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1. Introduction

Let S be an algebraic curve in C2. In the 1930s, the algorithm for computing the fundamental group of
the complement π1(C2 \S) was developed by van Kampen [5]. Refinements of van Kampen’s algorithm were
then given by Chisini, Chéniot, Abelson, and Chang, amongst many others. In the early ’80s, Moishezon [10]
introduced the idea of braid monodromy and used it to recover van Kampen’s presentation. Furthermore,
Libgober [7] proved that the two-dimensional complex associated to the braid monodromy presentation is
homotopy equivalent to C2 \S. The study of the fundamental groups of the complements to algebraic curves
is important because it tells us information on how to construct complex algebraic surfaces. For example,
Zariski [14] showed the existence of two curves of degree 6, both with six cusps, such that their fundamental
groups are not isomorphic. This difference is due to the placement of the cusps; one curve has all six cusps
lying on a conic while the other does not have this property. Artal-Bartolo [1] first introduced this notion of
a Zariski pair, which is a pair of curves S1 and S2 such that their singularities are topologically equivalent
but their embeddings into CP2 are not.

Until recently, most of the curves that were considered for fundamental group calculations only had
simple singularities. In the late ’80s, Moishezon and Teicher [11] gave an algorithm to compute the local
braid monodromy generated by branch points, cusp points, and transverse multi-intersection points. Then,
in 2004, Kaplan, Liberman, and Teicher [6] expanded this list by computing the local braid monodromy
for ten more types of singularities. In this thesis, we focus on five types of singularities: branch points,
tangent points, transverse multi-intersection points, cusp points, and cusp points intersecting tangent lines.
Given a polynomial S representing an arrangement of n complex curves in C2, the braid monodromy of the
curve can be facilitated by use of a braided wiring diagram W. The wires encode information about the
position and arrangement of the curves while the braids illustrate how the curves behave before they come
to intersect. A braided wiring diagram associated to a curve is not unique and can change depending on the
way we construct our braid monodromy for a given line arrangement. These changes are known as Markov
moves and braided wiring diagrams can be simplified using these moves. These simplifications with the use
of braid relations can make the braid monodromy generators much easier to understand. We describe how
to calculate the fundamental group π1(C2 \W) and look at several examples.

A fundamental problem in group theory is determining whether two groups are isomorphic. Given two
finite presentations π1(C2 \ W1) and π1(C2 \ W2), it is not at all obvious if there exists a method telling
us if these groups are isomorphic. This is known as the group isomorphism problem, first mentioned by
Tietze [13] in 1908. Around fifty years later, Adian and Rabin independently proved the group isomorphism
problem is unsolvable, meaning there does not exist an algorithm solving every instance of this problem.
Despite this result, there are various invariants that can help us determine whether two groups are not
isomorphic. We give a survey of one of these invariants having close connections with the fundamental
group called the Alexander polynomial ∆(t), a knot invariant introduced by Alexander in the 1920s. It is a
Laurent polynomial with integer coefficients that can be computed using the fundamental group of the knot
complement. We apply this concept from knot theory to calculate the Alexander polynomial of algebraic
curves. We describe how to calculate it using Fox calculus, a tool used for the study of groups defined by
generators and relators. This idea was developed through a series of five papers by Fox during the 1950s.
Moreover, we show the Alexander polynomial is unchanged under Tietze transformations.

Given our five singularities, we look at a few types of braided wiring diagrams. We first calculate the
fundamental group of an n-stranded wiring diagram with n-tuple points. It turns out that the group
presentation can be expressed solely in terms of the number of strands.

Theorem 1.1. If W is an n-stranded wiring diagram with any number of n-tuple points and braiding, the
fundamental group is given by

π1(C2 \W) = 〈t1, . . . , tn|[t1, . . . , tn]〉 .

We then compute the fundamental group of three-stranded wiring diagrams with two double points. By
finding the Alexander polynomials using the fundamental groups, we conclude that these wiring diagrams
produce an infinite family of curves.

Theorem 1.2. Let W be a three-stranded wiring diagram with two double points and a braid σn1 between
the singularities where n ≥ 0. Then, the fundamental group π1(C2 \W) is different for every n.
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Using this calculation, we compare fundamental groups of three-stranded wiring diagrams with three
double points by switching the braiding between the singularities. Finally, we look at several four-stranded
wiring diagrams having a certain number of branch points, cusp points, tangent points, and cusp points
intersecting tangent lines. The examples in this category satisfy the property that the product of the braid
monodromy generators is equal to the full twist on four strands, implying these curves can be extended to
closed curves in the complex projective plane CP2.

This thesis is organized as follows. In section 2, we provide background information on the fundamental
group. In section 3, we define braid monodromy of algebraic curves and compute the local braid monodromy
associated to our five singularities. In section 4, we formally define braided wiring diagrams and describe
the group presentation of π1(C2 \ W). In section 5, we discuss the Alexander polynomial and prove some
properties about it. In section 6, we compute the fundamental groups and Alexander polynomials of the
braided wiring diagrams mentioned above.

2. Homotopy and the fundamental group

We first start with an example to provide some motivation. Consider a sphere and torus. Intuition tells
us these two spaces should not be homeomorphic because the torus has a hole in the center whereas the
sphere does not. The fundamental group allows us to see this difference topologically.

Definition 2.1. Let X be a topological space. A loop is a continuous map f : [0, 1] → X such that
f(0) = p = f(1) where p is called the basepoint of the loop.

Definition 2.2. Two loops f, g : [0, 1] → X are homotopic, denoted f ' g, if there exists a continuous
function H : [0, 1]× [0, 1]→ X such that the following hold.

H(s, 0) = f(s) H(0, t) = p = H(1, t)

H(s, 1) = g(s)

Example 2.1. Let X = R2 and p = (0, 0). Suppose f is the red loop and g is the green loop.

Figure 1. f, g : [0, 1]→ R2 Figure 2. Straight-line homotopy

The homotopy is given by H(s, t) = f(s)(1− t) + g(s) · t. This map is called the straight-line homotopy
because H traverses a line segment from f to g as t ranges between 0 and 1.

Proposition 2.1. Homotopy is an equivalence relation.

Proof.
f ' f : Define H(s, t) = f(s) for all t ∈ [0, 1].
f ' g implies g ' f : If we are given f ' g with the map H(s, t), then define H(s, t) = H(s, 1− t). This new
map satisfies the required conditions.

H(s, 1− 0) = H(s, 1) = g(s) H(0, 1− t) = p = H(1, 1− t)
H(s, 1− 1) = H(s, 0) = f(s)

f ' g and g ' h imply f ' h: Let Φ be the homotopy from f to g and Λ be the homotopy from g to h. We
show f ' h using the function

Ω(s, t) =

{
Φ(s, 2t) 0 ≤ t ≤ 1

2

Λ(s, 2t− 1) 1
2 ≤ t ≤ 1

.

�
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We write [f ] to represent all loops homotopic to f . Intuitively, two loops are homotopic if one can be
continuously deformed into the other.

Definition 2.3. The fundamental group π1(X) based at p is the set consisting of classes of loops under the
equivalence relation of homotopy. The group operation is path multiplication defined by

f · g(t) =

{
f(2t) 0 ≤ t ≤ 1

2

g(2t− 1) 1
2 ≤ t ≤ 1

.

In other words, two loops in this group are equivalent if they are homotopic.

Let us go back to our example in the beginning of this section and think about π1(S2) and π1(T 2). We give
an informal explanation using Figure 3.

Figure 3. Sphere and torus

Suppose the basepoint of each space is the black dot. If we take the red loop and move it around the
sphere, we see that it is homotopic to the basepoint. In fact, any loop on the sphere is homotopic to the
basepoint by this exact same reasoning. Thus, π1(S2) = 0, the trivial group. However, π1(T 2) 6= 0 since the
blue loop is not contractible. For more information about the fundamental group, consult Hatcher [4].

3. Braid monodromy of algebraic curves

In this section, we define the braid monodromy of an algebraic curve in C2 following [2], [7], [8], and [9].
Before doing so, we first review some knot theory.

3.1. Braid group. A braid is a collection of n intertwined strings with fixed endpoints.

Figure 4. n = 3

Given any horizontal plane between the two bars, each strand must intersect the horizontal plane exactly
once. Therefore, the figure on the right is not a braid because the rightmost strand loops around.

A braid word, represented by σi’s, is associated to each braid. We use the following convention in this
thesis.

Figure 5. σ1 and σ−1
1

Every n-stranded braid can be expressed using a combination of these σi’s where 1 ≤ i ≤ n − 1. Braid
words can be simplified using the relations σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n − 2 and σiσj = σjσi for
|i− j| ≥ 2.
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Figure 6. σ1σ2σ1 = σ2σ1σ2 and σ1σ3 = σ3σ1

The braid group on n strands, denoted Bn, is generated by σ1, . . . , σn−1 with the relations given above,
and the presentation is

Bn =
〈
σ1, . . . , σn−1|σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2, σiσj = σjσi for |i− j| ≥ 2

〉
.

3.2. Braid monodromy. Let S be a degree n algebraic curve in C2. Let π : C2 → C be a projection
onto the first coordinate and X = {x1, . . . , xk} be the set of points in C for which the fibers of π contain
singular points or tangencies. Assume π−1(xi) contains at most one singular point of S and does not belong
to the tangent cone of S. Define π to be a generic projection if it satisfies these properties. Choose a point
x0 ∈ C \X such that <(x0) > <(xi) for all xi ∈X . Choose loops ξi : I → C \X based at x0 going below
the points x1, . . . , xi−1 such that it passes around xi in a counterclockwise direction and comes back the
same way. Let Di denote the small disk around xi and let si be paths connecting x0 and a point qi ∈ ∂Di.
Set ai = [ξi]. For example, a1 = s1 ∪ ∂D1 ∪ s−1

1 if we look at Figure 7. This gives us a set of generators for
π1(C \X ).

Define Lx = π−1(x). Fix a basepoint b ∈ Lx0
and consider a collection of loops in Lx0

\ (Lx0
∩ S). These

loops represent the generators of π1(Lx0 \ (Lx0 ∩ S)) based at b. The restriction of the projection map

(1) C2 \ (S ∪ LX )→ C \X

defines a locally trivial bundle.

Figure 7

The intersection Lqi and S consists of n points, mi of which have as limit the singular points of S over xi
as qi approaches xi. For example, mi = 2 if the singularity is a double point because two points approach
the singularity. Label these mi points in Lqi as xi,1, . . . , xi,mi . Let Γi,j where 1 ≤ j ≤ n be paths in Lqi
connecting a basepoint bi ∈ Lqi with a point on the boundary of a small disk Di,j about the points Lqi ∩ S.
These paths define the generators Γi,j ∪ ∂Di,j ∪ Γ−1

i,j of π1(Lqi \ (Lqi ∩ S)) based at bi.
Now fix a system of non-intersecting segments in Lqi (resp. Lx0

) connecting the points Lqi ∩ S (resp.
Lx0
∩S). These segments represent the generators of the braid group Bn(Lqi , Lqi∩S) (resp. Bn(Lx0

, Lx0
∩S)),

which is interpreted as the group of diffeomorphisms of Lqi (resp. Lx0) fixing Lqi ∩ S (resp. Lx0 ∩ S). Each
segment defines a diffeomorphism that is a half twist about this segment. A trivialization of the bundle (1)
restricted to ∂Di \ {qi} defines a braid µ2

i ∈ Bn(Lqi , Lqi ∩ S), which we call the local braid monodromy
at the point xi. Furthermore, a trivialization of the same bundle restricted to si defines diffeomorphisms
βi : (Lqi , Lqi ∩ S)→ (Lx0

, Lx0
∩ S).
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Figure 8

Definition 3.1. The homomorphism Ψ : π1(C \ X ) → Bn(Lx0
, Lx0

∩ S) sending the ith generator to
β−1
i µ2

iβi is called the braid monodromy.

The braid monodromy of an algebraic curve is not unique and depends on the choices made in defining
the generators of π1(C \X ). For instance, we can define our loops ξi based at x0 to go above the points
x1, . . . , xi−1 and pass around xi in a counterclockwise direction. To understand this indeterminancy, we
define braid-equivalence.

Definition 3.2. Two homomorphisms Ψ : F (k) → Bn and Ψ′ : F (k) → Bn, where F (k) is the free group
generated by k elements, are equivalent if there exist automorphisms ψ ∈ Aut(F (k)) and φ ∈ Aut(F (n))
with φ(Bn) ⊂ Bn such that

Ψ′ ◦ ψ(g) = φ−1 ·Ψ(g) · φ
for all g ∈ F (k). Equivalently, the following diagram commutes.

F (k) Bn

F (k) Bn

Ψ

ψ conjφ

Ψ′

Moreover, if ψ ∈ Bk and φ ∈ Bn, then the homomorphisms are said to be braid-equivalent.

Theorem 3.1 (Theorem 3.7 from [2]). The braid monodromy of an algebraic curve S is well-defined up to
braid-equivalence.

Proof. Based on our earlier discussion, we know the identification π1(C\X ) = F (k) depends on the way we
define our generators of π1(C\X ). These two choices yield monodromies that differ by a braid automorphism
of F (k). Furthermore, the choice of basepoints yields monodromies differing by a cojugation in Bn. Thus,
these two cases have braid-equivalent braid monodromy generators. We now examine the effects of a change
in the choice of generic projection. Let π and π′ be two projections with critical sets X and X ′, respectively.
Let the braid monodromies be Ψ and Ψ′. Libgober [9] showed there is a homeomorphism j : C\X → C\X ′

such that the induced isomorphism j∗ : π1(C \X ) → π1(C \X ′) satisfies Ψ′ ◦ j∗ = Ψ. By construction,
we observe that j can be taken to be the identity outside a ball of large radius containing X ∪X ′. Then,
j∗ can be written as the composition of an inner automorphism of F (k) with a braid automorphism of
F (k): j∗ = conjg ◦ φ. Trade the inner automorphism of F (k) with an inner automorphism of Bn to obtain
Ψ′ ◦ ψ = conjΨ′(g) ◦Ψ. �

3.3. Computation of local braid monodromy. We consider curves with the following types of singular-
ities. For a more comprehensive list, look at [6].
a – Branch point, topologically equivalent to y2 − x = 0 or y2 + x = 0
b – Tangent point, topologically equivalent to y(y − x2) = 0
c – n-tuple point, intersection of n non-singular branches that are all transversal to each other
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d – Cusp, topologically equivalent to x3 − y2 = 0 or x3 + y2 = 0
f1 – Cusp point intersecting a tangent line, topologically equivalent to y(y2 − x3) = 0

Figure 9. Singularities

In the following propositions, we compute the local braid monodromy associated to each singularity.

Proposition 3.2. Let S be the curve y2 − x. The local braid monodromy at the origin is generated by σ1.

We track the roots of S by taking x = e2πit with t ∈ [0, 1]. The cases plotted below are t = 0, 1
4 ,

1
2 ,

3
4 , 1.

Figure 10

Proposition 3.3. Let S be the curve y(y − x2). The local braid monodromy at the origin is generated by
σ4

1 .

Figure 11

Proposition 3.4. Let S be the curve (y− x)(y+ x). The local braid monodromy at the origin is generated
by σ2

1 .

Figure 12

Note the local braid monodromy for an arbitrary type c singularity is generated by the full twist on n
strands.

((σ1 · · ·σn−1) · (σ1 · · ·σn−2) · · · (σ1σ2) · σ1)
2

Proposition 3.5. Let S be the curve x3− y2. The local braid monodromy at the origin is generated by σ3
1 .
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Figure 13

Proposition 3.6. Let S be the curve y(y2 − x3). The local braid monodromy at the origin is generated by
(σ2σ1σ2)3.

Figure 14

3.4. Fundamental group of the complement of algebraic curves. The homotopy exact sequence of
the bundle (1) is

0→ π1(Lx0
\ (Lx0

∩ S))→ π1(C2 \ (S ∪ LX ))→ π1(C \X )→ 0.

This sequence is split exact with the action being the braid monodromy homomorphism Ψ. To obtain a
presentation for the group π1(C2 \ (S ∪LX )), consider x0 ∈ C \X defined earlier. Based on our discussion
in Section 3.2, we can identify π1(C \X ) with F (k) = 〈a1, . . . , ak〉. Similarly identify π1(Lx0

\ (Lx0
∩ S))

based at b with F (n) = 〈t1, . . . , tn〉. Since we have a split exact sequence, π1(C2 \ (S ∪LX )) is equal to the
semidirect product F (n) oΨ F (k). Therefore, the group presentation is

π1(C2 \ (S ∪ LX )) =
〈
t1, . . . , tn, a1, . . . , ak|a−1

i · tj · ai = Ψ(ai)(tj)
〉
.

The fundamental group of the complement of S is the quotient of π1(C2 \ (S ∪ LX )) by the normal closure
of F (k).

π1(C2 \ S) = 〈t1, . . . , tn|tj = Ψ(ai)(tj)〉

4. Braided wiring diagrams

Let A be an arrangement of n complex curves in C2 represented by a polynomial f(x, z). Recall the
definitions of π : C2 → C, X , and x0. Let φ : I → C be a smooth path beginning from x0 that goes through
x1, . . . , xk in order by decreasing real part. The braided wiring diagram W associated to A is defined to be

W = {(x, z) ∈ φ× C|f(x, z) = 0}.
As we pass between the points in X , the lines of A may braid. We associate a braid βi,i+1 to the portion
of φ from xi + ε to xi+1 − ε for some ε > 0. Braided wiring diagrams can be represented using a sequence
of these braids and vertices.

Vj
βj−1,j←−−−− Vj−1 ← · · · ← V2

β1,2←−− V1
β0,1←−− V0

Let V0 represent the initial ordering of the strands recorded from the bottom. The elements of the set Vk
for k > 0 are indices of the wires to the left of vertex k in terms of the order given by V0 and βk,k+1 is the
braid between vertices k and k + 1.

Remark 4.1. The vertices are read from right to left but the braids are read from left to right.

Now suppose there are m strands below Vk and |Vk| = n. Let Ik = {m+ 1, . . . ,m+ n} be the local index
of Vk.
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Example 4.1. For the wiring diagram below, V3 = {1, 2} and I3 = {2, 3}.

Figure 15

To apply the local braid monodromy calculations in Section 3.3 to braided wiring diagrams, we need to
use the local indices Ik to determine the appropriate braid. We won’t rewrite the propositions but we give
one example for the type a singularity. Suppose the kth vertex of a braided wiring diagram is a branch point
and Ik = {m+ 1,m+ 2}. The local braid monodromy is then generated by σm+1.

We now provide a formula for the braid monodromy generator of an arbitrary vertex, which is obtained
by slightly rewriting the formula presented in Section 3.2.

Theorem 4.1. The braid monodromy generator of the kth vertex of a braided wiring diagram is given by

Ψ(ak) = Ψk = β−1
k µ2

Ik
βk

where µ2
Ik

is the local braid monodromy of the singularity at vertex k and

βk = βk−1,k · µIk−1
· βk−1.

Example 4.2. Consider a 5-stranded wiring diagram with one branch point and one double point.

Figure 16

Note the dotted lines after the branch point indicate how the wires moved to the imaginary plane.
Therefore, to bring the wires back to the real plane, we rotate them counterclockwise by π

2 . The braid
monodromy generators are

Ψ1 = σ3, Ψ2 = β−1
2 σ2

2β2

where

β2 = β1,2 · µI1 · β1

= σ1σ
−1
4 .

We explain the calculation for β2, which represents how the fiber changes as we traverse the red part of the
second loop. We first read β1,2 = σ1σ

−1
4 from the diagram. We now follow the wires with local indices 3

and 4 because the other wires remain fixed. After the braid σ−1
4 , wires 3 and 4 move to the imaginary plane

but from the opposite direction so we rotate them counterclockwise by −π2 . We then apply half of the local
braid monodromy contribution from the branch point. The local braid monodromy is σ3, i.e., rotate wires
3 and 4 by π counterclockwise. Hence, half of this is rotation by π

2 counterclockwise. Thus, we see that the
angles cancel so we get the identity. Finally, there is no braiding afterwards so combining everything gives
us β2 = σ1σ

−1
4 .
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The fundamental group π1(C2\W) can be calculated using these Ψk’s. Each generator of the fundamental
group, ti, represents a loop around strand i of the wiring diagram. The presentation is given by

π1(C2 \W) = 〈t1, . . . , tn|Ψk(ti) = ti for i ∈ Vk \maxVk and 1 ≤ k ≤ j〉.

We exclude maxVk because calculating Ψk(ti) = ti for i = maxVk gives us a redundant relation. Moreover,
if i /∈ Vk, then we just have the identity relation ti = ti so we disregard this case.

The relationship between the braid monodromy generators and tj ’s is given by the following.

σi(tj) =


titi+1t

−1
i i = j

ti j = i+ 1

tj else
and σ−1

i (tj) =


ti+1 i = j

t−1
i+1titi+1 j = i+ 1

tj else

Diagrams depicting these relations are shown.

Figure 17. σ1(t1) = t1t2t
−1
1 , σ1(t2) = t1 Figure 18. σ−1

1 (t1) = t2, σ−1
1 (t2) = t−1

2 t1t2

To compute σi(t−1
j ) or σ−1

i

(
t−1
j

)
, take the inverse of σi(tj) or σ−1

i (tj), respectively.

Remark 4.2. We apply the σi’s starting from the left so if we want to calculate σ1σ2(t1), we do the following:

t1
σ1−→ t1t2t

−1
1

σ2−→ t1t2t3t
−1
2 t−1

1 .

Example 4.3. We calculate π1(C2 \W) for the wiring diagram in Figure 15.

Ψ1 = σ2
2 Ψ2 = σ−1

2 · σ2
1 · σ2 Ψ3 = σ−1

2 σ−1
1 · σ2

2 · σ1σ2 = σ2
1

Ψ1(t2) = t2t3t2t
−1
3 t−1

2 Ψ2(t1) = t1t2t3t
−1
2 t1t2t

−1
3 t−1

2 t−1
1 Ψ3(t1) = t1t2t1t

−1
2 t−1

1

From the first relation, we know t2 and t3 commute so we can simplify the second relation. The fundamental
group is then

〈t1, t2, t3|[t2, t3], [t1, t3], [t1, t2]〉
where the symbol [t1, t2, . . . , tm] denotes the family of m− 1 relations:

t1t2 · · · tm = t2 · · · tmt1 = · · · = tmt1 · · · tm−1.

4.1. Markov moves. We consider braided wiring diagrams with type c singularities in this section. For
an arbitrary line arrangement A, the way we construct our braid monodromy can affect the wiring diagram
associated to A. For example, changing the basepoint x0 may result in a different braid β0,1 while changes
in the projection may alter the wire ordering. We refer to these different changes as Markov moves, and we
describe how these moves affect the braid monodromy. Let Ψ̂ be the braid monodromy generator for the
altered wiring diagram Ŵ.

1. Insert a braid β0,1 at the beginning of the braided wiring diagram.

Figure 19. Ψ1 = σ1σ2σ
2
1σ2σ1 and Ψ̂1 = σ−1

1 · σ1σ2σ
2
1σ2σ1 · σ1

2. Insert a braid βs+1 at the end of the braided wiring diagram.
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Figure 20. Ψ1 = σ1σ2σ
2
1σ2σ1 = Ψ̂1

In the rest of the examples, we assume {i, . . . , j} denotes the local index.
3. Replace vertex {i, . . . , j}, then vertex {k, . . . , l} with

a. vertex {k, . . . , l}, then vertex {i, . . . , j} if j < k or i > l.
Let i = 1, j = 3, k = 4, and l = 6.

Figure 21. Ψ1 = σ1σ2σ
2
1σ2σ1, Ψ2 = σ4σ5σ

2
4σ5σ4 and Ψ̂1 = σ4σ5σ

2
4σ5σ4, Ψ̂2 = σ1σ2σ

2
1σ2σ1

b. braid (σk · · ·σi+1)(σk+1 · · ·σi+2) · · · (σl−1 · · ·σj), then vertex {i, . . . , i + l − k}, then vertex {i + l −
k, . . . , l}, then braid (σ−1

k−1 · · ·σ
−1
i )(σ−1

k · · ·σ
−1
i+1) · · · (σ−1

l−2 · · ·σ
−1
j−1), if j = k

Let i = 1, j = 2 = k, and l = 3.

Figure 22. Ψ1 = σ2
1 , Ψ2 = σ−1

1 · σ2
2 · σ1 and Ψ̂1 = σ−1

2 · σ2
1 · σ2, Ψ̂2 = σ−1

2 σ−1
1 · σ2

2 · σ1σ2

c. braid (σi−1 · · ·σk)(σi · · ·σk+1) · · · (σj−2 · · ·σl−1), then vertex {j + k− l, . . . , j}, then vertex {k, . . . , j +

k − l}, then braid (σ−1
i · · ·σ

−1
k+1)(σ−1

i+1 · · ·σ
−1
k+2) · · · (σ−1

j−1 · · ·σ
−1
l ), if i = l

Let i = 2 = l, j = 3, and k = 1.

Figure 23. Ψ1 = σ2
2 , Ψ2 = σ−1

2 · σ2
1 · σ2 and Ψ̂1 = σ−1

1 · σ2
2 · σ1, Ψ̂2 = σ−1

1 σ−1
2 · σ2

1 · σ2σ1

4. Reduce an intermediate braid βk,k+1.

Figure 24. Ψ1 = σ2
1 , Ψ2 = σ−1

1 σ1σ
−1
1 · σ1σ2σ

2
1σ2σ1 · σ1σ

−1
1 σ1

Ψ̂1 = σ2
1 , Ψ̂2 = σ−1

1 · σ1σ2σ
2
1σ2σ1 · σ1

5. Replace braid σi, then vertex {j, . . . , k} with
a. vertex {j, . . . , k}, then braid σi, if i < j − 1 or i > k
Suppose the braid is σ3 and the local index of the vertex is {1, 2}.
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Figure 25. Ψ1 = σ2
1 = Ψ̂1

b. braid σ−1
j · · ·σ

−1
k−1, then vertex {j + 1, . . . , k + 1}, then braid σk · · ·σj , if i = k

Suppose the braid is σ3 and the local index of the vertex is {1, 2, 3}.

Figure 26. Ψ1 = σ−1
3 · σ1σ2σ

2
1σ2σ1 · σ3 and Ψ̂1 = σ2σ1 · σ2σ3σ

2
2σ3σ2 · σ−1

1 σ−1
2

c. braid σ−1
k−1 · · ·σ

−1
j , then vertex {j − 1, . . . , k − 1}, then braid σj−1 · · ·σk−1, if i = j − 1

Suppose the braid is σ1 and the local index of the vertex is {2, 3, 4}.

Figure 27. Ψ1 = σ−1
1 · σ2σ3σ

2
2σ3σ2 · σ1 and Ψ̂1 = σ2σ3 · σ1σ2σ

2
1σ2σ1 · σ−1

3 σ−1
2

d. vertex {j, . . . , k}, then braid σj+k−i−1, if j ≤ i ≤ k − 1
Suppose the braid is σ1 and the local index of the vertex is {1, 2, 3}.

Figure 28. Ψ1 = σ−1
1 · σ1σ2σ

2
1σ2σ1 · σ1 and Ψ̂1 = σ1σ2σ

2
1σ2σ1

Note that the braids in moves 3 and 5 can be inverted. For example, we can replace the braid σ−1
i , then

vertex {j, . . . , k} with vertex {j, . . . , k}, then σ−1
i if we consider move 5a.

Theorem 4.2 (Theorem 5.7 from [2]). The braid monodromy of a braided wiring diagram is invariant under
Markov moves. If a braided wiring diagram Ŵ is obtained from W by a finite sequence of Markov moves or
their inverses, then the braid monodromy generators are braid-equivalent.

5. Alexander polynomial

In many cases, the fundamental group alone is not sufficient enough to distinguish spaces. For instance, a
complicated relation may arise from a braid between two vertices, making it difficult to compare fundamental
groups. Thus, we discuss another invariant known as the Alexander polynomial. By assigning a polynomial
to each wiring diagram, we may be able to instantly determine whether or not the fundamental groups are
isomorphic.
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5.1. Fox calculus. Suppose, for a topological space X, we are given

π1(X) = 〈t1, . . . , tn|r1, . . . , rm〉
and a surjective homomorphism φ : π1(X) → Z. Construct another surjective homomorphism ψ : F (n) →
π1(X). The Fox differential

∂

∂xj
: C[F (n)]→ C[F (n)]

is a C-linear map satisfying the following properties.
∂

∂ti
1 = 0,

∂

∂tj
ti = δi,j ,

∂

∂tj
(tktl) =

∂

∂tj
tk + tk

∂

∂tj
tl

Example 5.1. To calculate the Fox derivative of t1t2t3t1 with respect to t1, rewrite the word as t1(t2t3t1)
and apply the second rule. This means we treat t1 as tk and t2t3t1 as tl. Continue this method to obtain

∂

∂t1
(t1t2t3t1) = 1 + t1t2t3.

This next formula will be useful when computing Alexander polynomials.

Lemma 5.1. ∂
∂tj
t−1
i =

{
−t−1

i i = j

0 i 6= j

Proof. Using the given properties, we have 0 = ∂
∂tj

1 = ∂
∂tj

(tit
−1
i ) = δi,j+ti

∂
∂tj
t−1
i , and the result follows. �

The composition φ◦ψ : F (n)→ Z gives a ring homomorphism γ : C[F (n)]→ C[t, t−1], and the Alexander
matrix A is the m×n matrix with ai,j = γ

(
∂
tj
ri

)
. To find the Alexander polynomial ∆(t), we calculate the

greatest common divisor of the (n− 1)× (n− 1) minors of A. Note the Alexander polynomial is unique up
to multiplication by ±tn where n ∈ Z.

Example 5.2. We calculate the Alexander matrix and Alexander polynomial for Example 4.3. The group
presentation is

〈t1, t2, t3|[t2, t3], [t1, t3], [t1, t2]〉.
We show the calculation for the first row of the Alexander matrix. First, rewrite [t2, t3] as t2t3t−1

2 t−1
3 = 1.

∂

∂t1
(t2t3t

−1
2 t−1

3 ) = 0 7→ 0

∂

∂t2
(t2t3t

−1
2 t−1

3 ) = 1− t2t3t−1
2 7→ 1− t

∂

∂t3
(t2t3t

−1
2 t−1

3 ) = t2 − t2t3t−1
2 t−1

3 7→ t− 1

The Alexander matrix is A =

 0 1− t t− 1
1− t 0 t− 1
1− t t− 1 0

. To find the Alexander polynomial, we calculate the

greatest common divisor of the 2× 2 minors, which turns out to be ∆(t) = (1− t)2.

5.2. Elementary ideals. In this section, we follow the exposition from [3]. Consider an m × n matrix A
with entries in C[t, t−1]. For k ∈ N ∪ {0}, the kth elementary ideal of A is defined by

Ek(A) =


0 n− k > m

C[t, t−1] n− k ≤ 0

Ideal generated by all (n− k)× (n− k) minors of A 0 < n− k ≤ m
,

and these ideals form an ascending chain

E0(A) ⊂ E1(A) ⊂ · · · ⊂ En(A) = En+1(A) = · · · = C[t, t−1].

We briefly explain why this ascending chain condition holds. Observe that in C[t, t−1], the ideal Ek(A) is
principal and the element that generates Ek(A) is the greatest common divisor of the (n − k) × (n − k)
minors. Therefore, it suffices to show the greatest common divisor of the (n − 1) × (n − 1) minors divides
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the greatest common divisor of the n×n minors. This statement holds due to the fact that the determinant
of an n× n matrix can be written as a combination of the cofactors of the elements of a row or column.

In the following lemmas, we assume 0 < n− 1 ≤ m.

Lemma 5.2. Let A be an m× n matrix and suppose we add a row of zeros after the last row. Denote this
(m+ 1)× n matrix  A

0 · · · 0


as A . Then, E1(A) = E1(A ).

Proof. Consider any (n − 1) × (n − 1) minor of A with submatrix C. Let R represent the set of rows and
columns we deleted from A to obtain C. Then, det(C) is equal to the determinant of the (n− 1)× (n− 1)
submatrix of A with R and the row of zeros removed. Hence, E1(A) ⊂ E1(A ). Now suppose we have an
(n − 1) × (n − 1) minor of A with submatrix C . We just covered the case where C does not include the
row of zeros so let us keep that row. Then, the determinant of C is zero, which does not affect E1(A ).
Therefore, E1(A ) ⊂ E1(A). �

Lemma 5.3. Let A be an m× n matrix and define an (m+ 1)× (n+ 1) matrix A : A
0
...
0

0 · · · 0 1

 .

Then, E1(A) = E1(A ).

Proof. Let us choose any (n − 1) × (n − 1) minor of A with submatrix C. Using C, we can construct an
n× n submatrix of A such that the determinant is the same as det(C). C

0
...
0

0 · · · 0 1


Thus, E1(A) ⊂ E1(A ).
Now consider an n× n minor of A with submatrix C .
i) C is one of the following matrices. C

0 · · · 0


 C

0
...
0


Then, det C = 0 so we can disregard this case.
ii) If C contains the last row and last column of A , then det(C ) is equal to an (n− 1)× (n− 1) minor of A.
iii) If we delete the last row and last column of A , then det(C ) is the determinant of an n× n submatrix of
A. We then use the ascending chain condition, E0(A) ⊂ E1(A), to conclude E1(A ) ⊂ E1(A). �

By properties of determinants, we know adding a linear combination of existing rows to a row of a matrix
leaves the determinant unchanged. Therefore, A in Lemma 5.2 can be replaced with A

bm+1,1 · · · bm+1,n


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where bm+1,j is a linear combination of the previous rows. Similarly, adding a linear combination of existing
columns to a column of a matrix doesn’t affect the determinant, so A in Lemma 5.3 can be replaced with A

0
...
0

cm+1,1 · · · cm+1,n 1


where cm+1,j is arbitrary.

Note Lemma 5.2 is equivalent to the following statement: the greatest common divisor of the (n−1)×(n−1)
minors of A is equal to the greatest common divisor of the (n−1)×(n−1) minors of A . A similar translation
follows for Lemma 5.3.

Theorem 5.4. The Alexander polynomial is the same after modifying a group presentation by Tietze
transformations.

Proof. Suppose the presentation for the fundamental group is

〈t1, . . . , tn|r1, . . . , rm〉
so the Alexander matrix is

A =



γ
(

∂
∂t1
r1

)
γ
(

∂
∂t2
r1

)
· · · γ

(
∂
∂tn

r1

)
γ
(

∂
∂t1
r2

)
γ
(

∂
∂t2
r2

)
· · · γ

(
∂
∂tn

r2

)
...

...
. . .

...

γ
(

∂
∂t1
rm

)
γ
(

∂
∂t2
rm

)
· · · γ

(
∂
∂tn

rm

)


.

i) Let us add a new relation s, which, by definition, is an element of the smallest normal subgroup of F (n)
that contains r1, . . . , rm. The new presentation is then

〈t1, . . . , tn|r1, . . . , rm, s〉
with

s =

d∏
k=1

gkr
αk
ik
g−1
k

where αk = ±1, 1 ≤ ik ≤ m, and gk is a word with tβ ’s. If we add a relation, then the number of rows of
the Alexander matrix increases by one. Each entry in the new row is given by

am+1,j = γ

(
∂

∂tj

d∏
k=1

gkr
αk
ik
g−1
k

)

= γ

(
∂

∂tj
g1r

α1
i1
g−1

1

)
+ γ

(
g1r

α1
i1
g−1

1

)
γ

(
∂

∂tj
g2r

α2
i2
g−1

2

)
+ · · ·+ γ

(
d−1∏
k=1

gkr
αk
ik
g−1
k

)
γ

(
∂

∂tj
gdr

αd
id
g−1
d

)

=

d∑
k=1

γ

(
∂

∂tj
gkr

αk
ik
g−1
k

)
where the last simplification follows because γ(rik) = 1. Furthermore,

∂

∂tj
gkr

αk
ik
g−1
k =

∂

∂tj
gk + gk

∂

∂tj
rαkik + gkr

αk
ik

∂

∂tj
g−1
k

=


∂

∂tj
gk + gk

∂

∂tj
rik − gkrikg

−1
k

∂

∂tj
gk if αk = 1

∂

∂tj
gk − gkr−1

ik

∂

∂tj
rik − gkr

−1
ik
g−1
k

∂

∂tj
gk if αk = −1

.
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We substitute the second expression into the first and simplify:

am+1,j =

d∑
k=1

γ

(
ιk

∂

∂tj
rik + (1− gkrαkik g

−1
k )

∂

∂tj
gk

)

=

d∑
k=1

γ

(
ιk

∂

∂tj
rik

)

=

d∑
k=1

γ(ιk)γ

(
∂

∂tj
rik

)
where

ιk =

{
gk if αk = 1

−gkr−1
ik

if αk = −1
.

We have shown that each entry of the last row is a linear combination of the previous rows. The Alexander
matrix is 

γ
(

∂
∂t1
r1

)
· · · γ

(
∂

∂tn−1
r1

)
γ
(

∂
∂tn

r1

)
...

. . .
...

...

γ
(

∂
∂t1
rm

)
· · · γ

(
∂

∂tn−1
rm

)
γ
(

∂
∂tn

rm

)
∑d
k=1 γ(ιk)γ

(
∂
∂t1
rik

)
· · ·

∑d
k=1 γ(ιk)γ

(
∂

∂tn−1
rik

) ∑d
k=1 γ(ιk)γ

(
∂
∂tn

rik

)


,

and by Lemma 5.2, the Alexander polynomial is the same.

ii) Let y be a new generator with relation given by y = w where w is a word consisting of tβ ’s. The
new presentation is

〈t1, . . . , tn, y|r1, . . . , rm, yw
−1〉.

If we insert a new generator and relation, we must add one column and row to the Alexander matrix. We
have

am+1,n+1 = γ

(
∂

∂y
yw−1

)
= 1.

The remaining entries in column n+ 1 are

γ

(
∂

∂y
ri

)
= 0

since the original relations don’t contain the new generator y. The first n entries of row m+ 1 are

γ

(
∂

∂tj
yw−1

)
.

Therefore, the new Alexander matrix is

γ
(

∂
∂t1
r1

)
γ
(

∂
∂t2
r1

)
· · · γ

(
∂
∂tn

r1

)
0

γ
(

∂
∂t1
r2

)
γ
(

∂
∂t2
r2

)
· · · γ

(
∂
∂tn

r2

)
0

...
...

. . .
...

...

γ
(

∂
∂t1
rm

)
γ
(

∂
∂t2
rm

)
· · · γ

(
∂
∂tn

rm

)
0

γ
(

∂
∂t1
yw−1

)
γ
(

∂
∂t2
yw−1

)
· · · γ

(
∂
∂tn

yw−1
)

1



,
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and by Lemma 5.3, the Alexander polynomial is the same. �

6. Applications and examples

Let W denote the wiring diagram in each section.

6.1. n-stranded wiring diagram with n-tuple points. Let n ≥ 3. Consider an n-stranded wiring
diagram that has two n-tuple points with a braid β1,2 in between.

Figure 29. n = 3

By Theorem 4.1, the braid monodromy generators are

Ψ1 = µ2
I1 and Ψ2 = µ−1

I1
β−1

1,2 · µ2
I2 · β1,2µI1

where

µI1 = (σ1 · · ·σn−1) · (σ1 · · ·σn−2) · · · (σ1σ2) · σ1 = µI2 .

Theorem 6.1. π1(C2 \W) = 〈t1, . . . , tn|[t1, . . . , tn]〉

To prove this theorem, it suffices to show the first relation is [t1, . . . , tn] and Ψ2 = Ψ1 for any braid β1,2.
We first define some terms and prove a lemma.

Let Σ be a surface with fixed marked points z1, . . . , zn ∈ Σ. Then, the mapping class group is defined to
be the following:

MCG(Σ, (z1, . . . , zn)) = Homeo(Σ, (z1, . . . , zn))/ ∼

where Homeo(Σ, (z1, . . . , zn)) is the set of homeomorphisms f : Σ → Σ satisfying f(zi) = zj and the
equivalence relation is isotopy of maps. If we consider the surface R2, then MCG(R2, (z1, . . . , zn)) = Bn.
Now suppose we have a plane with n holes removed and a disk surrounding those n points. We know the
braid µ2

I1
is a full twist on n strands, meaning this action rotates the disk by 2π clockwise.

Figure 30. Full twist on 3 strands

Let ψ ∈ Bn be this full twist and η be a loop representing the boundary of the disk. Then, η = t1 · · · tn. For
any loop γ around a point involved in η, we get ψ(γ) = ηγη−1.
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Figure 31. γ 7→ ψ(γ)

Lemma 6.2. The full twist
(
(σ1 · · ·σn−1) · (σ1 · · ·σn−2) · · · (σ1σ2) · σ1

)2 is an element of the center of the
braid group Bn for n ≥ 3.

Proof. Let ∆n = (σ1 · · ·σn−1) · (σ1 · · ·σn−2) · · · (σ1σ2) · σ1. We show σi∆n = ∆nσn−i where 1 ≤ i ≤ n− 1.
This equality can be easily seen for small values of n. Suppose n = 3. Then,

σ1∆3 = σ1 · σ1σ2σ1

= σ1 · σ2σ1σ2︸ ︷︷ ︸
σ1σ2σ1

= ∆3σ2.

Now assume σi∆n = ∆nσn−i is true and i 6= 1. By definition, ∆n+1 = (σ1 · · ·σn)∆n so

σi∆n+1 = σi(σ1 · · ·σn)∆n

= σ1 · · ·σi−2σiσi−1σiσi+1 · · ·σn∆n

= σ1 · · ·σi−2 σi−1σiσi−1︸ ︷︷ ︸
σiσi−1σi

· · ·σn∆n

= σ1 · · ·σi−2σi−1σiσi+1 · · ·σnσi−1∆n

= σ1 · · ·σn∆nσn+1−i

= ∆n+1σn+1−i.

We consider the case when i = 1.

σ1∆n+1 = σ1(σ1 · · ·σn)(σ1 · · ·σn−1)∆n−1 (1)

= σ1(σ1σ2σ1σ3σ2 · · ·σnσn−1)∆n−1 (2)

= σ1(σ2σ1σ3σ2σ4σ3 · · ·σnσn−1σn)∆n−1 (3)

= σ1(σ2 · · ·σn)(σ1 · · ·σn)∆n−1 (4)

= (σ1 · · ·σn)(σ1 · · ·σn−1)∆n−1σn (5)

= ∆n+1σn

Each step for this case is explained below.
(1)→ (2) We use the relation σiσj = σjσi if |i− j| ≥ 2.

σ1(σ1 · · ·σn)(σ1σ2σ3 · · ·σn−1)∆n−1 = σ1(σ1σ2σ1σ3 · · ·σn)(σ2σ3 · · ·σn−1)∆n−1

= σ1(σ1σ2σ1σ3σ2σ4 · · ·σn)(σ3 · · ·σn−1)∆n−1

...
= σ1(σ1σ2σ1σ3σ2σ4σ3 · · ·σnσn−1)∆n−1
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(2)→ (3) We repeatedly apply the relation σiσi+1σi = σi+1σiσi+1.

σ1(σ1σ2σ1σ3σ2 · · ·σnσn−1)∆n−1 = σ1(σ2σ1σ2︸ ︷︷ ︸
σ1σ2σ1

σ3σ2 · · ·σnσn−1)∆n−1

= σ1(σ2σ1 σ3σ2σ3︸ ︷︷ ︸
σ2σ3σ2

· · ·σnσn−1)∆n−1

...
= σ1(σ2σ1σ3σ2σ4σ3 · · ·σnσn−1σn)∆n−1

(3)→ (4) We use the relation σiσj = σjσi if |i− j| ≥ 2.

σ1(σ2σ1σ3σ2σ4σ3 · · ·σnσn−1σn)∆n−1 = σ1(σ2σ3σ1σ2σ4σ3 · · ·σnσn−1σn)∆n−1

= σ1(σ2σ3σ4σ1σ2σ3 · · ·σnσn−1σn)∆n−1

...
= σ1(σ2σ3σ4 · · ·σn)(σ1 · · ·σn)∆n−1

(4)→ (5) Since every element in ∆n−1 is of the form σk where 1 ≤ k ≤ n− 2, we conclude |k − n| ≥ 2 and
σn∆n−1 = ∆n−1σn.

Thus, σi∆n∆n = ∆nσn−i∆n = ∆n∆nσi. �

We now have the tools to prove the theorem.

Proof of Theorem 6.1. From earlier, we know ψ(γ) = ηγη−1 where η = t1 · · · tn and γ = ti. Therefore, we
conclude Ψ1(ti) = t1 · · · tntit−1

n · · · t−1
1 . We derive the first relation in the following way.

i = 1 : t1 · · · tn = t2 · · · tnt1
i = 2 : t2t1 · · · tn = t1 · · · tnt2 ⇒ t1 · · · tn = t3 · · · tnt1t2
i = 3 : t3t1 · · · tn = t1 · · · tnt3 ⇒ t1 · · · tn = t4 · · · tnt1t2t3

...
i = n− 1 : tn−1t1 · · · tn = t1 · · · tntn−1 ⇒ t1 · · · tn = tnt1 · · · tn−1

Thus, the relation obtained from the first braid monodromy generator is [t1, . . . , tn]. We now want to show
Ψ2 = Ψ1 for any braid β1,2, and this result follows immediately from Lemma 6.2 because µ2

I2
commutes with

every σi where 1 ≤ i ≤ n− 1. �

Observe that adding more arbitrary braids and n-tuple points to W won’t affect the group presentation.
To see why, suppose Ψk = Ψ1 for some k > 1 and consider βk,k+1. We can just apply Theorem 6.1 to
conclude Ψk+1 = Ψk. Hence, we have Theorem 1.1.

The relation [t1, . . . , tn] yields n− 1 separate equations so we have an (n− 1)× n Alexander matrix. The
Alexander matrix is

A =


1− tn−1 t− 1 t2 − t · · · tn−1 − tn−2

1− tn−2 t− tn−1 t2 − 1 · · · tn−1 − tn−3

...
...

...
...

...
1− t2 t− t3 · · · tn−2 − tn tn−1 − t
1− t t− t2 · · · tn−2 − tn−1 tn−1 − 1

 .

Example 6.1. The Alexander matrix for Figure 29 is(
1− t2 t− 1 t2 − t
1− t t− t2 t2 − 1

)
.

The Alexander matrix A obtained from the relation [t1, . . . , tn] has the property that if we take any column
of A, then that column equals the sum of the other columns. Then, by properties of the determinant, we
conclude the Alexander polynomial is the determinant of any (n − 1) × (n − 1) submatrix of A. Since the
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number of terms in the polynomial increases as n becomes larger, we conclude each fundamental group of
an n-stranded wiring diagram with n-tuple points is different.

6.2. Three-stranded wiring diagrams.

6.2.1. Three-stranded wiring diagram with two double points.
Consider the braided wiring diagram given below.

Figure 32. β1,2 = σn1 for n ∈ Z

The first braid monodromy generator Ψ1 = σ2
2 gives the relation [t2, t3]. The second braid monodromy

generator is
Ψ2 = σ−1

2 σ−n1 · σ2
2 · σn1 σ2.

We use the following result to help us calculate the second relation.

Lemma 6.3. Let k ≥ 0.

σ2k
i (ti+1) = (titi+1)k−1titi+1t

−1
i (t−1

i+1t
−1
i )k−1 σ2k+1

i (ti+1) = (titi+1)kti(t
−1
i+1t

−1
i )k

σ2k
i (t−1

i+1) = (titi+1)k−1tit
−1
i+1t

−1
i (t−1

i+1t
−1
i )k−1 σ2k+1

i (t−1
i+1) = (titi+1)kt−1

i (t−1
i+1t

−1
i )k

σ−2k
i (ti+1) = (t−1

i+1t
−1
i )kti+1(titi+1)k σ−2k−1

i (ti+1) = (t−1
i+1t

−1
i )kt−1

i+1titi+1(titi+1)k

σ−2k
i (t−1

i+1) = (t−1
i+1t

−1
i )kt−1

i+1(titi+1)k σ−2k−1
i (t−1

i+1) = (t−1
i+1t

−1
i )kt−1

i+1t
−1
i ti+1(titi+1)k

Proof. We only need to consider cases of the form σni (ti+1) because σni (t−1
i+1) =

(
σni (ti+1)

)−1 by definition.
We use induction to prove this lemma.
Base case for σ2k

i (ti+1): σ2
i (ti+1) = titi+1t

−1
i

Inductive step: We assume the expression σ2k
i (ti+1) = (titi+1)k−1titi+1t

−1
i (t−1

i+1t
−1
i )k−1 holds until some

positive k. Then,

σ
2(k+1)
i (ti+1) = σ2k

i σ
2
i (ti+1)

= σ2
i

(
(titi+1)k−1titi+1t

−1
i (t−1

i+1t
−1
i )k−1

)
= (titi+1)k−1titi+1titi+1t

−1
i t−1

i+1t
−1
i (t−1

i+1t
−1
i )k−1

= (titi+1)ktiti+1t
−1
i (t−1

i+1t
−1
i )k.

The other cases are omitted. �

Proposition 6.4. Let k ≥ 0. If β1,2 = σn1 , then the second relation is one of the following.

[t2, (t1t3)k−1t1t3t
−1
1 (t−1

3 t−1
1 )k−1] n = 2k

[t2, (t
−1
1 t−1

3 )k−1t−1
1 t3t1(t3t1)k−1] n = −2k

[t2, (t1t3)kt1(t−1
3 t−1

1 )k] n = 2k + 1

[t2, (t
−1
1 t−1

3 )kt1(t3t1)k] n = −2k − 1

Proof. Suppose n = 2k so
Ψ2 = σ−1

2 σ−2k
1 · σ2

2 · σ2k
1 σ2.

We use Lemma 6.3 to apply everything except σ2 to t2.

(t1t2)k−1t1t2t
−1
1 (t−1

2 t−1
1 )k−1t3(t1t2)k−1t1t

−1
2 t−1

1 (t−1
2 t−1

1 )k−1
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From the first generator, we know t2 and t3 commute so applying the last σ2 gives the relation

Ψ2(t2) = (t1t3)k−1t1t3t
−1
1 (t−1

3 t−1
1 )k−1t2(t1t3)k−1t1t

−1
3 t−1

1 (t−1
3 t−1

1 )k−1.

The other cases are proved in a similar manner. �

If β1,2 is the trivial braid, then π1(C2 \ W) = 〈t1, t2, t3|[t2, t3]〉. Since we have one relation and three
generators, this group gives a 1 × 3 Alexander matrix. However, we want to find the 2 × 2 minors for the
Alexander polynomial. To fix this issue, let k > 0 if n is even and k ≥ 0 if n is odd. We list the Alexander
matrix and Alexander polynomial for different values of n.(

0 1− t t− 1

(1− t)2
(∑k−1

i=0 t
2i
)

t− 1 t(1− t)
(∑2k−2

i=0 (−1)iti
))

∆2k(t) = (1− t)3

(
k−1∑
i=0

t2i

)
(

0 1− t t− 1

− 1
t (1− t)

2
(∑k−1

i=0 t
−2i
)

t− 1 1
t (1− t)

(∑2k−2
i=0 (−1)it−i

))
∆−2k(t) =

1

t
(1− t)3

(
k−1∑
i=0

t−2i

)
(

0 1− t t− 1

(1− t)
(∑2k

i=0(−1)iti
)

t− 1 t(1− t)
(∑2k−1

i=0 (−1)iti
))

∆2k+1(t) = (1− t)2

(
2k∑
i=0

(−1)iti

)
(

0 1− t t− 1

(1− t)
(∑2k

i=0(−1)it−i
)

t− 1 1
t (1− t)

(∑2k−1
i=0 (−1)it−i

))
∆−2k−1(t) = (1− t)2

(
2k∑
i=0

(−1)it−i

)
By observing this list, we conclude this leads to Theorem 1.2. Note this theorem also holds if we consider
negative values of n.

6.2.2. Three-stranded wiring diagram with three double points.
We add another braid and vertex to our diagram from the previous section.

Figure 33. β1,2 = σ2
1 and β2,3 = σn1

The first two relations are [t2, t3] and [t2, t1t3t
−1
1 ]. The third braid monodromy generator is

Ψ3 = σ−1
2 σ−2

1 σ−1
2 σ−n1 · σ2

2 · σn1 σ2σ
2
1σ2.

Lemma 6.5. If β1,2 = σ2
1 and β2,3 = σk1 where k ≥ 2, then

Ψ3 = σ−1
2 σ−2

1 σ−1
2 σ−k1 · σ2

2 · σk1σ2σ
2
1σ2 = σ−k+2

1 σ2
2σ

k−2
1 .

Proof. We prove this claim using induction. When k = 2, the third braid monodromy generator is

Ψ3 = σ−1
2 σ−2

1 σ−1
2 σ−2

1 · σ2
2 · σ2

1σ2σ
2
1σ2 = σ2

2 .

Now suppose the statement holds for all natural numbers until k. Let β2,3 = σk+1
1 . Then,

Ψ3 = σ−1
2 σ−2

1 σ−1
2 σ−k−1

1 · σ2
2 · σk+1

1 σ2σ
2
1σ2

= σ−1
1

(
σ−1

2 σ−2
1 σ−1

2 σ−k1 · σ2
2 · σk1σ2σ

2
1σ2

)
σ1

= σ−1
1 · σ−k+2

1 σ2
2σ

k−2
1 · σ1

= σ−k+1
1 σ2

2σ
k−1
1 .

�
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Proposition 6.6. Let β1,2 = σ2
1 and β2,3 = σn1 . Suppose k ≥ 1 if n is even and k ≥ 0 if n is odd. The third

relation is one of the following.

[t3, (t1t2)k−2t1t2t
−1
1 (t−1

2 t−1
1 )k−2] n = 2k

[t3, (t
−1
1 t−1

2 )kt−1
1 t2t1(t2t1)k] n = −2k

[t3, (t1t2)k−1t1(t−1
2 t−1

1 )k−1] n = 2k + 1

[t3, (t
−1
1 t−1

2 )k+1t1(t2t1)k+1] n = 2k − 1

Proof. Let n = 2k. By Lemma 6.5, we conclude Ψ3 = σ−2k+2
1 σ2

2σ
2k−2
1 . To obtain the third relation, we use

Lemma 6.3.
Ψ3(t3) = (t1t2)k−2t1t2t

−1
1 (t−1

2 t−1
1 )k−2t3(t1t2)k−2t1t

−1
2 t−1

1 (t−1
2 t−1

1 )k−2

The proof is the same when n = 2k + 1, but we check what happens when n = 1 because Lemma 6.5 only
applies to σn1 for n ≥ 2. If β2,3 = σ1, then

Ψ3 = σ−1
2 σ−2

1 σ−1
2 σ−1

1 · σ2
2 · σ1σ2σ

2
1σ2 = σ−1

2 σ2
1σ2

and the relation is [t3, t1], which agrees with our formula.
Now suppose n = −2k. The third braid monodromy generator is given by

Ψ3 = σ−1
2 σ−2

1 σ−1
2 σ2k

1 · σ2
2 · σ−2k

1 σ2σ
2
1σ2.

We calculate Ψ3(t3) using Lemma 6.3 followed by some simplifications:

Ψ3(t3) = (t−1
1 t−1

2 )kt−1
1 t2t1(t2t1)kt3(t−1

1 t−1
2 )kt−1

1 t−1
2 t1(t2t1)k.

The same method applies when n = −2k − 1. �

If β2,3 is the trivial braid or β2,3 = σ2
1 , then both fundamental groups are given by

π1(C2 \W) = 〈t1, t2, t3|[t2, t3], [t2, t1t3t
−1
1 ]〉.

We already calculated the Alexander matrix and Alexander polynomial for this group in the previous section
so we only consider k ≥ 2 if n = 2k. If n = −2k, then let k ≥ 1. The braids β2,3 = σ±1

1 and β2,3 = σ3
1 give

the same relation so let k ≥ 1 for odd values of n. 0 1− t t− 1
1− 2t+ t2 t− 1 t− t2

(1− t)2
(∑k−2

i=0 t
2i
)

t(1− t)
(∑2k−4

i=0 (−1)iti
)

t− 1

 ∆2k(t) = (t− 1)3

 0 1− t t− 1
1− 2t+ t2 t− 1 t− t2

− 1
t (1− t)

2
(∑k

i=0 t
2i
)

1
t (1− t)

(∑2k
i=0(−1)it−i

)
t− 1

 ∆−2k(t) = (t− 1)3

 0 1− t t− 1
1− 2t+ t2 t− 1 t− t2

(1− t)
(∑2k−2

i=0 (−1)iti
)

t(1− t)
(∑2k−3

i=0 (−1)iti
)

t− 1

 ∆2k+1(t) = (t− 1)2

 0 1− t t− 1
1− 2t+ t2 t− 1 t− t2

(1− t)
(∑2k+2

i=0 (−1)it−i
)

1
t (1− t)

(∑2k+1
i=0 (−1)it−i

)
t− 1

 ∆−2k−1(t) = (t− 1)2

Let us now switch the braids.

Figure 34. β1,2 = σn1 and β2,3 = σ2
1
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We know the possible values for the second relation from Section 6.2.1. The third braid monodromy
generator is

Ψ3 = σ−1
2 σ−n1 σ−1

2 σ−2
1 · σ2

2 · σ2
1σ2σ

n
1 σ2.

If β1,2 = 1, then Ψ3 = σ−2
2 σ−2

1 σ2
2σ

2
1σ

2
2 and the third relation is [t2, t

−1
1 t3t1].

Lemma 6.7. If β1,2 = σn1 for n ≥ 2 and β2,3 = σ2
1 , then

Ψ3 = σ−1
2 σ−n1 σ−1

2 σ−2
1 · σ2

2 · σ2
1σ2σ

n
1 σ2 = σ−1

2 σ−n+2
1 σ2

2σ
n−2
1 σ2.

Proof. Simplify using braid relations. �

Proposition 6.8. Let k ≥ 1 if n is even and k ≥ 0 if n is odd. If β1,2 = σn1 and β2,3 = σ2
1 , then the third

relation is one of the following.

[t2, (t1t3)k−2t1t3t
−1
1 (t−1

3 t−1
1 )k−2] n = 2k

[t2, (t
−1
1 t−1

3 )kt−1
1 t3t1(t3t1)k] n = −2k

[t2, (t1t3)k−1t1(t−1
3 t−1

1 )k−1] n = 2k + 1

[t2, (t
−1
1 t−1

3 )k+1t1(t3t1)k+1] n = −2k − 1

Proof. It is similar to the proof of Proposition 6.6. �

The Alexander polynomials for this group of wiring diagrams are ∆n(t) = (t − 1)3 for even values of n
and ∆n(t) = (t− 1)2 for odd values of n. These are the exact same polynomials as the wiring diagrams with
β1,2 = σ2

1 and β2,3 = σn1 . Therefore, they do not help us differentiate the fundamental groups. Moreover,
the relations are difficult to compare so some future work involving these wiring diagrams would be to try
to find a way that gives us a more concrete relationship between the fundamental groups. In other words,
how exactly does switching braids in our three-stranded wiring diagram affect the fundamental group?

6.2.3. Three-stranded wiring diagram with one double point and triple point. Let ψ be an arbitrary three-
stranded wiring diagram that is placed between a double point and triple point.

Figure 35. ψ can contain type c singularities or braids

Theorem 6.9. Suppose the triple point in the figure is vertex k. The kth relation is given by [t1, t2, t3]. In
particular, the fundamental group is abelian.

π1(C2 \W) = 〈t1, t2, t3|[t1, t2], [t1, t3], [t2, t3]〉

Proof. The kth braid monodromy generator is

Ψk = β−1
k µ2

Ik
βk.

We know µ2
Ik

= σ1σ2σ
2
1σ2σ1 ∈ Z(B3) so we conclude Ψ3 = µ2

Ik
, giving our desired relation. The fundamental

group is abelian because we can use the first relation [t2, t3] and third relation [t1, t2, t3] to derive the two
remaining commutators: [t1, t2], [t1, t3]. �

Since every generator of the fundamental group commutes with each other, the remaining relations coming
from Ψ2, . . . ,Ψk−1 can always be simplified. Furthermore, we can add more vertices or braids after the last
triple point and it will not change the presentation. The Alexander matrix is then1− t t− 1 0

1− t 0 t− 1
0 1− t t− 1


and the Alexander polynomial is ∆(t) = (1− t)2.
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6.3. Four-stranded wiring diagrams. We now consider some four-stranded wiring diagrams that satisfy
the property that the product of the braid monodromy generators is equal to the full twist on four strands:

k∏
i=1

Ψi = ∆2
4, k = # of singularities.

6.3.1. Four-stranded wiring diagram with three cusps and three branch points.

Figure 36

The braid monodromy generators are

Ψ1 = σ3
1 ,

Ψ2 = σ−1
1 σ3

3σ1 = σ3
3 ,

Ψ3 = σ−1
1 σ−1

3 σ2σ3σ1,

Ψ4 = σ−1
1 σ−1

3 σ3σ1σ
3
2σ
−1
1 σ−1

3 σ3σ1 = σ3
2 ,

Ψ5 = σ−1
1 σ−1

3 σ3σ1σ
−1
2 σ3σ2σ

−1
1 σ−1

3 σ3σ1 = σ−1
2 σ3σ2,

Ψ6 = σ−1
1 σ−1

3 σ3σ1σ
−1
2 σ2σ1σ2σ

−1
1 σ−1

2 σ2σ
−1
3 σ−1

1 σ3σ1 = σ1σ2σ
−1
1 .

The relation associated to each singularity is the following.

Ψ1(t1) = t1t2t1t2t
−1
1 t−1

2 t−1
1

Ψ2(t3) = t3t4t3t4t
−1
3 t−1

4 t−1
3

Ψ3(t1) = t1t3t4t
−1
3 t−1

1

Ψ4(t2) = t2t3t2t3t
−1
2 t−1

3 t−1
2

Ψ5(t2) = t2t4t
−1
2

Ψ6(t3) = t−1
2 t1t2

Then,

π1(C2 \W) =
〈
t1, t2, t3, t4|t1t2t1 = t2t1t2, t3t4t3 = t4t3t4, t1 = t3t4t

−1
3 , t2t3t2 = t3t2t3, t2 = t4, t3 = t−1

2 t1t2
〉
.

Note we can simplify this presentation further.

π1(C2 \W) =
〈
t1, t2, t3|t1t2t1 = t2t1t2, t2t3t2 = t3t2t3, t1 = t3t2t

−1
3 , t1 = t2t3t

−1
2

〉
The Alexander matrix is

A =


1 + t2 − t t− t2 + 1 0

0 1 + t2 − t t− t2 + 1
1 −t t− 1
1 t− 1 −t


and the Alexander polynomial is ∆(t) = 1.

6.3.2. Four-stranded wiring diagram with two type b singularities and four branch points.

Figure 37
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The braid monodromy generators are

Ψ1 = σ4
1 ,

Ψ2 = σ−2
1 σ4

3σ
2
1 = σ4

3 ,

Ψ3 = σ−2
1 σ−2

3 σ3σ1σ2σ
−1
1 σ−1

3 σ2
3σ

2
1 = σ−1

1 σ−1
3 σ2σ3σ1,

Ψ4 = σ−2
1 σ−2

3 σ3σ1σ3σ1σ2σ
−1
1 σ−1

3 σ−1
1 σ−1

3 σ2
3σ

2
1 = σ2,

Ψ5 = σ−2
1 σ−2

3 σ3σ1σ3σ1σ
−1
3 σ−1

1 σ2σ1σ3σ
−1
1 σ−1

3 σ−1
1 σ−1

3 σ2
3σ

2
1 = σ−1

3 σ−1
1 σ2σ1σ3,

Ψ6 = σ−2
1 σ−2

3 σ3σ1σ3σ1σ
−1
3 σ−1

1 σ3σ1σ2σ
−1
1 σ−1

3 σ1σ3σ
−1
1 σ−1

3 σ−1
1 σ−1

3 σ2
3σ

2
1 = σ2.

Since Ψ3 = Ψ5 and Ψ4 = Ψ6 and the strands involved in these singularities are the same, we only need to
consider the first four braid monodromy generators to obtain the relations for the fundamental group.

Ψ1(t1) = t1t2t1t2t1t
−1
2 t−1

1 t−1
2 t−1

1 ,

Ψ2(t3) = t3t4t3t4t3t
−1
4 t−1

3 t−1
4 t−1

3 ,

Ψ3(t1) = t1t3t4t
−1
3 t−1

1 ,

Ψ4(t2) = t2t3t
−1
2 .

After some simplifications, we get

π1(C2 \W) = 〈t2, t4|t2t4t2t4 = t4t2t4t2〉 .
We compute the Alexander matrix and polynomial.

A =
(
1 + t2 − t3 − t t+ t3 − t2 − 1

)
, ∆(t) = 1 + t2 − t3 − t.

6.3.3. Four-stranded wiring diagram with three branch points and one type f1 singularity.

Figure 38

The braid monodromy generators are

Ψ1 = σ3,

Ψ2 = (σ1σ2σ1)3,

Ψ3 = σ−1
1 σ−1

2 σ−1
1 σ−1

1 σ2σ1σ1σ2σ1 = σ−1
2 σ1σ2,

Ψ4 = σ−1
2 σ−1

1 σ−1
2 σ−1

1 σ−1
2 σ3σ2σ1σ2σ1σ2 = σ−1

2 σ−2
1 σ−1

2 σ3σ2σ
2
1σ2,

and the relations are

Ψ1(t3) = t3t4t
−1
3 ,

Ψ2(t1) = t1t2t3t1t2t3t
−1
2 t−1

1 t−1
3 t−1

2 t−1
1 ,

Ψ2(t2) = t1t2t3t1t2t
−1
1 t−1

3 t−1
2 t−1

1 ,

Ψ3(t1) = t1t2t3t
−1
2 t−1

1

Ψ4(t3) = t1t2t3t
−1
2 t−1

1 t−1
4 t−1

2 t−1
1 t4t1t2t4t1t2t

−1
3 t−1

2 t−1
1

Therefore, the fundamental group is

π1(C2 \W) = 〈t2, t3|[t2, t3]〉 .
Like the previous example, we have a 1× 2 Alexander matrix.

A =
(
1− t t− 1

)
The Alexander polynomial is ∆(t) = 1− t.
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