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ABSTRACT. We construct a global conservative weak solution to the Cauchy problem for
the non-linear variational wave equation vy, —c(v)(c(v)vy )z +3g(v) = 0 where g(v) is defined
in (2.5) and ¢(-) is any smooth function with uniformly positive bounded value. This wave
equation is derived from a wave system modelling nematic liquid crystals in a constant

electric field.

1. INTRODUCTION

1.1. Physical background.

Liquid crystal is an intermediate phase between solid and liquid. Liquid crystalline is a
phase that the molecules can flow with some liquid property as well as have some optical
properties of solids. The crystal molecules also have ordered arrangement. We consider the
liquid crystals as fluids made up of long rigid molecules.

There are several liquid crystalline phases: solid phase, the molecules have orientation and
periodicity; liquid phase, the molecules have no orientation or periodicity; nematic phase,
molecules have orientation but no periodicity; and smectic phase, molecules with orientation
with some periodicity. Our main focus is the nematic liquid crystal and most of them are
uniaxial (having one optic axis) and some of them are biaxial (in addition to orienting their
long axis, they also orient along a secondary axis). In this paper, we study a wave equation
modelling the uniaxial nematic liquid crystal in one space dimension with electric field ap-
plied. In the nematic phase, the orientation of the molecules can be described by a field of

unit vector n(z,t) € S?, the unit sphere.

The famous Oseen-Frank potential energy density W associated with the director field

n is defined by
W(n,Vn) =aln x (V xn)*+ (V- -n)>+7(n-V x n)?

where «, § and ~ are positive elastic constants of the liquid crystal. « represents the splay
phenomenon of the nematic liquid crystal, S represents the bend phenomenon, and ~ rep-
resents the twist phenomenon. When the kinetic energy are neglected in studies of nematic
liquid crystals, by variational principle, we obtain an elliptic partial differential equation [11].
When we include the kinetic energy on modelling the nematic liquid crystal in one space

dimension without any fields applied, we can formulate it as a non-linear wave equation
1
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FI1GURE 1. The director field n.

www.beautifulchemistry.net/liquid-crystals/

www.researchgate.net/figure/Molecular-ordering-and-tensor-material-properties-of-a-nematic-liquid-crystal

which is derived in [7]:
(1.1) gy — c(u)[e(u)ug], =0,
with smooth function wu.

We study the nematic liquid crystal under the a constant electric field with the electric

energy density described by

1 1 1
eecm’c:__P'E:_ E2 —n(E - 2
Jetect 5 SPE" + 27}( n)?,
where P is the polarization, E is the electric field. We assume that the applied field is neither
parallel nor perpendicular to n. ¢ and 7 are positive constants related to permittivity and

dielectric constants [12].

1.2. Known results.

For the equation (1.1), Glassey, Hunter, and Zheng |7] showed that the smooth solutions
develop singularities in finite time. Also, Zhang and Zheng [19] studied that under weak
conditions on the initial data which allow the solutions to have blow-up singularities and
they established approximate solutions with estimates along precompactness using Young
measure methods.

Our main reference is [5]. For the Cauchy problem for (1.1) with initial data «(0,z) =
up(z), ut(0,2) = uy(z), Bressan and Zheng [5] proved the existence of a conservative weak
solution by method of characteristics. They constructed conservative weak solution by in-
troducing new sets of dependent and independent variables and showed that the solution
can be obtained as the fixed point of a contraction transformation. See also [§8]. Compared
with [5], our energy equation has new terms from the applied electric field. These terms can
be expressed as G(v) where G(v) is defined in (2.6). To solve this problem, we need to do
some modification on the proof in [5] based on the observation that v € H! and G(v) is the

lower order term in the energy equation.
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For the Cauchy problem for (1.1) with initial data, Bressan, Chen and Zhang [3] proved
the uniqueness of conservative solutions. Brassan and Huang [4] constructed dissipative so-
lutions for ¢ > 0 relying on Kolmogorov’s compactness theorem. Zhang and Zheng studied
the existence and regularity properties of classical and weak solutions using the Young mea-
sure theory in [18] and proved the global existence of weak solutions in [20]. For C? initial
data, Bressan and Chen [1] showed that the conservative solutions are piecewise smooth in
t-z plane. In [2], Bressan and Chen constructed a metric that renders the flow uniformly
Lipschitz continuous on bounded subsets of H'(R). Zhang and Zheng [21] studied the ex-
istence of global weak solutions to the initial value problem (1.1) with general initial data
(1(0),u£(0)) = (ug,uy) € Wh? x L? with wave speed satisfying ¢/(-) > 0 and (ug(+)) > 0.

For a wave system modelling nematic liquid crystals in one space dimension, Chen and
Zheng [6] studied the global existence and singularity formation. Huang and Zheng [9] es-
tablished the global existence of smooth solutions. Zhang and Zheng [13] constructed a weak
global solutions to the Cauchy problem for a system of two variational wave equations on the
real line and [14] showed the global weak solutions to the initial value problem for a complete
system of variational wave equations modelling liquid crystals in one space dimension.

[10] shows that the weakly nonlinear unidirectional waves satisfying (1.1) are discribed

asymptotically by

1
(1.2) (e + uuz )y = S (ug)?,

derived by Hunter and Saxton via weakly nonlinear geometric optics. In [15]-[17]|, Zhang
and Zheng studied the global existence, uniqueness, and regularity of the dissipative and

conservative solutions to (1.2)(n = 1,2) with L? initial data.

1.3. Some definitions and theorem from Partial Differential Equations by Evans.
The definition of L? space.

Let X be a measure space. Given a function f, we say f € LP on X if f is Lebesgue

/ | flPdp < oo,
X

measurable and if

then f is LP-integrable.
For f € LP(u), we define the norm

rmm:(éuw@7

And call ||f]|r» as the LP(u) norm of f.

The definition of Locally intergable function L

loc*®

Let €2 be an open set in the R™ space and f : {2 +— C be a Lebesgue measurable function.
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For given p with 1 < p < oo and this p satisfies

[ e <,
K
it belongs to the LT (K) for all compact subsets K of €, then f is called locally p-integrable.

The set of all such function is denoted be L :

loc*
LY () ={f:Qw Cmeasurable | f e LP(K), YK CQ, K is compact }.

The definition of Holder continuity.
We say function f(z) is Holder continuous with exponent « if there exists a constant
C' > 0 and « such that

[f(x) = f(y)| < Clz =y,
for all x and y in the domain of f.
The Definition of Sobolev space.
Suppose that §2 is an open set in R", k € N, and 1 < p < co. The Sobolev space W"?(Q)
consists of all locally integrable functions f : €2 +— R such that

0°f e LP(Q)  for 0< |a| <k.
We write WHP = H*(Q).
The Sobolev space W*?(Q) is a Banach space when equipped with the norm

[ fllwrr) = ( Z /Q|3af|pd$>p

|| <k
for 1 <p < 0.
Sobolev embedding theorem
Suppose that 1 < p < n and p < g < p* where p* = n”—_pp is the Sobolev conjugate of p.
Then WP(R") — L4(R™) and
1£llq < ClIfllwin(R")  for all f e WP(R"),

for some constant C' = C'(n, p, q).

1.4. Main theorems.
Our main results are stated as follows. For the nematic liquid crystal under electric field,

we obtain a Cauchy problem

(1.3) vy — c(v)(c(V)vg) e + %g(v) =0,
with the initial data
(1.4) v(0,2) = vo(x), v(0,2) =v1(x).

For the smooth function ¢(-), we assume that ¢ : R — R™ is a bounded and uniformly

positive function.
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Definition 1.1. The definition of weak solution.
We say that for all test function ¢ € C!, the function v € H' satisfies the following

integral:

(1.5) /1@m—k@memM—§QMMﬁ:Q

is a weak solution to the equation (1.3).

Definition 1.2. The definition of energy conservative weak solution.
For v; and vy defined in (1.4) and G(v) is defined in (2.6), we define the ground state

energy & as:

1

(1.6) &:5/@ﬂ@+3m@mﬁ@h+m%@§m;

The function v € H' is a energy conservative weak solution if it satisfying

(1.7) aw:%/{ﬁ@@+8mmm@@@+G@@@&mz&,

for almost every ¢t € R.

Theorem 1.1. Assume that c: R — [K™1 K] is a smooth function for some K > 1. vg(z)
and vi(x) are stated in (1.4). Also assume that the initial data vo(x) is absolutely continuous,
(vo(x)), € HY, and vi(z) € H'. Then (1.3)-(1.4) can be considered as a Cauchy problem
admitting a weak solution v(t,z) defined for all (t,xz) € R x R. Moreover, in the t-x plane,
v(z,t) is locally Hélder- % continuous. For all 1 < p < 2, the map t — v(t,-) is continuously
differentiable with values in LY .. The weak solution v(t.-) is Lipschitz continuous with respect
to L? distance. So, for allt,s € R,

(1.8) [o(t, ) = v(s, )2 < LIt — .
For all test function ¢ € C}, the equation (1.3) satisfies (1.5).

Theorem 1.2. A family of weak solutions to the Cauchy problem (1.3)-(1.4) can be obtained
with the properties:

(1.9) E(t) < &.
Let a sequence of initial condition satisfies:
15 (2)) = (vo())a]| 2 = 0,
[[o1' (%) = w1 (@)[[z2 = 0.

Also, u" — u uniformly on bounded subsets of the t-x plane and v{ — vy on compact sets as

n — o0.

Theorem 1.3. There exists a continuous family of positive Radon measures {u; : t € R} .
This family of positive Radon measure is defined on the real line and it satisfies the following

properties:
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(1) 1 (R) = & for any time t.

1
(i1) With respect to Lebesgue measure, the absolutely continuous part of p; has density 5(2}?—1—
()2 + G(v)).

(111) The singular part of u; has measure zero on the set where ¢ (v) = 0.

The paper is organized as follows. In section 2, we derive the energy equation and introduce
a new set of dependent variables. Based on those dependent variables, we formulate a set
of equations in terms of the new variables. This set of equations is equivalent to (1.3). In
section 3, we use a transformation in a Banach space. In the transformation, we find the
suitable weighted norm. This shows that there is a unique solution to the set of equations
in terms of the new variables. In section 4, we show that the integral (1.5) holds and the
Hoélder-3 continuous condition holds. In section 5, we show that (1.9) holds and the Lipschitz
condition on the map ¢ — v(t,-) and provide a proof of Theorem 1.2. On section 6, we study
the maps of t — wu,(t,-) and t — w(t, ), and complete the proof of Theorem 1.1. We provide

a proof of Theorem 1.3 in section 7.

2. VARIABLE TRANSFORMATIONS

2.1. Derivation of (1.3). Equation (1.3) has some physical origins. In the context of

nematic liquid crystals, we introduce the famous Oseen-Frank potential energy density W is

given by
(2.1) W(n,Vn) =aln x (Vxn)>+ B(V-n)? +v(n-V x n)?.
As stated in [12], in a electric field, the electric energy of the liquid crystal per unit volume
is given by
1 1 5 1 9
(22) felectric = _§P -E = §SOE + 57](E : Il) .

We discuss that when the electric energy is low when the applied electric field is normal

to the liquid crystal director. And ¢ and 7 are some positive constants related to the

permittivity so that (2.2) is equivalent to |n- E+|? + 1. And we denote E* as a vector such

that E-EX = 0 and E = (1,0). So, the electric energy can be described as |n - EL|2. By

the property of the potential energy, the action can be describe as

S = // > — W(n, Vn) — |n- E*|*dz dt

By plug in n = (cosu,sinu), the action can be describe as:
(2.3) S = // u? — (c(u))*u? — (cosu)?dx dt.

7
We let v =u — 5 so that cosu = sinv. By the principle of least action,

55 =0 = / / STu? — (c(v))22 — (sinwv)2)da dt.
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A straightforward computation shows that

(2.4) vy — c(v)(c(v)vy) . + @ =0,
where
(2.5) g(v) = 2sinwvcosv.

And define G(v) as two times the anti derivative of g(v) ,
(2.6) G(v) = 2(sinv)?.

2.2. Derivation of the energy equation.

From (2.4), we can compute that

9(v)
/vtvtt — ve(v)[e(v)vg]. + 5 vdr =0

(2.7)
1 A(v)v? 1
[ G+ (C5) 4 (GG o
And from (2.7), the energy equation can be described as
1
(2.8) E = 5 (v} + A (v)v2 + G(v)).

2.3. Variables transform. In this section we derive identities that holds for smooth solu-
tions. We first denote variables:
(2.9) R = v + c(v)vy,

S = — c(v)v,.

Thus, we can write v; and v, as follows

R+ S
Vy = Ta
2.10
(2.10) RS
Uy =
2c
By (1.3), the following identities are valid :
/
1
SiteSo = (8" = B) = 59(0)
(2.11) ‘ ’
_ SR _8% - -
Ro-cRe= £ (R~ 8%) ~ Sqlv),

by the following calculation

Ry — cR, = (vy + cvy)y — c(vy + v,

/

g(v) C 2
—T + @(R - S )

We can compute S; 4 ¢S, in the similar way to get (2.11) and denote energy and momentum

as
2 | Q2
(2.12) E = % (vf + ()l + Gv)) = i ZS + %G(’U),
2 p2
(2.13) M = —vu, = SR :

4c
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- x7(s 6 x)

FI1GURE 2. The characteristic curves.

The analysis of (1.3) has a main difficult that the possible breakdown of the regularity
solutions. The quantities v, and v; can blow up in finite time even with smooth initial
data. Thus we need to introduce a new set of dependent variables to deal with the possible

unbounded value R and S:

(2.14) w = 2arctan R, z = 2arctan S.
Thus
w 2
(2.15) R = tan <§> : S = tan <§> .
By (2.11),
2 d R?—5? 1
2.1 — = — = —
(2.16) we = ewy = g (B = elfe) = 5o — T )
2 d S?*—R? 1
2.17 = ——(S Se) = — - .
(2.17) arem = el e =y e Ty e

In order to reduce the equation to a semi-linear system, we need to have a further change

of variables. The forward characteristics equation and the backward characteristics equation:
it =c(v), 1 =cv).
And we denote the characteristics lines pass through the point (¢, z) as
s—at(s,t,x), s—a (st,x).

So we can use a new coordinate system (X,Y) to represent point (t,z) by

z~ (0,t,x)

(2.18) X::/ (1+ R*(0,z))dz,
0
0

(2.19) Y = /+<0t )(1+52(O,x))dx.

(2.18) and (2.19) implies that
(2.20) X —c(v)X, =0, Y +c¢(v)Y, =0,

(2.21) (X — (e(0)Xa)e =0, (YVa)o+ (c(0)Ya)s = 0.
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Thus, given any smooth function f, by using (2.20),

fe+ c) fo = 2c(v) Xo fx,
Ji— C(”)fx = QC(U)Yfo~
From (2.20), X; + c(v) X, = 2¢(v)X,. To get (2.22) we compute directly

ft + C(U)fx = fXXt + fYY;S + C(U)fox + C(U)fyyx = (Xt + C(U)XI>fX = 2C(U>Xxfx,
fi—c)fo = fxXi+ Ve — c(0) [x Xo — c(v) fyrYe = (Vi — c(0)Y2) fy = 2¢(0)Y, fy

Introducing new variables

(2.22)

1+ R? 1+ 52
22 = = .
(2.23) p X 1Ty
From (2.23),
1 p o, w,  p(l+cosw)
(2.24) X irr YTy
‘ I q cos?(2) = q(1+cosz)
Y, 1452 1T 2
By applying (2.16)-(2.17) to (2.17),
LS RS )
e e = e Y T 0T R T 1+ RY
1+ R? dS*— R g(v)
. =2 R .
@t oz ¢ D T 1S 1482
Thus, wy and zx can be write as
= =5 0 g 1 g(v)
VT4 T+ R 1+82 2e1+ 821+ RY
ISR p  p 1 g
KT TF P I+ R 201+ 1+ R
So
d q
wy = —(cosz — cosw)q — —g(v)(1 + cos z)(1 + cos w),
8c? 8¢
(2.25) /
Zx = 86?(00810 —Cos z)p — %g(v)(l + cos 2)(1 4 cosw).
By using (2.21) and (2.24),
1 1 ,
Dt — CPy = ZQR(Rt —cR,) — X_g[(X”‘“)t — (X)) (1 4+ R?)
d p 2 2 P
— 1 — R(1 _
1 1
G + e = 7285 — ¢82) = 5 [(Va)i + e(=Ya)al (1 + 57)
¢ q 2 2 q
= 1 —S(1 _
¢ LIRS~ 50+ 7)) - 1L

By applying (2.22),
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g + gz = 2cX,qx.

And thus,
1 q
py = (pt — Cpx)TcY; = (p — Cp:p)%l 152
/
1
8002 [sin z — sin w]pgq — 5P sinw g(v)(1 + cos z),
1 1 p
qx = (q: + Cq$)2 5 = (q: + qu)%m
d 1
=32 —[sinw — sin z|pg — L sin z g(v)(1 + cos w).
So, the following identities hold:
/
1
Py = 8002 [sin z — sinw|pg — 5P sinw g(v)(1 + cos 2),
(2.26)

. [si in 2] Lpgsi (v)(1+ )
_ - cosw).

ax = gp[sinw —sinzlpg — = pgsinz g(v

Also, we plug in f = v into the equation (2.22) and get

1 p W oW 1

1
vx = (v + cvx)Q—cm =% (tangcos E)p Py sinw,
(2.27)
( )1 q 1(1: z 22) 1 .
vy = (v — cvp) — = an — cos” =)q = q— sin 2.
v 261+52 2 2" Ty,

Combining (2.25), (2.26), and (2.27), we obtain a semi-linear hyperbolic system from the
non-linear equation (1.3). This system uses X, Y as independent variables with smooth

coefficients for the variables v, w, z, p, q
/

c q
Yy =
w —(cosz —cosw)qg — — g(v)(1 + cos z)(1 + cosw),
993 8c? 8¢
( ‘ ) C/ p
X =5 —(cosw — cos z)p — g g(v)(1 + cosz)(1 4 cosw),
d 1
Py = 55[8inz —sinwlpg — —pgsinw g(v)(1 + cos z),
(2.29) 5 81
gx = 8002 [sinw — sin z|pg — sl sin z g(v)(1 4 cos w),
p
vx = —sinw,
(2.30) de

vy = qsmz
vy = —
4e

The system (2.28)-(2.30) should have non-characteristic boundary conditions related to
(1.4). From (1.4), vy and v; determine the initial values of R and S at time ¢t = 0. We denote
the curve « as the line in (X,Y’) plane at time ¢ = 0, say

Y =pX), XeR
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And Y = ¢(X) if and only if for some z € R,
T 0
X = / (1+ R*(0,z))dz, Y = / (1+5%(0,))dx.
0 x

By the assumptions of the Theorem 1.1, vy € H',v; € H'. This implies that R € H' and

S € H'. Moreover, in this case, we let

(2.31) & = i/[RQ(O,x) + S%(0, z)]dx < oo.
Thus,
(2.32) X(z) = /Ozu b R0, p)dy, V()= / (14 S2(0, y))dy.

are absolutely continuous and well defined functions. Further more, by observing (2.32), X
is increasing and Y is decreasing. So, we conclude that the map X +— ¢(X) is continuous
and decreasing. And from (2.31),
| X + p(X)| < 4&.

Since (t,x) € [0,00) x (—00,00), s0 our new independent variables (X,Y) € QF, and the
domain is defined as

QT ={(X,Y) 1Y > (X))},
along the curve

7 ={XY): Y = o(X)}.
We can have the following boundary data (w, z,p, q,v) € L,

w = 2arctan(R(0, x)),

(2.33)
z = 2arctan(S(0, x)),
p=1,
(2.34) { =15
- U= vp(x).

3. CONSTRUCT THE INTEGRAL SOLUTION

We prove the global existence and uniqueness for the semi-linear system (2.28) - (2.30) in

this section.

Theorem 3.1. If the assumptions of Theorem 1.1 holds, then the semi-linear system (2.28)
- (2.30) with the boundary conditions (2.33) - (2.35) has a unique solution for all (X,Y) €
R x R.

We construct the solution on the region Q" which is the case that Y > ¢(X). The proof of
the solution on the Q= which is the case that Y < ¢(X) can be construct in the similar way.
We show the Lipschitz condition for the system (2.28) - (2.30). To make sure the solution
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Y

. I3 X, Y)
(1Y), V)
2 I3
L
X
X, (X))

FI1GURE 3. The closed curve X..

is defined in the region Q*, we need to construct some priori bounds. So that we can show
that p, q are bounded. The Lipschitz condition can be derived as follows. From the energy

conservation equations (1.7), (1.6) and the assumption that v € H', we denote the following

constants:
(v

G 405(3> =
(3.1) K, = igg/G(U)dx < 00,

Ky = sup g(v)| < o0.
From (2.29), |
52) qx + py :% [G(v)q(1+ cos 2)]y + % [G(v)p(1 + cosw)]y
3.2

— %G(v)gc(sinw — sin z)(cos z — cosw) (% + 1).

We construct a closed curve 3 for every (X,Y) € QF with the vertical line segment connect
(X,Y) with (X, (X)), the horizontal line segment connect (X,Y) with (¢=1(Y),Y), and
a part of the boundary v =Y = (X)) connecting (X, (X)) with (¢1(Y),Y). The closed
curve ¥ =T'; + ', + 3. From (3.1), we compute // qx + pydA = /—de + /qu
and denote that

(3.3) //qX + pydA = /—de+/qu,

(3:4) Qx = 5 [G(v)g(1 +cos 2)]x ,

DO | —
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(3.5) Py = % [G(v)p(1 + cosw)]y,
(3.6) £ = G(v)gc(sinw — sin z)(cos z — cosw) <% + 1) .
So

// py+quXdY:/—de+/qu
b b by

1
_ / / Ox + Py — ~€dXdY,
5 2
By Green’s Theorem,

1
/—de+/qu:/—PdX+/QdY——//§dXdY.
) ) b 2 2) /s
Thus,
1
—//dedY:/p—PdX—F/Q—qu,
2J))s b )

1 1
= /p - QG(v)p(l + cosw)dX +/ —q+ §G(U)q(1 + cos z)dX.
b )
Since X =I'1 4+ 'y + I's is a closed curve, so we compute the integral of I'; directly and in
the way Fl = —(FQ + Fg)

1 1
(3.7) / 1— §G(U)(1 + cosw)dX +/ -1+ iG(v)(l + cos z)dY,
r r
and from (2.24)
2 2
dX = —dx, dY = —dx.
1+ cosw 1+ cosz

Thus (1 + cosw)dX = 2dz, and (1 + cosw)dY = 2dzx.
So (3.8) becomes

/n 1= Lawya s Cosw)dX+/

2 r,
<2(|X|+ Y]+ 4&) + K.

1
-1+ §G(U)(1 + cos z)dY

And also,
1 1
/ 1 —=-G(v)(1+ cos w)dX+/ -1+ -G(v)(1+4 cosz)dY
r, 2 r) 2
K
<0=Y +p(X) + =,
1 1
/ 1 — -G(v)(1+ cos w)dX+/ —14+ =G(v)(1 4 cosz)dY
ry 2 Ty 2
K
<¢‘1(Y)—X—0+71.
As a result,
be Y
38 [ A+ [ g yay < o] Y]+ 48) + K
e~ 1(Y) w(X)



14 LINJUN HUANG

By observing the boundary conditions (2.33) - (2.35), p,q > 0. And by (2.29),

1 /
py = gpq{c [sin z — sinw] — sinw g(v )(1—|—COSZ)},
Yo/
p(X,Y) = exp{/ 8——[smz —sinw] — sinw g(v)(1 + cos z)q(X, Y’)dY’}
o(x) 8C C

< exp {C’l /Y q(X, Y’)dY’}
o(X)
<exp{ 2C(|X|+ |Y|+4&) + C1 K, }.
Similarly, we have
q(X,Y) < exp{ 20, (| X[ + [Y] 4 4&) + C1 K1}
Now, we show that on any bounded sets in X-Y plane, we can construct the solution for

the system of the equations (2.28) - (2.30) with boundary condition (2.33) -(2.35) by the

fixed point of a constructive map. For any » > 0, we can construct a bounded domain
Q. ={(X,Y): Y <pX),X<rY <r}
And also introduce the function space :
(3.9) A ={f:Q—=R:|fll. = esssup e EE)|F(X,Y)] < o0}
(X,Y)eQ,

Where K is a suitably big constant and it will be determined later. And for (w, z,p, q,v) €
A, we construct a map 7(w, z,p, q,v) = (0, Z,p, G, ). And this map is define as follows.
(3.10)

w(X,Y) =w(X,p(X —l—f 862 (cosz —cosw)q — & g(v)(1 4 cos z)(1 + cos w)dY,

AX,Y) = z(p” )+ f 802 (cosw — cos z)p — £ g(v)(1 + cos 2)(1 + cosw)d X,
p(X,)Y)=1+ f@(X) 8icpq {<[sinz — sinw] — sinw g(v)(1 + cos z) } dY,
(3.11)
(X, Y)=1+ f:{l(y) =4 {%[sinw —sinz] —sinz g(v)(1 4 cosw) } dX,
Yol
(3.12) 1(X,Y) =0(X, o(X)) +/ — sin zqdY.
p(x) 4e

We want to prove the uniform Lipschitz condition. First, we define
D, =A, x A, x A, x A, xA,.
For some properly chosen distance D : ¢, x ¢, — R, we want to show that
D((wy, 21, P1, G1, V1), (Wa, Z2, P2, G2, V2)) < L X D((w1, 21, p1, q1,v1), (W2, 22, P2, @2, V2)).
The Lipschitz constant L satisfies L < 1. In fact, we define the distance as:
D((wy, 21, P1, G, 01), (W2, Z2, Pa, G2, U2)) = max{ || — s« , (|21 — 2« ,

[P1 = Pall , G — @« 5 |91 — w2},
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and the norm || - ||« is defined in (3.9).
We first proving the Lipschitz condition of ||w; — ws]].

Y /

Wy — W :/ %(COS 21 — coswi)q — kil g(v)(1 4 cos z1)(1 + coswy))
0(X) 8c 8c

/

é(cos 2z — coswy)qr + % g(v)(1 4 cos z1)(1 + coswy )dY
Y C/ c/

= — — - — dY
L(X) ¥ (cosz; — coswy)qy 52 (cos zg — cos wsy)qa

Y
+ / kel g(v)(1 + cos z9) (1 + coswsy) — kil g(v)(1 + cos z1)(1 + cos wy )dY.
o(X) 8c 8c

And we denote that

Y / /
(3.13) /@(X) é(cos 21 — COSwWy)q — é(cos 2o — COSW3)qadY,

and

Y
(3.14) / %g(v)(l + cos 22)(1 + cos wq) — ﬂg(v)(l + cos z1)(1 + cos wy)dY.
0(X) 8c 8c

We compute (3.13),

Y C, C/
(3.13) = /p(x) @(COS 21 — coswi)qy + @(cos 21 — COS W1 )Qa
C/ C/
— @(cos 21 — cosw)qa + @(COS 29 — COS W) qadY
Y C, C, C/
:/ —(q1 — q2)(cos z; — coswy) + —(coswy — coswy) + —qa(cos z; — cos z3)dY
o(x) 8C 8c 8c

Y C/ C/ C/
< —2(q — — — — — 29)dY
< [O(X) 3¢ (1 — @) + 86@2(w2 wy) + SCQQ(Zl 29)

d K(X+Y)|Y
§4—CQHQ1 — q2le ¢ (X)

d 1
+ @Hﬁ — z2||me
c 1
+ @sz - ﬂ11||—201 K
We denote some constant that only depends on K,

(2C1+K)(X+Y)+8C1 Eo+K1C1 |Y(X)
©

€(QC1+K)(X+Y)+801E0+K101 |Y
(X))

/
13 ::C_ K(X+Y)|Y

4026 e(X)

c 1
&

—_ 6(201+K)(X+Y)+801E0+K101 ’Y )
8¢22C) + K o(X)

Now, we compute (3.14),

Y
(3.14) :/ kel g(v)(1 + cos z9)(1 + coswsg) — ki g(v)(1 + cos z2)(1 + cos wo)
p(x) 8¢C 8¢



16 LINJUN HUANG

+ L g(0)(1+ o8 20)(1+ coswa) = & 9(0)(1+ cos 1)(1 + cos )Y

Y

1

:/ 8—9(1})(1 + cos 2)(1 + cosws) (g2 — q1)
p(x) O€

+ ;]—1 g(v)(1 + cos z3)(cos wy — coswy) + ;1_1 g(v)(1 + coswy)(cos zg — cos 21)
c c
<Xy )dY+1K/Y ( \dY
S o # @2 — @1 o 1 (w2 — Wy
8¢ QO(X) 4c o(X)

1 Y
—+ —K()/ ql(wg — wl)dY
de o)

SQLCKOHCD — %H%QK(XJFY) ?&X) + ﬁKOHUb — w1||—2011+ K6(201+K)(X+Y)+801E0+K101|};(X)
+ %CKOH@ — 2011 K6(201+K)(X+Y)+86’1E0+K101 ’:(X)'
We denote some constant that only depends on K,
§s = %CK()%K(X”)IQX),
£y = %CKO 2011+ K6(201+K)(X+Y)+801E0+K101 |Z(X)'

And thus, we have
[0, — 1 || =e K aisy — iy| = e K H)|(3.15) + (3.16)))|
<e M6+ &)llal — qal| + (&0 + € llwr — wa| + (& + &)1 — 2]l]
<e (& + &)l — qal| + e (& + €0 lun — wal| + e F (& + £4) |21 — 2]
We then denote that
Lz = e K& + &),
Ly =e (& + &).
So that
[w1 = wa| < Liallgl — gol| + Loallwr — wa| + Laallz1 — 2|

Choose K large enough so that 0 < Ly 3, La4 < 1 And the process of proving the Lipschitz
condition of ||Z; — 23| is identical to the process above.

Now we are proving the Lipschitz condition on ||p; — ps||,

- Yol . 1 .
PL— Py = 3z [sin z; — sinwq|p1g1 — —p1q1 sinw; g(v)(1 4 cos z1)
p(x) 8¢ 8¢

c 1

- @[Sin 2Zy — sin wy|page + SaPee sinws g(v)(1 + cos z2)dY
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Y C/ C/
:/ @[sin 2 —sinwy|prgr — @[sin zg — Sin wa]pagedY’
(X)

Y

1 . 1 )

+ / —paga sinwy g(v) (1 + cos z2) — —p1qy sinwy g(v)(1 + cos z1)dY.
o(x) 8¢ 8¢

We denote that

Y / /
C . . C . .
(3.15) / @[sm 21 — sinws |p1qr — @[Sm 29 — Sinws|pagadY,
(X)

and

Y

1 1

(3.16) / o2t sinwg g(v)(1 + cos z2) — s sinwy g(v)(1 + cos z1)dY.
(X)

Then compute (3.15) and get,

Q
)

Y / /
(3.15) :/ —[sin z; — sinwy |p11dY — %[Sin 21 — sinws |p1ge
p(x) 8C 8¢
/ C/
+ @[sin 2 — sinw|p1ga — @[Sin 29 — sin wa]paqedY
CI

o2 [sin 27 — sinwq]qa(p1 — p2)

Y /

c .. .

:/ —2[sm Z1 — sln w1]p1(¢11 - CJQ) +
p(x) ©€

oo

/ Cl

+ —|[sin wy — sSinw + —|sinz; —sin 2 dY
52 [sin wy 11p2ge ¥ [sin 2 2|p2go
C/ Y / Y

C
S_Q p1|q1 o q2|e—K(X+Y)eK(X+Y)dY + _2 QQ|p1 —p2|€_K(X+Y)€K(X+Y)dY
4c? Jo(x) 4c? Jo(x)

/ Y / Y

_ c _
+ ﬁ wy — wy e k(X+Y)ek(X+Y)p2q2dY + 5z 21 — z5le k(X+Y)ek(X+Y)p2q2dY
€ Jo(x) € Jo(x)

c 1
4220, + K
c 1
4220, + K
c 1
8240, + K

C_I 1 (4C1 +K)(X+Y)+16C1 Eg+2k1C1 |Y
8c24C, + K P(X)

Cc

< ||QI - q2|| 6(201+K)(X+Y)+801E0+k16’1 |Z(X)

+ ||p1 . p2|| 6(201+K)(X+Y)+8C1E0+k101|Y(X)
%)

+ ||w2 . w1|| 6(401+K)(X+Y)+1601E0+2k101|Y(X)
%2}

+ |21 — 22|

We denote that

by = <1 (2014 K) (X+Y ) +8C1 Botha Ca |V

VT 4220, + K p(X))
Py = i; (401+K)(X+Y)+1601E0+2k101|Y

27 824C, + K p(X)"

Now,we compute (3.16),

Y
1 , 1 :
(3.16) :/ goP2dzsin w2 g(v)(1 + cos z9) — goP1dzsin wa g(v)(1 + cos 23)
e(X)
1 1

+ S—Cplqg sinwsy g(v)(1 + cos z9) — 8—Cp1q1 sinwsy g(v)(1 + cos z2)
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1 . 1 )
+ S—Cplql sinwsy g(v)(1 + cos z3) — 8—Cp1q1 sinwy g(v)(1 + cos 25)

1 1
+ s sinwy g(v)(1 + cos z3) — s sinwy g(v)(1 + cos 2z1)dY

Y

1 . 1 .

:/ —qa sinwy g(v)(1 + cos z2)(p2 — p1) + —p1 sinws g(v)(1 + cos 22) (g2 — ¢1)
p(x) 8C 8¢

1 1
+ S g(v)(1 + cos z9) (sinwe — sinwy) + s g(v) sinwy (cos zg — cos z1)dY
c c

Ko v —K(X+Y) K(X+Y) Ko v —K(X+Y) K(X+Y)
§4— q@2(p2 — pr)e e dy + Ie pi(g2 —q1)e e ay
C Jo(x) € Jp(X)
Ky [V CK(X4Y) K(X+Y) Ky [V CK(X4Y) K(X+Y)
+ Ie p1qi(we —wy)e e dy + ™ P1ga(22 — z1)e€ e dy
C Jo(x) € Jo(x)

ﬁ;6(201+K)(X+Y)+8C1E0+01K|Y

ﬁ_ 1 (201+K)(X+Y)+801E0+01K‘Y
4c 201 + K $(X)

ﬁ; (4CI+K)(X+Y)+1601E0+201K|Y
4e 2C, + K @(X)

& 1 6(4C1+K)(X+Y)+1601E0+201K’Y
c 2C; + K P(X)

+1lg2 — 1]
+ [|wy — w ||

+ [|z2 — 2|

We denote some constant that only dependent on the choose of K,

¢ - ﬁ 1 (201+K)(X+Y)+SC1EO+01K|Y
2T 420, + K (X))’
— ﬁ; (401 +K)(X4Y)+16C1 Eo+2C1 K |Y
Yy = |
YT 4200+ K (X))
w — ﬁ;6(401+K)(X+Y)+1601E0+201K|Y
T 820, + K p(X)*

Thus, we can compute that:
|51 — pall = X py — py| = e HE|(3.17) 4 (3.18)]
< e (g + 40 lge — @l + (W5 + ¥1)[Ip2 — pu |
+ (Y1 + o) |lwe — will + (V2 + ¥s)[22 — 2]
<e KN (s + ) lge — qu || + e KT (3 + 1) p2 — |
+ e M gy o) lwa — wi || + K (@5 + ) |20 — 2.

We denote some constant that only dependent on the choose of K,
L3y = e KT (43 + 1),
Lys = e K (g + 4y),

)
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Lsg = e KT (45 + 1),
We choose the K large enough so that 0 < Ls 1, Ls2, Ls2 < 1 And the process of proving
the Lipschitz condition of ||¢; — ¢z|| is identical to the process above.
We now prove that Lipschitz condition of v.

) . .

L sin z sin z

Uy — 22/ 1 Ly — 1 2 pdY
e(X) ¢ ¢

Y : Y

sin z 1 _ .

:/ 1 : (1 — @2)dY +/ 4—q2(sm 21 — sin 29)dY,
p(x) =€ o(X) 4C

Y1 Y1
T — oo S/ 4_’(]1 — @o|dY +/ —ql X |2 — 2|dY
o c 4c

(X) v(X)
11 1 1
SHQl . QQ|’4_CE6K(X+Y)‘30/(X) + Hzl i 22”Em6(201+K)(X+Y)+801E0+01K1 ‘};(X)'
We denote that
11 K(X+Y)|Y
m = 4—0?6 |<p(X)7
,,72 — i 1 (201+K)(X+Y)+801E0+C1K1‘Y )
4c 201 + K #(X)
Thus we have
|6, — || = e K& |y —
<e M lar — @l + e K g2y — 2.
And we denote that
L, = e7K(X+Y)771,
Ly = 6—K(X+Y)772'
We choose K Large enough such that 0 < Ly, Ly < 1.

The computation shows that L = M

, where C'(&),K) is a constant depends on &
and K. By choosing K sufficiently large, we can guarantee L < 1. Hence, the uniform
Lipschitz condition is proved. By the fixed point theorem, the solution in the X-Y plane
exists and is unique. O

If the initial data in (1.2) are smooth, then the solutions of (2.28) - (2.30) with boundary
condition (2.33) - (2.35) are smooth functions with variables (X,Y’). Also, if there is a

sequence of smooth functions (vf*(x), v]"(z))m>1 with the following conditions:
v () = vo(@) , v"(x) = vi(@), (05" (2))e = (vo(2))a,

uniformly on a compact subset of R. Then

m . m ,.m

(™, ¢" w™, 2" 0™ = (p,q,w, z,v),

uniformly on some bounded subsets of X-Y plane.
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4. WEAK SOLUTIONS

In this section, we construct a map v(X,Y) — v(¢,z). That is to write (X,Y) in terms of
(t,x) so we obtain a solution to the Cauchy problem (1.3), (1.4). The map (X,Y) — (¢, )
can be obtain in the following way. We plug in f = x and f = ¢ into the equation (2.22),

and get
c=2cX,xx,
—c=—2 }/a: )
(4.1) o Ty
1= 2Cthx,
1= —2C}/xty.
And by applying (2.24) we have
( 2
X, = ——
(14 cosw)p
—2
cos z
(4.2) =2/
2c
Xy = ——
(1 + cosw)p
—2
)
\ (1 + cosz)q
We assume that the partial derivatives above valid for points that w,z # —m. Thus, we
have
( 1 (14 cosw)p
:L'X = = s
(43) 92X, 4
' 1 —(1 + cos z)q
€T = =
Y 2}{[ 4 )
( 1 (1 + cosw)p
(4.4) 2c¢X, 4c
' o 1 (14cosz)q
(T 2y, 4

A computation shows that xxy = xyx and txy = tyx
(14 cosw)py  psinwwy

Txy =

4 4
:ggg [sin z — sinw + sin(z — w)],
(I +cosz)gx  gsinzzy
Tyx = 1 - 1
263,2292 [sin z — sinw + sin(z — w)].

SO, I'xy = Tyx.
And similarly, we can compute that txy = tyx. Thus, the two equation in (4.3) are

equivalent: zyy = ryx. And the two equation in (4.4) are equivalent since txy = tyx. We
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can recover the solution in terms of (¢,z) with function x = z(X,Y’) by integrating one of
the equation in (4.3). Also, we can write t = t(X,Y’) by integrating one of the equation in
(4.4).

Next, we prove that the function v is a weak solution to (1.3). From (1.5), we want to
show that

0= / drvp — ()Pl [c(v)v,] — %g(v)dmdt.
In fact, it is equivalent to prove:
0= [ [0+ cvn = (e0)6)a) + (0= colon + (e(0)o] = dg(o)das

i i 1 1
:// — Slnwp)y¢ — (sz )x¢+ %[SIHU)# — sin z$]¢(tan§ — tan%)dXdY
c

- / ¢ g(v)dxdt

=[41II.
We define T and II later, and where in the last step, we have used (4.2),
dr dx
dX dy Pq
dzdt = dXdY = axdy.
T ae 2¢(1+ R2)(1 1 5?)
dX dy
And used the following identities derived from (2.30),
I l+4cosw
1+R 2 7
(45) 1 1l+cosz
1+52 2 7
R sinw
1+R2 27
4.6
(4.6) S sinz
1+52 2
We denote I and II as follows
sin w sin 2z
=[] (55), 0= (5570) ¢
(4.7) 1+ 1 +X
cpq sinw-—— 2% _ g ,= T C8W 0] (tan Z _tan —) dXdy,
8c 2 2 2
and
(4.8) I —/ ¢ g(v)dxdt.

A computation on I with (2.28) - (2.30) shows that

COS W Sil’l w COS 2 Sll’l 4
Iz//—( wyp + 5 py)cb—( 5 2xq + )

//—gbg )(cosw + cos z + 2 + 2 cos z cos w

q [cos(w + 2) — 1]¢pd X dY
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(XZ' YZ)

Casel Case 2

FIGURE 4. The paths of integration.

+ cos? w cos z + cos w cos? z 4 sin® w cos z + sin” z cos w)dXdY

:/ ?qﬁg(v)(l + cos z + cosw + cos z cosw)d X dY.
c

A computation on II shows that

bq
= //d’g(”) e+ )1+ )Y

—/ ?¢g(v)(1+Cosz—|—cosw—|—coszcosw)dXdY.
c

Clearly, I = II. Thus the integral (1.5) holds since

o= [f-(%5%), 0~ (5) o

/ 1 1
4 C8pq {sinw +;OSZ — gin ZW} ) (tan% — tan %) dXdY — //qbg(v)dajdt
C

0=1-1I,
where I is defined in (4.7), and II is defined in (4.8).

Next, we define v as a function in terms of the original variables (¢,x). We invert the map
(X,Y) — (t,z) and then we have v(t,z) = v(X(¢,2),Y (¢t,2z)). Given arbitrary (¢*,z*) in
the ¢-x plane, we choose arbitrary point (X*, Y*) in X-Y plane such that t* = ¢(X*,Y*) and
¥ = x(X*, Y"). We define that v(t*, *) = v(X*, Y*) and assume that there are two different
points (t(X1, Y1), z(X1,Y1)) = (((X2, Y2), 2(X2, Ys)) = (t*,2%). We consider two cases: case
1: X < Xy,Y] <Y, and case 2: X; < X5, Y] > V5. Case 1: X; < X077 <Y,. We

consider the set

[y ={(X,)Y):2(X,)Y) <z}
We denote OI',+ as the boundary of I';«. By (4.3), we observe that x is increasing with X
increasing and x is decreasing with Y increasing. Thus, this boundary can be write as a
Lipschitz continuous function denoted as X —Y = ¢(X —Y).  We construct the Lipschitz

continuous curve vy with the following properties:
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e a horizontal line segment connecting (X1, Y7) with a point P = (Xp, Yp) € Oy~ and

Yp =Y.
e a vertical line segment connecting (X, Y2) with a point @ = (Xg,Yy) € OI'y- and
XQ - XQ.

e a part of OI',«.
Thus, we obtain a Lipschitz continuous parametrization of the curve v : [{,&] — R x R
where the parameter £ = X + Y. By observing, the map (X,Y) — (¢, ) is constant along
the curve 7. And (4.3) - (4.4) implies that

(4.9) (1+cosw)Xe = (14 cosz)Ye =0,
From (4.9),
(4.10) sinwX¢ = sin 2Y; = 0.

Thus, by (4.10)

1(X@)3)—v(Xh}ﬁ):L/Odeﬂ+vde)

~

52 . .
psinw gsin z
= Xe — Ye)dé = 0.
/51 (g Xe — = Ye)dt

So our claim for case 1 is proved.
Case 2: X7 < X5,Y; > Y,5. We consider the set:

Iy ={(X,Y)  t(X,Y) <t}

And we do the same process as we did in case 1. Construct v connecting (X;, X») and

(X3, Y3) as Figure 3 case 2 indicates.

Next, we prove the function v(t,z) = v(X(t,z),Y (t,z)) is Holder-3 continuous on the
bounded sets. To prove this, we need to consider characteristic curve such that ¢ — 27 ()
with 2+ = c¢(v). For some fixed Y, this can be parametrized by the function X

(t(X,Y),z(X,Y)). By (2.20), (2.22), (2.24) and (2.30),

T X, 1
/ [0 + c(v)v,)2dt = / (2cX,vx ) —~~dX
0

Xo 2X,
X, X,
:/ ﬁmﬁﬂmgf Pax <c,.
X, 2C 2 x, 2C
Thus, we obtain that
(4.11) / [v; + c(v)v,)*dt < C.
0

Similarly, we integrate along backward characteristics curves ¢t — 2z~ (¢) and find out that

(4.12) /T[vt — c(v)v,)*dt < C..
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Thus, since the speed of the characteristic curve is +c(v) or —c(v) and ¢(v) is uniformly
positive bounded. With the bounds (4.11) and (4.12), the function v(¢, z) is Hélder-1 con-

tinuous. O

5. CONSERVED QUANTITIES

This section provides a proof of Theorem 1.2. Recalling (2.12) and (2.13), a straightforward

1 1 G(v)
by = (ivf + 50%% + T)t

computation shows that

/ 2 2 1 3
= vy + VUL + VUL + Q(U + 07 )y,

(PM), = (—CPv0,) s = —2¢V20; — Uy — UV,

1
Ey 4 (M), = vy(vy — ccvy — Pvge + = g(v) = 0,

2
and
M; = =040 — ViU,
E, = vy + cvav? + Fogvp, + 5 g(v)vy,
1
M+ E, = —v, (vtt — v — Py — 3 g(v)> =0.
Thus,
(5.1) By + (M), =0,
Also,
1 1
(5.2) fo = (LHcoswp o (L+c0s2)g
4 4
1 1
(5.3) g = (L coswlp o (L+c052)q )
4c 4c

which is closed. We want to show that Edx — (c2M)dt, Mdx — Edt are closed. Recalling
(2.28) - (2.30), we write Edz — (¢*M)dt, Mdzx — Edt in terms of X,Y, and show that they

are closed.
Edr — (*M)dt =

(54) 1- 1 1- 1
( cosw)+( —i—cosw)G(v) pdX — ( cos.z)+ +COSZG(U) e
8 8 8 8
Mdx + Edt =
(1 —cosw) (14 cosw) 1 —cosz 14cosz
{ S + S G(v) p pdX + ” + 5 G(v) ¢ qdY.
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Y
D Al (t,a)
(z, d)
r X
B (1, b)
Yz
C
(T, C) Yo

FIGURE 5. The region I.

And we compute that

([t 0smmn] )

—sinwG(v)p ¢

(14 cosw) g(v)p 1

—(cos z — cosw)q +

8 82 16 1c %02
1 /
%G( )862 [sin z — sin w|pg
{{(1—0082’) 1+cosz }

and

)
{{(1 —g:;)sw)+(1+cosw }p}

= nggpc’(cos z —cosw)q — 5124116)5(] g(v)(1 + cos 2)(1 + cosw)

11— ! 1-—

(él;i)w)c[sinz — sinw|pq — ((;(;—S;Um sinw g(v)(1 + cos z)
c ¢

sinw d (14 cosw)

- pG(U)E%T(COS z —cosw)q + %

Y

G(v)

& 1+ cosw 1
o —[sin z — sinw|pq + a9, P g(v )— sin zq

1—cosz 1-+cosz
= G .
e e},
Thus {Edz — (*M)dt}, {Mdx — Edt} are closed.
To prove the inequality (1.9), We fixed some 7 > 0, and the case 7 < 0 is identical. We
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assume that for an arbitrary large » > 0. We define the set
(5.5) F={X,)Y):0<t(X,V) <7, X<nrY<r}
We form the map (X,Y) — (¢, ) in the following pattern:
A (1,a), B~ (1,b), C—(0,¢), D+ (0,d),
such that a < b and ¢ > d. Then, we can integrate the (5.4) along 0T, the boundary of T.

/AB{(l—cosw)p+ (1—|—cosw)pG(U)}dX_ {(1—cosz)q+ (1+cosz)qG(v)}dY

8 8 8 8
:/DC{(1_C8osw)p+ (1+c;sw)pG(U)}dX_{(1—c805z)q+ (1+<:80sz)qG(U)}dY
_/[)A{(l—cgsw)p+ (1+C§8w)pG(U>}dX
_/CB{(1_cg)sz)q+ (1+08082)qG<U)}dY
S/DC{(1—c§sw)p+ (1+c§sw)pG<U)}dX_{(1—<:80sz>q+ <1+;osz)qG<U)}dY

< [ 5]#0.0+ 200020.0 + § 0.0 ar
Also,

/ab% [Uf(o,x) + A(w(0,2))02(0,2) + %g(v(o,x»] .

:/ {(1—cosw)p+(1+cosw)pG(U)}dX
ABN{cosw#—1} 8 8

) {(1 STLETA +<;osz>qG(v)} .

< &.
Let r — 00, @ — —oo and b — +o00. We conclude that £(t) < &. Thus, the inequity (1.9)
is proved.
Now, we prove the Lipschitz condition on the map ¢ + v(¢,-) in the L? distance. First,

for any fixed time 7, we define p, == pu; + pb and p, is the positive measure on the real
lines. We define p, uf as follows.
we define I'; = {(X,Y) : ¢(X,Y) < 7} and let 7, be the boundary of I',.
For any open interval |a, b[, we define A = (X4,Y4), B = (Xp,Ys) be points on the 7,
such that
x(A) =a, and Xp — Yp < X, — Yy for all points P € 7, and z(P)
x(B) =b, and Xp — Y < Xp — Yp for all points P € ~, and z(P)
Then we have

(5.6) iy = w7 (Ja b)) + 7 (Ja, ),

<a,
> b.



GLOBAL SOLUTION TO A NON-LINEAR WAVE EQUATION OF LIQUID CRYSTAL

T+h

Yr+h

X y-Kh  x(P7) y x(PY)

FIGURE 6. Proving Lipschitz condition.

and define that in the general case

(57) et = [ =S Gt | ox
(5.8) it (la, b)) = /AB - { (1= ;OSZ)Q L. (;OS Z)QG(U)} dy.
In the smooth case:

b
(5.9) 1= (Ja, b)) = i / R2(7, 2)dx,
(5.10) pt(la, b)) = }l/ S (1, x)d.

y+Kh

X

27

Clearly, u* and p~ are bounded positive measure. For all 7, we have i, (R) = & by (5.4).

By (5.9)- (5.10) and (2.13) we compute that

b b 2(p _ Q)2 b p2 2
/ Auldr = / C(R4—25)dm = / al 2225 5 dx
a a c a

b 2 2
< / 25 e = op(la,b).

Thus, for arbitrary a,b with a < b,

b
(5.11) lv(7,b) —v(r,a)]* < |b— a|/ v (7, y)dy < |b— al2K?p,(Ja, b]).

For given y € R and h > 0, our goal is to estimate the |v(7 + h,y) — v(7,y)|.

the boundary of the set I, .

Let P = (Px, Py) be points on 7,4, (as the figure 5(a) shows) such that 2(P) = y, and

Xp—Ys < Xp—Ypforall Pen,, z(P) < z(P).

Let @ = (Qx,Qy) be points on v, such that 2(Q) =y and X5 — Y5 < Xg — Y for all

Q € Yr+hs .Z'(Q) < x(@)

So Xp < Xgand Yp <Yy Let P" = (Xg,Y") €, and P~ = (X",Yy) € 7.

We first
denote that I';y, as the set I'.y; = {(X,Y) : ¢(X,Y) < 7+ h} and denote that ., to be



28 LINJUN HUANG

As shown in the figure 5, since the point (7,2(P*)) lies on some characteristic curve
with the speed c(v) < K and go through the point (7 + h,y), so z(PT) €ly,y + Khl.
Also, z(P~) €]y — Kh,y[, since point (7,y) lies on some characteristic curve with the speed
—c(v) > —K and go through the point (7 + h,y).

Thus, and by (2.30), we can compute that
Yo

0(Q) — v(PH)] < / vy (Xg, Y)|dY

Y+

1 1
_/YQ 1+cosz \2/1—cosz QdY
- v+ 4e 1 4c 1
1 1
Yo 1 2 Yo 1— 2
/ +coszqu / coszqu
4c v+ 4c

<
1 1
< ( Yo 1+cosz JdY - 1+coswde>2 </YQ 1—(3oszqu+ l—coswpdy)2
4 v+ 4c 4c
pt %
1-— 1
< "t / STy gy
_ 4c 4c
Pt %
Sh% / 1_COSquY—|—1_Coswde ‘
- 4c 4c
Thus
pt %
1 1-— 1
(5.12) 0(Q) — v(PT)| < B (/ %W + #my)
_ c

So, by (5.11) and (5.12) we compute that

lo(T + h,z) —o(r,2)|* =[v(r + h, ) —v(t(P),z(P")) + v({t(P"),2(P")) — v(r, z)|?
<2{v(7 + h,x) —v(t(PT), x(P)} + 2{v(t(P"),z(P")) — v(r,2)}*
<2{v(Q) —v(P)}* + 2{u(P*) — v(P)}*

19 2
pt B i 2
<9 h% (/ 1 COSquY+ 1 Coswde>
_ 4e 4e
+ 2 [2K*(Kh)pir (|, © + h])]
<4hp(|Jx — Kh,x + Kh[) + 4K*hji, (Jz, = + h])

<4hp(Jx — Kh,z + Kh[)(1 + K?).
Thus, for all A > 0,

el = {/'“ (r+ha) <T,as>|2dx}5
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< {/4(1 + KHhpr (o — Kh, 2 + ICh[)}2
< {4+ )R p-(R) }
< BA(K? 4+ 1)&)?
<|r+h-r7|L,

N

(5.13) lo(7 + By ) = (7, )z < HACK® + DE),
where L = [4(K? + 1)50}% is the Lipschitz constant. So, this proves the uniform Lipschitz
continuous of the maps t — wv(t, -). O

6. REGULARITY OF TRAJECTORIES

In this section, we show that continuity of functions ¢t — v.(t,-) and ¢t — wv,(t,-) as
functions with function value in L2. It completes the proof of Theorem 1.1.

We consider the that the initial data (vy), and v; are smooth functions with compact
support. In this situation, the solution v(X,Y’) is smooth on the X-Y plane. Fix some time
7 and denote that I, = {(X,Y) : ¢(X,Y) < 7}. ~, is the boundary of set I';,. Then we

claim that
(6.1) —u(t, ) |i=r = ve(7, ).
By (2.21), (2.24), and (2.30),

v(T, ) = ox Xy + oy Yy

B sin w 2c n sin z 2c
(6.2) e pp(l +cosw)  4e qq(l + cos 2)
sin w sin z

2(1 + cosw) * 2(1+cosz)’

(6.2) define the value of v,(7,-) at almost all the point of z € R. By the inequity (1.9) and
c(v) > K,
(6.3) / vy (7, @) |Pde < K2E(T) < K.

R

Next, to prove (6.1), given € > 0, there exists finitely many disjoint intervals [a;, b;] subsets
of R with i = 1,2...N. We call the A;, B; € v, with z(4;) = a;, ©(B;) = b;. Then at every
point P in the arcs A;B; while 1 + cos(w(P)) > € and 1 + cos(z(P)) > e,

min{1 + cos(w(P)), 1+ cos(z(P))} < 2e.

We call that J := J, ;< (a;, b;] as the points P along the curve -, that does not contain in
any of the arcs A;B; and denote that J' = R\J. Since v(t, ) is smooth in a neighbourhood
of the set {7} x J' and by the differentiability of v and apply the Minkowski’s inequality,

lim * {/R W(r + b, 2) — v(r, ) — hur(r, a:)|pdx};

h—0 h
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<hm—{/|v7‘+hx}—v(7‘x|pda:} {/|vt7'x|pdx}
h—0

Now, we estimate the measure of the bad set J. Since (1 + cosw) < 2¢(1 — cosw) and
(1 4+ cosz) < 2¢(1 —cos z),

(14 cosw)p (1+ cosz)q
meas(J) :/da: = Z/AB TdX - TdY

1 —
<262/ U =cosw)p,y (L=cosz)g Zosz)qdy

< 26/ (1 —cosw)de_ (1 —cosz)qdy
4 1

S 2680.

2
Using Holder’s inequality with exponents — and ¢, we choose ¢ =
p

By (5.13),

2 1
Sothat]—?—i-—:l.
—p 2 q

/’U(T—i—h,ﬂc) —v(7,2)|Pdx < meas( % {/ lv(T, x) (T, aﬁ)\zdx}
J

;-

[N

< [2¢&0) { (K3 + 1)&]

Thus,
N s
tigsupg { [ 1067+ 00) = oG o

< [26]7 + hA(K? +1)&)2.
Similarly, and by (6.3) we estimate that

/\Ut 7,2)|Pdr < [meas( {11{/ |vg (7, de}

{/J vy (T, a:)|de} [Qego]pq K 50]%

Since € > 0 is arbitrary, so we conclude that

lim —{/|v7+hm o(r, )—hvt(T,x)|pdzp} = 0.

h—0

Thus,

Next, we prove the continuity of the map ¢t — v;. First, we fix ¢ > 0 and consider disjoint
intervals [a;, b;] subsets of R with i = 1,2...N. We call the A;, B; € v, with z(4;) = a; ,
x(B;) = b;. Since v is a smooth function on the neighbourhood of {7} x J’. By Hélder’s

inequality and Minkowski’s inequality, we estimate that

lim sup/ |oe (T + h, x) — ve(7, 2)|Pdx

h—0

< lim sup/ o (T + h, ) — v (7, x)|Pde
h—0JJ
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< lim sup[meas(J % {/ |oe(T + h, ) — v (T, 2)| d:c}

h—0

< limiu%[Ze&]F {l|ve(T + hy )| p2 + |Jve(T, )||L2}2
—

1
S [2650] q [450]p
Since the € > 0 is arbitrary, so we prove the continuity.
For general initial data (vg),, v1 € H', we consider a sequence of initial data vy — vy,
(V) = (v0)z, and v} — vy in € H' for all n € N, (v),, vy, v € C°. The continuity of the

map t — v,(t,-) with values in L and 1 < p < 2 can be proved in the same way as above.

7. ENERGY CONSERVATION

In this section, we provide proof of Theorem 1.3. First, we define the wave interaction

potential as

(7.1) A(t) = (. @ p {(@,y) 12 >y},
where the p; and p;f are defined in (5.7) and (5.8). And since u; and p;° are absolutely

continuous in Lebesgue measure, so (5.9) and (5.10) holds and (7.1) implies that
(7.2) // R*(t,x)S?(t, x)dxdy.

Lemma 7.1. There exists a Lipschitz constant Ly such that
A(t) — A(s) < Lo(t — s),

with t > s > 0. So the map t — A(t) has bounded variation.

The Lemma is proved later in this section.

To prove Theorem 1.3, we need to consider three sets

O ={(X,)Y): wX,)Y)=—m 2(X,Y) # —m (v(X,Y)) # 0},
Q= {(X,Y) :w(X,Y) £ 7, 2(X,Y) = =7, d(u(X,Y)) £ 0},
Q={(X,)Y): wX,)Y)=—m 2(X,Y) = —m d(v(X,Y)) # 0}

From (2.28), and since wy # 0 on ©; and zx # 0 on Qy, so that meas(;) = 0 and

meas(§g) = 0.

We define €25 be the set of Lebesgue points of {13 and want to show that

(7.3) meas({t(X,Y) : (X,Y) €Q3}) =0

First, we fix point P* € Qf and P* := (X*,Y") and claim that for h, k > 0,

. ANr—h)—=AT+k)
7.4 1 —
(74) h,kl—rf}ﬁ h+k
For arbitrary ¢ > 0, € arbitrary small, we can find 6 > 0 such that for any square () with

length [ < § center at P*, there exists a vertical segment o satisfying meas(23Uc) > (1—e€)l,
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and a horizontal segment ¢’ satisfying meas(Q3 U d’) > (1 — €)l.
We define that

(7.5) T =max {t(X,)Y) : (X,Y)eocUo'},

(7.6) T =min{{(X,Y): (X,)Y)eoUo'}.

By (4.4), for some constant ¢y > 0

(7.7) th—t < /(1+Z—st>de +/ Waﬁ/ < co(el)?

(7.7) is Lipschitz continuous and vanished outside of a set of measure el. Also, for some

constant cq,cy > 0,
(7.8) A7) =A@ > (1 — )1 — co(tT + —t7).

Since the choose of € > 0 is arbitrary, so this implies (7.4). And by the Lemma 1, the map
t — A has bounded variation, so (7.4) implies (7.3).

Thus, the singular part of the pu; is not trivial only if the set Q4 = {P € ~ : w(P) =
—m,2(P) = —n} has positive one-dimensional measure. By the above analysis, this is
restricted to a set where ¢ # 0 and only happens for a set of time with measure zero.

Proof of Lemma 1.
From (2.11),

79 (R?), — (cR?), = £(R*S — S?R) — Rg(v),
| (52); + (¢52), = —£ (RS — S2R) — S g(u).

We first provide an argument valid for v = v(t, z) is smooth. (7.9) implies that

G0 =g [ R0 oy

- / / IR(t, 1) (t, y)cRo(t, x) +25(t, ) R(t, 2)eS, (1, y)
1 25(t,y) Bt x)%(s%, r) — R*(t,2)) + 2R(t, ) (1, y)Z—;(R2(t, r) - S(t,))
~ 2R(1,2)S7(t, ) 50(0 (1, 7)) — 25, 9) B2 (1, ) 590 (t,y))ddy

< // c(S*R*), + 23;(1-22 — S?)(RS? — S*R)
— R(t,2)S*(t. y)g(v(t, x)) — R*(t,2)S(t, y)g(v(t, y))dwdy

< - 2/CR252d1: - /(R2 + 5%)dx - /26—;|R25 — S?R|dx

- [[ R0t 0)gtelt.2)) + R 005 v)g(elt.)dady,

And estimate the last term from the above calculation,

'//R(t’x>52(t>?/)9(v(t,$))dxdy'
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< / S*(t, y)dy / IR(t, 2)g(v(t, 2))| dz

< &l|R(t, )| 2 llg (vt 2)) | 2

g(v(t, z))

1
< &&q vt o)l 2| === e

v(t, x)
< &.
Similarly,
[ sl
< &.
Thus
(7.10) jt(zm( ) < —2K! // R?S?dx + 4& /|R2S S?R|dx + 2&2,

Where (1) is defined as a quantity and its absolute value has a uniform bound depending
only on ¢(v). Also, the map ¢ +— A(t) has bounded variation on any bounded interval. The
smooth case is proved. The following provides a proof of Lemma 1 in general cases. For
every € > 0, there exists a constant K. satisfying that for all w, z,

| sin z(1 — cosw) — sinw(1 — cos z)|
(7.1 <K, [tan2 <E> + tan? (f) } (1 +cosw)(1+ cosz)+ €(1 — cosw)(1 — cos z)
- 2 2 '

For fixed 0 < s < ¢, consider the sets 'y and T'; as we defined in (5.5) and define T'y; := T',\T,.

Recall that
dxdt = gq(l + cosw)(1 + cos z)dX dY.

c
We write that

(7.12) / /+OO i(R S?)dadt = (t — 5)&,
(7.13)
/ /%O ~ 5)dadt = // 3pzq (14 cosw)(1 + cos 2) | tan? (2) + tan?(— )] dxdy.

(7.12) holds only on the case that v(¢, z) is smooth while (7.13) holds for all cases. Combine
(5.4), (5.7), (5.8) and apply (7.11)-(7.13), we obtain that

// (1 —cosw)(1l — cosz)pqudY

c/pq : :
+ & [sin z(1 — cosw) — sinw(1 — cos 2)|dXdY
r

., 64c¢?
. G /
+50//Ft 32 29 )(1—|—cosz)sinw—%Eg(?})pi(cosz_cosw)q
(1 1 1 /
(Ll 1 gy (02500 v
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1
<— // (1 —cosw)(1l — cos z)pgd X dY
64 JJr.,
e [[ © pa{ Keftan®(Y) + tan(5)](1 + cosw)(1 + cos2)
[tan®(— an”(= cos w cos z
° /)., 6ac2P" 2 2
+¢(1 — cosw)(1 — cosz)}dXdY + & // { - %g(v)(l + cos z) sinw
st ¢
1 G ! 1 1
_ Wé(co&z —cosw)q + 1+ cosgu)g(v)p@ sin zq
(14 cosw) . .
+ 3—2§G(v)[smz — sin w]pq}dXdY
<K(t—s),
for a suitable constant K. Thus, Lemma 1 is proved. O
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