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1. Introduction

The symmetric group. Let n ≥ 1. Recall that the symmetric group Sn is the set
of all permutations of n, that is, bijections on the set {1, 2, . . . , n}. This is naturally
a group, with the group structure given by function composition.

We will use cycle notation, for example, (a1, . . . , ak) denotes the permutation
sending a1 7→ a2 7→ · · · 7→ ak 7→ a1 and fixing every other element of {1, . . . , n}.
In this case, we will call k the length of the cycle. Note that for an element
a1 ∈ {1, . . . , n}, the 1-cycle (a1) is the identity.

We say that two cycles a = (a1, . . . , ak) and b = (b1, . . . , bj) are disjoint if
{a1, . . . , ak} ∩ {b1, . . . , bj} = ∅. Note that under this assumption, we have ab = ba.
The following result is well-known.

Lemma 1.1 ([1]). Let σ ∈ Sn. Then, σ admits a decomposition as a product of
pairwise disjoint cycles. Moreover, this decomposition is unique up to a reordering
of the cycles.

Example 1.2. Consider the element

σ =

(
1 2 3 4 5 6 7 8 9
4 6 2 7 1 3 9 8 5

)
∈ S9

Then, we can decompose it in cycles as (14795)(263)(8).

Let σ ∈ Sn and let σ = c1 . . . ck be its decomposition as a product of disjoint
cycles. For each i = 1, . . . , k, we let λi > 0 be the length of the cycle ci. We may
reorder the cycles so that λ1 ≥ λ2 ≥ · · · ≥ λk > 0. Note that λ1 + · · ·+ λk = n. In
this way, to each element σ ∈ Sn, we may uniquely associate a partition λ of n.

Definition 1.3 (Partition). Let n > 0. A partition of n is a non-increasing sequence
λ1 ≥ λ2 ≥ · · · ≥ λk > 0 of numbers such that n = λ1 + · · ·+ λk.

For σ ∈ Sn, we call its associated partition λ the cycle type of σ.
Recall that two elements σ1, σ2 ∈ Sn are said to be conjugates if there exists

σ ∈ Sn such that σ1 = σσ2σ
−1. It is easy to see that this defines an equivalence

relation on Sn. Its equivalence classes are known as conjugacy classes.

Lemma 1.4. Two elements σ1, σ2 ∈ Sn are conjugates if and only if they have
the same cycle type. It follows that conjugacy classes in Sn are parametrized by
partitions of n.

Example 1.5. Let σ1 = (135)(24) and σ2 = (235)(14) be in S3. We want to find
σ such that σ1 = σσ2σ

−1. In this case, (135)(24) = σ(235)(14)σ−1. It’s not very
difficult to find that σ = (12). Thus we can say that σ1, σ2 are conjugates.

Representation theory of Sn in characteristic zero. For basics in represen-
tation theory, we refer to [1]. Recall that the set of irreducible representations of
Sn (in fact, of any group) is in bijective correspondence with the set of conjugacy
classes in Sn. From Lemma 1.4 we get.

Proposition 1.6. The set of irreducible representations of Sn is in bijective cor-
respondence with the set of partitions of n.

An explicit bijection λ 7→ Vλ has been constructed in [7]. We will not review the
construction. We will just comment that there is a special 1-dimensional represen-
tation, the sign representation, such that for any other representation Vλ we have
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sign⊗Vλ = VλT . Here λT is the transpose of the partition λ, a construction we will
review in Section 2 below.

Representation theory of Sn in positive characteristic. The representation
theory of Sn in positive characteristic is much more subtle than in characteristic
zero. Let p be a prime and F an algebraically closed field of characteristic zero. We
will assume that p > 2. Note that we still get a trivial and a sign representation
and, because p > 2, triv 6∼= sign.

The irreducible representations of Sn over F are parametrized by a special subset
of partitions.

Definition 1.7 (p-restricted partition). Let p be a prime number. A partition λ
of n is called p-restricted if no part of λ repeats p times.

If λ is p-restricted, we denote by Vλ the irreducible representation of Sn over
F labeled by λ. Note that sign⊗FVλ is another irreducible representation of Sn
over F. We call the unique p-restricted partition λM such that VλM

∼= sign⊗Vλ the
Mullineux dual of λ. Note that, by definition, (λM )M = λ. For this reason, we call
the map λ 7→ λM the Mullineux involution.

To compute λM is complicated and it involves a lot of steps. We will review this
in Section 3.

Extensions of the Mullineux involution. Note that, to define a p-restricted
partition, we do not need the number p to be prime.

Definition 1.8 (p-restricted partition). Let p be any number and λ a partition of
n. We say that λ is p-restricted if no part of λ repeats p-times.

An interesting question is whether there exists an analogous of the Mullineux
involution when p is not prime. The answer is yes. From the representation-theoric
point of view, this is motivated by the representation theory of Hecke algebras at
a p-th root of unity, see [2, 5]. We will review this construction in Section 3.

Wall-crossing. The main goal of this work is to study a further extension of the
Mullineux involution, called wall-crossing. One advantage of wall-crossing is that
it is defined on all partitions, rather than just the p-restricted ones. A minor
disadvantage is that it is no longer an involution (however, see Lemma 4.7). We
will review the definition and main properties of wall-crossing in Section 4, after
we have studied the Mullineux involution.

2. Partitions

Definition 2.1. A partition λ is a finite, ordered non-increasing sequence of non-
negative integers λ = (λ1, λ2, . . . , λ`) where λi ≥ λi+1. The largest value of k such
that λk > 0 is called the length of λ. The size of λ is |λ| :=

∑
i λi.If |λ| = n, we

usually say that it is a partition of n, and write λ ` n.

For example, the sequence λ = (5, 4, 2, 2) is a partition of 13. The length of λ is
4.

Definition 2.2. Let λ be a partition. The Young diagram of λ (sometimes also
known as the Ferrers diagram) is a collection of upper-left aligned boxes with λ1
boxes in the first row, λ2 boxes in the second row and, in general, λi boxes in the
i-th row.
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Remark 2.3. Sometimes, it will be convenient to write a partition in a different
way. We write λ = [1a1 , 2a2 , . . . , nan ] for the partition that has a1 parts equal to 1;
a2 parts equal to 2 and so on.

Example 2.4. The Young diagram of λ = (5, 4, 2, 2) = [10, 22, 30, 41, 51] is

The coordinates of the vertices of the boxes of the diagram are given by: (i, j) ∈
{N × N | 1 ≤ i, 1 ≤ j ≤ λi}. Label by (i, j) the box whose southeast vertex has
coordinates (i, j). We remark that, here, our x- and y-axes are not oriented as
usual, but rather follow the following pattern.

y

x

Figure 1. The orientation of the plane that we will be using for
the rest of our work

We do not distinguish between a partition and its Young diagram. In particular,
we sometimes abuse notation and say that a box belongs to λ to express that the
box belongs to the Young diagram of λ.

Definition 2.5. Denote by Pn the set of partitions of n. Let λ ∈ Pn. A box R ∈ λ
is called a removable box of λ if λ \R ∈ Pn−1. A box B is called an addable box of
λ, if λ ∪B ∈ Pn+1.

Definition 2.6. Given a partition λ, its transpose is the partition whose diagram
is that of λ flipped over the diagonal line y = x. We denote the transpose of λ by
λT .

Example 2.7. The transpose of λ = (5, 4, 2, 2) is λT = (4, 4, 2, 2, 1),

λT =
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The following result gives us a way to compute the transpose λT without resort-
ing to the diagram of λ.

Lemma 2.8. Let λ be a partition. Then, λT = (λT1 , λ
T
2 , · · · ) where λTi = |{j :

λj ≥ i}|.
Proof. From Definition 2.1, we know λ can be written as the form (λ1, λ2, . . . , λ`)
where λi ≥ λi+1. Graphically, λi is the number of boxes in the i-th row of λ, and
λTi is the number of boxes in the i-th column of λ. If there exists j such that λj ≥ i,
the box in the j-th row will contribute to the box in the i-th column.

�

The following result, that we state without a proof, gives a representation-
theoretic interpretation of the transpose operation.

Proposition 2.9. Let λ be a partition of n and Vλ the corresponding irreducible
representation of Sn over C. Then, sign⊗Vλ is an irreducible representation iso-
morphic to VλT .

To finish this chapter, for future reference, let us define the content of a box
(i, j) as ct(i, j) = j − i.

3. The Mullineux involution

In this section, we study an operation that mimics transposition on a certain
subset of partitions that depends on a positive integer p. Let us first define this
subset.

Definition 3.1. Let p > 0 be an integer, and let λ be a partition. We say that λ
is p-regular if no nonzero part of λ repeats p times.

Example 3.2. Consider the partition λ = (4, 3, 2, 2). Then λ is 3-regular, but not
2-regular. Note that λT = (4, 4, 2, 1) is not 2-regular either. On the other hand,
consider the partition µ = (4, 4, 4). This partition is 4-regular. Note, however,
that µT = (3, 3, 3, 3) is not 4-regular. This shows that the transpose of a p-regular
partition does not need to be p-regular itself.

The previous example tells us that we should be careful if we want to define an
operation on p-regular partitions that has the properties of the transpose. This
operation is called the Mullineux involution. Our next goal will be to define this
operation. First, we need a “positive characteristic” analogue of the content of a
box.

Definition 3.3. The p-content of a box is defined as ctp(i, j) := i − j mod p ∈
Z/(p).

The Mullineux involution is based on the notion of a good box of residue i, for
i ∈ Z/(p). This will be a removable box � of λ with ctp(�) = i. We will define it
using an algorithmic procedure.

Definition 3.4. A good box of residue i where i ∈ {0, 1, ..., p− 1} of a partition λ
is defined as:

(1) Label the boxes of λ by their p-residue.
(2) From southwest to northeast, write R for the removable boxes and A for

the addable boxes of residue i. This way we get a sequence that is called
an RA-sequence.
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(3) Inductively cancel the RA-sequence until there is no RA appearing.

Then, the removable box of residue i corresponding to the first R from the very
left is called a good box of residue i. If no such R exists, then we say that λ has no
good removable box of residue i.

Similarly, from the reduced RA-sequence we define the good addable box of
residue i to be the box corresponding to the first A from the left. If no such A
exists, we say that λ has no good addable box of residue i.

Note that, if λ has a good removable box of residue i, then this box is unique.
This allows us to define the following function.

Definition 3.5. Let λ be a p-regular partition and i ∈ Z/(p). We define fi(λ) to
be the partition obtained by removing the good removable box of λ of residue i, if
such box exists. Otherwise, we define fi(λ) = 0.

Similarly, ei is the operator that adds the good removable box of residue i, and
we define ei(λ) = 0 if no such box exists. Note that if fiλ 6= 0, then eifi(λ) = λ.
Likewise, if ei(λ) 6= 0 then fiei(λ) = λ.

Definition 3.6. An f -sequence of µ is a sequence (i1, i2, . . . , in) ∈ (Z/pZ)n if
fi1fi2 · · · fin−1finµ = ∅. Then, the Mullineux transpose is defined as

µM = e−ine−in−1
· · · e−i2e−i1∅,

where (i1, i2, . . . , in) is an f -sequence of µ .

Note that, in principle, there may be many f -sequences for a partition µ, but
µM does not depend on these sequences. More specifically, we have the following
important result.

Theorem 3.7. The partition µM does not depend on the f -sequence.

Proof. See [2, 5]. �

Example 3.8. Consider the partition µ = (7, 5, 2, 1). Note that this is 3-regular,
and let us compute λM3 . The 3-contents of boxes of µ are given as following.

µ = 0 1 2 0 1 2 0

2 0 1 2 0

1 2

0

Let us start with content 0. The RA sequence for this content is RARR. Cross-
cancelling the left-most RA, we get f0µ = (7, 4, 2, 1).

f0µ = 0 1 2 0 1 2 0

2 0 1 2

1 2

0

Doing content 0 again, the RA sequence is RAAR. Cross-cancelling the left-most
RA, we get f0f0µ = (6, 4, 2, 1).
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f0f0µ = 0 1 2 0 1 2

2 0 1 2

1 2

0

Note that the RA-sequence for 0 now is RAAA. After cancelling the left-most
RA we do not get R’s. So there is no good removable box of content 0. cannot
do f0 because there is no R after cancellation. Note that the RA-sequence for 1 is
AA, so there is no good removable box of content 1.

Thus, there must be a good removable box of content 2. Let us find it. The
RA-sequence if ARRR, so the good removable box corresponds to the left-most R.

f2f
2
0µ = (6, 4, 1, 1) = 0 1 2 0 1 2

2 0 1 2

1

0

Now the RA-sequence for 2 is AARR. Thus,

f22 f
2
0µ = (6, 3, 1, 1) = 0 1 2 0 1 2

2 0 1

1

0

, f32 f
2
0µ = (5, 3, 1, 1) = 0 1 2 0 1

2 0 1

1

0

We cannot do f2 anymore because there is no R in the RA-sequence. Let us go
back to 0 again. We have that the RA-sequence is RAAA so

f0f
3
2 f

2
0µ = (5, 3, 1) = 0 1 2 0 1

2 0 1

1

, f31 f0f
3
2 f

2
0µ = (4, 2) = 0 1 2 0

2 0

.

f20 f
3
1 f0f

3
2 f

2
0µ = (3, 1) = 0 1 2

2

, f0f1f
2
2 f

2
0 f

3
1 f0f

3
2 f

2
0µ = ∅

By the definition of M3, we have that µM3 is e2−0e
3
−2e−0e

3
−1e

2
−0e

2
−2e−1e−0∅. Since

we are working modulo 3, this is

µM3 = e20e
3
1e0e

3
2e

2
0e

2
1e2e0∅ = (5, 3, 3, 2, 2) = 0 1 2 0 1

2 0 1

1 2 0

0 1

2 0

.

Remark 3.9. If p� |λ|, then λMp = λT .

Proof. When p is very large, then all the contents of all the addable and removable
boxes of λ are distinct, so we can choose in which order to remove the boxes. We
can fill in a series of consecutive numbers into the partition, and let them be the
order as follows: “1” for the first row first column box, “2” for the first row second
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column. . . when finishing the first row, continue to the second row and do the same
thing.

1 2 3 4

5 6 7

8 9

10 11

We remove the boxes in order, starting with the box labeled by n, then n − 1
and so on. We get an f -sequence and the Mullineux transpose is using the opposite
sign of f -sequence. The series of numbers are going downward, in other words, it
is the transpose partition.

1 5 8 10

2 6 9 11

3 7

4

�

4. Wall-Crossing

We would like to extend the definition of the Mullineux transpose to include all
partitions, not just the p-regular ones. This is the process of wall-crossing. We
follow [6], see also [3]. First, we remark that we can decompose every partition into
a p-regular partition and a partition where each part repeats a multiple of p-times.

Proposition 4.1. Given a partition λ and a positive integer p, λ can be written
as a union of multi-sets λ = µ∪ν where ν means that every part repeats a multiple
of p times and µ is p-regular, i.e. no part of the partition repeats p-parts.

Proof. Let λ = (ie11 , i
e2
2 , . . . , i

en
n ). Since p is an arbitrary number, by division al-

gorithm, we have ej = cjp + bj where cj ≥ 0 and 0 ≤ bj < p. Define ν =

(ipc11 , ipc22 , . . . , ipcnn ) and µ = (ib11 , i
b2
2 , . . . , i

bn
n ). It is clear that µ and ν satisfy the

requirements of the proposition. �

Example 4.2. Consider the partition λ = (110) and p = 4. Since 8 = 2 × 4,
ν = (18), µ = (12).

Definition 4.3. Let ν be a partition where each part repeats a multiple of p-times,
say ν = (ic1p1 , . . . , icnpn ). We define the partition ν := (ic11 , . . . , i

cn
n ).

Similarly, if ν = (ie11 , . . . , i
en
n ) is any partition, then we define νp := (ipe11 , . . . , ipenn ).

The following lemma will be useful.

Lemma 4.4. Let ν be a partition where each part repeats a multiple of p-times.
Then, νp = ν.

Now we are ready to define the extension of the Mullineux involution.

Definition 4.5. Let λ be a partition and p > 0. Decompose λ = µ ∪ ν, where µ
is b-regular and every part of ν repeats a multiple of p-times as in Proposition 4.1.
We define the wall-crossing transformation of λ to be

λWp := (µMp ∪ (νT )p)T .
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Example 4.6. Consider the partition λ = (7, 5, 5, 5, 5, 4, 4, 4, 2, 2, 2, 2, 1), and p =
3.

λ =

The p-regular part is µ = (7, 5, 2, 1) and ν = (5, 5, 5, 4, 4, 4, 2, 2, 2).

µ = ν =

In Example 3.8 we computed that µW3 = (5, 3, 3, 2, 2) and ν = (5, 4, 2), so
νT = (3, 3, 2, 2, 1) and (νT )3 = (3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1). Thus, λW3 =
(5, 38, 28, 13)T = (20, 17, 9, 1, 1).

λW3 =

Unlike the Mullineux involution, wall-crossing is not an involution, that is,
(λWb)Wb 6= λ, in general. However, if we compose wall-crossing with transposi-
tion, we do have an involution.

Lemma 4.7. Let λ be a partition and p > 0. Then,

λWpTWpT = λ.



10

Proof. First, we notice that λWp = (µMp ∪ (νT )p)T , so our equation becomes
λWpT = (µMp ∪ (νT )p)TT . Transpose a partition twice does nothing to the parti-
tion, so we can just cancel them. The right hand side becomes µMp ∪(νT )p. Apply-
ing the second wall crossing transpose, we will have λWpTWp = (µMp ∪ (νT )p)Wp .
Applying Wp has the same meaning as applying Mp(Mullineux transpose) to the
p-regular part, µ, and applying regular transpose and power of p one more time.
So, we can get λWpTWp = ((µMp)Mp ∪ (νp))T . Since µ is already p-regular, µMp

is also p-regular. If we apply Mp one more time to the p-regular partition, it
does nothing. Thus, we can get λWpTWp = (µ ∪ νp)T . Applying one more regular
transpose to both sides, since transpose a partition will get back to the original
partition, then λWpTWpT = µ ∪ νp. Applying Lemma 4.4, we would finally get
λWpTWpT = µ ∪ ν = λ. �

Corollary 4.8. The inverse of the wall-crossing transformation is λW
−1
p = λTWpT

5. Farey sequences and sliding boxes

Throughout this section, we follow [3].

Definition 5.1. The Farey sequence of order n is the sequence of completely re-
duced fractions between 0 and 1, which when in lowest terms have denominators
less than or equal to n, arranged in order of increasing size, i.e.

Fn =
{a
b
∈ [0, 1] | b ≤ n

}
.

Definition 5.2. Fix n > 0. We define a function Φn : [0, 1]\Fn → Pn as following.
For 0 < ε < 1/n, Φn(ε) = (n) and, if a/b ∈ Fn and δ is such that

(
a
b − δ,

a
b + δ

)
∩

Fn = a
b then

Φn

(a
b

+ ε
)

= Φn

(a
b
− ε
)Wp

for every 0 < ε < δ.

Example 5.3. When n = 3, Fn =
{

0
1 ,

1
3 ,

1
2 ,

2
3 ,

1
1

}
and the function Φ3 is given in

the following diagram.

0
1

1
3

1
2

2
3

1
1

We now describe an algorithm to computing the function Φn that we call the
“sliding boxes” procedure.

Recall that we are working with the following orientation of the xy-plane.
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y

x

Definition 5.4. For two non-negative integers 0 < a < b, and gcd(a, b) = 1, we
define the “sliding box” process as follows.
For any partition λ (identifying as a set of integer points in the plane), ladders are
defined as lines

Lc :=

{
(x, y) ∈ R2 | y +

b− a
a

x =
c

a

}
with c ∈ Z, and identify Lc with the set of integer points on it. If a box of λ is on
the line Lc, we slide it down along the same line until we either hit the x-axis or
another box of λ. We obtain a collection of boxes which may not be a partition, as
we will show in Example 5.5.

Note that, in fact, sliding a box on a ladder with parameter a, b is to slide it a
spaces down and (b− a) spaces to the left.

Example 5.5. Given a partition λ = (5, 3), i.e. , and take a = 1,

b = 3. Then, applying the “sliding boxes” procedure visually, we will get a new
partition as shown in the following picture.

A

C

B

=⇒

B

C

However, note that after applying the “sliding box” procedure we may not get
a partition sometimes. For example, when applying the “sliding box” procedure to
λ = (7, 4) it is not a partition any more. The box C slides to where A is, B slides
to position E, shown in the picture below.

A

B

C

E

=⇒
B

C

The “sliding boxes procedure” is important to us for the following reason. For
a partition λ, let S a

b
(λ) be the resulting shape obtained after applying the “sliding

boxes” procedure to λ.

Theorem 5.6. Let n > 0 and let a/b ∈ Fn. Then, for sufficiently small ε > 0,
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Φn

(a
b

+ ε
)

= S a
b

(a
b
− ε
)

Proof. See [3]. �

Corollary 5.7. For ε sufficiently small, Φn(1− ε) = (1n).

The following is our first main result.

Theorem 5.8. The function Φn is symmetric transpose around 1
2 , meaning that

for every x ∈ [0, 1/2] \ Fn,

Φn(x) = Φn(1− x)T .

Proof. We actually prove something stronger.Indeed, the function Φn does not need
to start with the partition (n). Let us assume that Φn starts with any partition of
n and we make the following assumption:

Φn(1− ε) = Φ(ε)T for sufficiently small ε.

We will show that the function Φn satisfies the conclusions of the Theorem. Note
that if Φn(ε) = (n) then our assumption holds thanks to Corollary 5.7.

Let us order the Farey sequence Fn by the order it appears in the real line. We
will do an induction on Fn. Let x0 = 0 < x1 < · · · < xk < 1/2 be the numbers
in the Farey sequence to the left of 1/2, and let yi := 1 − xi, so that we have
1/2 < yk < · · · < y1 < y0 = 1. We will show by induction on i that the transpose
of the partition appearing to the right of xi coincides with the partition appearing
to the left of yi.

The base of induction is trivial by assumption. Now assume the result is true
for xi, and let us show it for xi+1. Now, xi+1 = ai+1/bi+1 with gcd(ai+1, bi+1) = 1.
Then, yi+1 = (bi+1 − ai+1)/bi+1. Assume that the partition appearing to the right
of xi is λ (same as the left of xi+1). Then, by definition, the partition appearing to

the right of xi+1 is λWbi+1 and by assumption, the partition appearing to the left
of yi is λT (same as the right of yi+1). Also, by definition, the partition appearing

to the left of yi+1 is λ
TW−1

bi+1 . By Lemma 4.7, we have that the transpose of the

partition λWbi+1 coincides with the partition λ
TW−1

bi+1 . Thus, the inductive steps
are also true. �

Let us conclude this section with an example of the function Φn when n = 7,
that we give in Figure 2.
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6. Wall-crossing using partial orders

In this section, we study a procedure to compute Φn using a partial order on
the set of boxes in the plane. First, let 0 < a < b be coprime integers. We define a
function f a

b
: Z2 → Z by

f a
b
(x, y) = (b− a)x+ ay

Definition 6.1. Consider coprime numbers a < b. We define a partial order on
the boxes {(x, y) : x ≥ 1, y ≥ 1} as follows:

(x, y) ≺r (x′, y′) if

{
f a

b
(x, y) < f a

b
(x′, y′), or

f a
b
(x, y) = f a

b
(x′, y′) and x < x′

Note that ≺r is in fact a linear order, and the minimal box is (1, 1).

An example of the partial order ≺r when a = 1, b = 3 is given in Figure 6.3.

Theorem 6.2. Let n > 0 and a/b ∈ Fn. For sufficiently small ε > 0, the value of
Φn
(
a
b + ε

)
is given by taking the first n boxes with respect to the partial order ≺r

defined in Definition 6.1.

Proof. See [4]. �

Example 6.3. Let the n be 7, and we want to find the partition after 1
3 (for ex-

ample) in Farey Sequence using the computation above.Here, b = 3, a = 1, b−a = 2.

3
1

4
2

5
4

6
6

5
3

6
5

7 8

7
7

8

9

Figure 3. The partial order ≺r when a = 1, b = 3. The black
numbers in the boxes are the values of the function (b− a)x+ ay,
and the small blue numbers indicate the order of the boxes.

By the theorem above, we are picking the seven boxes marked with blue num-
bers, in the order of those numbers in Figure 3.We will get the partition (4, 2, 1),

i.e. . We can check with Figure 2 that this is the correct answer.

Our second main result gives a similar way to compute the partition to the left
of a/b. More precisely, given ε > 0 sufficiently small, we define a similar partial
order ≺` that gives the value of Φ

(
a
b − ε

)
.



15

Definition 6.4. Let a < b with gcd(a, b) = 1. Define the partial order on the boxes
{(x, y) | x ≥ 1, y ≥ 1} as follows:

(x, y) ≺` (x′, y′) if

{
f a

b
(x, y) < f a

b
(x′, y′), or

f a
b
(x, y) = f a

b
(x′, y′) and x′ < x

3
1

4
2

5
3

6
5

7
7

5
4

6
6

7 8

7 8

9

Figure 4. The partial order ≺` when a = 1, b = 3. The black
numbers in the boxes give the values of the function (b− a)x+ ay
and the small blue numbers indicate the partial order ≺`.

Theorem 6.5. Let n > 0 and a
b ∈ Fn. For sufficiently small ε > 0, the value of

Φn
(
a
b − ε

)
is given by taking the first n boxes with respect to the partial order ≺`

defined in Definition 6.4.

Proof. We want to find out the partition before a
b by using the total partial order

process. As is shown in Theorem 5.8, we have the partition on the left of a
b is the

same as the transpose of the partition on the right of b−a
b .

Let us examine the order ≺` with respect to a
b and the order ≺r with respect to

b−a
b . First, we note that

f a
b
(x, y) = (b− a)x+ ay = (b− (b− a))y + (b− a)x = f b−a

b
(y, x)

This implies the following claim.
Claim. For two boxes (x, y), (x′, y′):

(x, y) ≺` (x′, y′)⇔ (y, x) ≺r (y′, x′)

If f a
b
(x, y) < f a

b
(x′, y′) then f b−a

b
(y, x) < f b−a

a
(y′, x′), since (b − a)x + ay <

(b− a)x′ + ay′ implies (b− (b− a)y + (b− a)x < (b− (b− a)y′ + (b− a)x′.
If f a

b
(x, y) = f a

b
(x′, y′) and x′ < x, then f b−a

b
(y, x) = f b−a

b
(y′, x′) and y < y′,

since (b− a)x+ ay = (b− a)x′ + ay′ and x′ < x implies (b− (b− a)y + (b− a)x =
(b− (b− a)y′ + (b− a)x′ and y < y′. Then, by Definition 6.4, the claim is proved.
By Definition 6.1, since we’ve already known how to compute ≺r, we just need to
change (y, x) to (x, y) and it will be trivial to find the total partition of ≺`.

�
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y

x

�

�

Figure 5. Two boxes reflected around the x = y line. Note that
f b

a
(�) = f b−a

a
(�).
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