
Applying Deep Learning Methods on Detecting Cycles on Graphs

By

Ka Hei Michael Chu

SENIOR THESIS

Submitted in partial satisfaction of the requirements for Highest Honors for the degree of

BACHELOR OF SCIENCE

in

MATHEMATICAL ANALYTICS AND OPERATIONS RESEARCH

in the

COLLEGE OF LETTERS AND SCIENCE

of the

UNIVERSITY OF CALIFORNIA,

DAVIS

Approved:

Jesús A. De Loera

June 2020

i



iv

ABSTRACT. This thesis is about using deep learning to identify whether a n-vertex
simple undirected graph has a k-length cycle. I present the details of my work with Pro-
fessor Jesús A. De Loera on using artificial neural network architectures to perform such
classification problem.

It is found that the eigenvalues alone are a very telling factor of whether a graph has a
k-cycle, as using only eigenvalues as features for the neural network achieves accuracy close
to providing full information of the graph into the neural network, despite the abstraction
of information. This indicates that the eigenvalues contain important information about
the graph’s topology.

Another surprising finding is that recurrent neural network, typically used for temporal
or otherwise continuous data such as speech and video, outperforms feed-forward neural
network on the task of cycle-detection, which is discrete and combinatorial.



Contents

Chapter 1. Background 1
1.1. Machine learning 1
1.2. Artificial neural networks 2
1.3. Types of neural networks 6
1.4. Underfitting, overfitting and regularization 8

Chapter 2. Graphs 13
2.1. Adjacency matrices 13
2.2. Non-Deterministic algorithms for finding cycles 14
2.3. Contemporary works on graph theory 15

Chapter 3. Experiments 17
3.1. Datasets 17
3.2. Adjacency matrix as input feature 18
3.3. Eigenvalues of adjacency matrix as input features 18
3.4. Adjacency matrix and its eigenvalues as input features 19
3.5. Using different datasets for training and testing 20
3.6. Summary 20

Bibliography 23

v





CHAPTER 1

Background

Artificial intelligence, and neural network in particular, has been a hot topic recently
in Computer Science. One might have heard of the successful results of artificial intelle-
gence in complicated tasks such as synthesized speech, computer vision, and beating Chess
and Go masters in their own games. In this thesis, we apply neural networks to solve a
mathematical problem. This chapter provide an intuitive introduction to the concept of
artificial neural network.

1.1. Machine learning

Machine learning is the study of computer algorithms that improve through expe-
rience without being explicitly programmed. In conventional computer programming, a
machine is instructed to perform a predefined process. In contrast, for a machine learning
paradigm, the machine attempts to perform tasks without being explicitly programmed to
do so.

For example, in conventional programming, we instruct the machine to run the process
“return y = 2x + 1” and provide the machine with input data x = [0, 1, 3, 5, 6, 9], the
machine would return the output data y = [1, 3, 7, 11, 13, 19]. In machine learning, we feed
the machine with input x = [0, 1, 3, 5, 6, 9] and desired output y = [1, 3, 7, 11, 13, 19]. The
machine would attempt to learn the underlying mathematical relationship between the x
and y. After the machine ‘learns’ the linear relationship between the input and output
data, perhaps we would want to know how much is 2×4+1. We provide the machine with
additional input x′ = 4 and, hopefully, the machine would return y′ = 9 — or some values
numerically close to it.

Machine learning excels in performing tasks that are difficult to hand-craft an algorithm
for, as the machine discovers latent relationship or structures within the data. Common
applications of machine learning are computer vision and data-mining.

Machine learning can be categorized into three subtypes:

1.1.1. Supervised learning. The machine, provided with input data and corre-
sponding output, is tasked to learn the mathematical relationship between the input data

1



2 1. BACKGROUND

and the corresponding output. The case of ‘learning’ y = 2x+1 above is an example of su-
pervised learning. Supervised learning can be further demarcated into two sub-categories:

Definition 1. In a classification, the set of possible outputs is finite. An example
of classification problem would be the set of input data x = [0, 1, 3, 5, 6, 9] and outputs
y = [0, 1, 1, 1, 0, 1], with the underlying relationship

y =

{
1 : x is an odd number

0 : otherwise
.

The output in classification is also called label.

Definition 2. In a regression, the set of output is not necessarily finite or even
countable. For instance, the example of y = 2x+ 1 above is a regression, where the output
range is the set of Real numbers.

1.1.2. Unsupervised learning. The machine attempts to find underlying patterns
or structures in a given data set. Unlike Supervised Learning, the machine in unsupervised
learning is not given outputs or labels, hence the learning is ‘unsupervised’ as there are no
labels to verify whether the machine-predicted output is right or wrong.

1.1.3. Reinforcement learning. The machine is put into a dynamic learning envi-
ronment where the machine receives rewards based on its actions, and its objective is to
maximize cumulative rewards. In contrast, the learning environment of both supervised
and unsupervised learning are static,as the environment is the data set itself. Reinforce-
ment learning is commonly used in action-based tasks, such as building an AI for chess or
for video games.

In this thesis, we use machine learning, and in particular artificial neural networks,
to learn to solve a classification problem that would otherwise take an exponentially long
time to perform in classical programming.

1.2. Artificial neural networks

An Artificial neural network (NN) is a machine learning method loosely related to
the biologicial structure of neural networks in an animal brain. A NN is a collection of
layers of interconnected artificial neurons, or nodes, that receive and transmit signals
to other neurons. Data is passed into the neural network, in which the neurons transform
the data and condense the transformed data signals into a machine-predicted output.

Deep learning is the use of NNs with multiple hidden layers for machine learning.
There was a distinction between artificial neural networks and deep learning, as the latter
excludes single hidden-layer networks from the general notion of NN. However, given the
growth of computational power, deep learning has become not only feasible but also very
approachable - a multiple layer network with width counted in hundreds can be trained



1.2. ARTIFICIAL NEURAL NETWORKS 3

Figure 1. Visualization of the architecture of an artificial neuron network. Image

taken from [2].

on a laptop. Now, the two terms are used almost interchangeably, as most researches and
applications of NNs are multi-layered.

Figure 1 is a visualization of an artificial neural network. Each node represents a
neuron, and each edge between neurons (directed from left to right) represents a neural
connection. Note that this is a feed-forward neural network, a subtype of NN to be dis-
cussed in the coming section.

The performance of the NN is evaluated by a loss function, which compares all labels
and machine-predicted output to produce a loss value quantifying the machine predic-
tion’s deviation from the labels. Weights of neuron connections (and their output signal
thereof) are adjusted according to the loss value to minimize the loss.

The mathematical definitions of these terms are detailed below.

1.2.1. Neurons. Artificial neurons are the atomic components of a NN. An artificial
neuron receives input signals from other neurons, transform the signals into a numerical
output value, and sends the output value to other neurons. Generally, a neuron takes the
weighted sum of all input signals plus the bias value of the layer, transform the sum by



4 1. BACKGROUND

the activation function of the neuron, and output the transformed sum to other neurons.

To give an abstract mathematical notion, the output value of a neuron is

c(w · a+ b)

where c(x) is the activation function of the neuron, a is the vector of input signals from
other nodes, w is the corresponding connection weights corresponding to the inflowing
neuron signals, and b is the bias value for the layer.

Some desirable properties for an activation function include:

• Nonlinearity
• Choice of range: finite range makes training more stable, but unbounded range

makes training more efficient
• Continuously differentiable
• Monotonocity
• Smooth functions with smooth derivatives
• Approximates identity near origin

Common choices of activation are listed below:

Definition 3. The Rectified linear unit (ReLU) is a piecewise linear function de-
fined as:

ReLU(x) = max(0, x)

Composition of ReLUs can represent any piecewise-linear function. ReLU has codomain
[0,∞). The function is continuous, but not differentiable at x = 0. Nevertheless, ReLU
works well in practice.

Figure 2. graph of ReLU.

Definition 4. Sigmoid, also known as the logistic function, is a smooth function
defined as:

Sigmoid(x) = σ(x) =
1

1 + e−x



1.2. ARTIFICIAL NEURAL NETWORKS 5

A closely related activation function is hyperbolic tangent:

tanh(x) =
ex − e−x

ex + e−x

Figure 3. Graph of Sigmoid (left) and tanh (right). Note that sigmoid is centered

at (0, 0.5) while tanh is centered at the origin. The two functions are equivalent

up to rigid transformation.

Note that tanh(x) = 2σ(2x)−1. Since sigmoid has range (0, 1) and hyperbolic tangent
has range (−1, 1), one may opt for one or another depending on the desired range of neuron
output signals.

Definition 5. Softmax normalizes an input vector into a probability distribution.
Softmax takes an input of vector z = (z1, . . . , zn) ∈ Rn:

softmax(z)i =
ezi∑n
j=1 e

zj
(i = 1, . . . , n)

Softmax normalizes each component zi of the vector to the range of (0, 1), and the normal-
ized vector have unit sum. Thus the output can be treated as a probability distribution,
where larger input component corresponds to a larger probability value.

Note that unlike the previous activation functions, where the input is the weighted sum
of inflowing signals plus bias, softmax’s input is the vector of signals.

1.2.2. Layers. Neurons in a NN are organized into a collection of layers to control
the flow of signals. The flow of information starts from the input layer, where each
neuron represents a datum from the data set. Note that the input layer neurons do not
have activation functions. The input layer passes the data to the hidden layers, where
learning and computation takes place. Each hidden layer propagates its output signals to
its successive hidden layer, and finally to the output layer, where the neurons compute
the output of the NN model. The loss value of the output is calculated, and the weights



6 1. BACKGROUND

and biases in the network are adjusted using gradient descent.

The width of a layer is the number of neurons on the layer. The computational and
learning capacity of a neural network depends not only on the number of neurons in the
network (or the sum of widths of hidden layers), but also the number of hidden layers.

Definition 6. A layer is dense if each neuron in the said layer sends its output signal
to every neuron in its successive hidden layer.

1.2.3. Loss Function. The loss function, or cost function, of a NN is a quantifi-
cation of how much the NN’s classification result deviates from the actual result, i.e. the
labels. The machine then recalibrates the weights of neural connections and the bias value
of layers. Listed below are some common choices of cost functions.

Definition 7. The quadratic cost function is defined as

C(w, b) =
1

n

∑
x

‖y(x)− a(x,w, b)‖2

where

• n is the size of training data set;
• x is the data in training set;
• y(x) is the output or labelled value corresponding to the data point x;
• w is the entire set of connection weights in the NN;
• b is the vector of biases in all the layers in the NN;
• a(x,w, b) is the NN’s prediction of x’s label or regression output, given the speci-

fications of w, b

which is essentially the sum of squared prediction errors. This cost function is a common
choice for regression modeling.

Definition 8. Cross-entropy is a loss function for binary classification, defined as:

CE = − 1

n

∑
x

[y(x) ln(a(x,w, b)) + (1− y(x)) ln(1− a(x,w, b))]

with the same notations of a, x, w, b as above. Here, y is the binary classifier variable (so
it is either 0 or 1), and the activation function a of the output layer generally has output
range (0, 1). For instance, sigmoid is a suitable choice for a.

1.3. Types of neural networks

1.3.1. Feed-forward neural networks. In a feed-forward neural network (FNN),
information flows in one direction. A FNN is composed of sequenced dense hidden layer(s),
and data is propagated from the input layer to each successive hidden layer, and finally
to the output layer. Note that in a FNN, neurons do not connect to other neurons from
the same layer. Thus, if we consider the NN as a graph with neurons as vertices and



1.3. TYPES OF NEURAL NETWORKS 7

information flow as directed edges, then a FNN forms an acyclic graph. If we ignore the
direction of information flow, then graph of FNN forms a L-partite graph, where L is the
number of layers.

The weights in a FNN can be described more succinctly using matrices. Let Ln denote
the nth layer and |Ln| denote its width. Since each neuron in the nth layer is connected to
every neuron in the (n+ 1)th layer, the connection weights between these two layers forms

a matrix W (n) ∈ R|Ln|×|Ln+1|, where W
(n)
ij is the weight of the output signal from the ith

neuron of Ln to the jth neuron of Ln+1.
The illustration in figure 1 is in fact a feed-forward neural network with hidden dense

layers. In contrast, some alternative neural network architecture allows data signals to be
sent to previous layers or to the same layer.

1.3.2. Recurrent neural networks. Recurrent Neural Network (RNN) is a type
of NN that is typically used for temporal or otherwise contiguous data. The distinguishing
feature of an RNN is that in each training set, the NN remembers data from the pre-
vious training steps. Common tasks for RNN are audio, speech, video and handwriting
recognition.

Figure 4. A high-level visualization of the RNN architecture. [10].

An RNN inherits the architecture of a FNN, except neurons also send their output
signals back to themselves. Figure 4 is a visualization of a RNN. The green node xt the
tth datum, ht is the state (weights, biases and activation functions) of the hidden layers
at the tth training step, and σt is the output of the NN at the same training step. After
training step t, the neuron signals in step t from the hidden layers are passed back to the
hidden layers for step t+ 1.

A NN could be a hybrid of FNN and RNN by having some layers being dense and some
being recurrent. For example, one could have a NN with two layers of LSTM (a type of
recurrent layer) followed by a dense feed-forward layer. Since RNN can be described as an



8 1. BACKGROUND

iteration of the FNN, we would still put ‘hybrid’ networks under the umbrella of the RNN
class.

1.4. Underfitting, overfitting and regularization

Figure 5. A depiction of a machine trying to separate the crosses crom the circles.

The example is in fact an instance of support vector machine, an unsupervised

machine learning method. Image taken from [6].

Figure 5 provides a visual example of underfitting and overfitting. Here, the machine
is tasked with drawing a curve to separate out the green crosses from the yellow circles
on a 2D plane. The curve on the left is underfitted, as the curve is too simplistic and
does not fully capture the latent structure of the point clouds. The curve in the middle
is a better fit for the data. The curve on the right, albeit being a better fit for the data,
is considered an overfit, as the curve is tailored to the specific data set. In reality, data
could be noisy, and the few crosses spilled over to the circle point cloud could be due to
noise. If the curves are fitted into another data set with the same latent structure or dis-
tribution, then the rightmost curve would perform signifcantly worse than the middle curve.

The main purpose of machine learning is to have the machine learn the underlying
patterns or structure in a given set of data. The machine is expected to generalize and
therefore be able to predict or regress on new data. But the machine could learn to mem-
orize the data - without actually ‘learning’ anything substantial — to perform well on the
given data set. To test whether the machine is learning but not memorizing, we test the
machine’s performance on a data set different from the one that the machine is trained on.

Therefore, we split the data set into training set and testing set. The machine is trained
on a training data set, and once the machine is sufficiently trained and performs well on



1.4. UNDERFITTING, OVERFITTING AND REGULARIZATION 9

the training set, the model is tested on the separate testing set to evaluate its true per-
formance. The machine’s training performance improves as it learns more from the data,
but eventually the improvement plateaus. Initially, the machine picks up on general pat-
terns within the data, as they provide the greatest improvement on loss. As most patterns
within the data are picked up, the machine struggles to make improvement and resorts to
memorizing the input data.

The problem of underfitting is when the machine has not learned all that it could
from the data set. The solution is to simply increase the number of epochs so that the
machine revisits the same data set for multiple times. If a few extra epochs give the model
a significant increase in performance, then the model is likely to be underfitted before the
increase of epochs. It would then be tempting to conclude that more epochs would always
benefit the model - this is not the case, as we would see below.

The other problem is overfitting, when the machine performs well on the training
set but not on the test set. This means that the machine might be memorizing the data
instead of generalizing it, resulting in a rapid performance drop on the test set. The natu-
ral solution to the problem is to either decrease the number of epochs, or introduce more
training data. However, data is not always easy to come by, so we don’t take the size of
data as a hyperparameter that can be increased at will. Since we would underfit if we have
“too few” epochs, and would overfit if we have “too many” epochs, this implies an optimal
amount of epochs - and therefore a cap in performance — for the model training. The
choice of epochs is often a matter of trial-and-error, but one can also instruct the machine
to stop the training process once it fails to improve the loss function significantly.

Figure 6 depicts a typical progression of performance of a NN in its training process.
The horizontal axis is the number of epochs, and the vertical axis is the loss of the model.
The model’s performance in the training set (black curve) improves and the loss decreases
as number of epochs increases, but the magnitude of improvement is also decaying. The
model always perform better in the training set with more repeated training on the same
data set. Performance on test set (red curve) also improves as epochs initially increases,
but eventually the improvement flats out. The model even started doing worse on the test
set as it is trained excessively, which is a sign of overfitting.

Since there is a trade-off between underfitting and overfitting, methods to surpress
overfitting (without limiting the number of epochs) would increase the performance of the
machine. Listed below are some methods of dealing with overfitting.

1.4.1. Downscaling neural network model. While having a larger neuron network
(i.e. more neurons in the network) has more computational power and learning capacity, it



10 1. BACKGROUND

Figure 6. A graph of model accuracy on training and testing set over the number

of epochs. Image taken from [4].

also has a higher capacity to memorize data. An excessively large NN may not perform sig-
nificantly better than a ‘right-sized’ network, but the larger model is more computationally
expensive, and leads to faster overfitting. A scientific rule-of-thumb is to favor a simpler
model or hypothesis over a more complicated one if both explains a phenomenon equally
well, so downscaling the NN to prevent overfitting is both practically and philosophically
sound.

1.4.2. Dropout. In each training step, each neuron in the layer with dropout rate
p ∈ [0, 1] has a probability 1−p of not activating — its output signal is effectively multiplied
by 0. The random dropout of neurons prevents the NN from over-relying on a few specific
nodes, as the nodes have a non-trivial chance of being de-activated. The dropout also
mimics an ensemble of networks - since each neuron in a layer of width n has a chance of
being ‘turned off’ in each learning step, the training process is as if 2n are being trained
all at once (albeit sharing some weights) with the computational cost of training only one
NN. The choice of nodes to be dropped out is computationally inexpensive, and dropout
improves NN’s training speed in real time as the capacity of the network is randomly
reduced. [12]

1.4.3. L1 regularization. L1 regularization, also known as LASSO regularization,
adds a penalty term α‖w‖1 proportionate to the 1−norm of NN weights to the loss function.



1.4. UNDERFITTING, OVERFITTING AND REGULARIZATION 11

Under the modified loss function, the machine takes into account not only the deviation of
model predictions from the real output, but also the total weight of the neural network. The
NN is therefore penaltized for ‘learnings’, such as memorization, that do not significantly
improve the NN’s performance.

The choice of penalty rate α is a matter of heuristics and there is no notion of a
mathematically optimal α.

1.4.4. L2 regularization. L2 (or L2) regularization, also called ridge regularization,
adds a penalty term α‖w‖2 proportionate to the 2−norm of weights to the loss function.
The concept is similar to that of L1, but L2 penaltizes the NN based on the square of
weights. Large weights are penaltized heavier than it would be under L1, so L2 is here
mainly to combat the network’s over-reliance on a few singular nodes and therefore enforce
the learning to be done ‘evenly’ across all the neurons. Like L1, the penalty rate for L2 is
a matter of trial and error.





CHAPTER 2

Graphs

This chapter provides some intermediate mathematical background on graph theory,
as well as to provide some motivation on the use of machine learning to tackle a graph
theory problem.

2.1. Adjacency matrices

Let G = (V,E) be a simple graph with nodes 1, . . . , n. The adjacency matrix of G is
a matrix A ∈ Rn×n where Ai,j = 1 if (i, j) ∈ E and Ai,j = 0 otherwise. Given an adjacency
matrix of G, we can check whether vertices i can reach j in exactly k steps by computing
Ak−1
i,j . Furthermore, if G is undirected, A is symmetric, so A’s eigenvalues are all real, and

the eigenvectors form an orthonormal basis. [1]

Adjacency matrix is a representation that provides full information on the graph. It
also uniquely identifies a graph up to vertex isomorphism. Hence, adjacency matrix of a
graph and the graph itself are often referred to interchangeably. In particular, we say that
the (adjacency matrices of) graphs have eigenvalues.

Eigenvalues of a graph, even if they do not uniquely identify the graph (see co-spectral
graphs), provide useful latent information about the graph. For example, the largest
eigenvalue is related to the maximum degree and average degree of the graph:

Proposition 1. For a graph G with eigenvalues λi and each vertex having degree di:

max{d̄,
√
dmax} ≤ λmax ≤ dmax.

The whole set of eigenvalues are shown to be useful for supervised learning [11].

2.1.1. Erdős–Rényi model. Erdős–Rényi model is a probabilitistic scheme for gen-
erating random simple, undirected graphs. For a specified probability p ∈ [0, 1], the scheme
G(n, p) generates a graph with n vertices where each edge has an activation probability p.
The scheme generates graph that have a lower degree of clustering, compared to ‘real-life’
social networks.

The activation probability p is closely related to the connectedness of the graph:

Proposition 2. If p < (1−ε) lnn
n , then a graph generated by the G(n, p) scheme is very

likely to have isolated vertices. If p > (1+ε) lnn
n , then a graph from the G(n, p) scheme is

13



14 2. GRAPHS

very likely to be connected. Therefore lnn
n is a threshold for the connectedness of G(n, p).

[8]

An alternative formation for the scheme is: for a specified m ∈ N, G(n,m) generates a
n-graph with a random m-combination from the edge set. Both the chanced edge-activation
formulation and the fixed-number-of-edges formulation give effective control on the density
of the generated graph.

We use the G(n, p) scheme to generate one of the dataset in our experiments.

2.2. Non-Deterministic algorithms for finding cycles

There are a lot of known common algorithms, such as breadth-first search, that ex-
haustively (and, therefore, deterministically) finds cycles within a graph. Although the
problem of finding certain types of cycles could be done in less than exponential time,
the general problem of finding a k-cycle in a graph is regarded to be NP-hard. Therefore,
we look into non-deterministic algorithms to perform such tasks in a much quicker way. [13]

Suppose we want to find a k-cycle in a graph G = (V,E). Define a random coloring
scheme c : V → [k] where each node is assigned a color uniform-randomly from the color
set [k] = {1, 2, . . . , k}. Now, suppose that there is a k-cycle v1 → v2 → · · · → vk →
v1, vi ∈ [k]. The probability P(c(vi) = i) is 1

k by uniform-randomness, so the probability

P(c(vi) = i|i ∈ [k]) = k−k.

We say that the path v1 → · · · → vk is well colored if c(vi) = i ∀i ∈ [k]. Likewise, a
cycle is well-colored if it contains a well-colored path.

If we repeat the random coloring 100kk log(|V |) times, the probability that the cycle
C is not well colored in any of the colorings is

(1− 1

kk
)100kk log(|V |) ≤ (

1

e
)100 log(|V |) = |V |−100.

Therefore, the probability that C is well-colored in some of the colorings is 1− |V |−100.

For a fixed coloring c(v), let G′ = (V,E′) be a directed graph from G = (V,E), where
u→ v ∈ E′ iff (u, v) ∈ E and c(v) = c(u) + 1.

Proposition 3. Given c(u) = 1, c(v) = k, u can reach v in G′ iff there is a well-colored
path u = x1 → x2 → · · · → xk = v in G.

Proof. ( ⇐= ) Suppose there is a k-path u = x1 → x2 → · · · → xk = v in G where
c(xi) = i ∀i ∈ [k]. Then xi → xi+1 ∈ G′, so u can reach v in G′.

( =⇒ ) Suppose u = x1 → · · · → x` = v in G′ for some ` ∈ N. Since
xi, xi+1 ∈ G′ iff xi, xi+1 ∈ G and c(xi+1) = c(xi) + 1, we have that the colors on the path



2.3. CONTEMPORARY WORKS ON GRAPH THEORY 15

increases by 1 on every step. Since c(u) = 1 and c(v) = k, ` is necessarily equal to k, so
u = x1 → x2 → · · · → xk = v is well-colored. �

Similarly, if we have a well-colored cycle x1 → · · · → xk → x1 in G, then x1 can
reach xk in G′. Conversely, if we have u, v ∈ V where c(u) = 1, c(v) = k and there is a
path from u to v in G′, then there is a well-colored cycle in G containing the said u−v path.

To find a well-colored k-cycle, we first find all pairs of vertices u, v ∈ G′ where u can
reach v. For each pair (u, v), we then check if v → u in G, c(u) = 1, and c(v) = k. The
check can be done in O(|E|) time.

To find all the u− v pair, we can use a breadth-first search, which runs in O(|E| · |V |)
time. Another way is to use make use of adjacency matrices - construct the adjacency
matrix A for G′, then compute Ak−1. Ak−1

u,v 6= 0 iff u can reach v in G′ in k-steps.

For an algorithm of O(kk) such as this one, we can find a cycle of O( log(|V |)
log(log(|V |))) in

polynomial time.

2.3. Contemporary works on graph theory

Graph theory is an important analysis tool in Mathematics and Computer Science,
and a handy abstraction of data or systems in different forms. We discuss below some
contemporary open problems on graph theory as a motivation to our experiments.

In 1995, mathematicians Paul Erdős and András Gyárfás stated the Erdős–Gyárfás
conjecture: every graph with minimum degree 3 contains a simple cycle whose length is a
power of two.

By an extensive computer search, Gordon Royle and Klas Markström found that any
counter-example must have at least 17 vertices. Markström found some near counter-
examples (see figure 1): he found four 24-vertices graphs that only have one 16−cycle. [7]

A special case of the conjecture has been proven. In 2013, Christopher Carl Heck-
man and Roi Krakovski proved the conjecture for the case of 3-connected cubic planar
graphs.[5] This conjecture is, in fact, the original motivation to this thesis, as we attempt
to use ‘quick’ ways to sift through a large number of graphs and dig for a counter-example.

Another interesting conjecture was stated by Thomassen, inspired by the observation
that bipartite graph has no even-length cycles. The conjecture states that: every graph G
whose minimum degree is larger than k contains a cycle of length (2s mod k) for natural
numbers s, k. [9] Dean further the conjecture: a graph with minimum degree no less than
k ≥ 3 has a cycle whose length is a multiple of k. Dean showed that these two conjectures



16 2. GRAPHS

are true for special cases k = 3, 4. [3]

The fact that a great deal of the work done on the conjecture involves some degree of
brute-force by computer motivates the usage of other methods reliant on computing power
- such as artificial neural network.

Figure 1. One of the near-counterexample found by Markström. The only 2n

cycle is the 16-cycle marked red on the graph. [7]



CHAPTER 3

Experiments

3.1. Datasets

We use three different sets of graphs to train the NNs on. The first set is all (12346)
the 8-vertices graphs, up to isomorphism. The second one is a random sample (27466) of
all (274663) 9-vertices graphs, up to isomorphism. The third one is a collection (140000)
of 20-vertices graphs randomly generated from the Erdős–Rényi model. For activation
probabilities p = 0.07, 0.08 . . . , 0.13, we generated ten thousand graphs with 8-cycle(s) and
ten thousand graphs without 8-cycles. We aim to produce graphs that are connected but
not dense, so they would be challenging instances for the neural network to classify.

Note that the third data set is rather different from the previous two. The third set,
albeit having a larger sample size, is non-exhaustive, and graphs in the set may be isomor-
phic to each other. The graphs in the third set are much more likely to be ‘hard’ instances
for the classification problem, whereas the other two data sets have more easy instances,
say, very sparse graphs or very dense graphs. Since the third data set is more difficult, it
is expected that those NN models might not attain the same level of performance as the
models for the previous two data sets.

For our experiments, we always pass the binary variable

x(G) =

{
1 : there is a length-k cycle in G

0 : otherwise

as labels. We use different choices of information of graph as input features, and for each
combination of data set and input feature selection, we build a FNN and RNN model for it.

All the NNs have the following architecture specifications and hyperparameters, unless
otherwise specified:

• Hidden layers all have a dropout rate of 0.2;
• Hidden layers are all L2-regularized with penalty rate 0.0003;
• Output layer has two nodes with softmax as activation function, with sparse cat-

egorical cross-entropy as loss function; and
• The optimizer algorithm is Adaptive Moment Estimation (ADAM), with learning

rate 0.001 and decay rate 10−5.

17



18 3. EXPERIMENTS

Other details and specification of the NNs, such as the types, numbers and sizes of
hidden layers, differs for every experiment, and are addressed separately in each experiment
section. We also report the test set accuracy of each trained NN model. Listed below are
experiments, categorized by the type of input features.

3.2. Adjacency matrix as input feature

The adjacency matrices are passed as input features. About one-tenth of the data is
reserved as testing data, and the rest is training data. The table below is the hyperparam-
eters and performance of the NNs.

NN Type Data Set Inner Layer Width # LSTM layers # Dense Layers Accuracy

FNN 8-graphs 16 0 4 93%
RNN 8-graphs 16 2 1 96%
FNN 9-graphs 16 0 4 93%
RNN 9-graphs 16 2 2 95%
FNN 20-graphs 32 0 4 76%
RNN 20-graphs 32 2 2 82%

Table 1. Architecture and performance of neural network models with adjacency

matrix of graphs as input features.

For ‘small’ graphs such as 8- and 9-graphs, the NNs successfully learnt to determine
whether they have 8-cycle(s) or not. The performance is comparatively lower for the mod-
els with 20-graphs as data set. The performance drop is expected as the 20-graph data set
has more ‘hard’ instances for the classification problem. Also, RNN performs better than
FNN for every data set by 2 to 4%.

These neural networks are rather compact, as each of them have four hidden layers with
only 16 to 32 neurons. We also tried training NNs with wider layers of up to 256 neurons
per layer, but that only led to quicker overfitting while providing no further increase in
accuracy. Given that a simpler and larger network can both achieve the same level of
accuracy, we favor the simpler one.

3.3. Eigenvalues of adjacency matrix as input features

The eigenvalues of the adjacency matrices of the graphs are passed as features. Unlike
the adjacency matrices, eigenvalues do not uniquely identify a graph, resulting in a loss of
information. Although one can theoretically extract eigen-information from the adjacency
matrices alone, and the main objective of NN is to let the machine figure out the best
latent embedding for a given classification problem, we nevertheless fed the eigenvalues to
the NNs.



3.4. ADJACENCY MATRIX AND ITS EIGENVALUES AS INPUT FEATURES 19

NN Type Data Set Inner Layer Width # LSTM layers # Dense Layers Accuracy

FNN 9-graphs 16 0 4 88%
RNN 9-graphs 16 2 2 90%
FNN 20-graphs 32 0 4 76%
RNN 20-graphs 32 2 2 79%

Table 2. Architecture and performance of neural network models with eigenvalues

of graphs as input features.

Without regularization, the models predict most of the input data as ‘true’ instances.
It is possibly due the model’s over-reliance on the first eigenvalue, which give a rough es-
timate of the average- and maximum-degree of a graph. With L2 regularization, a ridge
penalty is applied to the parameters of nodes in the inner layers, thus reducing the reliance
on a single feature. After regularization, the models all perform much better.

Using only the eigenvalues as input features, the model performs decently and compro-
mises only about 5% accuracy, compared to using adjacency matrices instead. In fact, for
the 20-graph FNNs, the eigenvalue model performs just as well as the adjacency matrix
counterpart. Therefore eigenvalue proves to be a very useful feature for such classification
problems, especially when the eigenvalue-vector is much more compact (Rn×1) than the
adjacency matrix (Rn×n).

3.4. Adjacency matrix and its eigenvalues as input features

Given the previous experiment’s relative success, we would also want to see if eigenval-
ues extract and provide any additional information to the NNs. Therefore, both eigenvalues
and adjacency matrices are used as input features in this experiment. The eigenvalues are
appended as the (n + 1)th row to the n-by-n adjacency matrices, then these n-by-(n + 1)
matrices are passed as input features.

NN Type Data Set Inner Layer Width # LSTM layers # Dense Layers Accuracy

FNN 9-graphs 16 0 4 91%
RNN 9-graphs 16 2 2 93%
FNN 20-graphs 32 0 4 74%
RNN 20-graphs 32 2 2 81%

Table 3. Architecture and performance of neural network models with adjacency

matrices and eigenvalues of graphs as input features.

These models perform a bit worse than their counterparts with only adjacency ma-
trices as features, but better than only using eigenvalues as features. Like the previous



20 3. EXPERIMENTS

experiment, NNs are significantly over-reliant on graph density, causing most graphs to be
classified as true-instances. However, L2 regularization does not seem to work on these
models.

3.5. Using different datasets for training and testing

Here, we pass adjacency matrices as input features, but the testing and training data
come from different data sets.

NN Type Training Set Testing Set Layer Width # LSTM # Dense Accuracy

FNN 8-graphs 9-graphs 16 0 4 88%
RNN 8-graphs 20-graphs 64 2 2 54%

Table 4. Architecture and performance of neural network models with adjacency

matrices of graphs as input features. Note that these models’ training and testing

data come from different data sets.

Training on 8-graphs and testing on 9-graphs, the FNN is good at identifying true-
instances (95%), but does not work as well on identifying false instances (77%). After L2

regularization, the NN stopped over-classifying dense graphs as true instances.

Predicted False Predicted True %

Actual False 2521 125 95%

Actual True 767 4053 84%

77% 97% 88%

Table 5. Confusion matrix of the FNN model prediction reults.

3.6. Summary

Neural networks have good overall performance on all data sets, attaining up to 95%
accuracy on small graphs, and 80% accuracy on larger graphs of harder instances. There
may be a graph representation or some selection of features that are more suitable for the
NNs to learn on the harder instances.

The set of eigenvalues of graph is a very telling factor on the graph’s topology. Ad-
jacency matrix provides full information of the graph, while eigenvalues do not uniquely
identify a graph. Nevertheless, using eigenvalues alone as features, our models compro-
mised less than 5% accuracy. For large graphs, NNs achieve the same level of accuracy
with only eigenvalues as features as compared with adjacency matrices.



3.6. SUMMARY 21

Density of graph is (unsurprisingly) a significant factor in this classification problem.
When unregulated, NNs tend to over-rely on density as a predictor for the classification.
Before applying L2 regularization to the loss function of the neural networks, the NNs tend
to over-classify dense graphs as positive-instances. Although L2 regularization did not im-
prove the accuracy by much, it alleviated the problem of over-reliance on graph density, as
seen in the confusion matrices of the testing result.

Surprisingly, recurrent NNs with LSTM layers improve the NN’s performance, as com-
pared to FNNs. While RNN is conventionally used for temporal or continuous data, such
as video, music and speech, the LSTM architecture may have more computational power,
and therefore performs better on classification problems not necessarily temporal - such as
this problem.

Overall, the models perform well on small graphs, but the models on large graphs
and attempts to enforce generalizations could be further improved. The models on harder
instances large graphs are not immediate successes, perhaps due to the discrete and com-
binatorial nature of the neural network.





Bibliography

1. Norman Biggs, Algebraic graph theory, Cambridge University Press, 1996.

2. Facundo Bre, Juan Gimenez, and Vı́ctor Fachinotti, Prediction of wind pressure coefficients on building surfaces

using artificial neural networks, Energy and Buildings 158 (2017).

3. Nathaniel Dean, Linda Lesniak, and Akira Saito, Cycles of length 0 modulo 4 in graphs, Discrete Mathematics

121 (1993), no. 1, 37 – 49.

4. William Giovinazzo, Overfitting / underfitting – how well does your model fit?,

https://meditationsonbianddatascience.com/2017/05/11/overfitting-underfitting-how-well-does-your-model-

fit/, 2017.

5. Christopher Karl Heckman and Roi Krakovski, Erdös-gyárfás conjecture for cubic planar graphs, Electronic

Journal of Combinatorics 20 (2013).

6. Sai Nikhilesh Kasturi, Underfitting and overfitting in machine learning and how to deal with it,

https://towardsdatascience.com/underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-

6fe4a8a49dbf, 2019.

7. Klas Markström, Extremal graphs for some problems on cycles in graphs, Congressus Numerantium 171 (2004).

8. David W. Matula, The employee party problem, Notices of the American Mathematical Society 19 (1972), 382.

9. thomassen C., (1983).

10. Pedro Torres, Deep learning: Recurrent neural networks, https://medium.com/deeplearningbrasilia/deep-

learning-recurrent-neural-networks-f9482a24d010, 2018.

11. Zhe Wang, Tong Zhang, and Yuhao Zhang, Distinguish hard instances of an np-hard problem using machine

learning, 2013.

12. David Warde-Farley, Ian J. Goodfellow, Aaron Courville, and Yoshua Bengio, An empirical analysis of dropout

in piecewise linear networks, 2013.

13. Virginia Vassilevska Williams, Cs 267 lecture notes 3, Stanford University, 2016.

23





APPENDIX A

Python code

In this section, I present a selection of Python codes used in the experiments. Note
that the experiments use Tensorflow, a comprehensive package for deep learning.

import numpy as np

import time

import i t e r t o o l s

import csv

from s k l e a r n . met r i c s import con fu s i on mat r ix

import networkx as nx

import t en so r f l ow as t f

from t en so r f l ow import keras

from t en so r f l ow . keras import l a y e r s

from t en so r f l ow . keras . models import Sequent i a l

from t en so r f l ow . keras . l a y e r s import Dense , Dropout , LSTM

print ( t f . v e r s i o n )

ad j mat r e l pa th = ’ v8 adj mat / ’

a d j m a t p r e f i x = ’ 8 ’

a d j m a t s u f f i x = ’ adj mat . txt ’

N sta r t = 3

N end = 12346

N = N end N star t + 1

num V = 8

t r a i n i n g s i z e = 10000

t e s t s i z e = (N) t r a i n i n g s i z e

def main ( ) :

# l o a d i n g in the data

data = np . z e r o s ( (N, num V , num V) )

25



26 A. PYTHON CODE

print ( ’ Reading in the adjacency matrix f i l e s . . . ’ )

for i in range ( N start , N end + 1 ) :

temp = np . l oadtx t ( ad j mat r e l pa th + a d j m a t p r e f i x + str ( i ) + a d j m a t s u f f i x )

data [ i 3 , : , : ] = temp

i f i % int ( N end / 10) == 0 :

print ( i , ’ o f ’ , N end , ’ done . ’ )

c y c l e l e n g t h d a t a 8 = np . l oadtx t ( ’ cyc leLengthData 8 . txt ’ , sk iprows =2)

# l a b e l s each graph as 1 i f i t has an 8 cyc le , and 0 o therwi se

l a b e l s = ( c y c l e l e n g t h d a t a 8 [ : , 5 ] >= 1) ∗ 1

# s h u f f l i n g the data and l a b e l s in unison , w h i l e p r e s e r v i n g the s h u f f l i n g i n d i c e s

s h u f f l e i n d e x = np . array ( [ i for i in range (N) ] )

np . random . s h u f f l e ( s h u f f l e i n d e x )

t r a i n i n g i n d e x = s h u f f l e i n d e x [ 0 : t r a i n i n g s i z e ]

t e s t i n d e x = s h u f f l e i n d e x [ t r a i n i n g s i z e :N]

t r a i n i n g d a t a = data [ t r a i n i n g i n d e x , : , : ]

t e s t d a t a = data [ t e s t i nd ex , : , : ]

t r a i n i n g l a b e l s = l a b e l s [ t r a i n i n g i n d e x ]

t e s t l a b e l s = l a b e l s [ t e s t i n d e x ]

print (sum( l a b e l s ) )

# compil ing , then e v a l u a t i n g , the NN

model = t f . keras . Sequent i a l ( [

t f . ke ras . l a y e r s . F lat ten ( ) ,

# Adds dense l a y e r s with 64 u n i t s to the model :

l a y e r s . Dense (64 , a c t i v a t i o n=’ r e l u ’ ) ,

l a y e r s . Dense (64 , a c t i v a t i o n=’ r e l u ’ ) ,

l a y e r s . Dense (64 , a c t i v a t i o n=’ r e l u ’ ) ,

l a y e r s . Dense (64 , a c t i v a t i o n=’ r e l u ’ ) ,

# Add a softmax l a y e r with 2 output u n i t s :

l a y e r s . Dense (2 , a c t i v a t i o n=’ softmax ’ ) ] )

model . compile ( opt imize r=t f . op t im i z e r s .Adam( l r =0.001 , decay=1e 5 ) ,

l o s s=’ s p a r s e c a t e g o r i c a l c r o s s e n t r o p y ’ ,

met r i c s =[ ’ accuracy ’ ] )

print ( ” Train ing the NN: ” )

model . f i t ( t r a in ing da ta , t r a i n i n g l a b e l s , epochs=5)

print ( ”\n\n Test ing the NN: ” )

r e s u l t = model . eva luate ( t e s t da ta , t e s t l a b e l s )

c l a s s b i n = model . p r e d i c t ( t e s t d a t a )

c l a s s i f i c a t i o n = np . argmax ( c l a s s b i n , a x i s =1)



A. PYTHON CODE 27

print ( ”\n\nPerformance per type o f l a b e l ( with in the t e s t s e t ) : ” )

print ( ”(%accuracy , numerator , #l a b e l s o f type i , #o f data c l a s s i f i e d as type i ” )

for i in range ( 2 ) :

print ( ” type ” , i , ” : ” )

denom = sum( t e s t l a b e l s == i )

l b l e q i = [ t e s t l a b e l s [ j ] == i for j in range ( len ( t e s t l a b e l s ) ) ]

l b l e q c l a s s = [ t e s t l a b e l s [ j ] == c l a s s i f i c a t i o n [ j ] for j in range ( len ( t e s t l a b e l s ) ) ]

numer = sum( [ l b l e q i [ j ] and l b l e q c l a s s [ j ] for j in range ( len ( t e s t l a b e l s ) ) ] )

print ( numer / denom , numer , denom , sum( c l a s s i f i c a t i o n == i ) )

i f name == ” main ” :

main ( )

Figure 1. Python code for compiling and running a feed-forward neural network

on the 8-graphs dataset



28 A. PYTHON CODE

Figure 2. A screenshot of the model training process.

First, the data loading its counted down (it may take a bit of time to load in all

the data for large data sets). Then the model’s loss and accuracy is reported per

epoch. After the NN finishes training process, its performance is tested on the test

set.

The model’s performance per label type is also reported. For example, in the

screenshot, the model achieves 93% true-negative rate. Out of 1126 data that

are labelled as real-negatives, the model is able to identify 1055 of them. The

model predicts a total of 1217 negatives, which means there are 1126− 1055 = 162

false-negatives in our prediction.


