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Abstract

From virology to conservation biology, phylogenetic trees are ubiquitous across scientific

disciplines. To infer a phylogenetic species tree from genetic data a researcher encoun-

ters a common question: "what software tool should I use?" The choice is often between

a summary-based heuristic tool or a computationally intensive but statistically consistent

Bayesian inference tool. We modeled migration and coalescence in a symmetric 4-population

tree using a continuous-time Markov chain to discover scenarios under which summary-based

methods will produce erroneous estimates of phylogeny whereas Bayesian inference methods

based on the correct model will not. We present a novel algorithm for constructing the

generator matrix of the Markov chain, which can be used to calculate the probability of

gene-tree-species-tree conflict and explore regions of parameter space under which conflict is

more probable and thus erroneous estimates of phylogeny by heuristic estimators are more

probable.



CONTENTS Haleigh Miller

Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Coalescent-Based Phylogenetic Inference . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Coalescent Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Multispecies Coalescent Model . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Multispecies Coalescent Model with Migration . . . . . . . . . . . . . 7

1.3 Continuous-Time Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Methods 12

2.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Constructing the Generator Matrix . . . . . . . . . . . . . . . . . . . . . . . 13

3 Results 15

4 Conclusion 19

1 Introduction

1.1 Background

Molecular phylogenetics is the study of evolutionary relationships between a group of or-

ganisms using molecular data, such as DNA or amino acid sequences. Since the inception

of evolutionary theory, scientists have been interested in the tree of life, how all species are

related to each other and the story of their ancestors and divergences. Originally, morpholog-

ical characters were used to construct phylogenies. However, convergent evolution can make

morphological information unreliable. In 1962, Emile Zuckerkandl and Linus Pauling pub-

lished Molecules as Documents of Evolutionary History and launched the field of molecular
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1.1 Background Haleigh Miller

phylogenetics [26]. The crux of the field is that similarities in homologous DNA sequences

are informative of evolutionary relatedness.

Formally, a phylogenetic tree is a hypothesis of the genealogical relationships among

species, among genes, among populations and even among individuals. Here, we specifically

consider a tree of different populations, but often species and population trees are used

interchangeably. The population tree is a directed graph where the external nodes, called

tips, represent present-day populations and internal nodes represent ancestral populations.

Given a tree with n tips, there are 2n−1 nodes and 2n−2 edges. Forward in time, branches

descended from an internal node (ancestral population) represent a population divergence

event. Figure 1 below demonstrates the terminology.

root

internal nodes

a b c d e
tips

Figure 1: Tree Terminology

Phylogenetic trees are often inferred from DNA nucleotide sequence data, which is called

phylogenetic inference. We can align a region of genome, called a genetic locus, from our

organisms of interest and examine the number of differences, from mutations or insertions,

between them through the use of a sequence-distance measure. There is assumed to be an

ancestral version of the locus from which all the present-day sequences are derived. Pairwise

distances between loci from different species are used to build a gene tree for the given locus.

DNA acts as a window into the past with which we can reconstruct the ancient history

of populations. But, DNA tells more than one story; different areas of the genome may have

different evolutionary histories and can result in different species trees [14, 19, 6]. Inferring
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the evolutionary history of a group of organisms given discordant genomic histories is a

central problem in phylogenetics. There are many reasons for the evolutionary history of a

particular gene, called a gene tree, to have a different evolutionary history than the organ-

isms it comes from including the coalescent process in ancestral species, gene duplication,

and horizontal gene transfer (introgression) [14, 19, 6]. In fact, there are situations under

which the most probable gene tree has a different topology (branching relationships) than

the species tree, which is called the "anomaly zone" [4]. The coalescent process in ancestral

species that generates conflicts between gene tree ans the species tree is often referred to as

incomplete lineage sorting (ILS). Gene tree heterogeneity due to the coalescent process

is universal [7] and the influence it has on gene-tree-species-tree conflict is significant. In

fact, simulation studies have shown that the probability that two gene trees match can be

very small in the presence of ILS [22]. Because of the pervasiveness of ILS and its poten-

tially mileading effects, many phylogenetic inference programs are designed to incorporate

this process. The multispecies coalescent (MSC) has emerged as the natural framework

to account for genealogical heterogeneity due to ILS across the autosomal genome [7].

1.2 Coalescent-Based Phylogenetic Inference

1.2.1 Coalescent Theory

The MSC is an extension of the coalescent theory formulated by J.F.C. Kingman in the

1980s [11]. The coalescent model traces ancestral lineages of a sample of chromosomes from

a population backwards in time. An ancestral lineage is a series of genetic ancestors of the

sample at a locus. With each coalescent event, the number of ancestors decreases by 1. In

the coalescent model, we are concerned with the time until we have i− 1 ancestors, denoted

Ti. When i = 1, we have reached the the most recent common ancestor and T2 is

denoted TMRCA [23].

In the basic coalescent model we make the following assumptions:
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1. No selection, namely no differences in fitness (reproductive success) among lineages at

a locus.

2. There is no population subdivision, geographic or otherwise.

3. The size of the population, N , is constant through time.

Assumptions 1 and 2 mean that the number of offspring each individual in the sample

produces is independent of any label that could be placed on them, be that label allelic

state, geographic location, etc. This property is called exchangeability. Exchangeability

implies that every pair of lineages is equally likely to be the pair that coalesces, a fact that

will be useful later in the derivation of our Markov chain.

The coalescent is a stochastic process in which the state space is all possible rooted

trees with ordered tips and nodes and associated coalescent times, referred to as a labeled

histories [5] . Since every pair of lineages is equally likely to coalesce, all labeled histories

in the state space have equal probability. Kingman [11] showed that as N →∞ the waiting

times between coalescence events ti = Ti− Ti−1 are independent and identically distributed

(i.i.d) exponential random variables, i.e., that each coalescence time has the probability

density function,

f(ti) =

(
i

2

)
e−(i

2)ti ∀i = 1, ..., n− 1 (1)

From the properties of exponential distributions it is clear that,

E[ti] =
2

i(i− 1)
(2)

and

V ar[ti] =

(
2

i(i− 1)

)2

(3)
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1.2.2 Multispecies Coalescent Model

The MSC lies at the interface of population genetics and phylogenetics [20]. The MSC

extends coalescent theory by accounting for the history of species and population divergences.

It extends traditional phylogenetic models by accounting for the coalescent process and the

resulting genealogical heterogeneity across the genome. Because it accounts for the coalescent

process in both extant and extinct ancestral species, the MSC naturally accommodates ILS.

The MSC has two types of parameters: species divergence times (τs) and population

sizes (θs) [7]. Both τs and θs are estimated by sequence distance, the expected number of

mutations/substitutions per site. The parameter θ = 4Nµ is the average distance between

two sequences sampled at random from a population with effective population size N , where

µ is the mutation rate per site per generation. For example, in humans θ = 0.0006; meaning,

if you compared two sequences in humans you would expect 0.6 differences between them

per 1000 base pairs. Divergence times in a population tree are also represented in units of

expected substitution. For example,τ represents the age of an internal node in the species

tree, measured in units of expected number of mutations per site. Figure 2 shows the

relationship betweeen parameters of gene trees and population trees for a population tree of

3 species.

Phylogenetic inference methods built on the MSC, often called coalescent-based meth-

ods, fall into two categories: summary and full-likelihood methods. In full-likelihood MSC

methods, a statistical methodology is needed to infer the probability of a species tree given

the gene trees. Bayesian inference of species trees was first developed by Ziheng Yang and

Bruce Rannala in the mid 1990’s [21]. Bayesian statistics are useful for this problem because

prior probability distributions can be used to describe the uncertainty of all unknowns, in-

cluding the model parameters. Let Θ represent the parameters of the MSC and the DNA

substitution model and D be the observed data, i.e., the sequence data. Bayes’ theorem

5



1.2 Coalescent-Based Phylogenetic Inference Haleigh Miller

A B C a1 a2 b1b2 c1

t1

t2

t3
t4

1

2

3

4

Figure 2: A population tree for populations A, B and C is shown in black with a gene
tree for sequences a1, a2, b1, b2, and b3 shown within the species tree in red. Within each
species/population, sequences coalesce at random at the rate determined by θ, generating a
gene tree with branch lengths, tis, conditioned on the species tree. Note that θc not estimable
if there is only one sequence from species C at each locus.

states that,

f(Θ|D) =
1

z
f(Θ)f(D|Θ)

where z is the normalizing constant, z =
∫
f(Θ)f(D|Θ), and f(Θ) is the prior distribution

of the parameters.

Bayes’ theorem implies that the posterior is proportional to the prior multiplied by the

likelihood, i.e., that the posterior combines information about the likelihood and the prior.

With respect to the MSC, we wish to find the posterior probability of a species tree given the

model parameters, the posterior probability of the associated gene tree, and the sequence

alignment. Instead of calculating the posterior, which is computationally unfeasible because

of the integral calculation in the normalizing constant, a Markov chain Monte Carlo (MCMC)
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algorithm obtains a sample from the posterior.

The MSC is, however, computationally cumbersome with large datasets; the more species

or loci added, the more complicated the model becomes. Heuristic methods, or summary-

statistic methods, make the method more computationally efficient by treating the gene

tree as static data, or as a summary-statistic. But, by making the gene trees static, the

uncertainty in each gene tree is ignored resulting in a potential loss of statistical efficiency

and consistency, the assurance that with more loci added the method will have minimal

variance and converge to the correct tree.

MP-EST [12] and ASTRAL [17, 16, 24], two popular summary-statistic methods, are

based on breaking a species tree into 3- or 4-taxa sub-trees, respectively. This is based

on the findings that there are no anomalous rooted 3-population species trees [4] and no

anomalous rooted 4-population species trees [1, 3]. These methods find the species tree

topology that agrees with the largest number of sub-tree topologies induced by the inferred

gene trees. However, if the most common topology of the gene trees is discordant with the

species tree topology, these methods will be inconsistent.

A major question in the field is whether the increased performance of rigorous Bayes

inference methods, which are not subject to the inconsistencies of summary-statistic methods,

justifies the increased computational cost. Further, since both classes of methods derive from

the MSC, they share the following assumptions: there is (i) no selection on the genes, (ii) no

migration between populations, and (iii) no recombination within loci. This raises another

question: is one class of methods more resilient to violations of model assumptions, such

as migration, than the other? Moreover, is it necessary to develop Bayesian methods that

model migration to obtain accurate phylogenetic inferences?

1.2.3 Multispecies Coalescent Model with Migration

Migration has been shown to significantly influence dynamics of the divergence process be-

tween populations or species [8]. To model migration in a MSC process, in order to un-
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derstand its influence, researchers often use the Isolation-with-Migration (IM) Model,

which was first implemented by Jody Hey and Rasmus Nielsen in 2004 for two populations

[9] and expanded to an arbitrary number of populations by Jody Hey in 2010 [8]. The IM

model, shown in Figure 3, includes three population size parameters (θs) and two migration

rate parameters (mis) per divergence event. Migration rates are defined as mi = M
µ
whereM

is the migration rate per generation per copy and µ is mutation rate per site per generation.

Thus, the migration rate is scaled in time units of the expected number of mutations. It is

assumed that all ancestral and sampled populations are constant in size and follow Fisher-

Wright assumptions1. Migration happens throughout a time period randomly at rate mi.

It is further assumed the loci sampled, like in the MSC, have not undergone recombination,

are unlinked, and are not under selection.

A B C

θA θB

m1

m2
m3

m4

m5
m6

m7

m8

θA θB

m2
m3

m4

m5
m6

m1

m8

m7

00

Figure 3: IM model in 3-population asymmetric species tree. On the left, the IM model is
illustrated in context of the species tree. On the right, the IM model is illustrated in context
of the populations undergoing gene flow. Individuals in each population migrate at random
at the rate determined by mis

1Under Wright-Fisher assumptions there is no selection, no mutation, non-overlapping generation times
and random mating.

8



1.3 Continuous-Time Markov Chains Haleigh Miller

The effect of migration on phylogenetic inference has been well-studied in 3-population

IM models. In 2012, Tianqi Zhu and Ziheng Yang [25] derived the probability of gene-

tree-species-tree discordance when migration is present between sister populations (extant

populations that share a common ancestor not common to any other populations) in a 3-

population tree. Using their 3-population IM model, they derived a likelihood-ratio test

of speciation with gene-flow. In 2018, Colby Long and Laura Kubatko [13] derived the

probability of gene-tree-species-tree discordance in a 3-population IM model with migration

between all populations. They further described the gene tree anomaly zone as regions

of parameter space in which discordant gene trees have higher probability than concordant

ones. When migration rates were asymmetric, the probability of discordant trees was much

higher than under symmetric migration rates. Analytic results such as these are useful

because they can inform researchers of how to choose parameters in simulation studies of

phylogenetic inference under migration.

Using a continuous-time Markov chain, we modeled migration and coalescence in a sym-

metric 4-population IM model. We derive a novel algorithm for automatically constructing

the generator matrix that generates the Markov chain. From the generator matrix we can

derive the probability of gene-tree-species-tree discordance and describe a gene tree anomaly

zone for this model.

1.3 Continuous-Time Markov Chains

We model migration and coalescence in a phylogenetic tree using continuous-time Markov

chains. Markov chains allow us to model the coalescent and migration history of sampled

chromosomes of a locus backwards in time. Since the coalescent history of the sampled

locus determines gene tree topology, we can calculate the probability of certain gene tree

topologies given coalescent and migration parameters. We will outline the general theory of

continuous-time Markov chains [2] before we define the chain for or coalescent with migration

model.
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Definition 1. Let FX(s) denote all the information pertaining to the history of a random

variable X up to time s. Suppose j ∈ S and s ≤ t and S is the countable state space of X.

A process that satisfies the following conditions,

P{X(t) = j|FX(s)} = P{X(t) = j|X(s)} (4)

P{X(t) = j|X(s)} = P{X(t− s) = j|X(0)}, (5)

is called a continuous-time Markov chain (CTMC). In other words, a CTMC is a

process that satisfies both lack-of-memory and time-homogeneity properties.

We are interested in the probability of reaching a certain state, say state j, of the CTMC

given a starting state, say state i, in a finite time period t. In other words, we are interested

in finding,

Pij(t) = P (X(t) = j|X(0) = i) (6)

where X(t) is the state of the CTMC at time t.

Let λ(i) denote the rate at which the process leaves state i and pij denote the probability

that the process transitions to state j after leaving state i. λ(i, j) = λ(i)pij represents the

local rate of transitioning from state i to state j, also called the transition intensity. The

leaving rate for state i is the sum of the local rates out of i, i.e.,

∑
j 6=i

λ(i, j) = λ(i)

These transition intensities are used to build the generator matrix which fully determines

the chain. More formally,

Definition 2. Let X(t) be a CTMC on some state pace S with transition intensities λ(i, j) ≥
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0 . Then the matrix,

Aij =


−λ(i) i = j

λ(i, j) i 6= j

is called the generator of the CTMC.

Equation (3) is solved by the Kolmogorov forward equations:

P ′i (t) = −λ(j)Pij(t) +
∑
j 6=i

Pij(t)λ(i, j) (7)

From (4) and the definition of the generator, one can see that (3) can be written as the

matrix differential equation,

P ′(t) = P (t)A (8)

The solution to (8) has the general form,

P (t) = eAt (9)

Exponentiation of A analytically may work for certain small matrices, but for larger

matrices numerical methods must be used. While there are many methods to compute the

matrix exponential, issues with computational stability and efficiency are of concern in all

[18]. The scaling-and-squaring method is the most widely used method for computing the

matrix exponential [18], with current implementations having nearly optimal efficiency [10].
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2 Methods

2.1 Model Description

To explore situations under which migration can cause gene-tree-species-tree conflict, and

thus erroneous ASTRAL or MP-EST estimates of phylogeny, we have developed a model to

allow for 4 populations in a fully symmetrical species tree, shown in Figure 4. We sample

one sequence per species.

a b c d

m1

m2

lineage ab lineage cd

Figure 4: IM Model for a Symmetric Four-Population Tree. Migration occurs between
ancestral populations ab and cd randomly at rates m1 and m2.

We construct a CTMC X(t) in which we follow a single sequence from each of the

populations a, b, c, and d in the 4-population phylogenetic tree backwards in time. Either

a sequence can coalesce with another sequence or it can migrate to another population.

Each element in the state space of X(t) contains two sets, L and R. Let L = {} denote

the set of sequences in ancestral population ab and R = {} denote the set of sequences in

ancestral population cd. Let the set elements 1,2,3,4 denote sequences from populations

a, b, c, d, respectively. So, for example, state L = {1, 2, 3}R = {4} signifies that sequences

from populations a, b and c are in population ab while the sequence from population d is

in population cd. L = {1, 2, 3}R = {4} will be represented as {1, 2, 3}{4} for brevity. Let

coalescence be denoted by the concatenation of set elements. For instance, if sequences 1

12
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and 2 coalesce the coalesced lineage will be denoted 12.

2.2 Constructing the Generator Matrix

We assume that only one event, either a migration or a coalescence, can happen at any

instance in time. To derive the coalescent event transition intensities we must return to

coalescent theory; ancestors are chosen at random from the pool of 2N genes in a population

of N individuals. Since the property of exchangeability holds, coalescence between any pair

of sequences in the population is equally likely. If i sequences exist, the probability that a

coalescence occurs between a random pair of sequences at any instance in time is given by,

P (Coalescence) =

(
i

2

)
1

2N

which is called the instantaneous rate of coalescence. However, the probability that two

specified sequences coalesce in an instance in time within a population is just 1
2N

, which is our

transition intensity for a viable coalescence event. The transition intensity for a migration

event is simply the rate of migration in the appropriate direction.

The state space for this model has 92 states, which is too large to solve by hand, so we

design an algorithm to build the generator matrix. Let A = [aij] ∈ R92×92 be our generator

matrix, where Ai,: are the rows of A and A:,j are the columns of A. We define row labels

as source states and column labels as target states. So, aij is the transition intensity from

source i to target j. We denote the row and column labels as Ri,:.label–so if the ith row of A

corresponds to source state {1}{2, 3, 4}, then Ai,:.label = {1}{2, 3, 4}. Further, Li and Ri are

the sets from population ab and population cd, respectively, in the source state. Likewise, Lj

and Rj are the sets from population ab and population cd, respectively, in the target state.

Now, to assemble the matrix we define the following distance measures:

Definition 3. The state distance between states LiRi and LjRj, denoted ∆1
ij, is defined as,

13
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∆1
ij = |Li ∪Ri| − |Lj ∪Rj|.

It represents the change in the number of sequences from the source state to the target state.

When a migration event happens ∆1
ij = 0 and when a coalescent event happens ∆1

ij = 1.

All other values of ∆1
ij indicate there is no possible transition between the source and target

states.

Definition 4. The migration distance between states LiRi and LjRj, denoted ∆2
ij, is

defined as,

∆2
ij = |Lj − Li| − |Li − Lj|.

It represents the direction and magnitude of migration between two states. We only allow

one sequence to migrate at a time so |∆2
ij| = 1 indicates a potential migration event. ∆2

ij < 0

corresponds to migration from population 2 to population 1, while ∆2
ij > 0 corresponds to

migration from population 1 to population 2

Definition 5. The coalescent distance between states LiRi and LjRj, denoted ∆3
ij, is

defined as,

∆3
ij = (|Li| − |Lj|)− (|Ri| − |Rj|).

It represents the number of coalescent events taking place and under which population they

occur. Since only two sequences can coalesce at any time, |∆3
ij| = 2. ∆3

ij < 0 indicates a

coalescent event occurred in population 2, while ∆3
ij > 0 indicates a coalescent event occured

in population 1.
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3 Results

Our methodology resulted in the following algorithm which can be used in further studies.

The pseudo-code for the algorithm for generating R is as follows:
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Algorithm 1: Generating the Generator Matrix R
Input : m1, m2, N
Output: R
/* Loop through source states (rows) */

1 for i = 0, ..., 81 do
2 Ai,:.label = LiRi

/* Loop through target states (columns) */
3 for j = 0, ..., 81 & i 6= j do
4 A:,j .label = target := LjRj

/* possible migration states: */
5 if ∆ij

1 == 0 then
/* |Li ∩ Lj | = |Li| checks if the elements in Li are shared with Lj (except

the new member from population 2). This, with ∆2
ij == −1 means there

was a migration event from population 2 to population 1. */
6 if (∆2

ij == −1) & (|Li ∩ Lj | == |Li|) then
7 aij = m2

8 end
/* If |Li ∩ Lj | = |Li| − 1 then |Ri ∩ |Rj | = |Ri|, which checks if the elements

in Ri are shared with Rj (except the new member from population 2).
This with ∆2

ij == 1 means there was a migration event from population 1
to population 2. */

9 if (∆2
ij == 1) & (|Li ∩ Lj | == |Li| − 1) then

10 aij = m1

11 end
/* No migration */

12 else
13 aij = 0
14 end
15 end

/* possible coalescent states: */
16 if ∆ij

1 == 1 then
17 ∆3

ij = (|Li − Lj | − |Ri −Rj |)
/* x measures the number of shared elements in both sets. If

x= (Lj ∪Rj)− 1 then all states except the coalescent state match */
18 x = |Li ∩ Lj |+ |Ri ∩Rj |

/* Final coalescent state */
19 if (|Li| == 2 & |Ri| == 0) or (|Li| == 0 & |Ri| == 2) then
20 aij = 1

2N
21 end

/* Coalescent event in 1 */
22 if (∆3

ij == 2) & (x == |Lj ∪Rj | − 1) then
23 aij = 1

2N
24 end

/* Coalescent event in 2 */
25 if (∆3

ij == −2) & (x == |Lj ∪Rj | − 1) then
26 aij = 1

2N
27 end
28 end
29 end

/* Fill in the diagonal so that
∑81

i=0 aij = 0 */
30 aii = −

∑81
j=0|i 6=j aij;

31 end
32 return A
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To illustrate the construction of the generator matrix of the system, I have taken a 9

state subset of the state-space, shown in Figure 5. This subset, along with the subset of

all states possible through migration, was also used to test my generator-matrix-generating

algorithm.

{1,2} {3,4}

{1,3} {2,4}

{1} {2,3,4}

{1} {2,34}

{1,2} {34}

{12} {34}

{} {12,34}

{} {1234}

2m1

3m2

2m1

3m2

{}
{1,2,3,4}

m1

4m2

3/2N

2m22m1

1/2N

2m2

m11/2N
Absorbing State

Figure 5: Illustration of Continuous Markov Chain for 4-Population IM Model on Subset of
State-Space.

From Figure 5, R was found to be,
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R =

{1, 2}{3, 4} {1, 3}{2, 4} {1}{2, 3, 4} {}{1, 2, 3, 4} {1}{2, 34} {1, 2}{34} {12}{34} {}{12, 34} {}{1234}



{1, 2}{3, 4} −(2m1
1
2N

) 0 2m1 0 0 1
2N

0 0 0

{1, 3}{2, 4} 0 −2m1 2m1 0 0 0 0 0 0

{1}{2, 3, 4} 3m2 3m2 −(6m2 +m1 + 3
2N

) m1
3
2N

0 0 0 0

{}{1, 2, 3, 4} 0 0 4m2 −4m2 0 0 0 0 0

{1}{2, 34} 0 0 0 0 −2m2 2m2 0 0 0

{1, 2}{34} 0 0 0 0 2m1 −(2m1 + 1
2N

) 1
2N

0 0

{12}{34} 0 0 0 0 0 0 −m1 m1 0

{}{12, 34} 0 0 0 0 0 0 2m2 −(2m2 + 1
2N

) 1
2N

{}{1234} 0 0 0 0 0 0 0 0 0

With m1 = 1, m2 = 2, N = 400 as sample values, using Algorithm 1 implemented in

python, the generator matrix for the 9-state subset is below.

R =

{1, 2}{3, 4} {1, 3}{2, 4} {1}{2, 3, 4} {}{1, 2, 3, 4} {1}{2, 34} {1, 2}{34} {12}{34} {}{12, 34} {}{1234}



{1, 2}{3, 4} −2.00125 0 2 0 0 0.00125 0 0 0

{1, 3}{2, 4} 0 −2 2 0 0 0 0 0 0

{1}{2, 3, 4} 6 6 −13.0038 1 0.00375 0 0 0 0

{}{1, 2, 3, 4} 0 0 8 −8 0 0 0 0 0

{1}{2, 34} 0 0 0 0 −4 4 0 0 0

{1, 2}{34} 0 0 0 0 2 −2.0025 0.00125 0.00125 0

{12}{34} 0 0 0 0 0 0 −1 1 0

{}{12, 34} 0 0 0 0 0 0 4 −4.00125 0.00125

{}{1234} 0 0 0 0 0 0 0 0 −0

With this matrix, one can calculate the probability of discordance by calculating the

probability of being in an anomalous state, such as {13}{23}, in varying times t. Recall that

P (t) = eAt.The matrix exponential will be calculated using the scaling-and-squaring method

[10] as implemented in expm in TensorFlow [15].
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4 Conclusion

The motivation for this thesis was to develop analytical tools to study evolutionary sce-

narios under which popular phylogenetic inference methods were likely to infer incorrect

phylogenies. This is an important problem in the field because, in choosing between a

computationally-intensive but consistent Bayesian inference method or a computationally-

efficient heuristic method, researchers must juggle the cost of computation against the danger

of inconsistency. If there are only a few evolutionary scenarios under which heuristic meth-

ods were more likely to infer incorrect phylogenies, then it may not be necessary to use a

Bayesian inference method.

We developed a probability model of a 4-population phylogenetic tree with migration

to explore these evolutionary scenarios in gene tree anomaly zones. Our study confirms

and expands upon previous work by Zhu and Yang [25] and Long and Kubatko [13] on 3-

population trees. By studying migration in a 4-population tree, we can apply our model to

more real-world scenarios.

In the future, we hope to generalize our generator matrix algorithm to include more

populations and more sequences per population. Furthermore, we will perform simulation

studies to generate sequence data in the gene tree anomaly zone in order to compare the

performance of difference phylogenetic inference methods. Our work provides a methodology

for studying gene-tree-species-tree conflict with more populations. It is important to preform

analytical studies of gene-tree-species-tree conflict such as these because it not only informs

future simulation studies, but it buttresses the findings of those simulation studies.
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