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1 Introduction

In this note we study Euler characteristics of surfaces and graphs on them. The
Euler characteristic of a graph G is defined as χ(G) = V − E + F where V,E
and F are respectively the numbers of vertices, edges and faces of a graph G.

In section 2, we discuss χ of graphs on a given surface. First, we prove
Theorem 2.1 about the Euler characteristic of a planar graph with k connected
components. Then, we move to the case where k = 1 (i.e when the graph
is connected) but the surface is arbitrary and prove in Theorem 2.5 that χ is
independent of the choice of a (connected) graph we have on a given surface,
and we will provide two methods for doing so. We define the Euler characteristic
χ(S) of a surface S as the Euler characteristic of arbitrary (good) graph on S.

In section 3, we study the Euler Characteristics of various surfaces. We will
introduce orientability (and non-orientability), connected sum of two surfaces,
and classification of surfaces.

The exposition mainly follows Chapter 4 in [1].

2 Euler characteristic on a given surface

In this section, we want to show that Euler characteristic is the same for any
good graph on a given surface (could be any, e.g torus, sphere,etc).

Let G be a good graph (we shall define later), then we say that the Euler
characteristic of G is V −E+F where V = number of vertices, E = number of
edges, and F = number of faces.

Here the number of faces F includes the unbounded infinite face. For exam-
ple, a graph with no edges has one face.

Theorem 2.1. If G is a planar graph with k connected components, then the
Euler characteristic for it is V − E + F = k + 1.

Proof. Induction by the number of edges.
Base case: E = 0 : We have 0 edges, i.e we only have k vertices, so
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V = k
E = 0
F = 1

V − E + F = k + 1

Step: E → E + 1:
We add an edge, this increases E to E + 1. We have three different cases.

Case 1): New edge is a loop.

The numbers of vertices, edges and faces change as follows:

V → V

E → E + 1

F → F + 1

k → k

Therefore
V − (E + 1) + (F + 1) = V − E + F = k + 1

Case 2): New edge is connected to another vertex within the same connected
component:

The numbers of vertices, edges and faces change as follows:

V → V

E → E + 1

F → F + 1

k → k

Therefore
V − (E + 1) + (F + 1) = V − E + F = k + 1

Case 3): The new edge connects two connected components:
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The numbers of vertices, edges and faces change as follows:

V → V

E → E + 1

F → F

k → k − 1

Therefore
V − (E + 1) + (F + 0) = (k − 1) + 1 = k

In this case the number of connected components decreases by 1. Therefore we
conclude that in all three cases the equation V −E+F = k+1 remains true. �

Corollary 2.2. If G is a connected planar graph. then v − e+ f = 2.

Remark 2.3. We can also consider planar graphs as graphs on the surface of the
sphere by adding a point at infinity.

Definition 2.1. Let G be any graph on some surface S, we say G is good if all
faces are homeomorphic to disks. Here we define the faces of G as connected
components of S −G.

If S is a surface with boundary, then we require that each boundary compo-
nent has at least one vertex of G and the boundary consists of edges of G.

Remark 2.4. 1)The following graphs are not good:
a) A graph on torus:

b) A graph on cylinder

3



2) Connected planar graph is always good.

3) Disconnect planar graph is not good because infinite face is not a disk.

Theorem 2.5 (Euler Characteristic on a given surface remains the same). If
G1 and G2 are good graphs on same surface S, then

VG1 − EG1 + FG1 = VG2 − EG2 + FG2 = χ(S)

.

To prove the theorem, we consider the graph G which is the union of G1 and
G2 (with the intersection points as additional vertices). We are going to prove
that

VG − EG + FG = VG1
− EG1

+ FG1
,

then similarly
VG − EG + FG = VG2

− EG2
+ FG2

,

and the theorem follows. We define I to be the set of intersection points. Define
G1

′ = G1 + I.

Lemma 2.6. The Euler characteristics of G1 and G′
1 are the same:

VG1
− EG1

+ FG1
= VG′

1
− EG′

1
+ FG′

1
.
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Proof. When we add k intersection points,

V → V + k

E → E + k

F → F

So V − E + F does not change. same for G1 and G′
1 (think pf tikz pic

here) �

Lemma 2.7. Here we want to prove that χ(G1
′
f ) = χ(Gf ), where G1

′
f is a

single face of G′
1; Gf is a single face of G.

Proof. Let us present three pictures to better present our proof: Figures 2, 1,
and 3. Figures 1 and 3 are separated parts of Figure 2.

Figure 1:

First, VG1
′
f

= EG1
′
f

= Eblue (see Figure 1) , here VG1
′
f

is all the points on the

boundary of G1
′
f (i.e a single face of G′

1), EG1
′
f

is all the edges on the boundary

of G1
′
f . (it is just those edges we colored in blue Eblue)

Egreen = Einside (see Figure 3 , here Egreen is all the edges that we marked
green, so just all the edges inside the G1

′
f , which is Einside)

Figure 2:
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In this face, VGf
= VG1

′
f

+ Vinside (see Figure 2, here VGf
is all the vertices

in the picture)

Figure 3:

EGf
= Eblue + Egreen = EG1

′
f

+ Einside (please look at Figure 3, here EGf

is all the edges in the picture)

FG1
′
f

= 2 (1)

See Figure 1, we can see the number of faces on the graph G1
′
f is 2. Also,

FGf
= 1 + Finside (2)

(see Figure 2, FGf
is all the faces in the picture, Finside is all the faces inside

the face of G1
′
f . Now FGf

= FG1
′
f
− 1 + Finside follows from (1) and (2).

Next we calculate the Euler Characteristic for G on the plane:

VGf
− EGf

+ FGf
= 2,

this follows from Corollary 2.2.
Therefore VGf

− EGf
+ (1 + Finside) = 2, then

(VG1
′
f

+ Vinside)− (EG1
′
f

+ Einside) + (1 + Finside) = 2.

Since VG1
′
f

= EG1
′
f

we get Vinside − Einside + Finside = 1.

Finally, we can see that

VGf
− EGf

+ FGf

= (VG1
′
f

+ Vinside)− (EG1
′
f

+ Einside) + (1 + Finside)

= VG1
′
f

+ Vinside − EG1
′
f
− Einside) + 1 + Finside

= VG1
′
f

+ Vinside − EG1
′
f
− Einside) + FG1

′
f
− 1 + Finside

= VG1
′
f

+ Vinside − EG1
′
f
− Einside) + FG1

′
f
− 1 + Finside

= VG1
′
f
− EG1

′
f

+ FG1
′
f

+ (Vinside − Einside + Finside)− 1

= VG1
′
f
− EG1

′
f

+ FG1
′
f

+ (1− 1)

= VG1
′
f
− EG1

′
f

+ FG1
′
f
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Proof of Theorem 2.5. Our main goal is to prove that χ(G1) = χ(G1), given
(G1) and (G2) are arbitrary graphs on a given surface. To do so, we want to
prove the equations χ(G1) = χ(G) and χ(G2) = χ(G). Since (G1) and (G2)
are arbitrary graphs, it suffices to prove χ(G1) = χ(G), and then we can apply
same reasoning for (G2).

Therefore, to prove χ(G1) = χ(G), we want to prove:

χ(G′
1) = χ(G) (3)

χ(G1) = χ(G′
1) (4)

Since we already proved (4) in Lemma 2.6, it suffices to show (3) which we
prove by induction:
Base case: From Lemma 2.7, we already know that χ(G1

′
f ) = χ(Gf ). (Note:

(G1
′
f ) is a face of (G′

1), and (G′
f ) is a face of (G))

Step: we want to show that, by first adding a new face of (G′
1), and then adding

points and edges from G2 to that new face, the Euler characteristic χ will be
the same. Our proof is as follows:

First, we want to show that χ is the same after adding a new face of (G′
1):

We shall omit the proof , as the proof can be easily illustrated in the picture.
In the process of adding a new face, χ remains the same after each step.

Then, from Lemma 2.7, we know that adding points from G2 to a face of
(G′

1) will keep Euler characteristic the same.
Therefore we claim that χ keeps the same, when we move from n faces to

(n+ 1) face (i.e. we proved our induction step)
Thus we showed that χ(G′

1) = χ(G). And we completed our proof, in other
words, we’ve shown that two arbitrary graphs G1 and G2 on a given surface will
have the same χ.

�
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Another proof using the triangulation method. A triangulation of a surface is
just dividing a surface into a finite number of triangles. Essentially, a trian-
gulation of a surface is just a graph such that all its faces are triangles.

We have two arbirary triangulation G1 and G2 of a given surface (see Figures
2 and 2), and we want to show χ(G1) = χ(G2).

Figure 4: The triangulation G1 Figure 5: The triangulation G2

To show this, we want to prove the equations χ(G1) = χ(G) and χ(G2) =
χ(G) ,where G = G1 ∪ G2 ∪ I. (I := the set of intersection points of G1 and
G2. i.e the purple points in the picture below).
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Since G1 and G2 are arbitrary graphs, it suffice to prove χ(G1) = χ(G), and
apply same reasoning for G2. Now we prove χ(G1) = χ(G):

The graph G can be constructed from G1 by three steps: Step 1, adding I;
Step 2, add all vertices of G2, and connect each vertex of G2 with G′ using only
one edge from of G2; Step 3, connect the rest of vertices of G2 and G′ using the
rest of edges of G2. If we can show for each step, χ did not change, then we will
prove that χ(G) is same as χ(G′).

First, we prove that Step 1 preserves χ. This follows from Lemma 2.6, χ
won’t change by adding more points on the edges of G1.

Then we prove that Step 2 preserves χ: here we can see, that both V and
E increase by the number of new vertices, while F does not change.
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Last we prove that Step 3 preserves χ: each of our actions is equivalent to
connecting two boundary points in a disk. This is because after triangulation,
each triangle face is homeomorphic to a disk.

Figure 6: Step 3

When we add an edge, the number of faces goes up by 1 (i.e face cut in half),
the number of edges goes up by 1, and the number of vertices does not change,
so the Euler characteristic remains the same.

Here we proved χ(G) = χ(G1) and completed the proof. �

Remark 2.8. Triangulation is not necessary, dividing the surface to polygons is
also fine.

3 Examples of surfaces

In this section, we want to discuss the relation of Euler Characteristics and
different surfaces. We will introduce orientability (non-orientability), connected
sum of two surfaces, and classification of surfaces.
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Our main goal here is for better understanding of these concepts, therefore,
the examples and proofs we give will be less rigorous and more intuitive.

3.1 Orientable surfaces

Example 3.1. The Euler characteristic of S2 equals 2.

Figure 7: Graph on a sphere

In the graph in Figure 7, we see V = 3, E = 3, F = 2, so V − E + F = 2.
Since we show that χ independent of graph on a given surface, so we know χ(S2)
is 2 (we can also use Corollary 2.2).

Example 3.2. The Euler characteristic of the the torus equals χ(T 2) = 0

Indeed, we can obtain the torus by gluing the opposite sides of a rectangle.
This gives a good graph with V = 1, E = 2, F = 1, therefore

χ(T 2) = 1 + 1− 2 = 0.

Next we want to obtain the new surfaces by gluing them from smaller ones.

Lemma 3.3. Suppose we have two surfaces S1 and S2 with boundary. If we
combine them by their boundaries, the Euler characteristic of new surface is the
sum of Euler characteristics of S1 and S2.
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Proof. Let us choose two good graphs G1 and G2 on S1 and S2 such that both
graphs have 1 vertex and 1 edge on the boundary. Then

χ(S1) = V1 − E1 + F1, χ(S2) = V2 − E2 + F2.

The union of G1 and G2 has V1 +V2−1 vertices, E1 +E2−1 edges and F1 +F2

faces. Then

χ(S) = (V1 + V2 − 1)− (E1 + E2 − 1) + (F1 + F2) = χ(S1) + χ(S2).

�

Definition 3.1. The connected sum S1#S2 of two surfaces S1 and S2 is ob-
tained by cutting two small disks out of S1 and S2 and gluing the resulting
surfaces along the boundary.

Definition 3.2. The genus g surface is defined as the connected sum of g tori
or, equivalently, as the sphere with g handles added to it.

Remark 3.4. We can think of the genus as the number of holes in an (orientable)
surface.

Our previous two examples, sphere and torus, are of genus 0 and genus 1.
Here is an example of genus 2 surface:

Theorem 3.5. If S1 and S2 are two surfaces. Then

χ(S1#S2) = χ(S1) + χ(S2)− 2.

Proof. Let us only look at the two boundaries combined at first, and not look at
the remaining triangulations on the two surfaces as they are unchanged. Then
we will notice that we lose two faces as we remove the interiors. Also, the
number of vertices of a surface reduce by 3, the edge also reduce by 3 when
combined. In other words,

χ(S1) = V1 − E1 + F1,

χ(S2) = V2 − E2 + F2.

Therefore,

χ(S1#S2) = V1 − 3− (E1 − 3) + F1 − 1 + V2 − E2 + F2 − 1 =
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χ(S1) + χ(S2)− 2.

�

Corollary 3.6. If we have a genus g orientable surface, the χ of it 2− 2g.

Proof. Here we use proof by induction. Note that a genus g surface is just the
connected sum of g tori.
Base case: For g = 0 we get 2 − 2 · 0 = 2 = χ(S2) by Example 3.1. For g = 1
we get 2− 2 · 1 = 0 = χ(torus) by Example 3.2.
Step: Assume 2−2 ·g true for genus g, we want to show that χ(genus)(g+ 1) =
2− 2 · (g + 1)

Let genus g surface be S1, and torus be S2. By assumption , χ(S1) =
2− 2g. From Example 3.2, we get χ(S2) = 0. Then by Theorem 3.5 the Euler
characteristic of genus (g + 1) surface is

(S1#S2) = 2− 2g + 0− 2 = 2− 2(g + 1)

which proves the step. And here we complete the proof.
�

3.2 Unorientable surfaces

Definition 3.3. We define the projective plane RP 2 as the following: suppose
we have a sphere, and we identify all (x, y, z) ∼ (−x,−y,−z). Then, RP 2 is the
quotient set of all equivalent classes. See Figure 8.

Lemma 3.7. χ(RP 2) = 1

Proof. To prove χ(RP 2) = 1, we start from a special construction on a sphere.
Let us we pick two opposite points (x, y, z) and (−x,−y,−z) and connect

them by a big circle, as in Figure 8. We have a graph with two vertices, two
edges and two faces:

V = 2, E = 2, F = 2.

But on RP 2, the two points we pick are equivalent, from the definition of
RP 2, so the two edges and two vertices are also equivalent.

Therefore now V ′ = 2/2 = 1,E′ = 1 and F ′ = 1 (for the same reason as
above.) We conclude that χ(RP 2) = V ′ − E′ + F ′ = 1 �

Remark 3.8. Also it is interesting to note that RP 2 is not half sphere, although
similar in some places.

Remark 3.9. We can also calculate χ(RP 2) by observing that it is composed of
Mobius strip and disk combined by their boundaries, see Figure 9. We have

χ(mobius strip) = 0, χ(disk) = 1,

so by Lemma 3.3 we get

χ(RP 2) = χ(mobius strip) + χ(disk) = 0 + 1 = 1.

please see the following picture as an illustration.
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Figure 8: Our construction of RP 2 from the sphere

Figure 9: How RP 2 is composed of a Mobius strip and a disk

Definition 3.4. We define Klein bottle by gluing two Mobius strips along the
boundary, see Figure 10.

Example 3.10. Now we want to find χ(klein bottle).
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Figure 10: Klein Bottle (figure from [2])

By definition, we know Klein bottle is two mobius strips combined by their
boundaries. Therefore

χ(klein bottle) = χ(mob) + χ(mob) = 0.

We give three definitions for orientability.

Definition 3.5. A surface is orientable if it has two sides which can be painted
with two different colors. If not, the surface is non orientable.

For the other two definitions we need a notion of local orientation.

Definition 3.6. We say that a pair of vectors (v1, v2) at the same point p is
positively oriented, if the shortest direction from v1 to v2 is counter-clockwise.

Given a pair of vectors (v1, v2) at a point p and a path connecting p with q,
we can continuously move v1 and v2 along the path.

Definition 3.7. A surface is orientable if one can start with a pair of vectors
(v1, v2) at some point p, and transport them by a path to other point q, will
end up with the same orientation, no matter what the path is.

Similarly, if not, the surface is non orientable.

Definition 3.8. A surface is orientable if, whichever path it takes, a pair of
vectors (v1, v2) remains the same orientation when back to its origin, after nav-
igating around the surface.

Similarly, if not, the surface is non orientable.

Remark 3.11. It would be an interesting exercise to show the three definitions
are equivalent to each other, but we shall omit it here.

Example 3.12. The sphere and torus are orientable.

Example 3.13. Connected sum of two orientable surfaces is orientable, so any
genus g surface is orientable.
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Lemma 3.14. RP 2 is non orientable.

Proof. RP 2 is non-orientable because it contains a Mobius strip.
Then we use proof by contradiction, assume RP 2 is orientable. Since if a

surface contains a mobius strip, that means there exist a path that will reverse
orientation after navigating around the surface back to the origin. Therefore,
this contradicts our Definition 3.8. And thus RP 2 is non-orientable. �

Similarly, the Klein bottle is not orientable.

3.3 Classification of surfaces

In this subsection we review the classification of two-dimensional surfaces fol-
lowing [1].

Theorem 3.15. Let S be a two-dimensional surface without boundary.
1) If S is orientable then it is homeomorphic to the connected sum of k tori.

(the exact value of k depends on specific orientable surface).
2) If S is non-orientable then it is homeomorphic to the connected sum of k

RP 2’s (the exact value of k depends on specific non-orientable surface)
3) All the surfaces listed above are pairwise not homeomorphic.

Remark 3.16. Here we assume that S2 is the connected sum of k = 0 tori, or a
genus 0 surface.

We do not prove parts (1) and (2) here, but prove part (3) using the Euler
characteristic.

First, observe that orientable surface cannot be homeomorphic to a non-
orientable one. By corollary 3.6 the Euler characteristic of the connected sum
of k tori (that is, genus k surface) equals 2− 2k. Therefore for different k these
surfaces are not homeomorphic, as they have different Euler characteristic.

Corollary 3.17. If we have a connected sum of n RP 2 , the Euler characteristic
of it is 2− n.

Proof. Here we use proof by induction.
Base case: n = 1 2− 1 = 1 = χ(RP 2) by Lemma 3.7 therefore base case right.
Step: Assume 2− n is true for n, we want to show that

χ(connected sum of (n+ 1) RP 2s) = 2− (n+ 1)

for (n+ 1).
Let S1 be the connected sum of n RP 2s, by assumption χ(S1) = 2− n. Let

S2 be RP 2, Euler characteristic is 1. From Theorem 3.5, the Euler characteristic
of (n+ 1) RP 2s equals

(S1#S2) = 2− n+ 1− 2 = 2− (n+ 1),

which proves the step. �
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As a corollary, we conclude that for different k the connect sums of k RP 2s
are not homeomorphic, as they have different Euler characteristic. We also get
the following corollary.

Corollary 3.18. 1) If S is an orientable surface then it is homeomorphic to
the connected sum of g tori where

g =
2− χ(S)

2
.

2) If S is a non-orientable surface then it is homeomorphic to the connected
sum of k RP 2s where

k = 2− χ(S).
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