
GENERATING NOISE FOR LANGEVIN DYNAMICS SIMULATIONS

by

Lorenzo Mambretti

Thesis in major, submitted for

completion of Mathematics and Scientific Computation

June 13, 2019

University of California, Davis

APPROVED

Niels Grønbech-Jensen, Ph.D.

Department of Mathematics, College of Letters and Science

Contents

1 Introduction 1
1.1 Anomalies . 2
1.2 Initial hypothesis . 2

2 Noise 3
2.1 PRNGs . 3

2.1.1 Park-Miller . 4
2.1.2 RAN2 and RAN3 . 4
2.1.3 RANMAR . 5
2.1.4 RANLUX . 5
2.1.5 Mersenne-Twister . 5

2.2 Transformations . 5
2.2.1 Box-Muller Transform . 5
2.2.2 Ziggurat algorithm . 6

2.3 Tests . 6
2.3.1 ”Chi-Square” test . 7
2.3.2 The Kolmogorov-Smirnov test 7
2.3.3 Birthday spacings test . 8
2.3.4 Spectral test . 9
2.3.5 Sequence covariance . 10
2.3.6 GJF simulation on harmonic oscillator 13

3 Discussion 15
3.1 PRNG choice . 15
3.2 Transform choice . 16
3.3 GJF as a test for PRNGs . 16

2

Abstract

We present an analysis of detected statistical anomalies in the results of ap-
plying the GJF algorithm for simulating Langevin dynamics in discrete time
to a simple one-dimensional oscillator with friction and noise such that ther-
mal equilibrium is obtained.The anomalies are detected in, e.g., calculations
of energetic averages, where particular variations around the correct value are
noticed as a function of the applied time step. We found that the random num-
ber generator RAN3 used for the noise was solely responsible for the observed
anomalies. We then performed both a theoretical and empirical analysis of sev-
eral pseudo-random number generators that can be used a replacement, with
the goal of understanding their impact on Langevin dynamics simulations. Our
test results show which algorithms and transform methods can produce noise
with the most correct distribution, thus allowing for good statistical results.
Finally, we recommend the addition of the GJF algorithm as new empirical test
for random number generators given that it’s easy to implement, it’s applicable
to any generator, and it has direct physical applications in Langevin dynamics.

1 Introduction

To perform simulations in molecular dynamics (MD) there exist a variety of
methods and algorithms which have been developed over the years. One of the
most popular classes of methods is based on Langevin dynamics (LD) simula-
tions. In LD, the physical system is based on three components: a force f(r, t),
a friction component with friction coefficient α ≥ 0, and a thermal white noise
β(t). Explicitly, the Langevin equation is given by [9]

mv̇ = f(r, t)− αv + β(t) (1)

To satisfy the dissipation-fluctuation theorem, it is assumed that the stochas-
tic noise is Gaussian distributed, and has the following statistical properties [9]:

〈β(t)〉 = 0 (2)

〈β(t)β(t′)〉s = 2αkBTδ(t− t′) (3)

The first algorithm which can produce discrete time statistics for Langevin
dynamics with exact distribution is the GJF algorithm [3]. When applied to
linear systems, this algorithm has been proven to produce exact statistical dis-
tribution of the trajectory of and its derived physical measurements, such as
potential energy. The algorithm defines the trajectory at a specific time step
recursively as a function of the previous state of the system {rn, fn, βn} and
the noise βn+1 at the current time step. Explicitly, the trajectory is given by

rn+1 = 2brn − arn−1 +
bdt2

m
fn +

bdt

2m
(βn+1 + βn) (4)

with

a ≡
1− αdt

2m

1 + αdt
2m

b ≡ 1

1 + αdt
2m

(5)

It is easy to see how equation 4 can be easily implemented as an algorithm
and used to perform long simulations. A nice property of the GJF algorithm is
given by the fact that, for linear systems such as a harmonic oscillator f = −κr,
we can analytically verify that it produces the correct statistics. In particular,
for the above mentioned harmonic oscillator

Ep =
1

2
κ〈(rn)2〉 =

1

2
κBT (6)

This analytic solution allows us to actually verify whether the simulation codes
are exact, so to compare the test results obtained by computer simulations with
the theoretical solution.

1

1.1 Anomalies

As we know that the algorithm will produce exact solutions for linear systems,
we decided to computationally test it on a harmonic oscillator by collecting
measures of potential energy for values in the entire spectrum of dt. We set
up the simulations with parameters κ = 1, α = 0.05, T = 0.2 and performed
109 steps for 200 equally-spaced values of dt to cover the entire stability limit.
A system with these parameters is described as in a regime of underdamped
dynamics, and it should be always stable. Moreover, we used the known random
number generator RAN3 [11], to create the random numbers used as source for
the noise.

Notice that according to equation 6, the potential energy in a harmonic
oscillator is invariant on the time-step value dt. Once we ran the simulations,
however, we discovered that the simulations were producing abnormal results
for some specific values of dt. We were expecting a constant value, but in the
spectrum that we obtained there were clear spikes, specially for lower values of
dt. The anomalies are shown in the figure below.

Figure 1: Mean potential energy using α = 0.05, κ = 1, T = 0.2 and the random
number generator RAN3 for 109 time-steps.

1.2 Initial hypothesis

As these anomalies were much larger than any statistical error we already ac-
counted for, we realized it was necessary to investigate their possible cause.

2

As we were confident on the theoretical correctness of the algorithm, our ini-
tial hypothesis was that some unforeseen interference within the algorithm was
responsible for the anomalies.

We observed that the anomalies were increasing in amplitude at decreasing
friction coefficient α or increasing temperature T . The initial observations we
did on the anomalies did not provide more insights on potential interference,
but a new candidate emerged: the noise. The noise β(t) is indeed related to
all the above mentioned terms, and it was controlled by parts of the algorithm
that were not well studied. We discovered that an incorrect generation of the
noise, and in particular a poor random number generator (RAN3), was the
sole component responsible for the anomalies in the simulations. This called
into question how to correctly generate noise for LD simulations and which
aspects of random number generators are truly important to consider. For these
reasons, we decided to start a detailed investigation of how the noise is typically
generated, which factors come into play, and what replacement we could use.

2 Noise

The noise is perhaps one of the most overlooked aspects of physics simulations.
For the Langevin algorithms, the noise is assumed to have a Gaussian distribu-
tion and characteristics described by equations 2 and 3. The noise is commonly
generated through two steps:

1. A pseudo-random number with uniform distribution between 0 and 1 is
generated from an algorithm.

2. The generated uniform random numbers are converted into random num-
bers with a normal distribution

These steps are fundamental to create the noise with the expected characteris-
tics, and they need to be carefully performed to ensure accurate results.

2.1 PRNGs

Pseudo-random number generators (PRNGs) constitute a class of algorithms
which require one or few numbers to be initialized, and they output a new
number at each function call. Over time, the sequence of numbers generated
is claimed to be ”random” if it has statistics which are equivalent to those
of random variables. The sequence of numbers is eventually destined to be
repeated with a certain period which is characteristic of the PRNG. Here we
describe six possible portable random number generators, from the simple to
complex.

3

2.1.1 Park-Miller

A very simple PRNG by Park and Miller [5]. This algorithm is based on a linear
congruential generator (LCG) of the form

Xi+1 = aXi mod m (7)

with parameters

a = 75 = 16807 m = 231 − 1 = 2147483647 (8)

This PRNG will generate a sequence with period ≈ 2.1 × 109. This period
should be long enough to perform many simulations, although we recognized
that it can already be a limiting factor in the most computationally expensive
applications.

2.1.2 RAN2 and RAN3

RAN2 and RAN3, described in Numerical Recipes in C,[11] are point of interest
because they are trying to solve some of the possible problems of the Park-Miller
generator, while still remaining relatively simple. Although more recent PRNGs
have been developed, occasionally it is possible to find these PRNGs utilized
in software simulations, included some specifically for Langevin dynamics. The
initial implementation we had was, indeed, based on RAN3.

RAN2 is a long period (> 2× 1018) PRNG of L’Ecuyer with Bays-Durham
shuffle and added safeguard. At the moment of the publication, it was claimed
to produce ”perfect” random numbers [11]. In the spectral test that will be
executed later, this PRNG is converted to a LCG with parameters

a = 1968402271571654650 m = 2147483563 (9)

RAN3 is based on a subtractive method, also known as a lagged Fibonacci
generator. RAN3 generates the next random number following the rule

Xi = Xi−55 −Xi−24 (10)

It has a long period (> 2× 1016) and it seems to have a slightly better perfor-
mance in terms of execution time compared to RAN2. For the spectral test, we
consider the terms as they are generated in their LCG form within the algorithm,
thus on the parameters:

a = 161803398 m = 1010 (11)

It’s to be noticed that the LCG is used to produce the initial sequence of 51
numbers, while every other number is actually generated by the subtractive
method.

4

2.1.3 RANMAR

RANMAR is a more recent PRNG which is commonly used in MD simulations.
It is at the core of software programs directly utilizing the GJF algorithm,
such as the LAMMPS software for Molecular Dynamics simulations [10]. Its
implementation is based on the combination of two different methods: a lagged
Fibonacci Generator and a LCG.

2.1.4 RANLUX

RANLUX is a very famous random number generator, first described by Lüscher
in 1994[6]. It has been proven to give high-quality results for many applications.
It is currently used in software around the world included for simulations at
CERN, where it is regarded as a very high-quality PRNG.[4]

To later perform the spectral test on RANLUX, we can create an equivalence
with a LCG based on the parameters described by Lüscher[6]:

a = 2576 − 2552 − 2240 + 2216 + 1 m = 2576 − 2240 + 1 (12)

2.1.5 Mersenne-Twister

Mersenne-Twister is another highly-regarded random number generator, first
described in 1998 by Matsumoto and Nishimura [8]. We decided to include it
in our tests as it is currently one of the most popular PRNGs in the scientific
community.

2.2 Transformations

After we obtain random numbers with uniform distribution, we need to convert
them into a normal distribution so it has the desired characteristics to perform
LD simulations. There are three main methods that we here describe to convert
standard random uniforms into normally distributed random numbers. The first
two methods are based on the Box-Muller transform [1], while the third method
is the Ziggurat Algorithm [7].

2.2.1 Box-Muller Transform

The Box-Muller transform[1] is a method to generate a pair of independent
normal random numbers from two standard uniform random numbers. There
are two versions of this method.

The first version is based on converting the two numbers to coordinates
in Cartesian form. Given two standard uniform random numbers x1, x2 the
method will generate {

y1 =
√
−2 lnx1 cos 2πx2

y2 =
√
−2 lnx1 sin 2πx2

(13)

5

A second version of the method uses coordinates in polar forms. It defines the
quantity

r = (2x1 − 1)2 + (2x2 − 1)2 (14)

If r is within the interval (0,1], then we accept the value of r. Otherwise a new
pair of random numbers x1, x2 is generated until r is valid. If r is accepted,
then the standard normal numbers are generated as followingy1 = x1

√
−2 ln r

r

y2 = x2

√
−2 ln r

r

(15)

2.2.2 Ziggurat algorithm

The Ziggurat algorithm [7] is a rejection sampling method. The algorithm works
by dividing the area under a curve f representing a normal distribution into n
rectangles of equal area, stacked from bottom to top and with their left side
laying on the y axis. Each rectangle i is described by two numbers xi, yi, which
are the coordinate of the right-top corner of the rectangle. At initialization, a
table of all the rectangles is computed such that xn = 0, meaning that the top
rectangle reaches the distribution peak at (0, f(0)) exactly. The curve is given
by the probability density function

f(x) = e−
x2

2 (16)

The algorithm then generates two random uniform numbers U1, U2 and proceeds
with the following steps:

1. Let x = − lnU1

x1

2. Let y = − lnU2

3. If 2y > x2, return x+ x1, otherwise return to step 1

This algorithm over time will generate from pairs of uniform numbers a sequence
of random variables with normal distribution.

2.3 Tests

The most important properties of our noise is that it needs to be ”random”
enough. As PRNGs are based on mathematical operations, nothing is truly
random, but we can ensure that the numbers generated have statistics which
have the same distribution of random independent variables. A variety of tests
have been developed over the years to test randomness [2]. Here we are reporting
some of the most significant tests and the results on all the previously introduced
PRNGs. Moreover, we will use the PRNGs to generate noise for a simulation
in the GJF algorithm; in this way we can test whether each of them satisfy the
expected properties and achieve results comparable to the analytic solution in
a harmonic oscillator.

6

2.3.1 ”Chi-Square” test

The chi-square test (χ2 test) is one of the best known statistical test. It is used
to measure the difference between a set of n observations Ys and their expected
probability distribution ps over k classes. The statistic can be computed with
the formula

V =
1

n

k∑
s=1

(Y 2
s

ps

)
− n (17)

Since the observations Ys are generated from random numbers that are supposed
to be uniformly distributed between 0 and 1, we expect all probabilities ps to be
identical, ps = 1

k , as we consider each class an equally sized partition of (0, 1).
Once we obtain the value V, we can compare it with the expected value. For

this test, we take the suggestion of Knuth [2] and consider the test failed if the
value V falls below the 1% or above the 99% of the distribution. For the test
we consider a distribution over k = 50 possible classes, thus V is expected to
fall between the values 29.71 and 76.15 to pass the test.

PRNG n = 106 n = 107 n = 108

Park-Miller 0.95 0.97 0.97
RAN2 0.98 0.96 0.99
RAN3 0.99 0.98 0.98
RANMAR 0.98 0.98 0.97
RANLUX 1.00 1.00 0.99
Mersenne-Twister 0.98 0.95 0.98

Table 1: Percentage of success in the Chi-square test.

From our results we can observe minimal differences between the random
generators. The simple Park-Miller generator seem to perform slightly worse at
all settings, while RANLUX performed the best across all n.

2.3.2 The Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test (KS test) is another popular test, but it is more
suited for observations that can fall into infinitely many values. The test mea-
sures the maximum difference between an expected distribution function F (x)
and an empirical distribution function Fn(x), where

F (x) = Pr(X ≤ x) = probability that(X ≤ x) (18)

Fn(x) =
number of X1, X2, ..., Xn that are ≤ x

n
(19)

7

To make KS test, from n observations Xj we form the following statistics

K+
n =

√
n max

1≤j≤n

(
j

n
− F (Xj)

)
; (20)

K−n =
√
n max

1≤j≤n

(
F (Xj)−

j − 1

n

)
. (21)

Similarly to the chi-square test, we consider the test passed if the results
falls between the 1% and 99% of the distribution. In our test, we used several
values of n, although we are aware that local non-randomness behaviour may
disappear for larger values.

Name PRNG n = 103 n = 104 n = 105

Park-Miller 0.952 0.96 0.973
RAN2 0.965 0.965 0.966
RAN3 0.955 0.966 0.963
RANMAR 0.960 0.958 0.968
RANLUX 0.962 0.952 0.958
Mersenne-Twister 0.965 0.97 0.965

Table 2: Percentage of success in the Kolmogorov-Smirnov test.

From our results, we can say that all PRNGs pass the test most of the times,
and there isn’t any significant difference between the simpler random number
generators and the more complex ones.

2.3.3 Birthday spacings test

This test was introduced by George Marsaglia in 1984 and well described by
Knuth[2]. It is a particularly important test as some classes of PRNGs, par-
ticularly lagged Fibonacci generators, consistently fail it. We chose this test
because RAN3 was performing poorly on the GJF simulations, and we knew it
was based on a Lagged Fibonacci method. For this reason we considered this
test the most appropriate to verify that it had statistical problems. At the same
time, the test allowed us to check whether other PRNGs had similar issues.

In the test, we select n birthdays in a year with m days, from the random
numbers (Y1, ...Yn). Once the birthdays are sorted in non-decreasing order Y1 ≤
Y2 ≤ ... ≤ Yn we calculate the spacings S1 = Y2−Y1, ..., Sn−1 = Yn−Yn−1, Sn =
Y1 +m−Yn. Finally we sort the spacings in order and we calculate the number
R, the number of equal spacings. For m = 225 and n = 512 we have an
expected distribution of R that we can compare to test the number. The tested
is repeated 1000 times and we perform a chi-square test compared with the
correct distribution.

8

R = 0 1 2 3 or more Passed

Expected 0.369 0.369 0.183 0.079
Park-Miller 0.365 0.399 0.165 0.071 yes

RAN2 0.371 0.382 0.183 0.064 yes
RAN3 0.130 0.239 0.268 0.363 no

RANMAR 0.373 0.387 0.168 0.72 yes
RANLUX 0.128 0.246 0.289 0.337 no

Mersenne-Twister 0.366 0.367 0.198 0.069 yes

Table 3: Results of the Birthday Spacing test, compared with expected distribution

From our results we can tell that all generators except RAN3 and RANLUX
pass it. RAN3 was expected to fail this test; more surprising is the result
with RANLUX, given that is highly regarded in the field to be one of the best
generators. This makes us suspect that there is a relationship between the
wrong distribution of the spacings and the performance in the GJF simulation.

2.3.4 Spectral test

This test is the most complex, but also one of the most precise to identify good
random number generators. The test measures the distance between parallel
hyper-planes that contain points in t dimensions, where the t coordinates of each
point are t successive random numbers in a sequence. A precise implementation
of the test is explained by Knuth [2].

We considered dimensions 2 ≤ t ≤ 6, and for each of them we compute µt,
which indicates the effectiveness of the multiplier a of the PRNG for its modulus
m. We say that the multiplier a passes the spectral test if µt > 0.1. An high
value of µt in this case means that a is a good multiplier for the given m.

Name PRNG µ2 µ3 µ4 µ5 µ6

Park-Miller 0.41 0.51 1.08 3.22 1.72
RAN2* 0.76 0.00 0.00 0.00 0.00
RAN3** 0.84 1.89 0.13 3.04 1.58
RANLUX 2.27 3.46 3.92 2.49 2.98

Table 4: Results for the spectral test. *does not account for the added shuffling.
**accounts uniquely for the initialization sequence

The results for this test are not particularly significant as they confirm that
both Park-Miller and RANLUX pass the test, and there is no evidence of a
complete failure for the other two either. The test on RAN2 does not account
for the final shuffling, thus it might not be representative of the overall quality.
Similarly, on RAN3 the subtractive step is not measured and the quality might
be affected by that step.

9

2.3.5 Sequence covariance

Different from the more standard tests, we decided to execute a test to un-
derstand whether there is any long-term correlation between some numbers in
the generated random sequence. In the sequence of random numbers (Xn) =
X1, X2, ..., Xn, we measure the correlation between any element Xn and the
element that is created k steps later:

C((Xn), k) =
1

n− k

n−k∑
i=0

XiXi+k (22)

and if the events Xi and Xi+k are not correlated, we expect for C((Xn), k) to
decrease as n increases. We can use this test on the random numbers both in
their standard uniform form and after the transformation into standard normal.

Figure 2: Sequence covariance results for all PRNGs

Our results on the sequence covariance show that all PRNGs behave as
expected, showing no sign of correlation for any value of k < 100 in the sequence.

10

In the figures above, it is possible to observe that by increasing the sequence
length from n = 108 to n = 4 × 108, the values of the covariance decreased on
average by a factor of two, which means that there is no correlation between
any two pair of numbers. Moreover, there seem to be no fixed point between
the two plots for any PRNG.

Given that this method did not show any particular correlation between
the number themselves, we decided to test also the transformations methods
described earlier. This allowed us to examine whether the various algorithm
either create or amplify preexisting correlations between the numbers produced
by the PRNGs. To better show the differences, below we are reporting the
square of the values instead of the covariance itself.

Figure 3: Sequence covariance for numbers after the Ziggurat algorithm. The highest
values reported are only sporadically produced by RAN3, but disappear if we increase
n

11

Figure 4: Sequence covariance for numbers after the Box-Muller transformation in
Polar form. The highest values reported are produced by RAN3 after the transforma-
tion

Figure 5: Sequence covariance for numbers after the Box-Muller transformation in
Cartesian form. The highest values reported are produced by RAN3 after the trans-
formation.

From our results, we can notice that the Box-Muller transform in polar
form increase some existing correlations in RAN3 in a very drastic way. The
Ziggurat method also increase the covariance, but with one order of magnitude

12

less intensity. The Cartesian form of Box-Muller seem not to present particular
correlations, although RAN3 still has occasionally the highest values.

2.3.6 GJF simulation on harmonic oscillator

In the GJF simulations, the random numbers influence directly with the system.
Although the exact trajectory is unpredictable, we can the expected statistics
for potential energy described in equation 6 to verify that the noise has the
expected characteristics. To obtain a system that is more sensitive to variations
to the noise, we have chosen a lower friction coefficient α = 0.05 so that we
are operating at an under-damped regime. To allow the harmonic oscillator to
stabilize we allow a long period of time of n = 109 steps of size dt. We run
the test run multiple times for different values of 0 < dt < 2 at intervals of
0.05dt; this corresponds to the entire stability limit for the chosen parameters.
Finally we plot the mean and standard deviation of the potential energy Ep for
all values of dt and we compare it with the expected analytic value.

Following we plot the results in the full spectrum for the value of mean
potential energy in the simulations, using the different PRNGs, and Box-Muller
in polar form as transformation. For all simulations the expected value of 〈Ep〉
is 0.1.

13

Figure 6: Mean potential energy using different PRNGs

To have a mathematical measure of error along the entire spectrum of dt
we take the sum of absolute differences of the values between the computed
potential energy and the expected value.

S(X) =

n∑
i

|xi − expX| =
n∑
i

|xi − Ep| (23)

14

Name PRNG S(X) for 0 < dt < 2

Park-Miller 0.0081
RAN2 0.0085
RAN3 0.1755
RANMAR 0.0074
RANLUX 0.0079
Mersenne-Twister 0.0087

Table 5: Sum of absolute differences for all PRNGs

Both the plots and the sum of absolute differences show clearly how RAN3
causes very significant variations in the results. Some values of the spectrum
of dt clearly diverge from the expected value. Among the other PRNGs, no
significant difference is noticeable.

3 Discussion

The analysis we conducted successfully identified the pseudo-random number
generator RAN3 as the component responsible for anomalies that were observed
in GJF simulations of a harmonic oscillator. From the discovery we started a
more in-depth investigation of the noise generations, both with a theoretical
and empirical point of view. Based on the results collected we are able to draw
conclusions on the number generators, the transform methods, and the impact
of the GJF algorithm itself.

3.1 PRNG choice

Choosing the appropriate methods to generate noise in MD simulations is non-
trivial. From the theoretical analysis and the empirical test executed we make
the following conclusions on the examined PRNGs:

1. Park-Miller, even though it is very simple to implement and computation-
ally efficient, its period (≈ 109) is too short to guarantee quality results
in MD simulations.

2. RAN3 shows clear issues in the GJF simulations for a harmonic oscillator,
which make it unusable for any MD application. Its problems are detected
also with the sequence co-variance test for the Box-Muller transform.

3. RANLUX, although it does not show any issue in the simulations, fails
our Birthday Spacing test. Since RAN3 is the only other PRNG that fails
it, and RAN3 has issues in GJF, we recommend not to use this PRNG in
LD simulations as a cautious measure.

4. RAN2, RANMAR and Mersenne-Twister pass all the tests that we de-
cided to execute. The only uncertain result given by the spectral test

15

for RAN2 does not account for the added shuffling. Any choice of these
PRNG works for simulations with the GJF algorithm.

3.2 Transform choice

For the choice of transform method, even though none of the techniques is
causing the problem per se, some might amplify existing correlations that exist
in the sequence more than others. The one which obtains the minimal error is
the Box-Muller transform in cartesian coordinates. Given that it is also efficient
as it is not a rejection sampling process, we suggest it as preferred transformation
method. Moreover, an implementation of the method, described in Equation 13
is trivial in most programming languages.

3.3 GJF as a test for PRNGs

Finally, we conclude that the GJF algorithm can itself be used as a novel method
to investigate PRNGs. Given both its simple implementation and the fact that
it has an analytic solution for linear systems, we recommend its addition as new
test for all PRNGs. Among the reason why this test should be used:

1. It has direct physical applications in LD, which makes it distinct from
most other statistical tests.

2. It is easy to implement, as it is based on a single equation, expressed in 4

3. It is not necessary to convert the PRNG into a Linear Congruent Gen-
erator as it is required in the Spectral Test. This makes it both less
theory-heavy and it does not require extra steps to compute a and m.

We do not suggest to use this test as a replacement for more complete exami-
nations, but it can be useful to provide more insights of the quality of PRNGs
for further improvements in the field.

References

[1] Box G. E. and Muller Mervin E. A Note on the Generation of Random
Normal Deviates. The Annals of Mathematical Statistics, 29:610–611, 1958.

[2] Knuth D. E. The Art of Computer Programming, volume 2: Seminumerical
Algorithms. Addison-Wesley, Reading, Massachussetts, 2 edition, 1981.

[3] Niels Grønbech-Jensen and Oded Farago. A simple and effective Verlet-
type algorithm for simulating Langevin dynamics. Molecular Physics,
111(8):983–991, Apr 2013.

[4] Frederick James and Lorenzo Moneta. Review of High-Quality Random
Number Generators. arXiv e-prints, page arXiv:1903.01247, Mar 2019.

16

[5] G Peter Lepage. A new algorithm for adaptive multidimensional integra-
tion. Journal of Computational Physics, 27(2):192–203, 1978.

[6] Lüscher M. A portable high-quality random number generator for lattice
field theory simulations. Computer Physics Communications, 79:100, 1994.

[7] George Marsaglia and Wai Wan Tsang. The ziggurat method for generating
random variables. Journal of Statistical Software, 5(8), 2000.

[8] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number generator.
ACM Transactions on Modeling and Computer Simulation, 8(1):3–30, 1998.

[9] Giorgio Parisi. Statistical field theory. Addison-wesley, 1988.

[10] Steve Plimpton. Lammps molecular dynamics simulator.

[11] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical recipes in C: the art of scientific computing. Cam-
bridge University Press, 1992.

17

