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Abstract

The mathematical study of circular polymers in biology and medi-

cal science often involves modeling them as 3-dimensional self avoid-

ing polygons as using sampling algorithm to understand their be-

haviour. The BFACF Algorithm is an ergodic Markov Chain Monte

Carlo method that samples the space of self-avoiding lattice polygons

of fixed knot type and varying length. However, using this method

to generate large independent and identically distributed(iid) sets of

polygons is expensive computationally and challenging as the length

of the chain increase. With the objective to improve the sampling

efficiency and expand the functionality of the sampling process, we

implement the Wang Landau algorithm. This algorithm provides an

improved way to sample polygons related by BFACF moves; also, it

samples uniformly with respect to different energies, such as writhe

and bending energy. In this work, we compared the sampling dis-

tribution obtained by each algorithm for a variety of knot types and

lengths. The comparison shows high coherency between these two

sampling methods, which validates the implementation. The Wang

Landau algorithm provides a more efficient and precise tool that helps

us understand the behavior of polymers. Sampling data obtain by

Wang Landau algorithm shows the relative probability of pairwise

energy states and overall distribution for all energy states.
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Chapter 1

Introduction

Computer-based simulations for the modeling of polymers in morbid science or of

biopolymers such as DNA have gained increased attention in the past decades [4].

With improved computation power, scientists have the ability to do virtual exper-

iments. In the �eld of Microbiology and Molecular Genetics, scientists have been

trying to understand the underlying biological process of disease. Cancer stud-

ies, as one of the main focus, involve large scale computer simulations to reveal

biological information from experimental data. For example, Lai et al(October

2007) introduced a algorithm analyzing array comparative genome hybridization

data (aCGH), which successfully explored the region of aberration and applied

to breast cancer studies[5]. The computer simulations is the key tool to extract

information, provide complex analysis and support hypotheses

Computer simulations rely on mathematical models. For example, if we are

interested in a low resolution study of the topology of a DNA molecule, then

the DNA double helix can be modeled as the curve drawn by the axis of the

helix. If the molecule is circular the resulting curve is an embedding of a circle

in 3-dimensional space. In mathematics, this is the de�nition of a knot . The
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model can be discretized to represent DNA as a circular polygon, which could be

knotted. This is the main model for this thesis.

The BFACF algorithm (Berg and Foester 1981[1], Aragao de Carvalho et al

1983[6], Aragao de Carvalho and Caracciolo 1983[7]) was proposed in 1991 to

operate on polygons doing stochastic sampling[8]. It has been used for modeling

circular DNA as self-avoiding polygons in the simple cubic lattice (Z3)[8]. This

algorithm was developing through multiple stages from generating statistical en-

sembles of paths (or surfaces) with a Boltzmann probabilistic weight[1], applying

to bosonic walks and fermionic walks[1] and then applying to self-avoiding walk

[6][7]. The fundamental de�nitions, such as the elementary moves of the BFACF

algorithm, the Markov properties and the limiting distribution are described in

section 2.3. The length of the polygons (the number of edges) is the dominant

factor in the limiting distribution, and therefore is an important component of the

sampling results. Scientists explored more perspectives to inspect the behaviour

of DNA, so that length driven BFACF algorithm restricts other angles to analyze

modeled DNA. Two major de�ciencies are that the BFACF algorithm cannot

generate su�cient samples in low probability area and the length driven BFACF

algorithm cannot utilize attributes other than length to guide the sampling.

BFACF is a Markov Chain Monte Carlo algorithm (MCMC), which is a

stochastic process that approximates the distribution of memoryless sequential

random events applied to polygons. The stochastic process is similar to placing

a person in a strange town and the person will walk randomly with pre-de�ned

probabilities of each direction in every intersection. An example method that

de�nes probabilities could be ipping a coin in the intersection to decide which

direction to go. For the modeled DNA polygon, each speci�c con�guration of

a polygon is a conformation that contains analyzable information, length of the

polygon for example. An example of analyzable information for a random walk
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in the city could be the distance the person has walked. Thus, it is possible

that di�erent conformations share the same properties, for example two di�erent

polygons can have the same length. The BFACF algorithm allows for uniform

sampling of the space of SAPs of �xed length and knot type. BFACF genrates

samples by performing three possible moves. In BFACF, those moves are +2,

-2, +0 moves, and they are applied following probabilities pre-determined by the

model.

Figure 1.1: The elementary moves of the BFACF algorithm [1]:(+2),(-2),(+0)

In the case of a random walk in a strange city, one could ask how probable it

is for the person to stay at a mall. With BFACF, after �xing a knot type, the

algorithm can approximate the average length, the probability that the knot is at

a speci�c length, as well as other attributes(writhe, bending energy). Moreover,

since the algorithm provides samples from a wide range of lengths, we can pick

target samples to perform further operations.

While the BFACF provides wide length range samples, most of the samples

are concentrated around the average length. This results in ine�cient sampling

from the trails of the distribution (i.e. chains of lengths far removed from the

mean). This de�ciency is caused by the de�nition of the distribution, which is

dominated by length value of the polygonal knots. Consequently, the BFACF
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algorithm is strongly related to the length of the polygons. During the sampling

process, the conformation either maintains the length, decreases the length by 2,

or increases the length by 2. After the user chooses a parameter that de�nes the

distribution of +2, -2, +0 move types, the stochastic process will depend on this

distribution. Hence, with su�ciently many samples, the distribution of lengths

follows a bell shape curve with the majority of the samples concentrated around

the average length. The samples whose length deviates from average length are

infrequent, so that we have to rerun the simulation with di�erent parameters,

adjusting the average length close to the target length, or increase the total

sampling size for additional samples deviating from the average length. Any of

these choices requires notable larger computation.

Another limitation of the BFACF algorithm is that it is tied to the length

of the polygon and in its classical form it cannot sample with respect to other

properties meaning it cannot use writhe or other energy to decide the probability

of move types. When modeled DNA, there are abundant signi�cant properties

other than length(i.e. energy and use energy in future reference), such as bending

energy, writhe, etc. Depending on the application, users may want to bias their

sampling by limiting bending energy, or generate a uniform samples of polygons

with a speci�c average writhe. Deriving samples with respect to other energies is

critical for particular research. For instance, when studing DNA packaging in the

bacteriophage capsids, Arsuaga et al.(2005) found that that the writhe of DNA

inside is negatively biased. The ability to generate polygon with negative writhe

is relevant to the 2005 DNAs paper(Arsuaga et al.).

In this work, we utilize another Markov Chain algorithm, Wang-Landau algo-

rithm to improve the sampling process. The Wang-Landau algorithm is a general

Markov Chain algorithm that can be applied to our speci�c context of modeling

DNA as polygons[9][10]. Instead of using the distribution from the BFACF algo-
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rithm, the Wang-Landau algorithm de�nes a uniform distribution, which means

di�erent energy states are distributed most evenly in all the samples. In the

Wang-Landau stochastic process, the possible move types are still +2, -2, +0

moves de�ned by the BFACF algorithm, but the Wang-Landau algorithm de-

termines which move to take. This decision depends on the density estimation

along the sampling. In the BFACF algorithm, the distribution of move types

is de�ned �rst, a random number is generated and probabilities determined by

the underlying distribution are used to perform one of the move types. Instead,

Wang-Landau utilizes a Metropolis Hastings algorithm, a decision method where

a random move type is chosen before the algorithm decides whether to accept the

decision based on acceptance probabilities.

In the actual implementation, the Wang-Landau algorithm breaks into two

phases - training and sampling. The training phase of the Wang Landau algorithm

takes a random walk, keeps exploring the sample space and records approximate

density along the walk. Then in the sampling phase, it utilizes the trained re-

sult from the training phase to generate target samples. Thus, the algorithm

introduces two key components - the weight list and observation counter. The

ratio of weights approximate the ratio of energy densities in the sample space and

the observation counter tells the number of times the process observes particular

energy. The weight list in training phase helps the decision whether to accept a

move type and the observation provides con�dence in how well the process under-

stands the sample space. Still taking the example that puts a person in a strange

city, the person starts with a random place in the city with a notebook writing

down how many times he has been to a place. Every time the person goes to

another place, he checks if he has been here before and either writes down a new

place name or adds one more observation time. in order to get familiar with the

strange city faster, the person wants to explore new places that he has never been
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to. Thus, after the person chooses a direction to go, he will check the notebook

to see whether he has been to the next place many times. in order to reduce the

times he has been to a visited place, the person will reject the move that takes

him to a familiar place. Similar to the Wang Landau algorithm, it is trained to

understand the sample space so that next time the person comes back to the city

with the notebook he knows how to get to a region of the city. Also, the person

can choose what properties to record, such as the category of the place if it is a

restaurant or shopping mall, size of the space, color of the space, etc.

The distinctive sampling mechanism de�ned by the Wang Landau algorithm

explores the whole sample space more evenly and it allows a diversity of energy

perspectives. Thus, the Wang Landau algorithm solves an issue that BFACF

cannot handle. Consequently, in the context of modeling polymers, the Wang

Landau algorithm is an improved sampling technique.
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Chapter 2

Background

2.1 Knot theory

In this work, the Wang-Landau algorithm is applied to lattice knots. Lattice

knots are self-avoiding polygons SAPs of �nite length such that each vertex is in

Z3, and all edges are of length 1 and parallel to one of the coordinates axes.

De�nition 2.1.1 ([11]). A link L of m components is a subset ofS3, or of R3,

that consists ofm disjoint, piece-wise linear, simple closed curves. A link of one

component is a knot.

De�nition 2.1.2 ([8]). An embedding is a mapf : X ! Y In this case f is

one-to one and structure-preserving.

Let S1 be the unit circle. A knot is also de�ned as an embeddingf : S1 ! R3.

Double stranded circular DNA can be represented as a knot by tracing the center

axis of the DNA; also, it can be represented as a link regarding each strand is a

knot.

De�nition 2.1.3 ([11]). Links L1 and L2 in S3 are equivalent if there is an

orientation-preserving piecewise linear homeomorphismh: S3 ! S3 such that
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2.1 Knot theory

h(L1) = ( L2)

We call the equivalent classes theknot types.

Figure 2.1: Trefoil knot 31 and 2-component link 221 (Hopf link)

There are three signi�cant quantities associated to the topology and geometry

of an embedding of a link - Linking number, Twist and Writhe. They are closely

related to each other. Linking number is a topological invariant(given orienta-

tion), which means that any two equivalent links share the same linking number.

Twist and Writhe however are not topological invariants, which means the value

of Twist and Writhe may change from one embedding to another even when the

link type is preserved. The important result is that the sum of twist and writhe

equals the linking number:

Theorem 2.1.1 (White's Theorem[12]). Given a link L,

Lk (L) = Tw(L) + Wr(L) (2.1)

This result suggests that since linking number is a topological invariant and

therefore is preserved under deformations of the link, adding twist to the knot

will introduce writhe changes[12].
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2.1 Knot theory

2.1.1 Linking Number

Linking number measures the extent that components of a link interwine with

each other[13]. When computingLk , the crossings are mapped to numerical

values. Depending on the orientation of strands on a crossing, the crossings can

be classi�ed into two classes and each class we will assign a +1 or a -1 value(2.2).

(a) +1 (b) -1

Figure 2.2: Two types of crossings

There are two methods for calculating the linking number mainly: Gauss

integral or via projection.

Since the linking number is a topological invariant, it is more easier to compute

the linking number by choosing a projection of the link. After chosing a projection

and orientations for each component, to obtain the linking number sum all the

+1 and -1, and divide the total by 2.

Lk can be seen as a summation of crossings over two components, and ex-

pressed as a Gauss integral as in the next de�nition.

De�nition 2.1.4. the linking number of a link L can be obtained as follows:

Lk (L)Lk (c1; c2) =
1

4�

I

c1

I

c2

r 2 � r 1

jr 2 � r 1j3
� (dr 1 � dr 2) (2.2)

c1; c2 are the two component of the link andr 1; r 2 are points along components

of the link. The integral is the summation of the solid angle.
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2.1 Knot theory

De�nition 2.1.5. The solid angle is de�ned as:

d
 � (r 1; r 2) � d
 �
12 =

jdr ?
1 j � j dr ?

2 j � sin�
jr 2 � r 1j2

(2.3)

jdr ?
1 j and jdr ?

2 j are the perpendicular components ofr 1 � r 2, the j � j is the

Euclidean metric, � is the angle betweenjdr ?
1 j and jdr ?

2 j. Thus jdr ?
1 j � j dr ?

2 j � sin�

is indicating the parallelogram area formed byjdr ?
1 j and jdr ?

2 j.

Since the solid angle is always positive, we can connect the signed solid angle

to the solid angle by the +1 and -1 value assigned to the crossings. Let thew12

be the +1 or -1 value assigned to crossings then:

De�nition 2.1.6. The signed solid angle is given by

d
 12 = w12 � d
 �
12 =

(dr 1 � dr 2) � (r 2 � r 1)
jr 2 � r 1j3

(2.4)

We can easily show that the signed solid angle is the absolute value of the

solid angle:

jdr ?
1 j � j dr ?

2 j � sin�
jr 2 � r 1j2

=
jdr ?

1 j � j dr ?
2 j � sin� � 1

jr 2 � r 1j2

=
jjdr ?

1 j � j dr ?
2 j � sin� � u � (r 2 � r 1)j)

jr 2 � r 1j2 � jr 2 � r 1j

=
j(dr 1 � dr 2) � (r 2 � r 1)j

jr 2 � r 1j3

(2.5)

The full solid angle is 4�sr , so that if we divide the signed solid angle by

the full solid angle 4�sr , it represents the half of the average contribution of the

evaluated point r 1; r 2 over all possible directions. Thus the double line integral

is the summation of all points along the components at all possible directions.
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2.1 Knot theory

Then we can express the linking number Gauss integral as[14] :

Lk (c1; c2) =
1

4�

I

c1

I

c2

d
 12 (2.6)

2.1.2 Twist and Writhe

Twist and writhe are measurement related to coiling between two components

of a link. The ideas of twist and writhe are more intuitive when applying to

double stranded DNA. Twist measures how one strand of the double stranded

DNA coils around the another strand. Writhe measures how the central axis of

the double stranded DNA coils around itself. Therefore, the calculation of twist is

the integral of the rotation rate along the center axis. For the purpose describing

the integral, we parametetrize the closed curve byt: r (t) is the central axis of the

closed curve;a(t) is the unit vector that perpendicular to the central axis;s(t) is

the closed curve;� is the distance from the curve to central axis.

s(t)

r (t)

a(t)

�

Figure 2.3: Interpretation of the Twist

The Twist measures how much the black curve winds about the green curve

De�nition 2.1.7. The angle of rotation is de�ned as:

d� = (
dr
dt

� a)da (2.7)
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2.2 Monte Carlo Method

( dr
dt � a) de�nes the positive unit vector so that d� is the small angle that

rotates a(t).

The integral over the parametert along the whole length of the closed curve

is the Gauss integral of the Twist:

De�nition 2.1.8. Given a two component linkL

Tw (L) =
1

2�

Z L

t=0
(
dr
dt

� a)
da
dt

dt (2.8)

For Writhe calculation, given a link we either consider the self-writhe of each

component, or, in the case of DNA, we compute the writhe of the curve de�ned

by the axis of the helix. The writhe is the average of the projected writhe over

all projection direction. To compute the projected writhe we consider a diagram

of the curve, sum up the +1, -1 and divide the total by two.

De�nition 2.1.9. The writhe of a link can be expressed as a Gauss integral:

Wr (c1; c2) =
1

4�

I

c

I

c
d
 12 (2.9)

Writhe is the half summation of the crossing value (+1,-1), note that the

double line integral is counting the value twice, so that the coe�cient remains

1=4� .

2.2 Monte Carlo Method

A Monte Carlo method is an approximation of a deterministic distribution by

large scale samples, which is widely used in physics and mathematics. For ex-

ample, if there is a particular coin without fair assumption, instead of measuring

the coin physically to see if it is fair, one can ip the coin in a large number of
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2.2 Monte Carlo Method

times and keep counting the number of heads and tails. In the large number of

trials of ipping the coins, the ratio between the number of heads and tails can

approximate the fairness of the game.

In the eighteenth century, the model "Bu�on's needle" by a French scientist

Georges-Louis Leclerc, Comte de Bu�on is one of the primary examples of the

Monte Carlo method. The Bu�on's needle consistes of dropping needles to par-

allel strips with same width, and estimating the probability of the needle across

two strips.

There is a simpli�ed example by using the Monte Carlo method

Example 2.2.1. Rolling Two Dices: Calculate the distribution of the sum of the

value of rolled two dices. There are 6� 6 possible outcomes from 2 to 12.

Figure 2.4: Sum distribution of rolling two dice[2]

number below the dice are the sum of two dice and the number above the dice is
the associate probability

There are 36 outcomes in total and there is only one outcome where the sum

is 2, so the probability of that the sum of rolled dice equals to 2 is136. Similarly

for other probabilities of sum value. Instead of calculating the probabilities ex-

actly, the Monte Carlo method will roll two dices in a large number of times. For

example, if sum value equals to 3 rolled 5 times in 100 trails, the probability is

approximated to 5%.
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2.3 Markov Chains

Figure 2.5 shows the results of a simulation of rolling dice 10,000 times

Figure 2.5: Monte Carlo simulation output for the sum of rolling two dice[3]

2.3 Markov Chains

In this Chapter we will introduce Markov Chains and I will useLecture Notes for

Introductory Probability [15] Markov Chain is a stochastic process that describes

a sequence of possible events. In general, the Markov Chain contains

� a setS contains countable states, which are labels of particular states.

� transition probabilities that de�nes the probability from a state i 2 S to

another state j 2 S.

� the initial distribution of states.

With Markov Chain, the set of states can be either in�nite or �nite(since we

only require S to have countable states.

Example 2.3.1. A random walk in Z de�nes the set of states inZ. In every

particular state i , the probability of moving from i to i � 1 isp, and the probability

of moving from i to i + 1 is 1 � p, p 2 [0; 1]. The initial distribution � is given by:

14



2.3 Markov Chains

P(X 0 = i ) = � i =

8
><

>:

1; if i = 0

0; otherwise

� 3 � 2 � 1 0 1 2 3

Example 2.3.2. Taxi migration

Sacramento

Davis Woodland

1=4

1=2 3=4

1=2

1=41=4
1=8

1=8

1=4

Figure 2.6: Taxi Markov Chain

This is an example of taxi migration in Davis, Woodland and Sacramento. Each arrow represent
the direction along with the probability that a taxi moves between cities.

In this model, the states are 3 cities in California: Davis, Woodland and

Sacramento. A directed arc indicates the transition probability that the taxi

moves from a particular city to another city. With an initial distribution of the

allocation of the taxis, the Markov Chain can mimic the migration over time.
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2.3 Markov Chains

All transition probabilities from state i 2 S to state j 2 S can be represented

as atransition matrix .

represent transition probability in Matrix

P =

2

6
6
6
4

p11 p12 : : :

p21
. . .

... pnn

3

7
7
7
5

Transition probability that state i to j is a conditional probability that the

probability to be at state j conditioned on previous state isi .

Pij = P(X n+1 = j jX n = i )

By the law of total probability, the sum of the probabilities that a state transit

to other states is one.

8i;
nX

j =1

pij = 1

A Markov Chain has the property that the future and previous are indepen-

dent, which means the future only depends on present state:

P(X n+1 = j jX n = i; X n� 1 = i n� 1; Xn � 1 = i n� 2; : : : ; X 0 = i 0) = P(X n+1 = j jX n = i )

De�nition 2.3.1. Let Pn
ij be the probability to start from i and end at j in

n-steps

Theorem 2.3.1. Pn
ij is the (i; j ) entry of the nth power of the transition matrix,

and represents the probability of reaching statej often n steps starting at state i.
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2.3 Markov Chains

Proof. Decompose the transition probabilityPn+ m
ij

Pn+ m
ij = P(X n+ m = j jX 0 = i )

=
X

k

P(X x+ m = j; X n = kjX 0 = i )

=
X

k

P(X n+ m = j jX n = k) � P(X n = kjX 0 = i )

=
X

k

P(X m = j jX 0 = k) � P(X n = kjX 0 = i )

=
X

k

Pn
kj Pm

ik

(2.10)

Thus the transition matrix Pm+ n = PmPn ) Pn = P1P1 : : : P1 ) the power

of the transition matrix. If the initial distribution is � then the distribution at

time n is � � Pn .

In the stochastic process, if the Masrkov Chain will converge to a steady state

such that the next state will be the same state. In terms of linear algebra, the

invariance distribution is the eigen vector correspongding the eigen value is one.

Let U be the Steady state, then by de�nition U � P = U, thus U(P � I ) = 0.

Therefore linear algebra can be applied to �nd the steady state.

To see if the Markov Chain will converge, there are three properties to check:

irreducible, aperiodic, and positive recurrent.

If state i and state j has positive transition probability from i to j also j to i,

then state i and j are commutative and belong to the sameclass.

De�nition 2.3.2 (Irreducible). The chain is irreducible if there is only one class.

The concept of aperiodic chain comes from period of the Markov chain, where

period is a class property. If statei has the periodd then the class that statei

belongs to has the periodd
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2.3 Markov Chains

De�nition 2.3.3. A state i hasperiod d if Pn
ii � 0 impliesdjn and d is the largest

positive integer.

De�nition 2.3.4 (Aperiodic). A state i is aperiodic if statei hasperiod 1. The

irreducible chain is aperiodic if all states haveperiod 1.

For introducing positive recurrent we need to de�neReturn time along with

the probability mass function.

De�nition 2.3.5. The Return time is de�ned as: Ri = inf f n > 0; X n = ig where

start with state i , Ri is the �rst time return to the state i .

De�nition 2.3.6. Then we can write out the probability mass function of the

return time (p.m.f)

f (n)
i = P(Ri = njX 0 = i )

Thus, we can calculate the expectation of the time that starting with statei

and return to state i :

De�nition 2.3.7. The expectation of the return time can be calculated as a sum

as:

mi = E[Ri jX 0 = i ] =
1X

n=1

nf (n)
i

De�nition 2.3.8. State i is positive recurrent if the expectation of the return

time mi is �nite. For an irreducible chain, we say that the chain is irreducible if

all states are positive recurrent.

We call a chainErgodic when the chain is Aperiod and Positive Recurrent.

Theorem 2.3.2 (Convergence to invariant distribution). If a Markov chain is

irreducible, aperiodic, and positive recurrent, then, for every i,j2 S,

lim
n!1

Pn
ij = � j
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2.4 The BFACF Algorithm

, � j is the invariant distribution of state j

Theorem 2.3.3. Reversibility or Detailed Balance de�ned as: A Markov Chain

with invariant distribution � is reversible if and only if

� i Pij = � j Pji ; 8i; j 2 


Both Theorem 2.3.2 and 2.3.3 are necessary to ensure the desired distribution

successfully constructed a Markov Chain. 2.3.2 implies there is an invariant distri-

bution and if the desired distribution satis�es 2.3.3 then the desired distribution

is invariant. We will check the BFACF distribution in the next section.

2.4 The BFACF Algorithm

For the purpose of introducing the basics of the BFACF Algorithm, I will use

The Self-Avoiding Walk[16]. BFACF is a Monte Carlo Markov Chain algorithm

that operates on self-avoiding polygons (SAPs). In this work, we focus on SAPs

in Z3. The self-avoiding polygons are corresponded to self-avioding walks.

De�nition 2.4.1 (N-step self-avoiding walk). An N-step self-avoiding walk! on

Zd, beginning at the sitex, is de�ned as a sequence of sites (! (0),! (1), . . . ,! (N ))

with ! (0) = x, satisfying j! (j + 1) � w(j )j = 1, and w(i ) 6= w(j ) for all i 6= j .

De�nition 2.4.2 (N-step self-avoiding polygon). Let N be an integer greater

than 2. An N-step self-avoiding polygon is a setP of N nearest-neighbour bonds

with the following property: there exists a corresponding (N -1)-step self-avoiding

walk ! having j! (N � 1) � ! (0)j = 1 such that P consists of precisely the bond

joining ! ( N - 1) to ! (0), and the N - 1 bonds joining! ( i - 1) to ! ( i) (i=1, ...

,N -1).
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2.4 The BFACF Algorithm

Janse van Rensbug and Whittington have proved that the aperiodic and pos-

itive recurrent class is theknot types[8] and that within a knot type the class is

irreducible. Therefore, the BFACF algorithm applied to polygons satis�es the

2.3.2. The next step is to verify reversibility with desired distribution.

Before introducing the BFACF distribution, the formal de�nition of the ele-

mentary moves is needed. Let the current walk be! , choose one of the bonds

! (t) to ! (t + 1), such that e is the unit vector perpendicular to the bond in one

of 2d � 2 directions. Let a; bbe the lattice point ! (t) + e; ! (t + 1) + e.

! (t) ! (t + 1)

a b

e

The options split into 3 cases:

1. a 6= ! (t � 1) and b6= ! (t + 2). The new walk adds two bonds and the new

walk is e! = ( : : : ; ! (t); a; b; ! (t + 1) ; : : : ).

2. a = ! (t � 1) and b = ! (t + 2). The new walk reduces two bonds and the

new walk is e! = ( : : : ; ! (t � 1); ! (t + 1) ; : : : ).

3. a 6= ! (t � 1) and b= ! (t + 2). The new walk keeps same bond number and

the new walk ise! = ( : : : ; ! (t); a; ! (t + 2) : : : ). Similarly, a = ! (t � 1) and

b6= ! (t + 2) then the new walk is e! = ( : : : ; ! (t � 1); b; ! (t + 1) : : : ).

De�nition 2.4.3. BFACF distribution is de�ned as:[1]

� (� ) =
j� j � zj � j

P 1
i =1 i � zi � � i (k)

(2.11)

� (� ) is the invariant distribution of the conformation � , z is the \fugacity"

parameter that adjusts the distribution and probability, � i (k) is the number of
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2.4 The BFACF Algorithm

length i conformations with knot type k. Thus,
P 1

i =1 i � zi � � i (k) is the normal-

ization.

Construct the Markov chain by satisfying the detailed balance condition 2.3.3.

Plug in detailed balance: supposej� j + 2 = j� 0j WLOG

j� j � zj � j

P 1
i =1 i � zi � � i (k)

�
1

j� j
� p(+2) =

(j� j + 2) � zj � j+2

P 1
i =1 i � zi � � i (k)

�
1

j� j + 2
� p(� 2) (2.12)

The transition probability from � ! � 0 is decomposed by choosing one of the

bonds, choosing one of the directions and one of the elementary moves. Equation

2.12 could be simpli�ed to

p(+2) = z2 � p(� 2) (2.13)

Similarly, if j� j = j� 0j, The right hand side canceled with the left hand side

so that detailed balance leftp(+0) = p(+0). Thus, the constraint for p(+0) is

the total probability that the sum of the probabilities of all possible moves has

to be less or equal to 1. There are 4 cases for 3d self-avoiding polygons to check

if the sum is less or equal to 1. LetE be the set of all bonds such thatE(t) is

the segment from! (t) to ! (t + 1), t 2 [0; j! j � 1]. let E(t) be chosen bond to

perform elementary moves:

1. E(t � 1) and E(t + 1) are parallel to E(t)

2. one of theE(t � 1) and E(t + 1) is perpendicular to E(t)
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2.4 The BFACF Algorithm

3. both E(t � 1) andE(t+1) are perpendicular toE(t) and E(t � 1) is not anti-

parallel(parallel and the directions of two bonds are opposite) toE(t + 1)

given orientation

4. both E(t � 1) and E(t + 1) are perpendicular to E(t) and E(t � 1) is

anti-parallel to E(t + 1) given orientation

In case 1, all possible moves are +2 moves) 4p(+2) � 1. In case 2, one direction

is +0 move and all other moves are +2 moves) p(+0) + 3 p(+2) � 1. In case 3,

two directions correspond to +0 moves and the other two directions correspond

to +2 moves ) 2p(+0) + 2 p(+2) � 1. In the case 4, one directions corresponds

to a -2 move and all other moves correspond to +2 moves) p(� 2)+3p(+2) � 1.

The intersection of inequalities forms thestandard choice:

p(+2) =
z2

1 + (2d � 3)z2

p(� 2) =
1

1 + (2d � 3)z2

p(+0) =
1 + z2

2[1 + (2d � 3)z2]

(2.14)

For convergence, the 2.11 has to be �nite.

Apply the root test to
P 1

i =1 i � zi � � i (k):

lim
n!1

(n � zn � � n (k))
1
n = z � lim

n!1
� n (k)

1
n = z � �
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2.4 The BFACF Algorithm

if z � � < 1 then the series converge) z � 1
� . We call � the critical value.

BFACF Algorithm The algorithm generates! (t ) , where ! (t ) is the conforma-

tion generated at timet:

1. Start with initial state ! (0)

2. Choose a bonde uniformly from ! (0)

3. Consider one of 2d-2 (d is the dimension of the walk) directions perpen-

dicular to the bond e, and choose one of the elementary moves with the

probabilities p(+2) ; p(� 2); p(+0)

4. Check the self-avoiding property. If the chosen elementary move is not

against self-avoidance, then perform the move. Otherwise,! (t+1) = ! (t )

5. Continue to step 2 unless the termination condition is met

There is another approach to sampling the Markov chain calledMetropo-

lis -Hastings[17][18]. The di�erence between the BFACF algorithm above with

Metropolis-Hastings BFACF is the way to choose a elementary move to perform.

In the step 3 of the BFACF algorithm, Metropolis-Hastings BFACF is modi�ed

as follows:

choose one of the 2d-2 directions uniformly and accept/reject to perform the ele-

mentary move. TheMetropolis-Hasting style BFACF will be discussed in section

4.1
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Chapter 3

the Wang-Landau algorithm with

BFACF moves

3.1 Theory

The BFACF algorithm involves three types of moves, +2, -2, +0, which change

the length of the conformation (increase by 2, decrease by 2 or the length does

not change, respectively). In the �gure 1.1, the �rst row of moves indicates +2

and -2 moves. From left to right, the length of the polygon increases from 3 to 5

and similarly, from right to left the length of the polygon decreases from 5 to 3.

The second row of Figure the moves illustrates +0 moves. Either polygon from

left to right or the opposite direction, the length polygon remains.

Remark 3.1.1. +2, -2, +0 moves do not break the cubic lattice knot and the

knot type will be maintained; also, topological invariants like the linking number

will be maintained.

Instead of utilizing the de�nition of distribution from BFACF, Wang-Landau

de�nes the distribution as follows:
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3.1 Theory

De�nition 3.1.1 (Wang-Landau distribution).

� (� ) =
1

the number of energy states
�

1
� k

E (� )

(3.1)

Where � is a particular conformation, k is the knot type of� and � k
E (� ) is the

number of energyE(� ) conformations of k knot type in Z3. The Wang-Landau

distribution is a uniform distribution.

De�nition 3.1.2 (Wang-Landau assumption).

� E1

� E2

�
ewE 1

ewE 2
(3.2)

� E i is the number of energyE i conformations,wE i is the training weight of

the energy stateE i . In the assumption, the exponential of the weights ratio

converges to the density ratio.

De�nition 3.1.3 (Detailed Balance).

� (� ) � P(� ! � 0) = � (� 0) � P(� 0 ! � ) (3.3)

Plug the distribution (3.1) into the detailed balance equation(3.3):

1
the number of energy states

�
1

� k
E (� i )

�
1

j� i j
�

1
4

� Pacc(� i ! � j ) =

1
the number of energy states

�
1

� k
E (� j )

�
1

j� j j
�

1
4

� Pacc(� j ! � i )
(3.4)

Remark 3.1.2. Pacc(� ! � 0) is di�erent than P(� ! � 0). Pacc(� ! � 0) is the

probability of accepting the chosen move by the Metropolis Hastings algorithm,

whereasP(� ! � 0) is the transition probability from state � to � 0. The transition

probability can be represented as the product of the probability of uniformly

25



3.2 Training algorithm

choosing a move and the probability of acceptance. In the context of SAPs inZ3,

the probability of uniformly choosing a edge is1
j� j and that of uniformly choosing

a direction to push is 1
4 .

Equation 3.4 Simpli�es to:

Pacc(� i ! � j )
Pacc(� j ! � i )

=
� k

E (� i )

� k
E (� j )

�
j� i j
j� j j

(3.5)

By the de�nition of probability: If
� k

E ( � i )

� k
E ( � j )

� j � i j
j � j j > 1 ) Pacc(� i ! � j ) = 1 )

1
� k

E ( � i )

� k
E ( � j )

� j � i j
j � j j

< 1 ) Pacc(� j ! � i ) = 1
� k

E ( � i )

� k
E ( � j )

� j � i j
j � j j

Substitute the Wang-Landau Assumption(3.2):

Pacc(� i ! � j ) = min (
ewE i

ewE j
; 1) (3.6)

3.2 Training algorithm

The simpli�ed Wang-Landau Algorithm estimates the density of energy of a sys-

tem as follows:

1. Specify a modi�cation factor f , initial density estimate � , an initial state

� and a terminate condition.

2. Perform some number of Markov steps using

Pacc(� i ! � j ) = min f 1;
j� i j
j� j j

�
ewE 1

ewE 2
g (3.7)

for the Metropolis-Hastings step.

3. Update wE1 and wE2
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3.2 Training algorithm

4. Return to step 2 unless the termination condition is met.

Detailed explanation :

NOTE: For the purpose of optimizing computation, the weightswE and the

increment f are modi�ed to logarithm. The weights stored in a weights list are

the exponential ofe and f is added to weight instead of production. This helps

keep the scale of the weights small.

1. Specify a modi�cation factor f , initial density estimate � , an initial state

� and a terminate condition.

� The modi�cation factor f is the increment to weight speci�cally. Each

time the chosen step is been performed, the application adds thef to

the associated state.

� The initial density estimate is the distribution of substrates. If there

is only one substrate been fed, the initial density estimate� is been

set to 0 for ever energy state, as no state has ever been before. If the

substrates have more than one conformation, then the initial density

estimate will be the portion of the element in the sample space.

� The initial state is the initial conformation that the algorithm starts

with.

� Termination condition is the condition that tells the application when

to stop. In theory, the Wang Landau algorithm stops when it discovers

almost the whole space, however this is hard to assess in a numerical

experiment. Thus, a good way to do it is to set a threshold forf

becausef is the increment of the weight. Whenf small enough, the

weights are stable.

2. Perform some number of Markov steps using equation(3.7)
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3.2 Training algorithm

� Speci�cally, the Markov steps are the following: choose an edge uni-

formly ! choose a direction uniformly! decide whether accept or

reject by equation 3.7! check Self-Avoidance! perform the chosen

move or stay.

� The appropriate number of steps before updating the weight is not pre-

determined. In this implementation, the experimental result support

an improvement on convergence speed of training by allowing more

steps before updating the weight list, and we will discuss in section 4.3

3. Update wE1 and wE2

� It is important to update the current state when rejected or when

chosen move is self-Avoiding. For the purpose of the convergence of the

Markov Chain, the irreducibility needs to be satis�ed. Also, it can help

the chain escape the \trapped" area. In the Markov process, the chain

may fall into a favorable area can stay there for a long time. However,

the chain staying in the favorable area will decrease the portion of

samples that are in the unfavorable area. If we keep increasing the

weights for the favorable area by equation 3.7, the chain will gain

more probability to escape.

� The timing for the weight update is also important. As mentioned

above there is not best answer for the number of Markov steps before

the update. In the classic Ising model, the algorithm updates the

weight after every move. However, through the test that using di�erent

number of steps before updates, the results converge faster with around

1000 steps the before updating the weights.

4. There is an implicit terminate condition in order to reduce the value off .

After some amount of weights updating, the algorithm will check if it has
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3.3 Sampling algorithm

sampled the whole space. There will be an other list called\histogram" that

keeps tracking the occurrence of the conformations with a speci�cf . The

histogram will be cleared every time reducingf . At each f , the histogram

tells how many times each state has been visited. When the histogram is

getting \at", we say that the algorithm has mostly discovered the whole

space. The atness criteria for the histogram will be discussed in section

4.2.

5. Check if f is small enough and then terminate the sampling process.

3.3 Sampling algorithm

The sampling algorithm utilizes the approximation of the distribution obtained

from the training process. The training process provides a weight list that the

ratio of the weights approximates the relative ratio of densities with corresponding

energy states. Thus, along with the sampling process, the acceptance probability

is calculated at each step by equation 3.7. For example, rare conformations in the

sample space have smaller weights compared to common conformations. Thereby,

if the chosen move is from a common conformations to a rare conformations, the

probability of acceptance is close to 1, which means it will be very likely accept the

move. However, the training weight has similar values for conformations within

the neihborhood(i.e. related by just few BFACF moves). We need to choose an

appropriate step size to reduce the correlation of samples. The generalsampling

algorithm is described as follows:

1. Input training weight list, initial polugon and specify the step sizes and

the number of samplesn;

2. Perform s Markov steps by equation 3.7;
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3.3 Sampling algorithm

3. Write out current sample to �le;

4. Return to step 2 unless the number of samples exceedsn.

The correlation can be realized after sampling. Thus, the user has to in-

crease the step sizes after the sampling process to assure the samples are mostly

independent to each other.
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Chapter 4

Results and Comparison to the

BFACF algorithm

4.1 Metropolis-Hastings BFACF

The Arsuaga Vazquez lab has used the BFACF algorithm in a variety of studies[19].

In this work we propose two improvement to the classic BFACF algorithm. First

we implement BFACF with Metroplis-Hastings sampling. Second, we imple-

ment BFACF moves with Wang Laudau sampling. TheMetropolis-Hastingsstyle

BFACF has direct adjustment to the probabilities of each BFACF moves. Our

Metropolis-Hastingsstyle BFACF used the probabilities in equation 2.14 for the

acceptance probabilities at �rst implementation attempt. We expect the result

to converge to an ensemble of polygons with similar average length as with clas-

sic BFACF algorithm. However, the probabilities in equation 2.14 do not result

in an optimal choice for elementary moves' probabilities. Appropriate samples

should show independence with each other can be measured by autocorrelation

indicating the internal correlation of sequential sampling. With the standard

choice equation 2.14, it is trivial that the acceptance probabilities of� 2 and +0
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4.1 Metropolis-Hastings BFACF

moves are strictly less than 1, satisfying the sum of all possible moves' probabili-

ties less or equal than 1. Therefore, the� 2 and +0 moves can be rejected where

the conformation remains and therefore, increasing autocorrelation in sequential

sampling. In the method ofMetropolis-Hastingsstyle BFACF, instead of choos-

ing the elementary moves with probabilities as in equation 2.14, a move is chosen

�rst so that the choice does not constrain the sum of acceptance probabilities of

all possible moves. In order to reduce correlation, we can increase the acceptance

probabilities of � 2 and +0 moves to 1, where the algorithm will always accept

� 2 and +0 moves(instead of rejecting and remaining the same conformation).

For satisfying equation 2.13, the acceptance probability of +2 move set toz2.

De�nition 4.1.1. The modi�ed acceptance probabilites is de�ned as follows:

p(+2) = z2

p(� 2) = 1

p(+0) = 1

(4.1)

In the simulation, the step size is the frequency of sampling. 10,000 step size

indicates the simulation draw a sample every 10,000 BFACF moves, similarly for

the 1 million and 5 million step size. Increasing the step size helps independence

and as the autocorrelation approaches 0.5, the simulation converges to the desired

distribution. From table 4.1, increasing the step size from 10,000 to 5 million for

both standard choice and modi�ed choice reduce the autocorrelation to� 0.5.

Also, as we increase the step size, for both standard choice and modi�ed choice,

the error of the mean length goes down. From standard choice to modi�ed choice,

autocorrelation and error for the mean length go down for all step sizes. Since

the simulation use the same sequence of seed, we can compare the data output

line by line.
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4.2 Wang Landau simulation: atness check criteria

Table 4.1: Autocorrelation and Mean length with respect to di�erent step size

Autocorrelation Mean Length
10k 70.36� 28.19 124.30� 7.39
10k* 55.67� 19.01 124.93� 6.85
1M 1.22� 0.08 125.02� 1.03
1M* 0.91� 0.05 124.89� 0.88
5M 0.56� 0.03 124.95� 1.05
5M* 0.53� 0.02 124.79� 0.68

Cooperation of autocorrelation and mean length with respect to 10,000 step size, 1 million step
size and 5 million step size. 10k, 1M, 5M represent 10,000 step size, 1 million step size, 5 mil-
lion step size respectfully sampling with standard choice probabilities. Entries indicated with
* represent sampling with modi�ed probabilities. For each step size, there are 100 repetitive
simulations with unique seed(we use the same 100 unique seed for di�erent step size simula-
tions) and each simulations sampling 1000 conformations. We use an integrated autocorrelation
function (code courtesy of profession student whittington, University of Toronto), where a value
0.5 indicates no autocorrelation and thus is a moxy for an independent sample.

4.2 Wang Landau simulation: atness check cri-

teria

In the training phase, the algorithm maintains a histogram that counts the obser-

vation of di�erent energy classes. The atness check provides a measure of how

well the algorithm understands the sample space, i.e are there enough observation

for each energy class? The naive way to start is by calculating the min/max value

of histogram and setting a threshold to measure the atness of the histogram.

The implementation starts with this naive min/max value ratio criteria and tests

the performance of these criteria. The min/max value ratio criteria work to en-

sure the completeness of the algorithm for knot with relative simple topology.

However, for complicated knots the ratio criteria lacks adequate performance.

The problem of min/max value is that for a particular weight list increment,

there exists a limit for the accuracy of pairwise weights. The ratio criteria cannot

sense if the current increment, reach the desired accuracy. In order to satisfy the
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4.2 Wang Landau simulation: atness check criteria

conditions imposed by ratio criteria, the algorithm will waste time on increasing

every energy states' weight. In the following �gures, if the atness criteria is

been set to min/max� 0:8 the plot in Fig.4.1a does not pass the criteria whereas

the one in Fig. 4.1b passes the criteria. However, the di�erences of weights are

same for Fig. 4.1a and Fig. 4.1b. For example,we2 � we1 = 0:1 for both plots,

and similar to other pair of energy state such aswe4 � we2 = 0:3. In the Eq.

3.6 we calculate acceptance probability byewE i � wE j so the 4.1a already satis�es

the expectation for starting weight list and the 4.1b does not give us improved

accuracy.

e1 e2 e3 e4 e5

1:1
1:2

1:3
1:4

1:5

energy states

w
ei

gh
ts

(a) before

e1 e2 e3 e4 e5

2:1
2:2

2:3
2:4

2:5

energy states

w
ei

gh
ts

(b) after

Figure 4.1: Example of checking the atness by ratio test

Speci�cally, the Wang Landau algorithm starts with a rough weight list and

keeps perfecting the weight list by updating weight list while walking in the

sample space. The extreme strict criteria a�ect the correctness of the algorithm,

because the extreme strict criteria force all energy states to be visited evenly

where the weight list and histogram end up with horizontal lines. Horizontal

lines mean energy are uniformly distributed, which is not true. Thus, we should

not check atness in extreme strict otherwise it will destroy the approximation

of the sample space.

For this reason, our current solution is to use a loose criteria at the boundaries:
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4.3 Wang Landau simulation: frequency of updates

we only require some extent of time of observation on observed energy states and

normalize the weight list after the atness criteria have been passed. This solution

is supported by the reason of the walk intend to expand unvisited energy state

initially. Unvisited energy state has 0 weight value and by Eq. 3.6, this move will

be accept with probability 1. As the initial state is set to minimal energy state,

the criteria requires at least 2 times observation on the initial state for the �rst

atness criteria. Normalization of the weights list helps the computation directly,

since the actual value of the weight is meaningless, by Wang Landau assumption

3.2 the di�erence ofwE i ; wE j in ewE i � wE j is the crucial value. Since to the �rst

atness check is the �rst time exploring the sample space, passing the atness

check is a time consuming process. Thus, the solution only require 2 observations

for the �rst atness check, but more observations in future atness checks. We

will discuss more atness check criteria in the section 5.0.1.

4.3 Wang Landau simulation: frequency of up-

dates

Frequency of updates refers to how often the weight list and histogram will be

updated. In terms of the theory, the algorithm could be set to updating the weight

list and histogram after each step. However, in terms of input and output(i.e. I/O

corresponds to write/read that consumes computation power) of computation,

also, considering the randomness of the Markov Chain, we suppose that the

appropriate larger gap between updates helps the speed of convergence. This

argument is supported by experiments in Fig. 4.3 and Fig. 4.2 but it lacks

theoretical support. The larger the gap between updates means the algorithm

will walk some amount of distance in the sample space before updating and it

potentially helps to explore the sample space faster.
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4.3 Wang Landau simulation: frequency of updates

start

Figure 4.2: Visualization of training with di�erent numbers of Markov steps

The graph showing 3 step size samplings in red, green and blue. Red walk represent update the
histogram and weight list at every step, green walk represent medium range step size to update
histogram and weight list and blue walk represent the largest step size to update the histogram
and weight list. The larger step size helps the walk realize global sample space where smaller
step size limits the walk realize local sample space. However, larger step size consume more
computation power at each update and it reduce the speed of sampling process directly.

We computed the average weighted writhe to di�erent length for 31, 62 and

72. The average weighted writhe is calculated based on training phase.

De�nition 4.3.1. Average weighted writhe is de�ned as follows:

mL =

P
E l 2 L ewE l � Wr E lP

E l 2 L ewE l
(4.2)

L is the set that energy states that the length is expected to calculate the

mean writhe, wE l is the weight for the energy stateE l and Wr E l is the writhe

for the energy stateE l . We run simulation with step size 1, 5, 10, 20, 30 for knot

31, 62 and 72 at length 74. We compare the results to Portillo et al. BFACF
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simluation result[19]. Portillo et al. provides the mean writhe of cubic lattice

knot at length 75, which at length 75 means the mean length is about 75 because

the length of cubic lattice knot has to be even number. As the 4.2 shows, for step

size 10, the plot shows it converges faster than step size 1 and has less variance

in all plots. However, for 31 the average weighted writhe derived by using step

size 10 is not as accurate as using step size 20 and 30, even using step size 20 and

30 passes less atness checks. Meanwhile, for the knot 62, using step size 20 has

the fastest convergence and passes the most atness checks. Meanwhile, Fig. 4.2

shows the running time for di�erent step sizes to pass atness check. Therefore,

the optimal results should consider both convergence and time consumption to

derive overall best sampling results.

1 2 3 4 5 6 7 8 9 10

2

4

6

# of passed atness checks

Average weighted writhe Step size 1
Step size 5
Step size 10
Step size 20
Step size 30

Portillo

(a) Average weighted writhe of knot 31 training with di�erent step
size
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1 2 3 4 5 6 7 8 9

1

2

3

4

# of passed atness checks

Average weighted writhe Step size 1
Step size 5
Step size 10
Step size 20
Step size 30

Portillo

(b) Average weighted writhe of knot 62 training with di�erent step
size

1 2 3 4 5 6

2

4

6

8

# of passed atness checks

Average weighted writhe Step size 1
Step size 5
Step size 10
Step size 20
Step size 30

Portillo

(c) Average weighted writhe of knot 72 training with di�erent step
size

Figure 4.2: Average weighted writhe training with di�erent step size for knot
type 31, 62 and 72

The simulation start at the same time and the more crossing of the knot the simulation takes
longer time. For di�erent step size, the maximum numbers of atness check are di�erent. As
we expected, update every step (step size is 1) is not the most e�cient frequency to update the
histogram and weight list. All knot 3 1, 62 and 72 average weighted writhe plot shows step size
1 has the largest variance and passes least amount of passed atness checks.

38



4.3 Wang Landau simulation: frequency of updates

1 2 3 4 5 6 7 8 9 10

0:5

1

1:5

�105

# of atness checks

Time/ s Step size 1
Step size 5
Step size 10
Step size 20
Step size 30

(a) 31 running time for di�erent step sizes

1 2 3 4 5 6 7 8 9

0:5

1

1:5
�105

# of atness checks

Time/ s Step size 1
Step size 5
Step size 10
Step size 20
Step size 30

(b) 62 running time for di�erent step sizes
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1 2 3 4 5 6

0:5

1

�105

# of atness checks

Time/ s Step size 1
Step size 5
Step size 10
Step size 20
Step size 30

(c) 72 running time for di�erent step sizes

Figure 4.2: Running time of di�erent step sizes to pass each atness check for
knot type 31, 62 and 72

The �gure shows that the performance of speci�c step size varies among di�erent
knot types, but in general the larger step size consume more time then lower step
size. Note that for Fig. 4.3a step size 1 there is no data after passing 6th atness
check, which means it takes more time to pass 7th atness check than all other
step sizes

4.4 Wang Landau simulation: combined Energy

and Soft Cut

Single energy training and sampling is implemented above, so the goal now is to

enable training and sampling of multiple energies. For numerical single energy,

the energy state can be represent numerically(integer or oat point representa-

tion). However, when we combine two or more energies into a state, even energies

combined are numerical, the data structure mapping to the combined energies

has to be injective, so that the algorithm could update unique energies combina-

tion. In addition, if the energy is not restricted to numerical value (String, Char,
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