
PolyPathLab: Software for the Calculation of Monotone Paths on
Polytopes

By

LIMIN HUANG

SENIOR THESIS

Submitted in partial satisfaction of the requirements for Highest Honors for the degree of

BACHELOR OF SCIENCE

in

MATHEMATICAL ANALYTICS AND OPERATIONS RESEARCH

in the

COLLEGE OF LETTERS AND SCIENCE

of the

UNIVERSITY OF CALIFORNIA,

DAVIS

Approved:

Jesús A. De Loera

June 2020

i

iv

ABSTRACT.

Linear programming (LP) and the simplex method are closely related to the geometry
of polytopes: the feasible region of a bounded and feasible LP problem is a convex polytope.
Each vertex is a basic feasible solution (BFS) to the related LP problem. An objective
function induces a directed graph on the polytope, where each edge has an orientation
toward the vertex with a better objective value. Motivated by open problems related to
the efficiency of the simplex method, we build PolyPathLab, a package based on MATLAB
version R2019a [18]. PolyPathLab can compute the following features:

• the diameter, which is the maximum distance between vertices
• the monotone diameter, which is the maximum monotone distance between ver-

tices connected by monotone paths
• the monotone height, which is the length of the longest monotone path
• the number of monotone paths
• the number of arborescences
• characteristics related to four famous pivot rules: Dantzig’s rule, greatest descent,

steepest edge, and Bland’s rule
• the flip graph and the diameter of the flip graph

PolyPathLab is the succeeding work of the undergraduate thesis of Chutong Wu [26]
and will be available online for all researchers to experiment.

Contents

Chapter 1. Introduction 1
1.1. Hyperplanes and Polytopes 1
1.2. Linear Programming 2
1.3. Graphs 3
1.4. Simplex Method and Pivot Rules 7
1.5. Monotone paths 11
1.6. Flips 13

Chapter 2. Main Algorithms 18
2.1. Random 3-dimensional Polytope Generator 19
2.2. Diameter 19
2.3. Monotone Diameter 21
2.4. Monotone Height 23
2.5. Number of Monotone Paths 24
2.6. Number of Arborescences 25
2.7. Characteristics Related to Pivot Rules 26
2.8. Flip Graph 26

Chapter 3. PolyPathLab Software 27
3.1. Creating Input Files Using the Program cdd/cdd+ (Step 1 and 2) 27
3.2. Creating the Objective Function File (Step 3) 31
3.3. What to Put in the Input Folder and the File-naming Convention (Step 4) 32
3.4. Computation Stage for the Features Except the Flip Graph (Step 5) 33
3.5. Computation Stage for the Flip Graph (Step 5) 39

Chapter 4. Computational Results 41
4.1. Choice of 3-dimensional Polytopes 41
4.2. Characteristics of Platonic Solids and Archimedean Solids 41
4.3. The Special Cases of Archimedean Solids: the Snub Cube and the Snub

Dodecahedron 51
4.4. The Monotone Diameter and the Monotone Height of 3d Simple Polytopes 60
4.5. The Monotone Height of Birkhoff Polytope 65
4.6. The Monotone Height of the Traveling Salesman Polytope 68

v

vi CONTENTS

Acknowledgements 70

Bibliography 71

CHAPTER 1

Introduction

In this thesis, we introduce a software package, PolyPathLab, for the calculation of
various features on polytopes. We structure the thesis as the follow: in Chapter 1, we
begin with some definition, together with some background and motivations of the features
we compute with PolyPathLab. Then we continue in Chapter 2 with some pseudocode on
how PolyPathLab computes each feature. In Chapter 3, we explain how to use the software
with some examples. Finally, in Chapter 4, we present the results of the experiments we
did using PolyPathLab, including the features of the Platonic Solids and the Archimedean
Solids, the distribution of the monotone diameters and the monotone heights for random 3-
dimensional polytopes, and the distribution of the monotone heights for Birkhoff polytopes
and the TSP polytopes.

1.1. Hyperplanes and Polytopes

Definition 1. Let a1, a2, . . . , an ∈ R and at least one of them is not zero. Let c ∈ R
be a constant. A hyperplane is the set of all vectors ~x = [x1, x2, . . . , xn] ∈ Rn such that
a1x1 + a2x2 + . . .+ anxn = c. Geometrically, a hyperplane in Rn is an affine subspace with
dimension n− 1.

Definition 2. A hyperplane in Rn separates Rn into two halfspaces, which are the
sets {~x ∈ Rn : a1x1 + a2x2 + . . .+ anxn > c} and {~x ∈ Rn : a1x1 + a2x2 + . . .+ anxn < c}.
A hyperplane together with one of the halfspaces is called a generalized halfspace.

Definition 3. A set S is convex if ∀x, y ∈ S, z = λx+ (1− λ)y ∈ S, 0 < λ < 1.

Definition 4. A convex polyhedron is the intersection of finitely many generalized
halfspaces. A polytope is a bounded convex polyhedron.

Definition 5. A d-dimensional simple polytope is a d-dimension polytope where
each vertex is included in at most d edges.

Simple polytopes are corresponding to non-degenerate LP problems [9]. The maximum
diameter of a d-dimensional polytope with n facets is achieved by simple polytopes since
all polytopes can be perturbed into simple polytopes with diameters at least as large [13].

1

2 1. INTRODUCTION

1.2. Linear Programming

Linear programming (LP) is a method of maximizing or minimizing a linear objective
function with respect to the constraints, which are a system of linear equations or inequal-
ities. It can be written in the canonical form as:

maximize cTx

subject to Ax ≤ b
x ≥ 0,

where c ∈ Rd, b ∈ Rn, A ∈ Rn×d , and x ∈ Rd.
Each constraint is a generalized halfspace, so the constraints of the LP form a convex

polyhedron.
The feasible region of every bounded LP problem is a polytope P , and each vertex of

P is a basic feasible solution (BFS) to the LP. For example, the 3-dimensional unit cube
in Figure 1 comes from an LP which has inequalities

−1 0 0
0 −1 0
0 0 −1
1 0 0
0 1 0
0 0 1


x1

x2

x3

 ≤


0
0
0
1
1
1

 , x1, x2, x3 ≥ 0.

This cube has 8 vertices, representing the 8 possible basic feasible solutions to the LP,
and 6 facets, representing the 6 inequalities in the LP.

Figure 1. A 3d unit cube.

In this thesis, we will consider the LP to be maximizing the objective function, which
is the same as minimizing the opposite of the objective function.

1.3. GRAPHS 3

1.3. Graphs

Definition 6. A graph G is a pair G = (V,E), where V is a set whose elements are
called the vertices or nodes, and E is a set of edges — a set of pairs of two vertices.

In this thesis, we will focus on the graphs that do not contain self-loop or parallel edges.

Definition 7. A path is a sequence of distinct vertices where the consecutive pairs
are joined by edges.

Definition 8. A graph G is connected if any pair of vertices in G is connected by a
path in G. A connected graph G is n-connected if for any set S of n vertices in G, G−S
is connected.

Definition 9. A directed edge (i, j) is an edge that has a direction from vertex i to
vertex j. It is an incoming edge for vertex j and an outgoing edge for vertex i.

Definition 10. A directed graph is a graph that contains only directed edges.

Definition 11. The source of a directed graph is the vertex that only has outgoing
edges.

Definition 12. The sink of a directed graph is the vertex that only has incoming
edges.

Definition 13. A tree is a minimally connected graph, meaning that deleting any
edge will lead to a graph that is not connected. Equivalently, a tree of n vertices is a
connected graph with n− 1 edges.

Definition 14. An arborescence is a directed, rooted tree, where for a vertex u
called the root and any other vertex v, there is exactly one path from v to u.

Definition 15. A directed graph is called cyclic if it contains at least one cycle. A
directed graph is called acyclic if there is no cycle in the graph.

Figure 2 below is an example of a cyclic graph.

4 1. INTRODUCTION

Figure 2. An example of a cyclic graph.

We now introduce the some definitions on the polyhedral graph and the directed poly-
hedral graph.

Definition 16. The 1-skeleton or the polyhedral graph of a polytope P is a graph
G = (V,E) where V is the set of vertices of P and E is the set of edges of P .

Figure 3. The 1-skeleton of the dodecahedron.

1.3. GRAPHS 5

An objective function f gives an orientation on the polyhedral graph G of a polytope
P . f assigns an objective value to each vertex of P , and each edge is oriented toward the
vertex with the higher objective value. An improving edge for vertex v is an edge that
connects v with another vertex which has a higher objective value. An incoming edge for
vertex v is an edge that connects v to another vertex which has a lower objective value.

An objective function on a polytope is generic if no two vertices have the same objective
value. A polytope with an objective function that is generic will produce a directed acyclic
polyhedral graph, and there is a unique source and a unique sink on each face of the
polytope. The graph is acyclic since a cycle of vertices v1 to vn will lead to objective values
f(v1) < f(v2) < . . . < f(vn) < f(v1), which is a contradiction.

In this thesis, we only consider the directed polyhedral graphs DG coming from poly-
topes with generic objective functions. A directed polyhedral graph from a polytope and a
generic objective function has a unique source and a unique sink. Applying the objective
function x + y + z, we can see that the source of the unit cube shown in Figure 1 is the
vertex [0, 0, 0] with an objective value zero, and the sink is vertex [1, 1, 1] with an objective
value six.

Figure 4. A 3d unit cube with the edge directions and labels for the source and

the sink.

Definition 17. A monotone path is a path that each pair of consecutive vertices
are joined by an improving edge.

Let i be any vertex that is not the source s and the sink t in a directed polyhedral
graph DG. There is at least one monotone path from s to i and from i to t. To prove this,
we follow one of the incoming edges for i and trace back to the vertex going into i. We
repeat the process of tracing back from the current vertex until we reach a vertex v with
no incoming edge. By definition, v is a source. Since there is a unique source in DG, v is
the source s, and the sequence of incoming edges form a monotone path from s to i. We
can use a similar argument to prove that there is at least one monotone path from i to t.

Definition 18. The length of a path or a monotone path is the number of edges in
the path.

6 1. INTRODUCTION

Definition 19. The distance between two vertices i and j of a connected graph with
finite number of vertices is the length of the shortest path between i and j.

An d-dimensional undirected polyhedral graph is d-connected, which has d distinct
paths (only have the end points in common) joining any pair of vertices in the graph [10].
Thus, we have a distance between any two vertices of the 1-skeleton of a polytope P .

Definition 20. For a directed graph, the monotone distance between two vertices
i and j that are connected by monotone paths is the length of the shortest monotone path
between i and j.

Definition 21. For a graph G with n vertices, the adjacency matrix A of G is an
n× n matrix such that the entry Ai,j is one if there is an edge (i, j) in P ; the entry is zero
otherwise.

In Figure 5, vertex i is connected to vertex j by an edge, so Ai,j = Aj,i = 1. On the
other hand, vertex i is not connected to vertex k, so Ai,k = Ak,i = 0.

Figure 5. A 3d unit cube. Vertex i and j are connected; vertex i and k are not

connected.

Definition 22. The directed adjacency matrix D of a directed graph with n
vertices is an n× n matrix such that Di,j = 1 if (i, j) ∈ E, and Di,j = 0 otherwise.

If the objective function is x+ y + z, Figure 6 shows the directed 1-skeleton of a unit
cube with the objective function.

1.4. SIMPLEX METHOD AND PIVOT RULES 7

Figure 6. A 3d unit cube with the edge directions.

The directed adjacency matrix D, with an “1” in the i-th row, j-th column representing
an out-going edge from vi to vj will be:

D =



0 1 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


1.4. Simplex Method and Pivot Rules

Simplex method, invented and developed by George Bernard Dantzig, changed the
field of optimization dramatically. When introduced, the simplex method became the
basis of many further branches of LP, such as integer linear programming and nonlinear
programming. Even today, the simplex method can outperform and compete with many
modern algorithms [22].

We now introduce how the simplex method works. First, we find a BFS to the LP
problem, which is a random vertex of the related polytope P . Each iteration of the simplex
method starts from the current vertex and goes along an edge to a vertex with a greater
or equal objective value.

When performing the simplex method, we usually have more than one possible improv-
ing edges during one iteration. Thus, we need to use a pivot rule to tell us which edge the
simplex method will go along.

8 1. INTRODUCTION

Definition 23. A pivot rule specifies which improving edge the simplex method
picks. Each pivot rule only picks one edge from every vertex of P except the optimum.

When the LP problem is degenerate, the simplex method may run into a cycle, which
means that the simplex method will revisit a vertex. However, if a “good” pivot rule is
chosen, the simplex method does not cycle and terminates at the optimum.

We consider four famous pivot rules in this thesis: Dantzig’s rule, greatest descent,
steepest edge, and Bland’s rule. For an LP problem, consider the standard form:

maximize cTx

subject to Ax = b

x ≥ 0.

x = [xB xN]T is an (n+ d)× 1 vector, where xB are the basic variables and xN are the
non-basic variables. Denote the index set of xB as B and the index set of xN as N. c = [cB
cN]T is an (n+ d)× 1 vector, where cB are associated with xB, and cN are associated with
xN . A = [B N] is an n × (n + d) matrix where B is an n × n sub-matrix that associated
with xB and N being an n× d sub-matrix associated with xN .

Rewriting the formulation, we get:

maximize cTBxB + cTNxN

subject to BxB +NxN = b

xB, xN ≥ 0.

Solving for xB, we get:

maximize cTBxB + cTNxN

subject to xB = B−1b−B−1NxN

xB, xN ≥ 0.

Substituting the xB in the objective function, we get:

maximize cTB(B−1b−B−1NxN) + cTNxN

subject to xB = B−1b−B−1NxN

xB, xN ≥ 0.

Simplify and we obtain:

1.4. SIMPLEX METHOD AND PIVOT RULES 9

maximize cTBB
−1b− (B−1NT cB + cN)TxN

subject to xB = B−1b−B−1NxN

xB, xN ≥ 0.

cTBB
−1b is the current objective value ξ. Let cN = (B−1NT cB + cN)T , b = B−1b,

N = B−1N , we have:

maximize ξ − cNTxN

subject to xB = b−NxN
xB, xN ≥ 0.

If all entries of cN ≤ 0, the solution reaches the optimum. Otherwise, the simplex
method will pick an entering variable from xN into xB and a leaving variable from xB into
xN .

Each pivot rule uses different conditions to choose the entering variable. Assume that
xi, i ∈ B, is the entering variable. Then, the leaving variable is always going to be xj
j ∈ N where bi/Ni,j is the minimum of bi/Ni,j ∀j [23].

Consider a tetrahedron, shown below:

Figure 7. A tetrahedron produced by “plotregion” [4].

10 1. INTRODUCTION

The tetrahedron is related to the following LP problem. Each facet of the tetrahedron
is one of the constraints, and the coordinates of the vertices are the BFS. The canonical
form of the LP with an objective function x1 + 2x2 + 1

2x3 is:

maximize x1 + 2x2 +
1

2
x3

subject to 1.4x1 + 2.4x2 + x3 ≤ 11.5

0x1 + 0x2 − x3 ≤ −1.4

1.4x1 − 2.4x2 + x3 ≤ 1.7

− 2.8x1 + 0x2 + x3 ≤ −1.9

x1, x2, x3 ≥ 0.

The standard form of the above example is:

maximize x1 + 2x2 +
1

2
x3

subject to x4 =
23

2
− 7

5
x1 −

12

5
x2 − x3

x5 = −7

5
+ x3

x6 =
17

10
− 7

5
x1 +

12

5
x2 − x3

x7 = −19

10
+

14

5
x1 − x3

xi ≥ 0, i = 1, 2, . . . , 7.

We start with an initial basic feasible solution by setting x5 = 0, x6 = 0, x7 = 0 and
solve the system. Then, the system becomes:

maximize
841

280
+

59

28
x5 +

5

6
x6 +

65

84
x7

subject to x1 =
33

28
+

5

14
x5 +

5

14
x7

x2 =
9

16
+

5

8
x5 +

5

12
x6 +

5

24
x7

x3 =
7

5
+ x5

x4 =
71

10
− 3x5 − x6 − x7

xi ≥ 0, i = 1, 2, . . . , 7.

We will use the above example to introduce the four famous pivot rules.
Dantzig’s rule picks the index of the maximum positive entry of cN as the entering

variable. In practice, Dantzig’s rule will fail sometimes due to degeneracy [23]. When

1.5. MONOTONE PATHS 11

there is degeneracy, and there are two possible choices of entering or leaving variables, we
will use the smallest index as the entering or leaving variable.

In the above example, the maximum positive entry of cN is c5 = 59
28 , so x5 will be the

entering variable, while x4 will leave the basis.
Greatest descent or greatest improvement picks the entering variable to be the

index j ∈ N of the maximum of cj ∗ bi/Ni,j ∀i ∈ B. The leaving variable will be the
corresponding i [14].

In the above example, computing cj ∗ bi/Ni,j , we get that c6 ∗ b4/N4,6 = 5
6 ∗

71
10/3 is the

biggest. Thus, x6 will be the entering variable, and x4 will leave the basis.
Steepest edge finds the edge that gives the biggest increase in the objective value per

unit length. In order to find the edge, we compute cj/
√∑

i∈BN
2
i,j and find the maximum

in all possible j. After finding the j, xj will be the entering variable [8].

In the above example, computing cj/
√∑

i∈BN
2
i,j , we get that c7/

√∑
i∈BN

2
i,7 = 5

6 ÷√
02 + (5

12)2 + (0)2 + (−1)2 ≈ 0.77, which is greater than 0.65 for index 5 and 0.72 for

index 7, so x6 will enter the basis.
Bland’s rule picks the smallest index of the positive entries of cb as the entering

variable. If there are two or more possible leaving variables, the variable with the smallest
index becomes the leaving variable [23].

In the above example, since c5, c6, c7 > 0, the Blands rule will pick the smallest index,
so x5 will be the entering variable.

1.5. Monotone paths

The simplex method can solve any feasible LP when an appropriate pivot rule is used
[23], but how efficient is the simplex method. Each monotone path to the sink t on the
directed polyhedral graph G can be seen as a run of the simplex method. The length
of the monotone path can be an indicator of the efficiency of the simplex method. A
long monotone path means the simplex method needs to pass through many vertices to
terminate, while a short monotone path is the contrary. Thus, we can learn more about
the efficiency of the simplex method by investigating the behavior of the monotone paths
on a polytope.

Various mathematicians contributed in studying the efficiency of the simplex method
by constructing a bound on the number of pivot steps with the dimension d of the LP
problem and the number of constraints n. In the paper published in 1972 [12], Klee and
Minty discovered that the worst case of the number of steps required to solve the LP (using
the common pivot rules) is exponential in terms of n and d. Luckily, in the paper published
in 1982 [5], Borgwardt found that the average number of steps required by the simplex
method is polynomial in terms of n and d. Yet, almost all common pivot rules have been
shown to have cases that require exponential steps. The question of whether it is possible
to have a pivot rule that always runs in polynomial times is still open [15].

12 1. INTRODUCTION

Below are three important characteristics naturally arises from the 1-skeleton and the
directed 1-skeleton:

Definition 24. The diameter of a polyhedral graph G is the maximum distance over
all pairs of vertices.

Definition 25. The monotone diameter of a directed polyhedral graph DG is
the maximum monotone distance between any two vertices in G that are connected by
monotone paths.

Definition 26. The monotone height of P with f is the length of the longest
monotone path on P with objective function f .

The diameter of a polytope has long been a field of interest because it is an indicator of
the efficiency of the simplex method. Warren Hirsch conjectured in 1957 that the diameter
of a d-dimensional polytope with n facets cannot exceed n−d [20]. If the conjecture is true,
the simplex method will be efficient, and the problem will be that we do not have good
enough pivot rules to fully activate the potential of the simplex method. The monotone
diameter version of the Hirsch conjecture, which states that the monotone diameter of a
d-dimensional polytope with n facets cannot exceed n− d, was disproved by Michael Todd
for d ≥ 4 in 1980 [21]. In 2010, the famous Hirsch conjecture was disproved by Francisco
Santos using a 43-dimensional polytope with 86 facets, which has a diameter of at least
44 [20]. The disproof of the conjecture shows that there is no possible pivot rule that can
always finish in n− d steps given any polytope. The polynomial Hirsch conjecture, which
states the diameter of a polytope with n facets is O(nk) for some constant k, remains open.

The monotone height of a polytope indicates the worse case scenario for the simplex
method. In the 1960s, people were optimistic about the simplex method. In 1965, Klee
asked a question, often called the Monotone Upper Bound Problem, how long can a mono-
tone path be [11]. In 1972, Klee and Minty constructed the famous Klee-Minty cube that,
using Dantzig’s rule, the simplex method will go through all the vertices to find a path
between two vertices, but these two vertices are connected by an edge [12]. A sample pic-
ture of the Klee-Minty cube is shown below as Figure 8. Since then, many mathematicians
used similar ways to construct monotone paths with exponential lengths for other pivot
rules. This lead to an open question that if there is a pivot rule that is efficient under any
circumstances [15].

1.6. FLIPS 13

Figure 8. A picture of the Klee Minty cube [6]. There is a monotone path that

goes through all the vertices.

1.6. Flips

In this section, we introduce an elegant idea of building a graph structure over the set
of all monotone paths.

Definition 27. Two monotone paths on P with objective function f differ by a
polygon flip (or flip) across a 2-dimensional face F if they agree on all edges not lying on
F but follow the two different monotone paths on F , from the unique source to the unique
sink of F [2].

Figure 9 represents the directed 1-skeleton of a polytope called dodecahedron. The
graph has a source (represented by s) and a sink (represented by t). On each of the 2-
dimensional face F of the dodecahedron, there is a unique sink and a unique source in the
subgraph of G on F .

14 1. INTRODUCTION

Figure 9. The directed 1-skeleton of a dodecahedron. Each face has a unique

sink and source.

Figure 10 below shows two different s-t monotone paths on the directed 1-skeleton of
the dodecahedron. The paths are colored red, and the 2-dimensional face they differ is
colored orange. These two s-t paths agree on all other edges except on one 2-dimensional
face, so they differ by one flip.

1.6. FLIPS 15

Figure 10. Two s-t monotone paths on the dodecahedron that differ by a flip.

Definition 28. The graph of the monotone paths on P with objective function f is
called the flip graph of P with f , and it is defined as the simple (undirected) graph where
each node represents a unique monotone path on P with objective function f and each
edge represents a pair of paths that differ by a polygon flip across a 2-dimensional face of
P [2].

The flip graph of the dodecahedron is shown in Figure 11. Each node is an s-t monotone
path and has been drawn out explicitly, and each edge (the blue line) connects two paths
that differ by a flip.

16 1. INTRODUCTION

Figure 11. The flip graph of a dodecahedron. Each node is a unique monotone

path drawn in red.

1.6. FLIPS 17

One might be interested in the connectivity of the flip graph. If the flip graph is
connected, we can start from one monotone path and go to any other monotone paths
by iteratively performing local polygon flips. In fact, in the paper published in 2000 [3],
Athanasiadis et al. proved that, for any d-dimensional polytope with d ≥ 3, the flip graph
is 2-connected. They constructed d-dimensional polytopes for all d ≥ 4 with flip graphs
that are 2-connected but not 3-connected. This shows that 2-connectedness is the best
we can get for the flip graph of general polytopes. For d-dimensional simple polytopes,
however, they showed that the flip graph is (d−1)-connected. The diameter bound for the
flip graphs of 3-dimensional polytopes has been studied in [2], and the bound of flip graph
diameter for d ≥ 4 remains open.

CHAPTER 2

Main Algorithms

We developed PolyPathLab, a MATLAB-based package, that takes in polytopes in
cdd/cdd+ format and computes the following features:

• the diameter
• the monotone diameter
• the monotone height
• the number of monotone paths
• the number of directed arborescences
• characteristics related to four famous pivot rules: Dantzig’s rule, greatest descent,

steepest edge, and Bland’s rule
• the flip graph and the diameter of the flip graph

We will use the dodecahedron and a fixed objective function f for examples we use in
this chapter. The dodecahedron has 20 vertices, 12 facets, and 30 edges. Each facet of the
dodecahedron is a regular pentagon.

Figure 1. A picture of the dodecahedron [24] and the directed 1-skeleton of the

dodecahedron.

Besides computation of the above features, PolyPathLab has two functions, “gen-
erate 3d CuttingPlane.m” and “generate 3d PointOnSphere.m,” to generate random 3d

18

2.2. DIAMETER 19

polytopes, which we use to test some properties of 3d polytopes. The functions are de-
scribed in the next section.

2.1. Random 3-dimensional Polytope Generator

We have two ways to generate random 3d polytopes: random cutting planes and ran-
dom points on a sphere. The polytopes created by the cutting plane method are simple
polytopes, while the points on sphere method may generate non-simple polytopes when
the number of vertices is large.

For the cutting plane method, we first construct a random cuboid that is bigger than
a 2× 2× 2 cube in any direction. We then generate cutting planes one to two unit lengths
away from the center of the cuboid. This ensures that we get a polytope with moderate
size which increases the possibility of having effective cutting planes (cutting planes that
produces one of the facets of the polytope). If we do not have a limit on the distance, there
might be some “deep” cuts that are very close to the center of the cuboid and make many
other cuts ineffective.

For the points on sphere method, we first generate a sphere of radius two, then select
points at random. The these points form a polytope.

Here is the code to generate a random point on a sphere of radius two:

1 %n is the number of vertices of the polytope

2 %set the radius to 2

3 r = 2;

4

5 %create random theta and phi

6 theta = 2 * pi * (2 * rand(n, 1) − ones(n, 1));

7 phi = pi * (2 * rand(n, 1) − ones(n, 1));

8

9 %obtain the coordinates of the vertices

10 x = r .* cos(theta) .* sin(phi);

11 y = r .* sin(theta) .* sin(phi);

12 z = r .* cos(phi);

13

14 vertices = [x,y,z];

This code is a usage of spherical coordinate system. If we have 0 ≤ θ ≤ 2π and
0 ≤ φ ≤ π, we can obtain all the possible points on the sphere by fixing the radius r to
equal the radius of the sphere. If we randomize θ and φ, we can obtain all the possible
points on the sphere, thus randomizing the coordinates of the vertices.

2.2. Diameter

The diameter of a polytope shows us how efficient is the simplex method on the poly-
tope. There are two ways to get the diameter of a polytope. First, MATLAB has a function
called “distances” which measures the distances between any two pair of vertices [17]. For
a polytope P with n vertices, it outputs an n × n matrix where each entry corresponds

20 2. MAIN ALGORITHMS

to the distance between the vertices of the row and column of the entry. The maximum
number of the matrix produced by the distance function is the diameter according to defi-
nition. Second, we can multiply the matrix of n×n identity matrix In by adjacency matrix
A plus an n×n identity matrix In, or (A+ In). Repeat multiplying the current matrix by
(A + In) until all of its entries become bigger than zero. Then, we record the number of
times we have multiplied. The idea is that, every time the new matrix has an entry that
turns from 0 to some positive number, the vertices represented by the row and column of
the entry are connected by a path. For example, if Ak

i,j = 1, there is a path from i to j

with length k. By adding In to A and raise (A+ In) to the power k, we allows the vertices
to have self-loops so that if there is a zero in the ij entry of the current matrix, it must be
that there is no path from i to j with length k. If the matrix has only non-zero entries, all
the vertices are connected to each other with paths that have lengths less than the number
of times we multiply.

In our program, we implemented the second method, matrix multiplication, to keep it
consistent with the methods we used for the monotone diameter and the monotone height.
Here is the pseudocode that computes the diameter.

1 %A is the n−by−n adjacency matrix. I is the n−by−n identity matrix. R is the ...

matrix that records the entries

2

3 %initialize R as the identity matrix

4

5 R = I;

6

7 diameter = 0;

8

9 %multiply until all the entries are greater than 1

10

11 while ismember(0, R) %if there is 0 in R

12

13 R = R * (A + I); %multiply R by (A + I)

14

15 diameter = diameter + 1; %record the increase in the diameter

16

17 end

For the dodecahedron, which has 20 vertices, A is the matrix shown in the next page:

2.3. MONOTONE DIAMETER 21

A =



0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0



.

If we multiply the identity matrix by (A + I20)4, we obtain a matrix that only has a
few zeros; if we multiply the current matrix by (A+ I20) again, we have a non-zero matrix.
Thus, the diameter of the dodecahedron is five, meaning that any vertex is connected to
any other vertices in a path with length less than five.

2.3. Monotone Diameter

Recall that the monotone diameter of DG is the maximum monotone distance between
any two vertices in DG that are connected by monotone paths. The monotone diameter
is not the same as the monotone distance between the source and the sink. Figure 2 is an
example where the source s does not have a longer monotone distance to the sink t than
some other vertex i. The monotone distance from s to t is two, but the monotone distance
from i to t is four.

22 2. MAIN ALGORITHMS

Figure 2. A directed graph where the monotone distance between the source s

and the sink t is smaller than the monotone distance between i and t.

To get the monotone distance for vertex i, we multiply In by the matrix (D+ In), the
directed adjacency matrix with diagonals being all 1. We repeat multiplying the current
matrix by (D + In) until the column of the sink t has non-zero values on i-th row for the
first time. The number of multiplications ki means that there is at least one monotone
path from i to t with length ki. We take the maximum ki among all vertices to get the
monotone diameter. In other words, we multiply the starting matrix In again and again
by (D + In) and record the number of times of multiplication k when the column of the
sink has all non-zero values.

Here is the pseudocode for computing the monotone diameter:

1 %D is the directed adjacency matrix; I is the identity matrix; R is the current ...

matrix; t is the index of the sink

2

3 %initialize R as the identity matrix

4

5 R = I;

6

7 monotone diameter = 0;

8

9 %multiply until all the entries in column t are nonzero

10

11 while ismember(0, A2(:, t)) == 1 %if there is a zero in column t

12

13 R = R * (D + I);

14

15 mono diameter = mono diameter + 1;

16

17 end

For the same dodecahedron in Section 2.2 with an objective function f , the directed
adjacency matrix is shown below:

2.4. MONOTONE HEIGHT 23

D =



0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0


D is calculated from the adjacency matrix A and the objective function f by comparing

the objective values of the two connected vertices. If i is connected with j, Ai,j = Aj,i = 1.
Then, we compare the objective value of i and that of j. If the objective value of i is less
than that of j, Di,j = 1 and Dj,i = 0.

The sink of this example is vertex 10. If we raise (D + I20) to the fourth power, there
are zeros in the tenth column; if we raise (D + I20) to the fifth power, there is no zero in
the tenth column, which means that there is at least one path from any vertex to the sink
with the length less than five. Thus, the monotone diameter of this dodecahedron with the
objective function f is five.

2.4. Monotone Height

Recall that the monotone height of DG is the length of the longest monotone path on
DG. Equivalently, monotone height is the maximum length of the monotone path from the
source s to the sink t. We can prove this equivalence by contradiction. Let i be a vertex
that is not the source or the sink. Assume the maximum length of the monotone path
from i to t is k, which is longer than the maximum length of the monotone path from s to
t. There is a monotone path of length bigger than one from s to i because of the property
of DG we shown in Section 1.3. Then, we can build a new monotone path from s to i to
t, which has the length at least (k + 1). This is a contradiction to our assumption.

24 2. MAIN ALGORITHMS

To get the monotone height, we raise D to power k, where k is the first time that the
matrix becomes a zero matrix. For all i and j, Dk

i,j = 0, meaning that there is no monotone
path with length k between any pair of vertices. Thus, the monotone height is equal to
(k − 1) because the maximum length of the monotone paths will be (k − 1).

1 %D is the directed adjacency matrix; R is the recording matrix; I is the identity ...

matrix

2

3 R = I;

4

5 mono height = −1; %starts from −1 because when the matrix becomes all zero, we ...

have no monotone path.

6

7 %Multiply R by D until all the entries are zero

8

9 while ¬ismember(0, R) %if the current matrix is all zero, stop

10

11 mono height = mono height + 1;

12

13 R = R * D;

14

15 end

Using the directed adjacency matrix D from the same dodecahedron and the same
objective function f from the last section, we see that, for D7, there are still ones in the
matrix; for D8, the matrix becomes a zero matrix for the first time. Thus, there is at least
one path with length equals seven. Therefore, The monotone height of this dodecahedron
with the same objective function f is seven.

2.5. Number of Monotone Paths

The number of monotone paths (from the source to the sink) tells us how many ways
can the source s go to the sink t. The number of monotone paths is recorded when
PolyPathLab computes the monotone height. Every time when the recording matrix is
multiplied with the directed adjacency matrix, the entry st of the resulting matrix tells us
how many monotone paths with the current length from s to t. When the matrix becomes
all zero, we sum the values to get the number of total monotone paths.

For the dodecahedron and the same objective function, the recorded values in entry st
are: 0, 0, 0, 0, 6, 6, 2. Summing these values, we get that the number of monotone paths is
14. There are only seven values because the monotone height is seven, so anything after
the last value will be zero.

2.6. NUMBER OF ARBORESCENCES 25

2.6. Number of Arborescences

Because the pivot rule picks one improving edge from every vertex of DG that is not
the sink, it creates a directed tree, which is a subgraph of DG. Furthermore, there is a
monotone path from every non-sink vertex to the sink, so the subgraph is an arborescence.
We say two pivot rules are equivalent on DG if they produce the same arborescence. Then,
the number of arborescence is the number of the equivalence groups of pivot rules, and
we can estimate the number of pivot rules by computing the number of arborescences [2].
Figure 3 shows one arborescence of the dodecahedron with objective function f .

Figure 3. An arborescence of the dodecahedron. From each vertex, the pivot rule

picks only one outgoing edge.

To compute the number of arborescences, we multiply the number of outgoing edges
of each vertex except the sink (which has 0 outgoing edges) because changing the outgoing
edge from a vertex will give us a different arborescence.

26 2. MAIN ALGORITHMS

For the dodecahedron and the objective function f , if we count the outgoing edges of
each vertex and put the numbers into a vector, we get:[

2 2 1 2 1 2 1 1 1 0 1 1 2 2 1 3 2 1 2 2
]

If we multiply the nonzero entries, we get 1536, which is the number of arborescences
of the dodecahedron with the objective function f .

2.7. Characteristics Related to Pivot Rules

In our program, we include four pivot rules: Dantzig’s rule, Greatest Descent, Steepest
Edge, and Bland’s rule. Based on these four pivot rules, we collect characteristics related to
the arborescences outputted by these pivot rules to see the performance of each pivot rule
on the polytope P with the objective function f . The characteristics include: the average
length of the monotone paths, the standard deviation of the length of the monotone paths of
the arborescence, the standard deviation of the indegrees of the arborescence, the length of
the monotone path between the source and the sink, the maximum length of the monotone
paths of the arborescence, and the number of leaves in the arborescence. We did not
include the average indegree of the arborescence for a polytope with n vertices because it
is always n−1

n .

2.8. Flip Graph

One interesting combinatorial feature of a polytope with an objective function is the
flip graph. The flip graph tells us how are the monotone paths related to each other.
Since the flip graph is 2-connected, we are also interested in the diameter of the flip graph
because the diameter tells us how many flips do the furthest pair of monotone paths differ.

To compute the flip graph, first, PolyPathLab uses a code called getpaths (see [1])
to obtain all the monotone paths. Then, to find out if two monotone paths, pi and pj ,
are connected by a flip, we find out the first vertex u and the last vertex v that the two
monotone paths differ from each other. Collecting all the vertices in between, we obtain a
set of vertices between u− 1 and v + 1 for pi and pj .

If pi and pj differ by a polygon flip, then this set of vertices belong to the same 2-
dimensional face. In order to compare to the faces, We put the coordinates of the vertices
into a matrix V with each row being a vertex in the set. Then, we compute AV T , with A
being the inequalities in the form Ax ≤ b. If there is a zero in the entry ij of the resulting
matrix, vertex j is on the facet represented by the i-th row of A; if the i-th row is a zero
vector, all the vertices between u−1 and v+ 1 are on the facet represented by the i-th row
of A. For dimension d, the intersection of d−2 hyperplanes will provide us a 2-dimensional
face. Therefore, if there are d− 2 rows that are zero vectors, we know pi and pj differ by
a polygon flip. We will show some examples for the flip graph in Section 3.5.

CHAPTER 3

PolyPathLab Software

To run PolyPathLab, users need to know how to use cdd/cdd+. The process of using
PolyPathLab is:

(1) Create an inequality file or a vertices file for cdd/cdd+.
(2) Run cdd/cdd+ to obtain the files needed for the input of PolyPathLab, including

*.ine, *.ead, *.ext files. We will call these the polytope files.
(3) Create an objective function file *.txt for the input of PolyPathLab.
(4) Put the polytope files with the correct file-naming convention and the objective

function file into the input folder under the package directory.
(5) Run “main general.m” or “flip graph.m” based on what users want to compute

and follow the instructions to set up the settings. Collect the outputs.

We explain each step in this Chapter, with step 5 being separated into two sections:
computation stage of the features except the flip graph (main general.m) and computation
stage of the flip graph (flip graph.m).

Caution: to reduce the impact of round-off errors during computation, we set the
tolerance to be 10−8 for the pivoting computation and the flip graph, meaning that any
value with an absolute value less than 10−8, it will be seen as zero. If users run into
problems such as the pivot rules do not terminate or the flip graph is not connected, users
can try adjusting the input files or adjusting the tolerance.

3.1. Creating Input Files Using the Program cdd/cdd+ (Step 1 and 2)

The program cdd/cdd+ [7] uses Double Description method to generate the vertices,
the edges, and the system of inequalities of a polytope, given the vertices or the inequalities.
Please follow the instructions in the cdd/cdd+ Reference Manual [7] for installation and for
using the program cdd/cdd+. From now on, we assume users have installed the program
cdd/cdd+ and know how to run it.

We need the following three files from the program cdd/cdd+:

• the inequality file, which has an extension *.ine,
• the vertices file, which has an extension *.ext, and
• the adjacency relationship of vertices, which has an extension *.ead file.

Running the program cdd/cdd+ using the vertices file as an input will generate the
inequality file; running the program cdd/cdd+ using the inequality file will generate the

27

28 3. POLYPATHLAB SOFTWARE

vertices file and the adjacency relationship of vertices. Thus, if users have a list of the
coordinates of the vertices, users will need to:

(1) use the coordinates of the vertices to write an input file *.ext,
(2) run the program cdd/cdd+ on the *.ext file to obtain the *.ine file, and
(3) run the program cdd/cdd+ on the *.ine file to obtain the *.ead file and the *.ext

file.

In this process, the *.ext file will be replaced with a new one, but it will not cause any
problem. If users have a list of the inequalities, users will need to:

(1) use the inequalities to write an input file *.ine,
(2) run the program cdd/cdd+ on the *.ine file to obtain the *.ead file and the *.ext

file.

From our experience, if the input file has a rounding error, the program cdd/cdd+ may
output some redundant vertices or inequalities. Thus, users might have to delete some
of the vertices or inequalities from the output if they are redundant. Chapter 8 of the
cdd/cdd+ Reference Manual [7] also provides some useful tips on reducing the error.

We will provide a simple explanation of how to construct an input file for the program
cdd/cdd+ in this thesis; for a detailed explanation, please refer to the cdd/cdd+ manual
[7].

Figure 1, 2, 3 below are the *.ext, *.ine, *.ead files for tetrahedron, respectively. In
each of the files, the line starts with an * will be ignored by the program cdd/cdd+.
In *.ext and *.ine file, the first line without * tells the program cdd/cdd+ which file it
is: H-representation for inequalities and V-representation for vertices. Then, we need to
have a line of “begin” to tell the program cdd/cdd+ where to start. The next line tells
the program cdd/cdd+ the parameters of the following matrix, including the number of
rows, the number of columns, and what format is the entries of the matrix (rational or
floating points). Then, we put in the matrix. A more detailed explanation on the matrix
is in the caption of each figure. After that, we have a line of “end” to tell the program
cdd/cdd+ finish reading. Finally, if it is in V-representation, we type “hull”; if it is in
H-representation, we type “adjacency.”

3.1. CREATING INPUT FILES USING THE PROGRAM CDD/CDD+ (STEP 1 AND 2) 29

Figure 1. A screen shot of the *.ext file for tetrahedron. The purple box tells

the program cdd/cdd+ what this file is for, where V-representation tells cdd/cdd+

this file is the file for vertices. The green box is the parameter of the matrix below,

including the number of rows, the number of columns, and the format of the entries.

The red box is the coordinates and the blue box is an 1-vector (for extreme points).

30 3. POLYPATHLAB SOFTWARE

Figure 2. A screen shot of the *.ine file for tetrahedron. The matrix in the middle

is in the form of
[
b −A

]
. H-representation tells the program cdd/cdd+ that this

is a file for the facets. The “adjacency” in the end tells the program cdd/cdd+ to

output the adjacency relationship of the vertices.

3.2. CREATING THE OBJECTIVE FUNCTION FILE (STEP 3) 31

Figure 3. A screen shot of the *.ead file for tetrahedron. Each line has the format:

the index of the vertex, how many neighbors for that vertex: the indices of the

adjacent vertices, separated by spaces.

3.2. Creating the Objective Function File (Step 3)

The objective function file has a file extension of *.txt or *.csv. Users need to write
the coefficients of the objective function into a file, and each coefficient is separated by
a comma. Users can enter more than one objective function using “enter” as separator.
Users can also create a matrix in the MATLAB and use the command “writematrix” to
produce the objective function file.

PolyPathLab accepts objective functions that have more entries than the d-dimensional
LP by using only the first d entries of the objective functions, but PolyPathLab does not
accept objective functions that have less entries than d. An example of an objective function
file corresponding to a 3-dimensional LP problem is show below as Figure 4.

32 3. POLYPATHLAB SOFTWARE

Figure 4. A screen shot of the objective function file. The coefficients are sepa-

rated by commas, and the different objective functions are separated by lines.

3.3. What to Put in the Input Folder and the File-naming Convention (Step
4)

Users need to put the following files into the “input” folder under the directory before
starting the computation:

• *.ine file for the polytope P ,
• *.ext file for the polytope P ,
• *.ead file for the polytope P , and
• *.txt or *.csv file for the objective functions.

The file-naming convention for the three polytope files is:
[filename][number].[file extention].
[filename] is what users prefer to call the polytopes; [number] is a number used by Poly-

PathLab to keep track of multiple polytopes as inputs; [file extention] is the file extension,
including *.ine, *.ead, and *.ext. For example, if users want to perform calculations on 100
different polytopes, users can call the polytope files “3d polytope1.ead” “3d polytope2.ead”
... “3d polytope100.ead”, “3d polytope1.ine” “3d polytope2.ine” ... “3d polytope100.ine”,
and “3d polytope1.ext” “3d polytope2.ext” ... “3d polytope100.ext”.

There is no specific naming convention for the objective function file. For example, the
file can be called “obj.txt”.

3.4. COMPUTATION STAGE FOR THE FEATURES EXCEPT THE FLIP GRAPH (STEP 5) 33

After putting these input files into the folder “input”, users can run the two computa-
tion functions in the package PolyPathLab: main general.m and flip graph.m.

3.4. Computation Stage for the Features Except the Flip Graph (Step 5)

After putting the files mentioned in the previous section into the input folder, users
can now run the main general.m. This function computes all the characteristics mentioned
in Chapter 3 except the flip graph. Then, it asks users a sequence of questions in the
command window, and these questions will adjust the settings of the calculation as well as
the output of the program. After answering these questions, users just need to wait until
the program finishes running.

Figure 5 below shows what the program will ask and what users need to answer in the
command window in an sample run of the program. The blue boxes represent the sample
answers to the questions, and anything else is what the program asks. The empty blue
boxes represent a direct “Enter” as an answer.

34 3. POLYPATHLAB SOFTWARE

Figure 5. The command window of a sample run of the program.

3.4. COMPUTATION STAGE FOR THE FEATURES EXCEPT THE FLIP GRAPH (STEP 5) 35

The outputs will be in the “output” folder. The default output *.csv file only includes
the matrix of the results for the ease of further use. The following figure is a sample matrix
output:

Figure 6. The output matrix in *.csv format generated by PolyPathLab by default.

Below are the additional outputs controlled by the settings. Refer to Figure 5 to see which
question and information does each figure corresponds to:

Figure 7. The output matrix in *.csv format with explanations generated by

PolyPathLab.

36 3. POLYPATHLAB SOFTWARE

Figure 8. The directed graphs of P with f in *.fig format (MATLAB figure)

under different pivot rules. The red edges represent the pivot-rule-selected path.

3.4. COMPUTATION STAGE FOR THE FEATURES EXCEPT THE FLIP GRAPH (STEP 5) 37

Figure 9. The arborescences of P with f in *.fig format (MATLAB figure) under

different pivot rules. The red edges represent the pivot-rule-selected path.

38 3. POLYPATHLAB SOFTWARE

Figure 10. The directed 1-skeleton in *.fig format (MATLAB figure) generated

by PolyPathLab.

Figure 11. The extra information in *.csv format generated by PolyPathLab.

3.5. COMPUTATION STAGE FOR THE FLIP GRAPH (STEP 5) 39

3.5. Computation Stage for the Flip Graph (Step 5)

The flip graph is computed separately. The function flip graph.m takes in one polytope
and computes the flip graph diameter based on the given objective function. Similar to
main general.m, flip graph.m asks users for the file name of the polytope file, the objective
function file name, and how many objective functions users want to use. The output is
displayed in MATLAB instead of in an output file. Depending on the number of objective
functions, the output will be different.

If users want to investigate a polytope with one objective function, the output of the
program will be a figure, which is the flip graph, and some text details in the command
window:

Figure 12. The flip graph of dodecahedron.

Figure 13. The text output of dodecahedron.

40 3. POLYPATHLAB SOFTWARE

If users want to investigate a polytope under different objective functions, the output
of the program will be the maximum, the minimum, and the average flip diameter, shown
below:

Figure 14. A sample output with multiple objective functions.

The above example uses the dodecahedron as the input polytope, and the flip diam-
eter of a dodecahedron under any objective function turns out to be six. In general, the
minimum, the average, and the maximum flip diameter is not the same. For example, the
following output comes from a random 3d simple polytope with 31 faces with 100 different
random objective functions:

Figure 15. Output from a different polytope.

CHAPTER 4

Computational Results

4.1. Choice of 3-dimensional Polytopes

We are interested in exploring the characteristics of 3d polytopes. We studied famous
polytopes such as the Platonic solids and the Archimedean solids as well as random 3d
simple polytopes. For the Platonic solids and the Archimedean solids, we took the ver-
tices from Wikipedia [24] and Visual Polyhedra [19]. Besides that, we also computed the
distribution of the monotone height and the monotone diameter by generating random
polytopes using the random cutting plane method mentioned in Section 2.1. Then, we
experimented on two types of famous polytopes, the Birkhoff Polytope and the traveling
salesman polytope. We will present our computational results here.

4.2. Characteristics of Platonic Solids and Archimedean Solids

Platonic solids [25] are regular 3d polytopes which are constructed by congruent, reg-
ular polygonal faces, with same number of faces meet at each vertex. There are 5 Platonic
solids: the tetrahedron, the cube, the octahedron, the dodecahedron, and the icosahedron.

Archimedean solids [24] have regular polygonal faces and identical vertices (each vertex
are surrounded by the same type of faces), and there are 13 Archimedean solids (from least
number of facets to the most): the truncated tetrahedron, the cuboctahedron, the trun-
cated cube, the truncated octahedron, the rhombicuboctahedron, the truncated cubocta-
hedron, the snub cube, the icosidodecahedron, the truncated dodecahedron, the truncated
icosahedron, the rhombicosidodecahedron, the truncated icosidodecahedron, and the snub
dodecahedron.

We ran experiments on all five Platonic solids and all 13 Archimedean solids, and we
collected all the characteristics in the table below:

41

42 4. COMPUTATIONAL RESULTS

Polytope # of facets # of edges # of vertices diameter
monotone
diameter

monotone
height

of paths # of arborescences flip diameter

Tetrahedron 4 6 4 1 1 3 4 6 2

Cube 6 12 8 3 3 3 6 24 3

Octahedron 8 12 6 2 2 4 10 48 4

Dodecahedron 12 30 20 5 5 7 14 1536 6

Icosahedron 20 30 12 3 3 7 62 25920 12

Truncated
Tetrahedron

8 18 12 3 3 5 9 96 4

Cuboctahedron 14 24 12 3 3 5 24 2304 7

Truncated
Cube

14 36 24 6 6 8 20 6144 7

Truncated
Octahedron

14 36 24 6 6 6 16 6144 7

Rhombicuboctahedron 26 48 24 5 5 7 76 5.31e+6 13

Truncated
Cuboctahedron

26 72 48 9 9 9 42 2.52e+7 13

Snub Cube 38 60 24 4 4 9,10,11
varies,

274-476
8.06e+8/9.07e+8/
1.08e+9/1.21e+9

varies, 19-22

Icosidodecahedron 32 60 30 5 5 11 192 3.40e+8 18

Truncated
Dodecahedron

32 90 60 10 10 14 108 1.61e+9 16

Truncated
Icosahedron

32 90 60 9 9 11 62 1.61e+9 16

Rhombicosidodecahedron 62 120 60 8 8 12 892 6.49e+16 33

Truncated
Icosidodecahedron

62 180 120 15 15 15 286 1.73e+18 31

Snub Dodecahedron 92 150 60 7 7
15,16,17,
18,19,20

varies,
8672-20316

varies, 3.64e+22
to 8.19e+22

varies, too many
paths for computation

This table is given by applying 500 different random objective functions on each poly-
tope. Most of the polytopes have the same numbers for all these objective functions, except
the snub cube and the snub dodecahedron. The reason is that these polytopes are highly
symmetrical, and applying different objective functions have similar effects. On the other
hand, the snub cube and the snub dodecahedron have different monotone height, number
of the monotone paths, number of arborescences, and flip diameter.

We can see that for all 18 polytopes, the monotone diameters equal diameters, but the
monotone heights are greater than or equal to the diameters. Also, the flip diameters are
at least a half of the number of facets for all of these polytopes.

Below are 16 of them, excluding the snub cube and the snub dodecahedron. These 16
polytopes are highly symmetric, so their characteristics and the general shape of their flip
graphs do not depend on the objective function.

The pictures of the Platonic solids [25] and the Archimedean solids [24] are from
Wikipedia, and the flip graph is obtained by applying the “graph” function in MATLAB
on the adjacency matrix of the flip graph:

4.2. CHARACTERISTICS OF PLATONIC SOLIDS AND ARCHIMEDEAN SOLIDS 43

Polytope
Picture (from
Wikipedia)

Flip Graph

Tetrahedron

Cube

Octahedron

Dodecahedron

44 4. COMPUTATIONAL RESULTS

Polytope
Picture (from
Wikipedia)

Flip Graph

Icosahedron

Truncated
Tetrahedron

Cuboctahedron

Truncated
Cube

4.2. CHARACTERISTICS OF PLATONIC SOLIDS AND ARCHIMEDEAN SOLIDS 45

Polytope
Picture (from
Wikipedia)

Flip Graph

Truncated
Octahedron

Rhombicuboctahedron

Truncated
Cuboctahedron

Truncated
Icosidodecahedron

See Figure 1

46 4. COMPUTATIONAL RESULTS

Polytope
Picture (from
Wikipedia)

Flip Graph

Icosidodecahedron See Figure 2

Truncated
Dodecahedron

See Figure 3

Truncated
Icosahedron

Rhombicosidodecahedron See Figure 4

Because several Archimedean solids have dense flip graphs and are hard to see, we put
the magnified flip graphs below:

4.2. CHARACTERISTICS OF PLATONIC SOLIDS AND ARCHIMEDEAN SOLIDS 47

Figure 1. The flip graph of truncated icosidodecahedron.

48 4. COMPUTATIONAL RESULTS

Figure 2. The flip graph of icosidodecahedron.

4.2. CHARACTERISTICS OF PLATONIC SOLIDS AND ARCHIMEDEAN SOLIDS 49

Figure 3. The flip graph of truncated dodecahedron.

50 4. COMPUTATIONAL RESULTS

Figure 4. The flip graph of rhombicosidodecahedron.

4.3. THE SPECIAL CASES OF ARCHIMEDEAN SOLIDS: THE SNUB CUBE AND THE SNUB DODECAHEDRON51

4.3. The Special Cases of Archimedean Solids: the Snub Cube and the Snub
Dodecahedron

The snub cube and the snub dodecahedron are two special Archimedean solids that,
given different objective functions, they will have different characteristics, including the
monotone height, the number of monotone paths, the number of directed arborescences,
the flip graph, and the flip diameter.

For the snub cube, Figure 6 shows the distribution of the monotone height; Figure 7
shows the distribution of the number of monotone paths; Figure 8 shows the distribution of
the number (in 109) of arborescences; Figure 9 shows the distribution of the flip diameter.

Figure 5. A picture of the snub cube [24].

52 4. COMPUTATIONAL RESULTS

Figure 6. The distribution of the monotone height of the snub cube given by 500

random objective functions.

Figure 7. The distribution of the number of monotone paths of the snub cube

given by 500 random objective functions.

4.3. THE SPECIAL CASES OF ARCHIMEDEAN SOLIDS: THE SNUB CUBE AND THE SNUB DODECAHEDRON53

Figure 8. The distribution of the number of arborescences of the snub cube given

by 500 random objective functions.

Figure 9. The distribution of the flip diameter of the snub cube given by 500

random objective functions.

54 4. COMPUTATIONAL RESULTS

Since the flip graph depends on the number of monotone paths, we cannot display all
of the possible flip graphs. Instead, we will show three flip graphs of the snub cube: one
with the fewest number of paths (274 paths, Figure 10), one with the most number of paths
(476 paths, Figure 11), and one with the most occurrence (438 paths, Figure 12).

Figure 10. The flip graph of the snub cube with 274 monotone paths.

4.3. THE SPECIAL CASES OF ARCHIMEDEAN SOLIDS: THE SNUB CUBE AND THE SNUB DODECAHEDRON55

Figure 11. The flip graph of the snub cube with 476 monotone paths.

56 4. COMPUTATIONAL RESULTS

Figure 12. The flip graph of the snub cube with 438 monotone paths.

4.3. THE SPECIAL CASES OF ARCHIMEDEAN SOLIDS: THE SNUB CUBE AND THE SNUB DODECAHEDRON57

We failed to calculate the flip graph for the snub dodecahedron because of two reasons.
First, depending on the objective function, the snub dodecahedron has different numbers
of monotone paths (from 8672 to 20316 paths using 500 different objective functions), and
computing a flip graph for a polytope that has big number of monotone paths takes a lot
of computation power.

Second, our polytope data is not accurate enough to carry out the calculation of the
flip graph. When inputting the data for the vertices of the snub dodecahedron [19] into
the program cdd/cdd+, the program returns too many inequalities, and some of them
are extremely similar and redundant. We deleted the redundant inequalities and put the
inequality file back into the program cdd/cdd+. From the program cdd/cdd+, we got a
vertex file of 120 vertices, which is exactly two times the number of original vertices. When
we investigate the coordinates of these vertices, we found that each vertex has split into
two. Thus, we deleted the redundant vertices. Although we can use the edited files to do
calculations for the features except the flip graph, our edit increases the round-off error
which is too big to compute the flip graph.

The following are some figures for the snub dodecahedron, including the distribution
of the monotone height (Figure 14), the distribution of the number (in 104) of monotone
paths (Figure 15), and the distribution of the number (in 1022) of directed arborescences
(Figure 16).

Figure 13. The picture of the snub dodecahedron [24].

58 4. COMPUTATIONAL RESULTS

Figure 14. The distribution of the monotone height of the snub dodecahedron

given by 500 random objective functions.

Figure 15. The distribution of the number of monotone paths of the snub dodec-

ahedron given by 500 random objective functions.

4.3. THE SPECIAL CASES OF ARCHIMEDEAN SOLIDS: THE SNUB CUBE AND THE SNUB DODECAHEDRON59

Figure 16. The distribution of the number of arborescences of the snub dodeca-

hedron given by 500 random objective functions.

60 4. COMPUTATIONAL RESULTS

4.4. The Monotone Diameter and the Monotone Height of 3d Simple
Polytopes

We used the random 3d polytope generator which uses cutting plane method (see
Section 2.1) to generate 50,000 random 3d simple polytopes. The polytopes generated
using this method will be roundish and will not have a similar behavior of polytopes of
special design, like a Klee-Minty cube. By adjusting the number of cuts, we were able to
obtain polytopes with different numbers of facets, ranged from eight facets to 80 facets.
We separated these polytopes into groups, and kept the groups that contain at least 30
different polytopes, which are groups from eight facets to 72 facets.

Then, we applied a fixed set of 26 objective functions on each polytope to obtain the
characteristics. These objective functions come from the set F = {[x1, x2, x3] s.t. x1 =
0,±1 ; x2 = 0,±1 ; x3 = 0,±1} \ [0, 0, 0] with a little permutation to reduce the possible
degeneracy.

In this experiment, we are interested in two ratios: the monotone diameter/the number
of facets (the monotone diameter ratio) and the monotone height/the number of facets (the
monotone height ratio). The graphs below are the results for the monotone diameter ratio,
and each subgraph is a normalized histogram, representing the ratio for the polytopes with
the same number of facets. The x-axis of each subgraph represents the monotone diameter
ratio, and the y-axis shows the percentage of occurrence.

Figure 17. The monotone diameter ratio for polytopes with 8-31 facets.

4.4. THE MONOTONE DIAMETER AND THE MONOTONE HEIGHT OF 3d SIMPLE POLYTOPES 61

Figure 18. The monotone diameter ratio for polytopes with 32-55 facets.

Figure 19. The monotone diameter ratio for polytopes with 56-72 facets.

62 4. COMPUTATIONAL RESULTS

From these graphs, we can see that each subgraph looks like a skewed normal distribu-
tion. Hence, we observed that, in general, as the number of facets increases, the mean of
the monotone diameter ratio decreases. From this observation, we found it to be interesting
to put all these ratios into one normalized histogram. We decided to give an equal weight
to each number of facets from eight to 72. The figure below shows the histogram of the
occurrence of each ratio:

Figure 20. Weighted monotone diameter histogram.

If our observation is correct that the mean of the monotone diameter ratio decreases as
the number of facets increases, we will see more bars on the left side of the 0.2 on the x-axis,
and the ratio may approach zero or a small number as the number of facets increases.

The monotone height ratio also follows a similar pattern, and the results of the mono-
tone height ratio are shown in the figures below. The x-axis represents the monotone
height ratio, and the y-axis represents the percentage of occurrence. Similarly, each sub-
graph looks like skewed normal distribution, and the mean is decreasing as the number of
facets increases:

4.4. THE MONOTONE DIAMETER AND THE MONOTONE HEIGHT OF 3d SIMPLE POLYTOPES 63

Figure 21. The monotone height ratio for polytopes with 8-31 facets.

Figure 22. The monotone height ratio for polytopes with 32-55 facets.

64 4. COMPUTATIONAL RESULTS

Figure 23. The monotone height ratio for polytopes with 56-72 facets.

We also put all the ratios into one normalized histogram presented below, and it seems
to follow the pattern we observed in the monotone diameter ratio:

Figure 24. Weighted monotone diameter histogram.

4.5. THE MONOTONE HEIGHT OF BIRKHOFF POLYTOPE 65

4.5. The Monotone Height of Birkhoff Polytope

Bn is a convex polytope that comes from an n× n doubly stochastic matrix, a matrix
with non-negative real entries and every column sum and every row sum equal to 1. It is
also called the Birkhoff Polytope [16]. We want to explore some features of the Birkhoff
Polytope, with a focus on the monotone height. We generated B3, B4, B5, and B6 based
on the idea in [16]. Then, we applied 500 different objective functions on B3, B4, and B5,
as well as 150 different objective functions on B6. The following table is what we get:

Birkhoff Polytope # of runs # of facets # of vertices diameter
monotone
diameter

monotone
height

of paths # of arborescences

B3 500 9 6 1 1 5 16 120

B4 500 16 24 2 2 15 to 23 188340 to 2812400 0.75e21 to 1.83e21

B5 500 25 120 2 2 80 to 107 9.26e25 to 3.79e30 0.16e180 to 4.36e180

B6 150 36 720 2 2 to 3 453 to 514 2.13e138 to 5.99e150 Out of bound

Among these numbers, we are interested in the distribution of the monotone height, so
we ran more experiments on B4, B5, and B6. The distributions are presented in Figure 25,
26, 27 respectively. The x-axis represents the monotone height, and the y-axis represents
the number of occurrences of each monotone height:

Figure 25. The monotone height distribution of B4.

66 4. COMPUTATIONAL RESULTS

Figure 26. The monotone height distribution of B5.

Figure 27. The monotone height distribution of B6.

4.5. THE MONOTONE HEIGHT OF BIRKHOFF POLYTOPE 67

We also tried to compute the features for B7. Unfortunately, B7 requires too much
computation power. Instead of calculating the exact monotone height, we chose to calculate
the monotone height divided by ten to speed up the process. Below is what we get for 60
runs. The numbers in x-axis times ten is roughly the monotone height:

Figure 28. The monotone height distribution of B7.

From these figures, we can see that the monotone height of Bn based on randomly
generated objective functions is normally distributed with a mean is growing exponentially
in terms of n. In particular, there can be a monotone path traveling through all the vertices
of the directed polyhedral graph coming from B4 and special objective functions.

68 4. COMPUTATIONAL RESULTS

4.6. The Monotone Height of the Traveling Salesman Polytope

Traveling salesman problem (TSP) is an NP-hard problem, and there is no known
efficient algorithm for solving the TSP. The setting of the problem is that a salesman
wants to minimize the cost to travel all n cities and return to the starting city, without
going into the same city twice. In the traveling salesman polytope (TSP polytope for
short), each vertex represents a solution to the TSP (a Hamiltonian cycle in a complete
graph of n nodes), and each entry in the objective function represents the cost to travel
between a pair of cities. By varying the objective functions, we obtain TSPs with different
costs between cities.

We are interested in the distribution of the monotone height of the TSP polytope.
However, the computation power needed for the n-city TSP polytopes is exponential, and
we could only compute the features for the 5-city and the 6-city TSP polytopes, as well
as the distribution of the monotone height of the 6-city and the 7-city TSP polytope. The
following table shows the features for the 5-city and the 6-city TSP polytopes:

TSP Polytope # of runs # of facets # of vertices diameter
monotone
diameter

monotone
height

of paths # of arborescences

5-city 500 20 12 2 2 10 682 1.81e7

6-city 500 100 60 2 2 39 to 55 7.69e12 to 2.08e15 9.15e71 to 3.49e72

From the features, we see that the 5-city TSP polytope is not very interesting. There-
fore, we ran more experiments to compute the monotone height for the 6-city and the
7-city TSP polytopes. The histogram of the distribution of the monotone height are shown
below in Figure 29 and Figure 30, with the x-axis representing the monotone height and
the y-axis representing the number of occurrences of each monotone height.

One thing interesting for the 6-city TSP polytope is that the maximum of the monotone
height of the 6-city TSP polytope is 58, which means that, starting from one vertex, the
simplex method needs to go through all except one vertex (59 in total except the starting
vertex) to reach the optimum, which is very inefficient. The minimum of the monotone
height is 32, and we do not know if it could be lower. The mean is 46.58, the standard
deviation is 2.69, and the median is 47. The minimum for the monotone height for the
7-city TSP polytope in 8800 runs is 193, and the max is 266. The mean is 223.3, the
standard deviation is 9.43, and the median is 223.

4.6. THE MONOTONE HEIGHT OF THE TRAVELING SALESMAN POLYTOPE 69

Figure 29. The distribution of the monotone height for 6-city TSP polytope using

10,000,000 random objective functions.

Figure 30. The distribution of the monotone height for 7-city TSP polytope using

8,800 random objective functions.

Acknowledgements

I would like to express my thanks to my thesis advisor Dr. Jesús A. De Loera for
providing me the opportunity to explore this topic, the guidance and support throughout
this project. I would like to thank Dr. Christos A. Athanasiadis for introducing me to the
fascinating topic of the flip graph of polytopes. I would also like to express my gratitude
to Möıse Blanchard and Zhenyang Zhang who provided me a substantial amount of help
during the research. Finally, we thank NSF for the support from NSF grant DMS-1818969.

70

Bibliography

1. MATLAB Answers, https://www.mathworks.com/matlabcentral/answers/417396-calculating-all-
paths-from-a-given-node-in-a-digraph.

2. Christos Athanasiadis, Jesús A. De Loera, and Zhenyang Zhang, Enumerative problems for arborescences and

monotone paths on polytopes, https://arxiv.org/abs/2002.00999, 2020.

3. Christos A. Athanasiadis, Paul H. Edelman, and Victor Reiner, Monotone paths on polytopes, Mathematische

Zeitschrift 235 (2000), 315–334.

4. Per Bergström, Plot 2D/3D region (version 1.1.0.0), https://www.mathworks.com/matlabcentral/
fileexchange/9261-plot-2d-3d-region, 2010.

5. Karl H. Borgwardt, The average number of pivot steps required by the simplex-method is polynomial, Zeitschrift

für Operations Research 26 (1982), 157–177.

6. Antoine Deza, Eissa Nematollahi, and Tamás Terlaky, How good are interior point methods? Klee-Minty. cubes

tighten iteration-complexity bounds, Math. Program. 113 (2008), 1–14.

7. Komei Fukuda, cdd/cdd+ Reference Manual, Institute for Operations Research, ETH-Zentrum, CH-8092 Zurich,

Switzerland, March 1999.

8. Donald Goldfarb and William Y. Sit, Worst case behavior of the steepest edge simplex method, Discrete Applied

Mathematics 1 (1979), 277–285.

9. Gil Kalai, Linear programming, the simplex algorithm and simple polytopes, Mathematical Programming 79

(1997), 217–233.

10. Victor Klee, Diameters of polyhedral graphs, Canadian Journal of Mathematics 16 (1964), 602–614.

11. Victor Klee, Heights of convex polytopes, Journal of Mathematical Analysis and Applications 11 (1965), 176 –

190.

12. Victor Klee and George J. Minty, How good is the simplex algorithm?, Inequalities–III, Proceedings Third

Symposium, 1969, Academic Press, New York, 1972, pp. 159–175. MR 0332165 (48 #10492)

13. Victor Klee and David W. Walkup, The d-step conjecture for polyhedra of dimension d<6, Acta Mathematica

117 (1967), 53–78.

14. Chengjun Li, Study on Using the Greatest Improvement Pivot Rule of Simplex Method to the Klee and Minty

Example, High Performance Networking, Computing, and Communication Systems, Springer, Berlin, Heidelberg,

2011, pp. 431–438.

15. Jesús A. De Loera, New insights into the complexity and geometry of linear optimization, Optima 87 (2011),

1–11.

16. Jesús A. De Loera, Fu Liu, and Ruriko Yoshida, A generating function for all semi-magic squares and the volume

of the Birkhoff polytope, Journal of Algebraic Combinatorics 30 (2008), no. 1, 113–139.

17. MATLAB, Shortest path distances of all node pairs - MATLAB, https://www.mathworks.com/help/matlab/
ref/graph.distances.html.

18. MATLAB, 9.6.0.1072779 (r2019a), The MathWorks Inc., Natick, Massachusetts, 2019.

19. David I. McCooey, Archimedean solids, http://dmccooey.com/polyhedra/java/Archimedean.html.

20. Francisco Santos, A counterexample to the hirsch conjecture, Annals of Mathematics 176 (2012), no. 1, 383–412.

21. Michael J. Todd, The monotonic bounded hirsch conjecture is false for dimension at least 4, Mathematics of

Operations Research 5 (1980), no. 4, 599–601.

22. , The basic George B. Dantzig, by Richard W. Cottle, Bulletin of the American Mathematical Society 48

(2011), no. 1, 123–129.

23. Robert J. Vanderbei, Linear programming, Springer US, 2014.

71

72 BIBLIOGRAPHY

24. Wikipedia, Archimedean solid, https://en.wikipedia.org/wiki/Archimedean_solid, Apr 2020.

25. , Platonic solid, https://en.wikipedia.org/wiki/Platonic_solid, Apr 2020.

26. Chutong Wu, Statistical Analysis of Four Pivot Rules for the Simplex Method, https://

www.math.ucdavis.edu/files/3415/5301/8154/Statistical_Analysis_of_Four_Pivot_Rules_for_
the_Simplex_Method.pdf, 2019.

