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1. Introduction

This senior thesis aims to introduce an interesting space called the
flag variety, and its cohomology ring, called the coinvariant algebra.
The flag variety is a space (algebraic variety), whose points correspond
to complete flags, that is, sequences of vector subspaces

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn = Cn,

where dimC Vi = i. The coinvariant algebra is the quotient of the poly-
nomial ring Q[x1, . . . , xn] by the ideal generated by symmetric polyno-
mials. Recall that a polynomial p ∈ Q[x1, . . . , xn] is called symmetric
if

p(x1, . . . , xn) = p(xσ(1), . . . , xσ(n))

for any permutation σ of {1, . . . , n}. The coinvariant algebra has a
basis given by Schubert polynomials.

The original contribution is a computer program we wrote, which
computes the coefficients of the product of two Schubert polynomials
in the Schubert polynomial basis. This is motivated by an interest-
ing open problem: there is no known combinatorial formula for these
coefficients.
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2. Topological preliminaries: homology and cohomology

In this section, we will discuss some preliminary topological concepts,
namely homology and cohomology. All the definitions and propositions
in this section are taken from Hatcher’s book [1].

Homology is a very useful tool for the study of unknown spaces, and
it can be considered to be a generalization of the well-known Euler
characteristic. For any given polyhedron P , denote the number of
vertices of this polyhedron by V , the number of edges by E, and the
number of faces by F , then the Euler characteristic of the polyhedron
is the number

χ(P ) = V − E + F.

We can compute, for instance, that the Euler characteristics of a tetra-
hedron, a cube and an octahedron are all 2. On the other hand, no
matter how we triangulate a torus, the Euler characteristics of all the
possible triangulations are always 0.

We can see that the Euler characteristic seems to be able to distin-
guish shapes that are similar to a sphere and shapes that are similar
to a torus. Homology is a generalization of the Euler characteristic, in
the sense that it can distinguish between more spaces than the Euler
characteristic.

In order to define homology, we first need to define the n-simplex,
and the ∆-complex structure, which are similar to ”triangulating a
space”.

Definition 1. The standard n-simplex ∆n is

∆n =

{
(t0, . . . , tn) ∈ Rn+1 :

n∑
i=0

ti = 1 and ti ≥ 0 for all i

}
.

The interior of ∆n, denoted by ∆n
◦ , is

∆n
◦ = {(t0, . . . , tn) ∈ ∆n : ti > 0 for all i} .

The boundary of ∆n is

∂∆n = ∆n\∆n
◦ .

The boundary is the union of the faces of ∆n.

Definition 2. A ∆-complex structure on a topological space X is a
collection of maps σα : ∆n → X, with n depending on the index α,
such that:

(1) The restriction σα|∆n
◦ is injective, and each point of X is in the

image of exactly one such restriction σα|∆n
◦ .
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(2) Each restriction of σα to a face of ∆n is one of the maps σβ :
∆n−1 → X. Here we are identifying the face of ∆n with ∆n−1

by the canonical linear homeomorphism between them that pre-
serves the ordering of the vertices.

(3) A set A ⊂ X is open iff σ−1
α (A) is open in ∆n for each σα.

Definition 3. The group of n-chains ∆n(X) consists of (finite) formal
sums ∑

α

nασα,

where σα : ∆n → X are the maps in the definition of a ∆-complex
structure, and nα ∈ Q.

Definition 4. The boundary homomorphism ∂n : ∆n(X) → ∆n−1(X)
is defined by requiring

∂n(σα) =
n∑
i=0

(−1)iσα|[v0, . . . , v̂i, . . . , vn],

where v̂i denotes deleting the element vi, and [v0, . . . , v̂i, . . . , vn] is the
corresponding face of ∂∆n, and then extending the definition to formal
sums by linearity. The nth simplicial homology group is the quotient
group

Hn(X,Q) = Ker(∂n)/Im(∂n+1).

There are many ways to put ∆-complex structures on a space X,
but they all give the same simplicial homology groups. This is a con-
sequence of Theorem 2.27 in [1].

The homology of flag varieties is computed using cellular homology,
a tool for computing homology groups. Cellular homology requires the
structure of a cell complex or CW complex on the topological space of
interest. A k-cell is an open ball of dimension k.

Example 1. An n-sphere can be constructed by attaching an n-cell to
a 0-cell. A torus can be constructed first by attaching two 1-cells to a
0-cell to form a figure ”8”, and then by attaching a 2-cell to the figure
8. These two spaces are both CW complexes.

Here is a fun remark connecting back to the Euler characteristic.

Remark 1. For a finite CW complex X, the Euler characteristic of X
is defined to be the alternating sum

χ(X) =
∑
n

(−1)ncn,

where cn is the number of n-cells of X. This definition generalizes the
V − E + F formula for 2-dimensional complexes.
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We now define cellular homology.

Definition 5. Let X be a CW complex. The n-skeleton of X, denoted
by Xn, is the union of all cells of dimension less than or equal to n.
The cellular chain complex is

· · · → Hn+1(Xn+1, Xn)→ Hn(Xn, Xn−1)→ Hn−1(Xn−1, Xn−2)→ · · · .
The cellular homology groups of X are the homology groups of its
cellular chain complex.

Theorem 2.35 in [1] proves that computing homology using cellular
homology gives the same result as using the simplicial homology groups
defined earlier.

Theorem 1. The cellular homology groups are isomorphic to the sim-
plicial homology groups.

In fact, we need to combine the two theorems mentioned above (2.27
and 2.35) to prove Theorem 1.

Lemma 1. If X is a CW complex, then Hn(Xn, Xn−1) is a free abelian
group and has a basis in one-to-one correspondence with the n-cells of
X.

Lemma 1 is proved in [1]. We now state the key insight which will
allow us to compute the homology of the flag variety from the filtration
discussed in the next section.

Lemma 2. Let X be a CW complex with the following property: all
cells of X have even dimension. Let cn be the number of n-cells of X.
Then

Hn(X,Q) =

{
Qcn , if n is even,

0, if n is odd.

Proof. The cellular chain complex (1) is of the form

. . .→ Qc2k+2 → 0→ Qc2k → 0→ Qc2k−2 → . . . (2)

It is trivial to compute the homology of this cellular chain complex,
because all homomorphisms are necessarily identically 0. Indeed, we
have

Ker(0→ Qc2k) = 0 and Im(0→ Qc2k) = 0,

and
Ker(Qc2k → 0) = Qc2k and Im(Qc2k → 0) = 0,

for all k, from which the Lemma follows. �

Now we define cohomology, which gives us a ring structure rather
than a group structure.
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Definition 6. Given a space X, we form its chain complex

. . .→ ∆n+1 → ∆n
∂n−→ ∆n−1 → . . . ,

and dualize this chain complex by replacing each ∆n with

∆∗n = Hom(∆n,Q),

the group of homomorphisms ∆n → Q. Also replace the boundary
maps ∂n by their dual maps ∂∗n from ∆∗n−1 to ∆∗n. We obtain

· · · → ∆∗n−1

∂∗n−→ ∆∗n → ∆∗n+1 → · · · .
The cohomology group Hn(X,Q) is Ker(∂∗n+1)/Im(∂∗n).
The cohomology ring of X is

H∗(X,Q) =
⊕
n

Hn(X,Q),

and its multiplication operation is given by the cup product, as ex-
plained in Chapter 3 of [1].

The cohomology groups are sometimes isomorphic to the homology
groups.

Theorem 2. (Poincaré duality) If M is an n-dimensional oriented
closed manifold, then there is an isomorphism

Hk(M,Q) ∼= Hn−k(M,Q)

between the kth cohomology group and the (n−k)th homology group.

3. (Co)homology of Flag Varieties

Recall from the introduction the definition of a complete flag.

Definition 7. A complete flag of an n-dimensional vector space V over
C is an increasing sequence of subspaces

{0} = V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn = V,

where dimC Vi = i.

Definition 8. The (complete) flag variety Fln is the set whose ele-
ments are the complete flags of Cn. It has the structure of a manifold,
and of a projective algebraic variety.

A natural questions is what Fln looks like. Obviously, the complete
flag

{0} ⊂ C ⊂ C2 ⊂ . . . ⊂ Cn (3)

is a point in Fln. Here, by Ck, we mean the subspace of Cn spanned by
e1, . . . , ek, where e1, . . . , en is the standard basis of Cn. If we ”wiggle”
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any subspace in this sequence without changing its dimension and its
inclusion relation with the previous and next subspaces, the resulting
sequence of subspaces will also be a point in the flag variety. So we can
intuitively guess that the flag variety Fln is a manifold. It is stated in
Fulton’s book [2] that Fln is indeed a manifold of dimension (n2 ).

We can use the tools of homology and cohomology to study the flag
variety.

Question 1. What is the (co)homology of the flag variety?

It is quite difficult to put a ∆-complex structure on the flag variety,
for the purpose of computing its simplicial homology. However, Fln has
a natural cellular decomposition into Schubert cells, which will therefore
allow us to compute H∗(Fln,Q) by means of cellular (co)homology.

Definition 9. Denote the complete flag in (3) by

F• = ({0} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = Cn).

For any permutation ω ∈ Sn, define the Schubert cell

Xω = {E• ∈ Fln : dim(Ep ∩ Fq) = #{i ≤ p|ω(i) ≤ q}}.
A more intuitive way to understand this definition is as follows: de-

fine an equivalence relation on Fln by

E• ∼ E ′• if dim(Ep ∩ Fq) = dim(E ′p ∩ Fq), for all p, q.

Then the Schubert cells are the equivalence classes of the equivalence
relation ”∼”.

Notice that there are n! Schubert cells because the number of per-
mutations is n!.

The key to computing H∗(Fln,Q) is the following. It can be proved
that all Schubert cells are affine spaces Ak of some dimension k. Be-
cause Ak is a cell of dimension 2k, we can apply Lemma 2 (and Poincaré
duality) to conclude the following.

Theorem 3. H∗(Fln,Q) has a basis whose elements are in correspon-
dence with the Schubert cells. These are called Schubert classes.

An immediate corollary of Theorem 3 is that

dimQH
∗(Fln,Q) = n!. (4)

Example 2. In this example, we compute the cohomology of the flag
variety Fl3. As above, denote the standard basis of C3 as {e1, e2, e3},
and fix the flag F•

(F0 = {0}) ⊂ (F1 = 〈e1〉) ⊂ (F2 = 〈e1, e2〉) ⊂ (F3 = C3).
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Recall that for any ω ∈ S3, Xω consists of all complete flags E• such
that

dim(Ep ∩ Fq) = #{i ≤ p|ω(i) ≤ q},
for all 1 ≤ p, q ≤ 3. For simplicity of notation, we write

di,j = dim(Ep ∩ Fq)

in the table below.
ω d1,1 d1,2 d2,1 d2,2

[1, 2, 3] 1 1 1 2
[1, 3, 2] 1 1 1 1
[2, 1, 3] 0 1 1 2
[2, 3, 1] 0 1 0 1
[3, 1, 2] 0 0 1 1
[3, 2, 1] 0 0 0 1

Because #{i ≤ p|ω(i) ≤ 3} = p, and #{i ≤ 3| ω(i) ≤ q} = q,
dp,3 = p and d3,q = q for all p and q. This is not surprising because
E3 and F3 are all equal to C3, and when they are intersected with a
smaller subspace, i.e. Ep or Fq, the dimension of the intersection should
certainly be p and q. These dimensions of intersections with C3 along
with the dimension of intersections with F0 are trivial and so are not
listed in the table.

Now, we want to compute the Schubert cells from the table.
For [1, 2, 3], because dim(E1 ∩ F1) = 1 and dim(E2 ∩ F2) = 2,

the only flag that satisfies the condition is the fixed flag F•. So the
Schubert cell corresponding to [1, 2, 3] is a point,

X[1, 2, 3] = A0.

For [1, 3, 2], we also know immediately from dim(E1 ∩F1) = 1 that
E1 is F1, and we also know from dim(E2 ∩ F2) = 1 that E2 is all the
2-dimensional subspaces (i.e. planes) in C3 that contain e1 and do not
contain e2. So the Schubert cell corresponding to [1, 3, 2] is A1,

X[1, 3, 2] = A1.

For [2, 1, 3], we know from dim(E2 ∩ F2) = 2 that E2 is F2, and E1

is contained in E2 but E1 is not F1, so E1 can be all the lines in 〈e1, e2〉
except for 〈e1〉. So the Schubert cell corresponding to [2, 1, 3] is A1,

X[2, 1, 3] = A1.

For [2, 3, 1], because E1 is in F2 but not in F1, E1 is the set of
all lines through the origin in F2 except for the line 〈e1〉. E2 does not
contain F1, but it contains E1, and it’s intersection with F2 is exactly
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E1. So E2 is the set of all planes that contains E1 except for F2. The
corresponding Schubert cell is an A1-bundle over A1, which is A2,

X[2, 3, 1] = A2.

For [3, 1, 2], E1 is not in F2, so E1 is the set of all lines in C3 except
for the lines in F2. F1 is in E2. So E2 is completely determined by two
lines F1 and E1. E1 is isomorphic to A2, so the Schubert cell is A2,

X[3, 1, 2] = A2.

For [3, 2, 1], again E1 is not in F2 so E1 is the set of all lines in C3

except for the lines in F2. E2 does not contain F1 but the dimension
of intersection with F2 is 1. So E2 is the set of all planes in C3 that
contains E1 and the intersection of E2 with F2 is a line that is not F1

in F2. E1 is isomorphic to A2 and E2 brings another degree of freedom.
the Schubert cell is an A2 bundle over A1, which is A3,

X[3, 2, 1] = A3.

We summarize the discussion so far in the table below.

permutation (ω) [1, 2, 3] [1, 3, 2] [2, 1, 3] [2, 3, 1] [3, 1, 2] [3, 2, 1]
Schubert cell (Xω) A0 A1 A1 A2 A2 A3

cohomology H6 H4 H4 H2 H2 H0.

In conclusion, we have shown that

H∗(Fl3,Q) = Q⊕ 0⊕Q2 ⊕ 0⊕Q2 ⊕ 0⊕Q.
In particular, dimH∗(Fl3,Q) = 6, which is consistent with formula
(4).

4. The coinvariant algebra and Schubert polynomials

In this section, we define the coinvariant algebra and its basis, the
Schubert polynomials.

Definition 10. A polynomial p ∈ Q[x1, . . . , xn] is symmetric if in-
terchanging any two variables doesn’t change the polynomial. More
formally, the symmetric group Sn acts on Q[x1, . . . , xn] by

σ ∗ p = p(xσ(1), . . . , xσ(n)).

Then p is symmetric if σ ∗ p = p for all σ ∈ Sn.

For instance, the polynomial x1x2x3 is symmetric in Q[x1, x2, x3] but
not symmetric in Q[x1, . . . , x4], because in Q[x1, . . . , x4] we can have
(3 4) ∗ x1x2x3 = x1x2x4 6= x1x2x3. The polynomial x1x2 + x3x4 ∈
Q[x1, . . . , x4] is not symmetric because we can interchange x1 with x3

and have x2x3 + x1x4 6= x1x2 + x3x4.
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We now define the coinvariant algebra.

Definition 11. Let I denote the ideal generated by all the symmetric
polynomials in Q[x1, . . . , xn]. Then the quotient ring

Rn = Q[x1, . . . , xn]/I

is called the coinvariant algebra.

The coinvariant algebra has the set of Schubert polynomials as its ba-
sis. The Schubert polynomials are a set of polynomials in Q[x1, . . . , xn]
that are defined recursively. For each permutation ω ∈ Sn, there is a
unique Schubert polynomial σω defined with respect to it.

We use the square bracket [a1 . . . an] to denote the one-line notation
of a permutation.

Definition 12. The base case of the Schubert polynomials is

σ[n n−1 ... 3 2 1] = xn−1
1 xn−2

2 · · · xn−1.

The recursion relation is

δiσω = σωsi if ω(i) > ω(i+ 1),

where si is the transposition (i i+1) that permutes the ith element with
the (i+ 1)st element, and it also acts on Q[x1, . . . , xn] as in Definition
10, and δi is the divided difference operator that acts on polynomials
by

δi(p) =
p− si ∗ p
xi − xi+1

.

Remark 2. The identity permutation corresponds to the polynomial
1.

Remark 3. Despite being a fraction of polynomials in the definition,
the Schubert polynomials are always polynomials with integer coeffi-
cients.

Example 3. We compute some of the Schubert polynomials in 3 vari-
ables. The base case is σ[3 2 1] = x2

1x2. Now want to use the divided
difference operator on the base case to compute the Schubert polyno-
mials of other permutations in Sn.

Notice that the 1st entry of [3 2 1] is 3 and it is greater than the
2nd entry of [3 2 1] which is 2. So let i = 1 and si = (1 2), and by the
recursion relation formula

σ[3 2 1](2 1) = δ1σ[3 2 1] =
σ[3 2 1]− (1 2) ∗ σ[3 2 1]

x1 − x2

=
x2

1x2 − x2
2x1

x1 − x2

= x1x2.
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Therefore,
σ[2 3 1] = σ(3 2 1)(2 1) = x1x2.

Similarly, apply δ2 on σ[2 3 1] and σ[3 2 1]. We can compute that

σ[2 1 3] = σ[2 3 1](2 3) =
σ[2 3 1]− (2 3)σ[2 3 1]

x2 − x3

=
x1x2 − x1x3

x2 − x3

= x1,

and

σ[3 1 2] = σ[3 2 1](2 3) = δ2σ[3 2 1] =
σ[3 2 1]− (2 3)σ[3 2 1]

x2 − x3

=
x2

1x2 − x2
1x3

x2 − x3

= x2
1.

The Schubert polynomials can be computed in Maple by the function
called schubertpoly in the program in section 6, given a permutation
as input.

Theorem 4. The Schubert polynomials form a basis for the coinvarant
ring.

An immediate corollary is that the coinvariant ring has dimension
n! because there are n! Schubert polynomials.

Definition 13. A polynomial p ∈ Q[x1, . . . , xn] is homogeneneous of
degree d if all the terms in the polynomial have the same degree d.

For instance, the polynomial x2
1x

5
3 − x7

4 + 6x2x3x
5
4 ∈ Q[x1, . . . , x4] is

homogeneous of degree 7. The polynomial x3
2 + x1x2 ∈ Q[x1, x2, x3] is

not homogeneous because it contains terms of degrees 2 and 3.

Definition 14. A ring is graded if it can be written as a direct sum

R =
⊕
i≥0

Ri

such that RiRj ⊂ Ri+j.

Remark 4. The coinvariant algebra is graded.

We have already seen that the coinvariant algebra and the cohomol-
ogy ring of the flag variety have the same dimension n!, by Remark 5
and (4). The connection between the coinvariant algebra and the flag
variety is explained by the following important theorem, proved in [2].

Theorem 5. The cohomology ring of the flag variety is isomorphic to
the coinvariant algebra,

R ∼= H∗(Fln,Q).
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Under this correspondence, the Schubert polynomials correspond
precisely to the Schubert classes defined in the previous section. This
result in Theorem 5 is extremely remarkable, however, proving this
theorem is beyond the purpose of this senior thesis.

5. The open question

Due to geometric interpretations, when the product of two schu-
bert polynomials is expressed as a linear combination of the Schubert
polynomials, the all the coefficients are polynomials with integer coef-
ficients.

Open Question 1. Find a combinatorial formula for these integers.

6. An Approach with the Grobner Basis

We wrote a program in Maple that computes the coefficients of the
product of two Schubert polynomials in the Schubert polynomial basis.

We can use Maple to express every Schubert polynomial in the mono-
mial basis G generated from the Grobner basis of R = Q[x1, . . . , xn]/I,
where I is the symmetric ideal. Then record the coefficients and com-
pile them into a matrix, and we have the n! by n! change-of-basis matrix
M from Schubert polynomials to G. Use the same algorithms again
to express the product of two Schubert polynomials in G, and then
multiply the coefficients by M−1, and we can find the coefficient of
the product of Schubert polynomials in the Schubert polynomial basis.
Indeed, the coefficients are all positive integers.

As an example, at the end of the Maple program attached below, the
product of Schubert polynomials corresponding to [2 1 4 3] and [3 2 1 4]
is computed to be the sum of the Schubert polynomials corresponding
to [4 2 3 1] and [4 3 1 2].
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