875

In bit table, we analyze the effect from choosing t and L in ManPG algo-
rithm. Where ManPG E means using Euclidean norm in the algorithm and
ManPG F means using Frobenius norm. k means the number of iteartion,

13

ManPG with t ∈ (0, 1/l] ManPG with t = 1/L Difference

ManPG Fro ManPG E ManPG Fro ManPG E ManPG Fro ManPG E

matrix k time k time k time k time k time k time
A 10 10 1 5396 0.953125 1250 0.5625 517 0.0625 937 0.109375 4879 0.890625 313 0.453125
A 10 10 2 8 0 9 0 6 0 8 0 2 0 1 0
A 10 10 3 19 0 22 0 14 0 15 0 5 0 7 0
A 10 10 4 142 0.015625 20 0 6 0.03125 7 0 136 -0.01563 13 0
A 10 10 5 654 0.03125 51 0.015625 10 0.015625 13 0 644 0.015625 38 0.015625
A 10 10 6 126 0.015625 32 0.03125 14 0 16 0 112 0.015625 16 0.03125
A 10 10 7 37 0 24 0 9 0 9 0 28 0 15 0
A 10 10 8 16 0 194 0.015625 8 0 8 0 8 0 186 0.015625
A 10 10 9 63 0 35 0 11 0 13 0 52 0 22 0
A 10 10 10 111 0 39 0 27 0 38 0 84 0 1 0
A 20 20 1 163 0.015625 17 0 6 0 6 0 157 0.015625 11 0
A 20 20 2 23 0 120 0.015625 6 0 7 0 17 0 113 0.015625
A 20 20 3 14 0 9 0 5 0 5 0.03125 9 0 4 -0.03125
A 20 20 4 22 0 47 0 20 0 27 0 2 0 20 0
A 20 20 5 46 0 36 0 5 0 5 0 41 0 31 0
A 20 20 6 7 0 15 0 5 0 5 0 2 0 10 0
A 20 20 7 172 0 173 0.015625 97 0 166 0.03125 75 0 7 -0.01563
A 20 20 8 18 0 87 0.015625 9 0 12 0 9 0 75 0.015625
A 20 20 9 6 0 15 0 5 0 4 0 1 0 11 0
A 20 20 10 770 0.265625 86 0.015625 22 0 22 0 748 0.265625 64 0.015625
A 50 20 1 62 0 30 0 27 0 40 0 35 0 -10 0
A 50 20 2 7095 0.5625 2617 0.3125 1507 0.15625 2073 0.15625 5588 0.40625 544 0.15625
A 50 20 3 35 0 332 0.03125 15 0 19 0 20 0 313 0.03125
A 50 20 4 29 0 10 0.015625 11 0 14 0 18 0 -4 0.015625
A 50 20 5 17 0 21 0.015625 11 0 12 0 6 0 9 0.015625
A 50 20 6 205 0.015625 95 0 106 0 156 0.03125 99 0.015625 -61 -0.03125
A 50 20 7 124 0.015625 55 0 38 0.03125 62 0 86 -0.01563 -7 0
A 50 20 8 298 0.015625 80 0.015625 31 0 69 0.03125 267 0.015625 11 -0.01563
A 50 20 9 97 0.015625 102 0.015625 5 0 5 0 92 0.015625 97 0.015625
A 50 20 10 305 0.03125 108 0.015625 90 0 144 0 215 0.03125 -36 0.015625
A 100 20 1 11 0 14 0 10 0 10 0 1 0 4 0
A 100 20 2 25 0 45 0.015625 11 0 16 0 14 0 29 0.015625
A 100 20 3 820 0.5 4295 0.84375 477 0.125 761 0.125 343 0.375 3534 0.71875
A 100 20 4 58 0 695 0.125 13 0 19 0 45 0 676 0.125
A 100 20 5 543 0.234375 266 0.046875 67 0 32 0 476 0.234375 234 0.046875
A 100 20 6 112 0.046875 18 0 7 0 17 0.046875 105 0.046875 1 -0.04688
A 100 20 7 43 0 30 0 23 0 31 0 20 0 -1 0
A 100 20 8 71 0.046875 32 0 5 0.03125 5 0 66 0.015625 27 0
A 100 20 9 27 0 20 0 24 0 28 0 3 0 -8 0
A 100 20 10 7 0 6 0 5 0 5 0 2 0 1 0
A 500 20 1 56 0.328125 6 0.0625 6 0.078125 6 0 50 0.25 0 0.0625
A 500 20 2 68 0.390625 46 0.203125 44 0.21875 64 0.203125 24 0.171875 -18 0
A 500 20 3 5 0.03125 61 0.28125 5 0.0625 5 0 0 -0.03125 56 0.28125
A 500 20 4 12 0.046875 13 0.078125 9 0.0625 9 0.046875 3 -0.01563 4 0.03125
A 500 20 5 111 0.765625 19 0.109375 22 0.203125 25 0.09375 89 0.5625 -6 0.015625
A 500 20 6 8 0.046875 12 0.09375 6 0.078125 7 0.046875 2 -0.03125 5 0.046875
A 500 20 7 64 0.484375 32 0.1875 7 0.046875 9 0.03125 57 0.4375 23 0.15625
A 500 20 8 38 0.21875 158 0.640625 12 0.09375 30 0.09375 26 0.125 128 0.546875
A 500 20 9 17 0.0625 32 0.140625 5 0.0625 5 0 12 0 27 0.140625
A 500 20 10 197 1.40625 607 2.3125 20 0.109375 20 0.0625 177 1.296875 587 2.25
A 1000 20 1 30 0.578125 20 0.828125 9 0.6875 10 0.078125 21 -0.10938 10 0.75
A 1000 20 2 52 1.15625 1453 16.46875 12 0.75 7 0.09375 40 0.40625 1446 16.375
A 1000 20 3 48 0.875 61 1.25 33 0.84375 56 0.5625 15 0.03125 5 0.6875
A 1000 20 4 85 1.640625 20 0.765625 12 1.15625 14 0.109375 73 0.484375 6 0.65625
A 1000 20 5 66 1.359375 7 0.765625 5 0.625 5 0.046875 61 0.734375 2 0.71875
A 1000 20 6 39 0.796875 145 2.328125 34 0.890625 41 0.40625 5 -0.09375 104 1.921875
A 1000 20 7 31 0.84375 21 0.90625 8 0.71875 10 0.09375 23 0.125 11 0.8125
A 1000 20 8 22 0.390625 16 0.921875 7 0.640625 9 0.078125 15 -0.25 7 0.84375
A 1000 20 9 62 1.296875 15 0.78125 13 1 17 0.21875 49 0.296875 -2 0.5625
A 1000 20 10 244 5.015625 22 1.15625 15 0.765625 18 0.1875 229 4.25 4 0.96875

number of nonegative number: 58 26 48 35
percentage: 96.67% 43.33% 80.00% 58.33%

14

Algorithm 5 Generate Matrix

1: Input: size of matrix n, rank of matrix r
2: Generate a vector λ = (λ1, λ2, ..., λr)

′, where λ1 ≥ λ2 ≥ λ3... ≥ λr
3: Generate a n by 1 nonnegative vector u1
4: Compute the other r − 1 orthogonal vectors u2, u3, ...ur
5: Generate matrix A :=

∑r
i=1 uiλiu

T
i

6: Output: matrix A and dominate singular vector u1

time measures the cpu time of the algorithm. Difference in the last four
columns are calculated by subtracting data at the 5-8 column from corre-
sponding data at 1-4 column. The conclusion is that in terms of number
of iteration, setting t = 1/L will leads to less number of iterations, since
the percentages of positive number in the difference column are both above
80% for both ways of choosing the Lipschtiz number. However, in terms
of cpu time, the way of choosing t does not matter. We can also conclude
that the way of choosing the Lipschtiz number does not make significant
difference in the result.

Acknowledgement

I would like to thank Professor Shiqian Ma for providing me the oppor-
tunity to do this research with him and all the motivation and guidance
through the research process. Without his encouragement and help, I wouldn’t
have finished the undergraduate thesis.

15

