
ESTIMATING LANDAU’S FUNCTION

BY:

RICHARD GUNTER

SENIOR THESIS

Submitted in partial satisfaction of the requirements for the degree of

BACHELOR OF SCIENCE

in

MATHEMATICS

in the

COLLEGE OF LETTERS AND SCIENCE

of the

UNIVERSITY OF CALIFORNIA, DAVIS

Approved:

José Simental Rodŕıguez

1

Contents

1. Introduction 2
1.1. Definitions 2
2. Partitions 4
2.1. The partition-permutation relation 5
3. Budgeting methods for estimating g(n) 7
3.1. The Simple Budgeting Method 7
3.2. Examples of the Simple Budgeting Method 8
3.3. The Advanced Budgeting Method (ABM) 9
3.4. Examples of the ABM 11
3.5. Comparing g(n), SBM, and ABM 13
3.6. Formulation as a Nonlinear Optimization Problem 13
4. Probability of guessing λ∗ 14
5. Wreath-product groups 15
References 17
Appendix A. Matlab Code 18
A.1. Code for creating distributions of orders of elements in Sn 18
A.2. Code for the Simple budgeting method 18
Appendix B. Figures 19

2

1. Introduction

The main focus of this paper is in studying Landau’s Function g : N → N that
gives the maximum order of an element of the symmetric group Sn:

g(n) = max
σ∈Sn

Ord(σ).

The main result of this paper is the description of an algorithm for estimating g(n)
that is more accurate than the formula F (n) derived in Miller (1987) [2]. We have
also written MATLAB programs that provide multiple types of data discussed on
the elements of Sn. Furthermore, we have derived a probability distribution over
the partitions of n describing the probability of randomly choosing a cycle of a
random cycle type in Sn. We use MATLAB to generate and analyze histograms
of these probability distributions. Similarly, we use MATLAB to generate and an-
alyze histograms of the orders of elements in Sn. Finally, we prove a relationship
between the maximum order of Sn and G(`, n) allowing our estimation methods to
reach from Sn to a family of wreath-product groups.

1.1. Definitions. Let us start with definitions that will be important and used
throughout this work.

Definition 1.1 (Prime numbers). Primes are natural numbers p ∈ N such that if
a natural number n divides p, then n = p or n = 1.

We will denote the set of all primes as P and Pn = {p1, p2, ..., pn} be the set of
the first n primes, with p1 = 2.

Definition 1.2 (Permutations and the Symmetric group). The symmetric group
is the group (Sn, ◦) of bijective mappings σ : {1, 2, . . . , n} → {1, 2, . . . , n} together
with composition of those functions.

(Sn, ◦) is most commonly denoted Sn for simplicity. The elements of the sym-
metric group are called permutations. A permutation

σ =

(
1 2 . . . n
a1 a2 . . . an

)
is a bijective mapping σ : {1, . . . , n} −→ {1, . . . , n} given by σ(i) = ai ∀ i ∈
{1, . . . , n}.

Permutations can be more compactly expressed in “one-line notation”,

σ = [a1 a2 . . . an]

such that we “drop the top row” of the permutation and read the ith component
in the list as the output σ(i) = ai.

An especially nice and useful class of permutations are the cycles.

Definition 1.3 (Cycles). A k-cycle σ(k) (not to be confused with σ to the k-th
power of σ) is a permutation of the form

a1 7→ a2 7→ · · · 7→ ak 7→ a1

that fixes every other element of {1, . . . , n}.

3

We will denote the k-cycle σ(k) by (a1 a2 . . . ak).
For example, if σ = (123) and ρ = (23), σ ◦ ρ = (123)(23) = (12). As we can see,

ρ(1) = 1, σ(1) = 2, ρ(2) = 3, σ(3) = 1, ρ(3) = 2, σ(2) = 3. It is not important to
continue to use ◦ to denote permutation composition, so for the rest of the paper

σρ

will denote the composition of σ and ρ, or product in Sn.
We say that two cycles (a1a2 . . . ak) and (b1b2 . . . bs) are disjoint if {a1, . . . , ak}∩

{b1, . . . , bs} = ∅. The following important result elaborates further on the impor-
tance of cycles.

We say the order of a permutation is the smallest positive integer b such that
σ(σ(σ(...σ)
b compositions

= σb = e. Note that a k-cycle has order precisely k.

Theorem 1.4. Every cycle σ ∈ Sn can be decomposed as a product of disjoint
cycles.

Proof. Let σ ∈ Sn be an arbitrary permutation. If we can write σ as a cycle
(a1 a2 . . . an), we are done. If not, then we must have σ(ak) = a1 for some k 6= n.
This is because all permutations are bijective and thus every output has a unique
input. We can then “factor out” the cycle (a1 . . . ak) and if we can then write the
remaining elements in a cycle (ai . . . an) such that σ = (a1 . . . ak)(aiai+1 . . . an)
then we are done. If σ(aj) = ai for j 6= n ∈ {i, . . . n} we can again factor
another cycle and write σ = (a1 . . . ak)(ai . . . aj)(aj+1 . . . an). We can repeat
this at most n times until we exhaust the factorable cycles in σ. The extreme
case of this process is when σ = (a1)(a2) . . . (an) = e, the permutation that sends
ai 7→ ai ∀i ∈ {1, . . . , n} �

Two permutations σ and ρ are said to be conjugate if there exists a permutation
τ such that τστ−1 = ρ. It is easy to see that being conjugate is an equivalence
relation, and the corresponding equivalence classes are called conjugacy classes.
These are the sets {ρ|τστ−1 = ρ} for some τ ∈ Sn. The conjugacy classes can be
expressed in terms of the cycle decomposition, as expressed by the following notion.

Definition 1.5 (Cycle-type). Let σ ∈ Sn be a permutation with disjoint cycle

decomposition σ = σ
(`1)
1 σ

(`2)
2 . . . σ

(`k)
k . We see the cycle length of σi is `i for all i.

By rearranging if necessary, we may assume that `1 ≤ `2 ≤ · · · ≤ `k. Then we say
the cycle type of σ is the tuple of non-decreasing values [`1, `2, . . . , `k].

Theorem 1.6. Two permutations σ and ρ are conjugate if and only if they have
the same cycle type.

The proof of this theorem will depend on the following lemma.

Lemma 1.7. Assume σ = (a1 · · · ak) is a k-cycle. Then, for any permutation τ
we have τστ−1 = (τ(a1) · · · τ(ak))

Proof. Let σ, τ ∈ Sn with σ = (a1 . . . ak) and τ arbitrary. Then

τστ−1(τ(ai)) = τσ(ai) = τ(ai+1)

for all i except i = k in which case

τσ(ak) = τ(a1).

4

So τστ−1 describes the mapping

τ(a1) 7→ τ(a2) 7→ . . . τ(ak) 7→ τ(a1).

Thus τστ−1 = (τ(a1) · · · τ(ak)). �

Proof of Theorem 1.6. (⇒) By Lemma 1.7, if two permutations are conjugate, they
are of the same cycle type.

(⇐) If two permutations σ,ρ have the same cycle type, then simply choose a
τ ∈ Sn such that τ(σ(i)) = ρ(i)∀i ∈ {1, . . . , n}. Then conjugation by τ gives
τστ−1 = (τ(σ(1)) τ(σ(2)) . . . τ(σ(n))) = (ρ(1) ρ(2) . . . ρ(n)). Thus σ,ρ having
equal cycle types is necessary and sufficient for their conjugacy. �

To finish this section, we elaborate on how the cycle-type of a permutation σ
completely determines its order. Recall that the “least common multiple” (lcm for
short) of a tuple of positive integers is the smallest integer divisible by each integer
in the tuple. Equivalently, the lcm is a number divisible by every number in the
tuple and that divides every other number also divisible by every number in the
tuple.

Lemma 1.8. Let σ ∈ Sn be a permutation with cycle type [`1, `2, . . . , `k]. Then,
the order of σ is lcm(`1, . . . , `k).

Proof. Let σ = σ1σ2 · · ·σk be a decomposition of σ into disjoint cycles of length
`1, . . . , `k. Since the cycles are disjoint, they commute. So for every m > 0

σm = σm1 σ
m
2 · · ·σmk

Note that σm = e if and only if σmj = e for every j ∈ {1, . . . , k}.
First we prove that k-cycles have order k. Let τ = (a1 a2 . . . ak−1 ak). Then

τ(ai) = ai+1 except τ(ak) = a1. Then τ2(ai) = τ(ai+1) = ai+2 except τ2(ak) =
τ(a1) = a2. Continue and we see that τk(ai) = ai for all i ∈ {1, . . . , k} Thus the
order of a k-cycle is k.

Since σ
`j
j = e for j ∈ {1, . . . , k}. Then σ

`jb
j = eb = e for any integer b ∈ N. So

the order of σ needs to be the smallest integer b such that it is a multiple of all `1
through `k. In other words, the order of σ is lcm(`1, `2, . . . , `k). �

2. Partitions

Definition 2.1 (Partitions).

A partition of n is a tuple

λ = [λ1, λ2, . . . , λk]

of non-decreasing positive numbers such that

k∑
i=1

λi = n

We will call the numbers λ1, . . . , λk the parts of λ.
We will also use an alternative equivalent notation for a partition λ:

λ = 〈1a1 , 2a2 , . . . nan〉
This notation is read “a1 1s, a2 2s, . . . an ns.”

5

So for example the partition

λ = 〈11, 24, 30, 40, 53〉

means one 1, four 2s, zero 3s, zero 4s, and three 5s. Then λ is a partition of
24 = 1 + 4× 2 + 3× 5.

Definition 2.2 (Least Common Multiple of a Partition). Let λ be a partition. We
call the least common multiple of λ the least common multiple of its parts.

2.1. The partition-permutation relation. We will be exploring a deep connec-
tion between partitions of n and cycle types in Sn. Often, we will move inter-
changeably between talking about a cycle-type and the corresponding partition, or
vice versa. The key observation is that the cycle type and permutation contain
essentially the same information.

To elaborate this, consider the partition

n = 1 + · · ·+ 1

Using non-overlapping parenthesis, we can group together any number of 1s in a
sum to create any other partition. For example, to create the partition

λ = [1, k, (n− k − 1)]

construct the following non-overlapping parenthetical grouping:

n = 1 + (1 + · · ·+ 1)
k ones

+ (1 + · · ·+ 1)
n−k−1 ones

.

For an arbitrary partition λ = [λ1, . . . , λk], construct the grouping

n = (1 + · · ·+ 1)
λ1 ones

+ · · ·+ (1 + · · ·+ 1)
λk ones

= λ1 + · · ·+ λk.

In the same way, we can take the trivial cycle in Sn

e = (1)(2) . . . (n− 1)(n)

and create any possible cycle type in Sn by joining adjacent 1-cycles into larger
cycles. Again using the example partition

λ = [1, k, (n− k − 1)]

we can construct the corresponding permutation

σ = (1)(2 . . . (k + 1))((k + 2) . . . n)

and for an arbitrary partition λ = [λ1, . . . , λk] we construct an arbitrary permuta-
tion

σ = σλ1
σλ2

. . . σλk

.
So in summary, we relate partitions and elements of Sn via Definition 1.5.

Corollary 2.3. If two permutations σ and ρ have the same cycle type, they have
the same order. Because σ and ρ have the same cycle type, the lcm of their cycle
types is the same.

Definition 2.4. Let λ be a partition of n. We define the order of λ to be the order
of any permutation in Sn that has cycle type λ. In other words, the order of λ is
lcm(λ)

6

Note that the order of λ is nothing but the least common multiple of the parts
of λ. The main problem that we will study in this work is the following.

Main Problem. Given n, find a partition of n with maximal possible order.

Definition 2.5 (Landau function). The Landau function of n is defined to be:

g(n) := max{Ord(λ) | λ is a partition of n}

Our first goal is to restrict the partitions we should look at to find the value of
g(n). First, we find an expression for the order of a partition in terms of the prime
decomposition of its parts. Note: We cite OEIS [6] for the true value of g(n) for
comparison to our estimates.

Lemma 2.6. Let (α1, . . . , αm) ∈ Zm>0. Assume that αi has a prime decomposition

αi =

∞∏
j=1

p
aij
j

(note that aij = 0 for j � 0). Then the lcm of α1, . . . , αm is given by

lcm(α1, . . . , αm) =

∞∏
j=1

p
maxi aij
j

Proof. We must show that (1)
∏∞
j=1 p

maxi aij
j is divisible by every αi and (2) that

every other number divisible by every αi is also divisible by
∏∞
j=1 p

maxi aij
j .

(1) Every number αk in the m-tuple divides
∏∞
j=1 p

maxi aij
j because maxi aij ≥

akj for any i, k ∈ N, and we see∏∞
j=1 p

maxi aij
j

αk
=

∞∏
j=1

p
maxi aij−akj
j ∈ N.

(2) Every number divisible by all α1, . . . , αm must also be divisible by
∏∞
j=1 p

maxi aij
j .

Suppose we have a number β with prime decomposition
∏∞
j=1 p

bj
j for some bj ∈ N

such that β is divisible by all α1, . . . , αm. Then bj ≥ maxi aij for all j. If there was
some j such that bj < maxi aij , then there is a k such that akj = maxi aij and

β

αk
=

∞∏
j=1

p
bj−akj
j /∈ N

.
�

Theorem 2.7. For any n > 0, there exists a partition λ∗ whose parts are all are
prime powers (or 1) such that g(n) is the order of λ∗.

Proof. Let µ = (µ1, µ2, . . . , µk) be a partition of n such that

lcm(µ1, . . . , µk) = g(n)

7

Assume there exists an i such that the part µi is not a prime power nor 1. Let
us take the prime decomposition of µi

µi =

m∏
j=1

p
aij
j

We can define a new partition µ∗ (with non-decreasing rearrangement) to be

µ∗ = [µ1, . . . , µi−1, p
a1
i1
· · · , pamim , µi+1 . . . , µk]

Then, by the Geometric Mean Inequality
∑m
j=1 pij ≤

∏m
j=1 pij we find that

∞∑
i st µ∗i 6=1

µ∗i ≤
∞∑

i st µi 6=1

µi

Finally, these two partitions µ and µ∗ have the same order. This comes simply
from the identity lcm(µ) =

∏∞
j=1 p

maxi aij
j

Since µ∗ contains the same parts as µ, save for the inclusion of µi’s parts, all
powers of primes contained in µ are preserved in µ∗. Thus

lcm(µ) =

∞∏
j=1

p
maxi aij
j = g(n) = lcm(µ∗)

. �

Let us finish this section with some small examples of the value of g(n) and the
partition λ∗ that achieves this order. All these values can be found by manual
inspection.

n g(n) λ∗

2 2 [2]
3 3 [3]
4 4 [4]
5 6 [2, 3]
6 6 [1, 2, 3], [6]
7 12 [3, 4]
8 15 [3, 5]
9 20 [4, 5]
10 30 [2, 3, 5]

3. Budgeting methods for estimating g(n)

3.1. The Simple Budgeting Method. In estimating g(n), it is useful to think
of the quantity n as our ‘budget’ with which to construct a partition whose lcm is
as large as possible. Because g(n) is a maximal least common multiple, we need to
avoid choosing highly composite parts, as much of our budget is “wasted”. This
is because highly composite parts of n will have a smaller lcm than more coprime
parts of n Theorem 2.7.

For example, let n = 30, then the partition 2+4+8+16 = 30 has lcm{2, 4, 8, 16} =
16 whereas we know g(30) = 4620 given by the partition [3, 4, 5, 7]. We currently
do not possess a closed form expression for g(n), so our best tool for studying this

8

function is direct calculation and estimation. Our first method of estimation is
described in [2], we call it the Simple Budgeting Method.

The Simple Budgeting Method works as follows: pick the first k primes whose
sum is less than or equal to n,

k∑
i=1

pi ≤ n.

This gives us a partition (omitting r 1s) λ = [p1, ..., pk], and the order of this
partition is given nicely by

lcm(p1, ..., pk) =

k∏
i=1

pi

because all pi are coprime. This gives us the nice expression

g′(n) :=

k∏
i=1

pi.

The paper [2] shows how this product (called F (n)) has the property that

logF (n) ∼
√
n log(n) ∼ log(g(n)) where a(n) ∼ b(n) denotes lim

n→∞
a(n)
b(n) = 1 for

some sequences a,b indexed by n. Thus g′(n) has the same asymptotic behavior as
g(n). Note also that g′(n) is increasing but not strictly increasing with respect to
n.

If we take r to be the difference between
∑k
i=1 pi and n:

k∑
i=1

pi + r = n,

we note that r grows large as the gap between consecutive primes grows large. This
is where the SBM fails, and in the next section we describe an improved budgeting
method that takes advantage of the remainder r.

3.2. Examples of the Simple Budgeting Method.

Example 3.1. The first k primes that sum to 5 are p1 and p2, or 2 and 3. We see
5 = 2 + 3 and thus we deduce that the partition set is {2, 3} and that the order of
the corresponding cycle type (a1 a2 a3)(b1 b2) ∈ S5 is 2× 3 = 6. Indeed g(5) = 6.

Example 3.2. Let n = 10. 10 = 2 + 3 + 5, the first three primes. Thus we
estimate that the maximal order of an element in S10 the order of the permutation
(a1 a2)(b1 b2 b3)(c1 c2 c3 c4 c5) is g′(n) = 2× 3× 5 = 30. Indeed g(10) = 30.

Example 3.3. Let n = 50. We partition n as 50 = 2 + 3 + 5 + 7 + 11 + 13 + 9,
and thus we estimate the maximal order of an element in S50 is g′(50) = 30030. In
fact, g(50) = 180180, but we note here that g′(50) = 30030 = g(41), the maximal
order of an element in S41 and of course 50 = 41 + 9.

Example 3.4. Let n = 100. We find that 100 is equal to the sum of the first 9
primes, 100 = 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23. So we say g′(n) =

∏9
i=1 pi =

223092870. Compared to the true value of g(100), we see g′(100)
g(n) = 223092870

232792560 = 23
24 ≈

95.83%.

9

3.3. The Advanced Budgeting Method (ABM). The Advanced Budgeting
Method (ABM) takes advantage of the remainder

r = n−
k∑
i=1

pk

that grows as the gap between primes gets large to improve estimations of g(n).
From Theorem 2.7 we see that partitions with prime powered parts have a

minimal sum relative to the largest lcm that that sum can achieve. This suggests
that an optimal way to spend our remainder budget r is on the difference in powers
of primes pci − pi. This is the motivation for the ABM The Advanced Budgeting
Method works as follows: After applying the Simple Budgeting Method to n and
obtaining the first k primes whose sum is less than or equal to n, we continue to
budget the remainder amongst nearest prime powers one power at a time, scanning
to find the next prime power our remainder can afford. Because the ABM is an
extension of SBM, we have that

g′(n) ≤ g′′(n) ∀n ∈ N.

We also know that

g′′(n) ≤ g(n) ∀n ∈ N
because through this process we build a partition of n, whose order cannot exceed
g(n). Since g′(n) ≤ g′′(n) ≤ g(n) and g′(n) ∼ g(n), we get

g′′(n) ∼ g(n).

The Advanced Budgeting Method will have multiple different remainder values
to keep track of, so call the first r1, the difference between our total budget n and
the first k1 primes such that their sum does not exceed n.

r1 = n−
k1∑
i=1

pi

Then take the remainder r1, and pick the first k2 differences between squares of
primes and primes such that their sum to less than or equal to r1.

k2∑
i=1

(p2
i − pi) ≤ r1.

Now call r2

r2 = r1 −
k2∑
i=1

(p2
i − pi).

Then take the remainder r2, and pick the first k3 differences between cubes and
squares of primes such that their sum to less than or equal to r2.

k3∑
i=1

(p3
i − p2

i) ≤ r2

Now call r3

r3 = r2 −
k3∑
i=1

(p3
i − p2

i).

10

This leads us to a recursion relation

rt = rt−1 −
kt∑
i=1

(pti − pt−1
i).

If at any point in this process, rt < 2t−1, then stop. At this point, it is helpful

to denote the differences between next powers of primes pti − p
t−1
i = p

[t]
i so we can

rewrite our general remainder term

rt = rt−1 −
kt∑
i=1

p
[t]
i .

We note that it is helpful to do this in the form of a tableau to keep track of the
remainders rt and the values you will need to finally compute g′′(n). Each entry in
the bottom row is the sum of the column its in and the whole bottom row is λ∗,

giving us g′′(n) = lcm(λ∗) =
∏k
i=1 λi. Below is a general form of this tableau.

p1 p2 pk1 r1

p
[2]
1 p

[2]
2 . . . p

[2]
k2

0 r2

.

p
[j]
1 . . . p

[j]
ki

0 0 rj
.

p
[t]
1 0 0 0 0 rt
pt1 . . . pjki . . . pk1

Note that many of the entries will be 0 as you will find that the next prime
difference is greater than your remainder, and you must move to the next row. It
is reasonable to leave 0 cells empty.

Lemma 3.5. Let λ be a partition of n obtained by the Simple Budgeting Method
such that λi = pi or 1 and let r be the remainder r = n −

∑
λi 6=1

λi. Also let ci be

appropriately chosen integers such that the difference n −
∑k
i=1 p

ci
i is minimized.

Then for

r =

k∑
i=1

(pcii − pi),

we construct our prime powered partition through the ABM:

λ∗ = [pc11 , p
c2
2 , . . . , p

ck
k]

and thus the order of the corresponding cycle type, our estimate for g(n), is

g′′(n) = lcm(λ∗) =

k∏
i=1

pcii .

Proof. The final row in the ABM tableau represents the entries of the prime powered
partition λ∗, which are obtained by summing the column above. Since the entries

of the column are either 0 or p1, . . . , p
[j]
i . Then due to our choice of p

[t]
i = pti − p

t−1
i

the i’th column will have the value
∑j
i=1 p

[j]
i = pi+(p2

i −pi)+ · · ·+(pji −p
j−1
i) = pji .

11

We have r =
∑k
i=1(pcii − pi), after obtaining the first row (SBM). So adding

λi = pi to (pcii − pi) gives us λ∗i = pcii for all i ∈ {1, . . . , k} which shows λ∗ =
[pc11 , p

c2
2 , . . . , p

ck
k] and completes the proof. �

3.4. Examples of the ABM.

Example 3.6. Let n = 50. Then, first we find the first k primes from n such that
the remainder is nonnegative.

50 = 2 + 3 + 5 + 7 + 11 + 13 + 9.

So with a remainder r1 of 9, we find the first k differences of squared primes and
primes

9 = 2 + 6 + 1.

Then we are done, and the partition λ∗ is [4, 5, 7, 9, 11, 13] and our estimate g′′(50) =
4 ∗ 5 ∗ 7 ∗ 9 ∗ 11 ∗ 13 = 180180. Indeed, g(50) = g′′(50) wheras g′(50)/g(50) =
30030/180180 = 1/6 ≈ 16.67% accurate. the following table helps visualize this
process and result:

2 3 5 7 11 13 9
2 6 1
4 9 5 7 11 13

Example 3.7. Let n = 70. Then 70 = 2 + 3 + 5 + 7 + 11 + 13 + 17 + 12. With
r1 = 12 we find 12 = 2+6+4. With r2 = 4 we find 4 = 23−(22−2)−2 = 8−2−2.
Then we are done, and the partition λ∗ is [5, 7, 8, 9, 11, 13, 15] and our estimate
g′′(70) = 5 ∗ 7 ∗ 8 ∗ 9 ∗ 11 ∗ 13 ∗ 15 = 6126120. Indeed g(70) = 6126120, wheras
g′(70) = 510510 and thus is g′(70)/g(70) = 510510/6126120 = 1/12 ≈ 8.33%
accurate. The following table again illustrates this method:

2 3 5 7 11 13 17 12
2 6 4
4
8 9 5 7 11 13 17

Example 3.8. Let n = 99. Then 99 = 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 22.
With r1 = 22, we find 22 = 2 + 6 + 14. With r2 = 14, we find 14 = 4 + 10. With
r3 = 8 + 2. Since r4 = 2 ≤ 23, we cannot continue. Tallying our primes and prime
remainders, we get λ∗ = [5, 7, 9, 11, 13, 16, 17, 19] and finally g′′(99) = lcm(λ∗) =
5 ∗ 7 ∗ 9 ∗ 11 ∗ 13 ∗ 16 ∗ 17 ∗ 19 = 232792560. Indeed, g(99) = 232792560.

2 3 5 7 11 13 17 19 22
2 6 0 0 0 0 0 0 14
4 0 0 0 0 0 0 0 10
8 0 0 0 0 0 0 0 2
16 9 5 7 11 13 17 19

Example 3.9. Let n = 100. Then we partition 100 = 2+3+5+7+11+13+17+
19 + 23, thus r1 = 0 and we are done. Thus we say λ∗ = [2, 3, 5, 7, 11, 13, 17, 19, 23]
and thus g′′(100) = 2∗3∗5∗7∗11∗13∗17∗19∗23 = 223092870 which is 23

24 ≈ 95.83%
accurate. Below we give the rather uninspiring ABM tableau for n = 100.

2 3 5 7 11 13 17 19 23 0
2 3 5 7 11 13 17 19 23

12

Here we run into a fascinating problem,

g′′(99) > g′′(100),

meaning our estimate is not non-decreasing for all n like g′(n) is. More importantly,

g′′(99) = g(99) = g(100) > g′′(100),

meaning the ABM was 100% accurate for a given some n and then the accuracy
decreases for n + 1 even though the real value of g(n) remained constant. It is
unknown how often g′′(n) > g′′(n+ 1), but the first occurrence is at n = 99.

13

3.5. Comparing g(n), SBM, and ABM. Below is a MATLAB generated figure
containing plots for all g(n), g′(n), g′′(n) from n = 1 to n = 100.

Figure 1. The graphs of the Landau function g(n) and its ap-
proximations g′(n), g′′(n) on a log y-axis. The blue graph is g(n),
the yellow graph is g′′(n) and the red graph is g′(n).

3.6. Formulation as a Nonlinear Optimization Problem. Here we use what
we have learned to formulate the Main Problem as a Nonlinear Optimization prob-
lem. The many methods of solving NLPs should be employed towards further
increasing our ability to approximate this puzzling function.

Main Problem: Given n ∈ N, find a partition of n such that its lcm is maximal.
As an NLP:

max
x∈Rk

lcm(x)

s.t.

k∑
i=1

xi = n

The solution x∗ to this NLP is clearly a partition of n corresponding to the
cycle type giving the maximum order in Sn.

lcm(x∗) = g(n)

14

4. Probability of guessing λ∗

At one point we found it interesting to ask, “what is the probability of randomly
guessing what cycle type in Sn gives you maximal order?” Below we explore and
solve this problem.

First we define a probability distribution P over the partitions of n in order to
correspond to the cycle types in Sn.

Definition 4.1. Let Λ(n) be the set of all partitions λ = 〈1a1 , 2a2 , . . . nan〉 of n.
Define the probability distribution P : Λ(n)→ [0, 1] ∩Q

P (λ) =
1∏n

i=1 i
ai(ai)!

If we permit a partition of 0 to be λ0, then we define P (λ0) = 0

This probability distribution describes the probability of randomly choosing an
element in Sn of a given cycle type corresponding to λ. This was derived through the
following argument, that makes use of the orbit-stabilizer formula, cf. [1]. There
are n! permutations in Sn. Each permutation can be decomposed into a product
of disjoint cycles, giving a cycle type. For each cycle of length i, there are ai
equivalent cycles.For each repeated cycle type, there are ai! ways of arranging those
because their multiplicative order does not matter. So the size of the conjugacy
class corresponding to λ is n!∏n

i=1 i
ai (ai)!

. If we sum over all conjugacy classes, we

recover the size of Sn. So since∑
λ∈Λ(n)

n!∏n
i=1 i

ai(ai)!
= n!,

dividing by n! yields ∑
λ∈Λ(n)

1∏n
i=1 i

ai(ai)!
= 1.

Theorem 4.2. Let λ∗ be the partition whose corresponding cycle type gives the
maximal lcm. Then P (λ∗) = 1

g(n)

Proof. Recall the form of an all prime powered partition λ∗ = [pc11 , p
c2
2 , . . . , p

ck
k].

This means it is of the form λ∗ = 〈. . . (pc11)1 . . . (pc22)1 . . . (pckk)1 . . . 〉 and all zero
elsewhere. So for λ∗, ai = 0 or 1 for all i ∈ {1, . . . , n}. Likewise i = pcii for all i.
Combining these facts, we get

P (λ∗) =
1∏n

i=1 p
ci
i

=
1

g(n)
.

�

In the appendix, we showcase some plots of these probability distributions for
several n

15

5. Wreath-product groups

In this section we examine a class of groups closely related to the symmetric
group, that of wreath product groups. To that end, fix natural numbers n and `.

Let ζ := e2π
√
−1/` ∈ C be a primitive `-th root of unity, and consider the set

X(n, `) := {ζij | i = 0, . . . , `− 1, j = 1, . . . , n}

Note that the set X(n, `) is closed under multiplication by ζ.

Definition 5.1. The group G(`, n) consists of all bijections σ : X(n, `)→ X(n, `)
that are ζ-linear, that is, satisfying

σ(ζji) = ζjσ(i)

for every i = 1, . . . , n and j = 0, . . . , `− 1.

For example, G(1, n) = Sn. Note that, since G(`, n) consists of bijections on a
set of n` elements, we have a natural embedding G(`, n) ↪→ Sn`.

Definition 5.2. Let `, n > 0. We denote by g`(n) the maximal order of an element
in G(`, n) so that, for example, g1(n) is the Landau function.

Note that, since we have an embedding G(`, n) ↪→ Sn`, we immediately obtain
the inequality

g`(n) ≤ g(n`)

Our main result regarding wreath-product groups is that, in fact, the function
g`(n) has a very simple expression in terms of the function g(n).

Theorem 5.3. For every n, ` > 0 we have

g`(n) = `g(n)

In order to prove Theorem 5.3 we will establish a connection between the groups
G(`, n) and Sn.

Lemma 5.4. Let σ ∈ G(`, n), and assume that σ(i) = ζmiπ(i). Then, the map
π : {1, . . . , n} → {1, . . . , n} is bijective.

Proof. It is enough to show that π is surjective. Let i ∈ {1, . . . , n}. Since σ is
bijective, there exist k ∈ {0, . . . , `− 1} and j ∈ {1, . . . , n} such that

σ(ζkj) = i

But then, by the linearity of σ:

σ(j) = σ(ζ`j) = ζ`−kσ(ζkj) = ζ`−ki

Thus, π(j) = i and π is surjective. �

Let us denote by π(σ) ∈ Sn the permutation obtained in Lemma 5.4.

Lemma 5.5. The map π : G(`, n)→ Sn, σ 7→ π(σ) is a group homomorphism.

16

Proof. Let σ,ρ ∈ G(`, n). We want to show that π(σρ) = π(σ)π(ρ). More explicitly,
we want to show that for every i ∈ {1, . . . , n}

π(σρ)(i) = π(σ)π(ρ)(i)

By definition, ρ(i) = ζmiπ(ρ(i)) for some mi. Then, by linearity of σ:

σ(ρ(i)) = σ(ζmiπ(ρ)(i)) = ζmiσ(π(ρ)(i)) = ζmiζmπ(ρ)(i)π(σ)π(ρ)(i)

Which by definition of π gives

π(σ(ρ(i))) = π(σ)π(ρ)(i).

�

Lemma 5.6. Let σ ∈ G(`, n). Let oσ be the order of σ and oπ(σ) be the order of
π(σ) ∈ Sn. Then

oσ ≤ `oπ(σ)

Proof. Note that π(σoπ(σ)) = e so, by definition of π:

σoπ(σ)(i) = ζmii

Raise this to the `

σ`oπ(σ)(i) = ζ`mii = i

For all i ∈ {1, . . . , n}.
So

oσ ≤ `oπ(σ).

�

Corollary 5.7. We have

g`(n) ≤ `g(n)

Proof. Let σ ∈ G(`, n) be an element of maximal order. Note that oπ(σ) ≤ g(n) as
well as g(n) = oσ. Then

g`(n) = oσ ≤ `oπ(σ) ≤ `g(n)

�

Thus, to show that g`(n) = `g(n), we need to produce an element of G(`, n)
whose order is `g(n). To this end, define an element of G(`, n) as follows.

Let Ω : Sn → G(`, n) be defined over the cycle decomposition of σ = σ1σ2 . . . σm ∈
Sn with

Ω(σ
(k)
i) = (a1 a2 . . . ak ζa1 ζa2 . . . ζak ζ

2a1 ζ
2a2 . . . ζ

2ak . . . ζ
`−1a1 ζ

`−1a2 . . . ζ
`−1ak)

and

Ω(σ) = Ω(σ1)Ω(σ2) . . .Ω(σm).

Note that if σi is a k-cycle, then Ω(σi) is an `k-cycle. Note also that Ω is not a
group homomorphism, as

Ω(e) = (e)(ζe)(ζ2e) . . . (ζ`−1e) 6= e

17

for ` 6= 1. Then if ki is the order of σi, the order of Ω(σ) is the order of the product
of `ki-cycles

lcm(`k1, `k2, . . . `km) = ` lcm(k1, k2, . . . km) = `oσ = `g(n).

This completes the proof of Theorem 5.3.

References

[1] M. Artin, Algebra

[2] W. Miller, The maximum order of an element of a finite symmetric group. Amer. Math.

Monthly 94, issue 6 (1987), 497–506 https://doi.org/10.1080/00029890.1987.12000673

[3] John D’Errico (2020). Partitions of an integer (https://www.mathworks.com/matlabcentral/fileexchange/12009-

partitions-of-an-integer), MATLAB Central File Exchange. Retrieved May 15, 2020.

[4] Josh (2020). Least Common Multiple Set (https://www.mathworks.com/matlabcentral/fileexchange/24670-
least-common-multiple-set), MATLAB Central File Exchange. Retrieved May 15, 2020.

[5] OEIS Foundation Inc. (2020), The On-Line Encyclopedia of Integer Sequences,

http://oeis.org/A000793
[6] OEIS Foundation Inc. (2020), The On-Line Encyclopedia of Integer Sequences,

http://oeis.org/A000793/b000793.txt

18

APPENDIX

Appendix A. Matlab Code

A.1. Code for creating distributions of orders of elements in Sn. This is
my MATLAB code for creating figures for the distribution of orders of elements in
the Symmetric Group.It relies on two functions [3],[4] found online and the authors
of those two functions are credited as well as the links to their files.

%This code relies on the >partitions function by John D’Errico (2020) found at

%https://www.mathworks.com/matlabcentral/fileexchange/12009-partitions-of-an-integer

%And the >lcms function by Josh (2020) found at

%https://www.mathworks.com/matlabcentral/fileexchange/24670-least-common-multiple-set

function n = LPP(n)

P = partitions(n);

%matrix partitions of n where the 1st column represents 1s & the last column represents n’s

lP = length(P);

%Total number of partitions

lambda = zeros(1,n);

y = zeros(1,lP);

for i = 1:lP

lambda = P(i,:); %lambda assigned value of ith row of P%

Plambda = lcms(sign(lambda).*[1:n]);

%Calculates the Order of the Cycle this partition represents

y(i) = Plambda; %vector y given order value

end

bar(1:lP,y)

A.2. Code for the Simple budgeting method. This is my MATLAB code for
running the Simple Budgeting Method

function gprime = SBM(n)

p = primes(n);

budget = n;

numprimes = length(p);

r = 0;

glamb = zeros(numprimes);

gprime = 0;

%This loop simply checks if the sum of primes exceeds n and updates gprime

for i = 1:numprimes

if sum(p(1:i))<= n

gprime = prod(p(1:i));

end

end

19

This is my MATLAB code for producing the figures for the Probability dis-
tributions over the partitions of n, revealing their fractal-like appearance. If you
copy-paste it into MATLAB, it should work. This code relies on a function [3] that
is cited and linked in the code.

%This code relies on the >partitions function by John D’Errico (2020) found at

%https://www.mathworks.com/matlabcentral/fileexchange/12009-partitions-of-an-integer

function n = PPP(n)

P = partitions(n);

lP = length(P); %This is the famous pi(n) function, counting # of partitions of n

lambda = zeros(1,n);

y = zeros(1,lP);

for i = 1:lP

lambda = P(i,:);

%Below is the formula derived for choosing a random cycle-type from S_n%

Plambda = 1/(prod(factorial(lambda)))*1/((prod((1:n).^lambda)));

y(i) = Plambda;

%This line assigns the components of a vector to the Plambda value in the loop

end

bar(1:lP,y)

Appendix B. Figures

The following are figures of orders of elements in Sn for some specified n gen-
erated by my MATLAB code “LPP”. After that there are figures showing the
Probability Distributions derived in the Probability section for a given n.

20

Figure 2. Orders of elements in S10 Group

Figure 3. Orders of elements in S20 Group

21

Figure 4. Orders of elements in S30

Figure 5. Orders of elements in S40

22

Figure 6. Orders of elements in S50. As you can see, it becomes
very difficult for MATLAB to render all of the thousands of bars
representing the order of elements in S50. In fact, the graph appears
much taller than it needs to be, but thats because the blue bar
representing g(50) is so small it was not rendered at that zoom
level.

23

Figure 7.

Figure 8.

24

Figure 9.

Figure 10. This figure was zoomed in in order to make out some
detail. The maximum probability not shown in this frame is .03

25

Figure 11. This figure was zoomed very far in to find the detail
in this distribution. The maximum probability not shown in frame
is .025

26

Figure 12. This is the distribution of probabilities of randomly
choosing cycle types in S65, but zoomed in several orders of mag-
nitude such that the detail of this distribution is visible.

